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Abstract

The problem of quickest detection of a change
in the distribution of streaming data is con-
sidered. It is assumed that the pre-change
distribution is known, while the only infor-
mation about the post-change is through a
(small) set of labeled data. This post-change
data is used in a data-driven minimax robust
framework, where an uncertainty set for the
post-change distribution is constructed. The
robust change detection problem is studied in
an asymptotic setting where the mean time
to false alarm goes to infinity. It is shown
that the least favorable distribution (LFD)
is an exponentially tilted version of the pre-
change density and can be obtained e!ciently.
A Cumulative Sum (CuSum) test based on
the LFD, which is referred to as the distri-
butionally robust (DR) CuSum test, is then
shown to be asymptotically robust. The re-
sults are extended to the case with multiple
post-change uncertainty sets and validated
using synthetic and real data examples.

1 INTRODUCTION

Given sequential observations, the problem of quickest
change detection (QCD) is to detect a potential change
in their distribution that occurs at some change-point
as quickly as possible, while not making too many false
alarms (Siegmund, 1985; Basseville and Nikiforov, 1993;
Poor and Hadjiliadis, 2008; Tartakovsky et al., 2015).
The QCD problem is of fundamental importance in
statistics, and has seen a wide range of applications
(Veeravalli and Banerjee, 2013; Xie et al., 2021).

In the classical formulation of the QCD problem (Page,
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1954), it is assumed that the observations are indepen-
dent and identically distributed (i.i.d.) with known
pre- and post-change distributions. In many applica-
tions of QCD, while it is reasonable to assume that
the pre-change distribution is known (can be estimated
accurately), the post-change distribution is rarely com-
pletely known. However, we may have access to a
limited set of data corresponding to post-change.

There has been a large body of work on the QCD
problem when the pre- and/or post-change distribu-
tions have parametric uncertainty. The most prevalent
approach to dealing with parametric uncertainty is
the generalized likelihood ratio (GLR) approach, intro-
duced in Lorden (1971) for the special case where the
pre-change distribution is known and the post-change
distribution has an unknown parameter. The GLR
approach for the QCD problem with general paramet-
ric distributions is studied in Lai (1998) and Lai and
Xing (2010). An alternative approach to dealing with
parametric uncertainty is the mixture-based approach,
which was proposed and studied in Pollak (1978).

The QCD problem has also been studied in the non-
parametric setting. In Li et al. (2015), a test is proposed
that compares the kernel maximum mean discrepancy
(MMD) within a window to a given threshold. Another
approach has been to estimate the log-likelihood ratio
through a pre-collected training set. This includes di-
rect kernel estimation (Kawahara and Sugiyama, 2012),
neural network estimation (Moustakides and Basioti,
2019), and density ratio estimation (Adiga and Tandon,
2022; Sugiyama et al., 2008; Kawahara and Sugiyama,
2009). More recently, a non-parametric GLR test based
on density estimation has been developed for the case
where the post-change distribution is completely un-
known without any pre-collected post-change training
samples (Liang and Veeravalli, 2023).

Another line of work for dealing with non-parametric
distributional uncertainty is the one based on minimax
robust detection, in which it is assumed that the pre-
and post-change distributions come from disjoint uncer-
tainty classes. This approach is of particular interest
when distributional robustness is one of the objectives
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of the QCD formulation. Under certain conditions on
the uncertainty classes, e.g., joint stochastic bound-
edness (Moulin and Veeravalli, 2018), low-complexity
solutions to the minimax robust QCD problem can be
found (Unnikrishnan et al., 2011). Under more general
conditions, in particular, weak stochastic boundedness,
a solution that is asymptotically close to the minimax
robust solution can be found (Molloy and Ford, 2017).

In the literature of robust hypothesis testing, a va-
riety of uncertainty sets have been considered in a
non-parametric way. One line of work is where the
uncertainty set is constructed by selecting a nominal
distribution as the center and choosing a deviation mea-
sure such that the set includes all distributions whose
deviation from the nominal does not exceed a positive
constant. Examples include the ω-contamination model
(Huber, 1965) and the KL-divergence sets (Levy, 2008).
In the data-driven setting, the nominal distribution is
often chosen as the empirical distribution of training
samples. The uncertainty sets that have been used
in the literature include the Wasserstein uncertainty
sets (Gao et al., 2018), the kernel MMD sets (Sun
and Zou, 2021), and the Sinkhorn sets (Wang and Xie,
2022). Some work also constructs the uncertainty set
according to pre-specified constraints, such as moment
constraints (Magesh et al., 2023).

In this paper, we consider a data-driven minimax ro-
bust QCD problem, where the pre-change distribution
is assumed to be known, and the only knowledge about
the post-change distribution is through a limited set of
data corresponding to one or more possible post-change
scenarios. For each possible post-change scenario, we
define an empirical distribution using training data
collected under this scenario. Then we construct the
corresponding Wasserstein uncertainty set to contain
all distributions such that their Wasserstein distance
from the empirical distribution does not exceed some
specified value (i.e., radius). Our goal is to find the
asymptotically optimal robust detection procedure that
minimizes the worst-case detection delay over the uncer-
tainty set, while satisfying the false alarm constraints.
We focus on the asymptotic setting where the mean
time to false alarm goes to infinity.

Our contributions can be summarized as follows.

1. We characterize the least favorable distribution
(LFD) within the Wasserstein uncertainty set in
closed-form. We therefore establish that the Cumula-
tive Sum (CuSum) test based on the LFD, which we
refer to as the distributionally robust (DR) CuSum
test, is asymptotically robust. We also characterize
the size of radius through empirical concentration
inequalities of Wasserstein distance.

2. We extend the DR-CuSum test to construct an

asymptotically robust solution for the case where
the post-change uncertainty set is a union of multiple
Wasserstein uncertainty sets.

3. We show that DR-CuSum can outperform existing
benchmarks using simulated Gaussian data and a
real human activity dataset.

2 PROBLEM SETUP

Let {Xk, k → N} be a sequence of independent random
vectors whose values are observed sequentially, with X
denoting the observation space, i.e., Xk → X for all
k → N. Let Fk = ε(X1, . . . , Xk), k → N, be the filtra-
tion, with F0 denoting the trivial sigma algebra. Let
P and Q be probability measures on X . At some un-
known (yet deterministic) time ϑ, the data-generating
distribution changes from Q to P , i.e.,

Xk
iid↑ Q, k = 1, 2, . . . , ϑ ↓ 1,

Xk
iid↑ P, k = ϑ, ϑ + 1, . . .

(1)

We assume the pre-change measure Q is known, while
only partial knowledge of the post-change measure P

is available through a set of labeled (training) data.

Let PP
ω denote the probability measure on the data

sequence when the change-point is ϑ, and the pre- and
post-change measures are Q and P , respectively, and let
EP
ω denote the corresponding expectation. Denote P↑

and E↑ as the probability and expectation operator
when there is no change (i.e., ϑ = ↔). For brevity, we
write PP and EP as the probability and expectation
when all samples are generated from P (i.e., ϑ = 1).

The goal in QCD is to raise an alarm after the unknown
change-point ϑ as quickly as possible, while keeping
the false alarm rate below a pre-specified level. The
detection is performed through a stopping time ϖ on the
observation sequence at which the change is declared.

2.1 QCD Problem and CuSum Test

False Alarm Measure. We measure the false alarm
performance of a QCD test (stopping time) ϖ in terms
of its mean time to false alarm E↑ [ϖ ], and we denote
by C(ϱ) the set of all tests for which the mean time to
false alarm is at least ϱ, i.e.,

C(ϱ) = {ϖ : E↑ [ϖ ] ↗ ϱ} . (2)

Delay Measure. We use the commonly used worst-case
delay measure (WADD) in Lorden (1971). Specifically,
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for post-change distribution P and test ϖ , we set1

WADDP (ϖ) = sup
ω↓1

ess sup EP
ω

[
(ϖ ↓ ϑ + 1)+|Fω↔1

]
.

(3)

QCD Optimization Problem. When both Q and P are
known a priori, the optimization problem of interest is

inf
ε↗C(ϑ)

WADDP (ϖ). (4)

The Cumulative Sum (CuSum) test (Page, 1954) is
proved to solve the problem (4) exactly (Moustakides,
1986). The stopping time of the CuSum test is

ϖb = inf {k → N : Sk ↗ b} , (5)

with the CuSum statistic calculated recursively as:

S0 = 0, Sk = (Sk↔1)
++ log

p(Xk)

q(Xk)
, k ↗ 1, (6)

and b is chosen to meet the false alarm constraint of
ϱ. Here p, q are the respective probability density
functions (pdfs) of the measures P and Q with respect
to some common dominating measure.

2.2 Asymptotically Minimax Robust QCD

As mentioned previously, we have limited knowledge
about the post-change distribution P . One way to deal
with this distributional uncertainty is to assume that
P → P, where P is a family of probability measures
representing potential post-change distributions. In
the minimax robust QCD formulation, the goal is to
solve the following optimization problem,

inf
ε↗C(ϑ)

sup
P↗P

WADDP (ϖ), (7)

where C(ϱ) is as defined in (2). As is standard practice
in the analysis of QCD procedures, we are primarily
interested in the asymptotically optimal solution to (7)
as ϱ ↘ ↔. A solution ϖ

→ → C(ϱ) is called first-order
asymptotically minimax robust for (7) if

sup
P↗P

WADDP (ϖ→) = inf
ε↗C(ϑ)

sup
P↗P

WADDP (ϖ) · (1+ o(1)),

where, as throughout this paper, o(1) ↘ 0 as ϱ ↘ ↔.

Solving the asymptotically minimax robust solution to
robust QCD problems is facilitated by the following
weak stochastic boundedness (WSB) condition.
Definition 2.1 (Weak Stochastic Boundedness (Molloy
and Ford, 2017)). Let P0 and P1 be sets of distributions
on a common measurable space where P0 ≃ P1 = ⇐.

1Alternatively we may also consider the Pollak’s measure
(Pollak, 1985) CADDP (ω) = supω↑1 EP

ω [ω → ε|ω ↑ ε].

The pair (P0,P1) is said to be weakly stochastically
bounded by the pair of distributions (P →

0 , P
→
1 ) if

KL(P →
1 ||P →

0 ) ⇒ KL(P1||P →
0 )↓ KL(P1||P →

1 ), ⇑P1 → P1,

and

EP0

[
dP

→
1

dP →
0

(X)

]
⇒ EP→

0

[
dP

→
1

dP →
0

(X)

]
= 1, ⇑P0 → P0,

where

KL(P ||Q) =

∫

X
log

(
dP

dQ
(x)

)
dP (x),

and dP
dQ (x) is the Radon-Nikodym derivative of P with

respect to Q with dP
dQ (x) = ↔ when the derivative does

not exist. The pair of distributions (P →
0 , P

→
1 ) are called

least favorable distributions (LFDs).

Intuitively, the LFDs can be viewed as a representative
pair of distributions within uncertainty sets on which
the stopping time reaches the worst-case performance.
In this paper, we assume that the pre-change distribu-
tion is known; this corresponds to the special case that
P0 is a singleton. The following lemma follows directly
from (Molloy and Ford, 2017, Prop. 1 (iii)).
Lemma 2.1. For the singleton set Q = {Q} and a
convex set of distributions P where Q /→ P, (Q,P) is
weakly stochastically bounded by the pair of distributions
(Q,P

→), where

P
→ = arg min

P↗P
KL(P ||Q). (8)

Let p→, q be pdfs of P → and Q, respectively, with respect
to a common dominating measure. Then applying
(Molloy and Ford, 2017, Theorem 3), we conclude that
the first-order asymptotically minimax robust solution
to (7), as ϱ ↘ ↔, is given by the CuSum test with
pre-change pdf q and post-change pdf p→, i.e.,

ϖDR = inf {k → N : Sk ↗ b} , (9)

with Sk satisfying the recursion (for k ↗ 1):

Sk = (Sk↔1)
+ + log

p
→(Xk)

q(Xk)
, S0 = 0, (10)

and b chosen to meet the false alarm constraint of ϱ.

3 MINIMAX ROBUST QCD UNDER
SINGLE UNCERTAINTY SET

We are interested in a data-driven version of the mini-
max robust QCD problem, where the only knowledge
about the post-change distribution is through a limited
set of labeled data. We use this data to construct a
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Wasserstein uncertainty set for the post-change dis-
tribution. We begin by considering the simplest case
where there is only one possible post-change scenario.
Our main finding is that under the Wasserstein uncer-
tainty set, the density of the post-change LFD, i.e., the
solution to (8), is an exponentially tilted version of the
pre-change density.

3.1 The Wasserstein Uncertainty Model

Suppose we have n training data {ς1, . . . ,ςn} that are
independently sampled from the post-change regime,
then we choose the nominal distribution of the un-
certainty set to be the empirical distribution of those
historical samples, i.e., P̂n = 1

n

∑n
i=1 φϖi , where φϖ

corresponds to the Dirac measure at ς.

We construct the uncertainty set Pn as the set of all
probability measures that are close to P̂n with respect
to the Wasserstein distance Ws(·, ·),

Pn = {P → Ps : Ws(P, P̂n) ⇒ rs}, (11)

where Ps is the set of all Borel probability measures P
on the sample space X such that

∫
X c

s(x, x0)dP (x) <
↔ holds for all x0 → X , where c(·, ·) : X ⇓X ↘ R+ is
a metric and rs ↗ 0 is the radius parameter controlling
the size of the uncertainty set. Here, for any two
probability measures P, P̃ → Ps, their Wasserstein
distance (of order s) with metric c(·, ·) equals to

Ws(P, P̃ ) :=

{
min

!↗”(P,P̃ )

∫

X ↘X
c
s(ς, ς̃)d!(ς, ς̃)

}1/s

,

(12)
where ”(P, P̃ ) is the set of all joint probability mea-
sures on X ⇓X with marginal distributions P and P̃ ,
respectively (Villani, 2003). In this work, we restrict
s ↗ 1 and mainly use s = 2 in numerical experiments.

It is worthwhile mentioning that we chose Wasserstein
distance due to its unique advantages. It can handle
divergences between discrete and continuous distribu-
tions, which is essential for our use of empirical (dis-
crete) distributions as the center. It also incorporates
data geometry via the transportation cost, aligning
well with our data-driven method. In the subsection
following, we omit the dependency on the sample size
n and write the empirical distribution and uncertainty
set as P̂ and P, respectively.

3.2 Least Favorable Distribution

To obtain the LFD, the goal is to solve the following
optimization problem (as in Equation (8)),

min
P

KL(P ||Q), such that Ws(P, P̂ ) ⇒ rs. (13)

We note that (13) resembles the Optimistic Kullback
Leibler defined in Dewaskar et al. (2023), albeit in a
completely di"erent context. Below, we show that the
optimal solution to (13) can be found as an exponen-
tial tilting of the pre-change distribution Q. In the
following, we assume that Q has pdf q with respect to
the Lebesgue measure µ.
Theorem 3.1. The pdf of the least favorable distribu-
tion to the problem (13), with respect to the dominating
Lebesgue measure µ, satisfies p

→(x) ⇔ q(x)e↔Cω→,u→ (x),
where q(x) is the pre-change pdf with respect to µ, and
↼
→ ↗ 0, u→ → Rn are the optimizers of the following

convex problem,

max
ϱ↓0,u↗Rn

{
↓ ↼r

s
s +

1

n

n∑

i=1

ui ↓ log ↽(↼, u)

}
, (14)

with
Cϱ,u(x) := min

1≃i≃n
{↼cs(x,ςi)↓ ui}, (15)

and
↽(↼, u) :=

∫
q(x)e↔Cω,u(x)dµ(x).

After we obtain the pdf p→ of the least favorable dis-
tribution, we can construct the log-likelihood ratio at
each sample Xk as:

log
p
→(Xk)

q(Xk)
= ↓Cϱ→,u→(Xk)↓ log ↽(↼→

, u
→), (16)

which, after substitution into (10), gives the Distribu-
tionally Robust CuSum (DR-CuSum) statistics under
Wasserstein uncertainty sets. And the corresponding
stopping time in (9), the DR-CuSum test, denoted by
ϖDR, is the first-order asymptotically minimax robust
solution to problem (7).

By exploiting the convexity property, the optimal dual
variables ↼

→ and u
→ (thus the term ↽(↼→

, u
→)) can be

pre-computed from (14). Therefore, the DR-CuSum
statistics can be easily updated online, resulting in an
e!cient test for detecting the change. More specifically,
the computational complexity of the proposed method
is nearly the same as CuSum in the detection phase;
however, the proposed method also needs an o!ine
training phase in which we solve for the LFD e!ciently
via convex optimization.
Remark 3.1 (Unknown Pre-change Distribution). In
some applications, the pre-change distribution may also
need to be estimated from historical data ⇀1, . . . , ⇀N

in the pre-change regime, with N generally being
much larger than n. The optimization problem (14)
is easily adaptable to such case, because the integral
↽(↼, u) =

∫
q(x)e↔Cω,u(x)dµ(x) can be approximated

directly by sample average 1
N

∑N
i=1 e

↔Cω,u(ςi), without
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have to estimate the pre-change density. After ob-
taining ↽(↼, u), we can then update the DR-CuSum
statistics by accumulating the log-likelihood ratio in
(16), without knowing the exact pre-change density.

4 RADIUS AND DETECTION
DELAY

In this section, we discuss the choice of the radius pa-
rameter rs in constructing the uncertainty set Pn in
(11), which is an essential parameter to balance the
robustness and e"ectiveness of the DR-CuSum test.
We adopt the commonly used principle from distribu-
tionally robust optimization (DRO) of choosing the
radius such that the true data distribution is included
within the uncertainty set with high probability (Kuhn
et al., 2019; Mohajerin Esfahani and Kuhn, 2018).

We consider the ideal case where the empirical samples
{ς1, . . . ,ςn} are sampled from the true post-change
distribution P . The idea is to guarantee that the
Wasserstein set contains the true post-change distribu-
tion but not the pre-change distribution. We first list
a known empirical concentration result for Wasserstein
distance, under the Ts(c) inequality condition below
(more details and examples of Gaussian and discrete
distributions are given in Appendix A.2).
Definition 4.1 (Ts(c) inequality (Raginsky and Sason,
2013)). We say that a probability measure P satisfies an
L
s transportation-cost inequality with constant c > 0

(which is referred to as the Ts(c) inequality), if for every
probability measure Q ↖ P we have

Ws(P,Q) ⇒

2cKL(Q||P ).

Theorem 4.1 (Empirical Concentration (Bolley et al.,
2007)). Let s → [1, 2] and let P be a probability mea-
sure on Rd satisfying a Ts(c) inequality, then for any
d
⇐
> d and c

⇐
> c, there exists some constants N0, de-

pending only on c
⇐, d

⇐ and some square-exponential
moment of P , such that for any ω > 0 and n ↗
N0 max(ω↔(d↑+2)

, 1),

PP {Ws(P, P̂n) > ω} ⇒ e
↔ϑsnφ

2/2c↑
,

where ϱs = 1 if s → [1, 2) and ϱs = 3 ↓ 2
↙
2 if s = 2.

Here recall PP is the probability measure on the samples
that are distributed i.i.d. as P .

We first give an upper bound requirement for the radius
which guarantees that the pre-change distribution is
excluded from the post-change uncertainty set (Q /→
Pn) with high probability, thus making the detection
problem valid. Since the pre-change distribution Q

is known, given any empirical measure P̂n, we can
calculate Ws(Q, P̂n) and select the radius rs such that

rs < Ws(Q, P̂n). (17)

However, it is worthwhile emphasizing that for theo-
retical considerations below, the set Pn is essentially
random due to the randomness of empirical samples.
The corollary below calculates an upper bound for the
radius considering such randomness.
Corollary 4.1 (Upper Bound for Radius). Fix φ →
(0, 1) and s → [1, 2]. Suppose that the pre- and post-
change distributions Q, P are probability measures on
Rd, and that P satisfies the Ts(c) inequality. Suppose
that n ↗ N0 max(r↔(d+2)

s , 1) where N0 is the same as
in Theorem 4.1. Then, if we set the radius as

rs ⇒ r↼,n := Ws(P,Q)↓


2| log φ|c

ϱsn
,

it is guaranteed that with probability at least 1↓ φ we
have Q /→ Pn.

When we lack knowledge of Ws(P,Q), as might be
the case in practice, the upper bound r↼,n is only of
theoretical interest, and we can use Equation (17) to
determine a proper radius.

Next, we present a lower bound for rs to guarantee
P → Pn with high probability. We also characterize the
delay performance when such a condition is satisfied.
Corollary 4.2 (Lower Bound for Radius). Under the
same conditions as in Corollary 4.1, if we set the radius

rs ↗ r↼,n :=


2| log φ|c

ϱsn
,

it is guaranteed that with probability at least 1↓ φ, we
have P → Pn.

To guarantee the existence of rs that satisfies the upper
bound in Corollary 4.1 and lower bound in Corollary 4.2
at the same time, we give the following necessary re-
quirement on the minimum number of training samples.
Lemma 4.1. Suppose the same conditions as in Corol-
lary 4.1 hold. Additionally, suppose

n ↗ n↼ :=
8| log φ|c

ϱs(Ws(P,Q))2
, (18)

where n↼ is the least number of samples to guarantee
that r↼,n ↗ r↼,n. Now, if rs satisfies

r↼,n ⇒ rs ⇒ r↼,n,

then

PP ({P → Pn} ≃ {Q /→ Pn}) ↗ 1↓ 2φ.

In the following, we write the LFD as P →
n and its pdf as

p
→
n. Lemma 4.2 establishes an asymptotic upper bound

on the worst-case detection delay of DR-CuSum test.
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Lemma 4.2. Suppose EP
[

log(p→n(X1)/q(X1))
2]

<

↔. Fix φ → (0, 1) and s → [1, 2]. Suppose that the pre-
and post-change distributions Q, P are probability mea-
sures on Rd, and they both satisfy the Ts(c) inequality.
Suppose that n ↗ (N0(r

↔(d+2)
s ∝ 1)) ∝ n↼ where N0 is

the same as in Theorem 4.1 and n↼ is defined in (18).
Then, if the chosen radius rs satisfies

r↼,n ⇒ rs ⇒ r↼,n,

it is guaranteed that with probability at least 1↓ 2φ, the
worst-case detection delay of the DR-CuSum test ϖDR

with threshold b = log ϱ can be upper bounded as

sup
P↗Pn

WADDP (ϖDR) ⇒
log ϱ

KL(P →
n ||Q)

· (1 + o(1))

⇒ 2c log ϱ

(Ws(P,Q)↓ 2rs)2
· (1 + o(1)),

(19)
as ϱ ↘ ↔.

We note that the dimensionality d a"ects the algorithm
and results in two ways: (i) The ideal training sample
size n depends on d, since the empirical concentration
of the Wasserstein distance depends on d as shown in
Theorem 4.1; (ii) The selection of the radius and the
detection delay are implicitly a"ected by d through the
Wasserstein distance and KL divergence.
Example 4.1. For the special case, where the pre-
and post-change distributions are Gaussian, with Q =
N(µ0, 1) and P = N(µ1, 1), we have KL(P ||Q) =
1
2 (µ1 ↓ µ0)2 = 1

2W
2
2(Q,P ), and the T2(1) inequality

holds equality. This means that the delay of the DR-
CuSum procedure is, with probability at least 1↓ 2φ,
bounded from above as

log ϱ

KL(P →
n ||Q)

(1 + o(1)) ⇒ log ϱ
(W2(P,Q)↔2r2)2

2

(1 + o(1))

=
log ϱ

KL(P ||Q)↓ 2r2

2KL(P ||Q) + 2r22

(1 + o(1)).

From Corollary 4.2, we may choose the radius as its
lower bound with r2 =


2| log φ|c⇐/(ϱ2n) = O(n↔1/2),

which means that for n su!ciently large, we have that
the delay of DR-CuSum test will match the optimal
delay, [(log ϱ)/KL(P ||Q)] · (1 + o(1)), asymptotically.

5 MINIMAX ROBUST QCD UNDER
MULTIPLE UNCERTAINTY SETS

We extend the results of Section 3 to the more gen-
eral case with multiple post-change scenarios as fol-
lows. Suppose there are M ↗ 1 potential post-
change scenarios, and we have a set of training samples
{ς(m)

1 , . . . ,ς
(m)
nm } that are independently sampled from

the m-th scenario, with P̂
(m)
nm being their empirical

distribution. The uncertainty set P(m)
nm for the m-th

post-change scenario, similar to (11), is now defined as

P(m)
nm

:= {P → Ps : Ws(P, P̂
(m)
nm

) ⇒ rs,m}, (20)

where rs,m ↗ 0 is the radius parameter controlling the
size of the m-th uncertainty set. With a slight abuse of
notation, we define P := ′M

m=1P
(m)
nm as the union of all

the uncertainty sets in the remainder of this section.

5.1 Asymptotically Optimal Stopping Time

Based on Theorem3.1, we can find M LFDs, denoted
as P →

(1), . . . , P
→
(M), one for each Wasserstein uncertainty

set. The LFD P
→
(m) for the m-th uncertainty set is

an exponential tilting of Q and has pdf p
→
(m)(x) =

q(x) exp{↓C
(m)
ϱ→
m,u→

m
(x)↓ ↽

(m)(↼→
m, u

→
m)}, where ↼

→
m, u

→
m

are the solution to

sup
ϱ↓0,u↗Rnm

{
↓ ↼r

s
s,m +

1

nm

nm∑

j=1

uj ↓ log ↽(m)(↼, u)

}
,

where C
(m)
ϱ,u (x) := min1≃j≃nm{↼cs(x,ς(m)

j )↓ uj} and
↽
(m)(↼, u) :=

∫
q(x) exp{↓C

(m)
ϱ,u (x)}dµ(x). The log-

likelihood ratio under scenario m equals

log
p
→
(m)(x)

q(x)
= ↓C

(m)
ϱ→
m,u→

m
(x)↓ log ↽(m)(↼→

m, u
→
m).

Given online samples {Xk, k → N}, the detection statis-
tic for the m-th uncertainty set can be computed re-
cursively as

S
(m)
k = (S(m)

k↔1)
+ + log

p
→
(m)(Xk)

q(Xk)
, ⇑m = 1 . . . ,M.

(21)
The DR-CuSum stopping time under multiple post-
change scenarios is then defined as

ϖDR(b) := inf

{
k → N : max

m=1,...,M
S
(m)
k ↗ b

}
, (22)

where b is chosen to meet the false alarm constraint.
In the following Lemma 5.1 and Theorem 5.1, we in-
vestigate the asymptotic optimality properties of this
DR-CuSum test. The proofs of these results are pro-
vided in the Appendix.

Lemma 5.1. The mean time to false alarm of the test
in (22) satisfies E↑[ϖDR(b)] ↗ e

b
/M .

Theorem 5.1 (Asymptotic Minimax Robustness).
Write

I
→ := min

m=1,2,...,M
KL(P →

(m)||Q).
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Then, the test in (22) with threshold bϑ = log(Mϱ)
solves the problem in (7) asymptotically as ϱ ↘ ↔,
with the asymptotic worst-case delay being

sup
P↗P

WADDP (ϖDR(bϑ))

= inf
ε ↑↗C(ϑ)

sup
P↗P

WADDP (ϖ ⇐) · (1 + o(1))

=
log ϱ

I→
· (1 + o(1)).

6 NUMERICAL RESULTS

6.1 Synthetic Data Examples

We validate the performance of the DR-CuSum test
(22) through a Gaussian simulation. We use the cost
function c(x, x⇐) = ∞x↓ x

⇐∞2 and order s = 2 in the
Wasserstein distance. The true pre- and post-change
distributions are N (0, 1) and N (0.5, 1), respectively.

Comparison with CuSum Type Tests and E!ect

of Radius: We simulate the case of a single post-
change scenario (M = 1). We first compare the per-
formances for the following three CuSum type tests all
have a recursive structure that facilitates implementa-
tion (i.e., they have similar computational complexities
during the detection phase):

1. The exact CuSum test with known pre- and post-
change distributions. This is the optimal procedure
and provides us with a lower bound for the WADD.

2. The CuSum test that has knowledge of the Gaussian
model, and uses the training data to produce a MLE
of the post-change mean and variance.

3. The proposed DR-CuSum test defined in (22), with
di"erent choices of radius.

In Fig. 1, we study the e"ect of radius under two sizes
of post-change training samples a priori : small sample
size (n = 25) and large sample size (n = 150). When
the number of training samples is small, the DR-CuSum
test outperforms the Gaussian MLE CuSum test with
various choices of radii. We emphasize that, unlike the
latter test, the DR-CuSum test does not assume any
knowledge of the parametric model for the post-change
distribution. This highlights the e"ectiveness of the DR-
CuSum test in dealing with distributional uncertainty,
especially in data-driven and non-parametric settings.

In Fig. 2, we numerically study the e"ect of radius when
the empirical samples are drawn from a mismatched
Gaussian distribution: N (0.75, 1), while the true post-
change distribution for test sequences is still N (0.5, 1).
We see in Fig. 2 that the model mismatch causes a non-
trivial e"ect on the optimal radius selection, where the

Figure 1: Comparison of detection delay, averaged
over 30 sets of di"erent training samples. The left
plot corresponds to the case with n = 25 post-change
training samples, and the right plot corresponds to
that with n = 150. The tests shown are exact CuSum
(cyan), CuSum with Gaussian MLE (blue dashes), and
DR-CuSum with various radii.

DR-CuSum test with a larger radius is more robust un-
der distributional mismatch. Also, with a proper choice
of radius, we see that the DR-CuSum test outperforms
the Gaussian MLE test, which, we again emphasize,
knows the parametric model for the post-change distri-
bution. This highlights the e"ectiveness of DR-CuSum
test in dealing with training data mismatch, which is
common in data-driven applications.

Figure 2: Comparison of detection delay, averaged over
40 sets of n = 150 mismatched post-change training
samples. The tests shown are exact CuSum (cyan),
mismatched CuSum with Gaussian MLE (blue dashes),
and both matched (in circle markers) and mismatched
(in triangle markers) DR-CuSum tests with two radii.

Comparison with NGLR-CuSum test: We also
compare the performance of the DR-CuSum test with
the NGLR-CuSum test (Liang and Veeravalli, 2023),
which also assumed no knowledge about the post-
change distribution. We compare their performance
with d dimensional observations. The pre-change dis-
tribution is N (0, Id), where Id is the identity matrix.
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Figure 3: Comparison of DR-CuSum tests (solid lines)
with the modified NGLR-CuSum tests (dashed lines)
with d = 3 and a = 0.3. The number of post-change
training samples n = 25. The leave-one-out KDE with
a Gaussian product kernel (defined in (33)) is used in
the NGLR-CuSum test, with the bandwidth parameter
hm = 30↔1/7

, ⇑m = 1, . . . , 3. The average performance
over 30 di"erent sets of training samples is reported.

The post-change distribution is N (a, Id). Here a → Rd

denotes a vector with all elements being a → R.

In Fig. 3, we see that with 3-d observations, the DR-
CuSum test (with the optimal radius) performs better
than the modified NGLR-CuSum test. This is be-
cause kernel density estimation becomes less accurate
in higher dimensions. Also, it is observed that the
DR-CuSum test is computationally much less expen-
sive than the modified NGLR-CuSum test. The kernel
density estimation is very computationally demanding
in higher dimensions. In comparison, while the DR-
CuSum test also su"ers from a more expensive o#ine
computation, its online computational requirements
only go up modestly due to the increase in dimension.
Indeed, the DR-CuSum requires only O(nd) operations
to compute Cϱ→,u→(Xk) for each new sample Xk. More
implementation details of the NGLR-CuSum test and
a one-dimensional numerical result can be found in
Appendix B.

6.2 Real Data Example

We apply the DR-CuSum test to a real data example
of human activity detection using the WISDM’s Ac-
titracker activity prediction dataset (Lockhart et al.,
2011). The attribute at each time is a three-dimensional
vector containing the acceleration in x-, y-, and z-axes.
We select “Walking” as the nominal pre-change state
and our goal is to detect a change to the “Jogging” state
(post-change) as quickly as possible.

We mainly compare the proposed DR-CuSum with the
NGLR-CuSum test, which is also non-parametric and

does not impose any post-change assumptions. For
the NGLR-CuSum, we first fit a Gaussian distribution
as the pre-change using available historical samples.
For the DR-CuSum test, following Remark 3.1, we
directly solve for the LFD P

→ using the pre-change
samples without estimating the pre-change density. In
such a real data scenario, we have a fixed set of post-
change training samples. Therefore, we can use (17)
to select a proper radius that guarantees that the pre-
change distribution is excluded from the uncertainty
set. We first visualize the trajectory of the DR-CuSum
detection statistics for a particular user. Then we
provide the comparison of average detection delay (over
multiple users) at the end of this subsection.

5850 5900 5950 6000 6050 6100 6150 6200
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200
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600

800
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Figure 4: Detection statistics of DR-CuSum and NGLR-
CuSum tests. Number of empirical samples from each
scenario n = 5. Wasserstein order s = 1. Radius r = 8.
Number of scenarios M = 5 (right plot only). The
vertical line represents the true change-point.

In the first scenario, we consider M = 1 with “Jogging”
being the true post-change activity. We select n = 5
samples from the Jogging state of a specific user to con-
struct the empirical distribution P̂ . This represents the
case where number of training samples available is very
small. The DR-CuSum test, along with the baseline
NGLR-CuSum test, is applied on another user’s data
to monitor his/her activity change from Walking to
Jogging. Fig. 4 (Left) shows an example where there is
a clearer dichotomy for the DR-CuSum statistic before
and after the change, and the DR-CuSum statistics is
more stable under the pre-change regime.

In the second scenario, we consider M = 5 with the
post-change activity being one of the Jogging, Stairs,
Sitting, Standing, and LyingDown state. We construct
the M uncertainty sets using n = 5 empirical samples
from each state and solve for LFDs P →

1 , . . . , P
→
M . The re-

sulting DR-CuSum detection statistics in Fig. 4 (Right)
show that the maximum statistic in (22) is helpful not
only for change detection, but also for change isolation.

We also compare the average detection delay of DR-
CuSum test with that of the NGLR-CuSum. We focus
on the detection of activity change from Walking to
Jogging and select 86 user sequences that contain such
activity change. For each of these 86 sequences, we
use n empirical data randomly selected from the post-
change state to construct the uncertainty set for the
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Table 1: Average detection delay of DR-CuSum
and NGLR-CuSum test on 86 user sequences. The
bandwidth for NGLR-CuSum is selected as hi =
W

↔1/(d+4)
ε̂i, where W = 100 is the window size, d = 3

is the data dimension, and ε̂i is the estimated stan-
dard deviation from pre-change data. The threshold
is chosen as the upper 1% quantile of the detection
statistics for the pre-change samples. The experiments
are repeated ten times and the average detection delay
is reported, with standard deviations in parentheses.

DR-CuSum NGLR-CuSum
n = 10, r = 2 25.61 (4.08) 81.26 (0.51)
n = 20, r = 1.5 16.88 (2.74) 74.77 (13.62)

DR-CuSum test, and for density estimation in NGLR-
CuSum. We repeat such procedures ten times for each
user to account for the randomness in post-change
empirical samples. The average detection delay and
standard deviation are reported in Table 1. We can
see that the DR-CuSum test tends to have a smaller
detection delay than NGLR-CuSum.

7 CONCLUSION AND FUTURE
WORK

We developed an asymptotically minimax robust proce-
dure for QCD, which we refer to as the distributionally
robust (DR) CuSum test, in the setting where the post-
change distribution belongs to a union of data-driven
Wasserstein uncertainty sets. We showed that the DR-
CuSum test, which makes no distributional assump-
tions about the post-change, outperforms the Gaussian
MLE CuSum test and NGLR-CuSum test. Our theo-
retical findings can be extended to the non-stationary
setting where the post-change observations are inde-
pendent but not necessarily identically distributed; we
leave this extension for future research.
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A TECHNICAL PROOFS

A.1 Proofs for Section 3

We first present the following lemma which is used in the proof of Theorem 3.1.
Lemma A.1. Given constants c1, c2, . . . , cn → R, consider the following optimization problem:

min
a1,a2,...,an↓0

f(a1, a2, . . . , an) :=
 n∑

i=1

ai


log

 n∑

i=1

ai


+

n∑

i=1

ciai, (23)

where by convention, we let 0 log 0 = 0. Then, the minimizer (a→1, . . . , a
→
n) satisfies

n∑

i=1

a
→
i = e

↔mini=1,...,n ci↔1
,

and the optimal objective value is f(a→1, a
→
2, . . . , a

→
n) = ↓e

↔mini=1,...,n ci↔1.

Proof. We first note that it su!ces to consider the case where all the ci’s are distinct, i.e., ci ∈= cj , ⇑i ∈= j. This
is due to the fact that if any pair of ci and cj are equal, we can re-define our set of constants to be the unique
values in {c1, . . . , cn}, let’s denote these as {c⇐1, . . . , c⇐k} (k < n). We then define new variables ãi =

∑
j:cj=c↑i

aj ,
i = 1, . . . , k. The problem (23) thus becomes equivalent to:

min
ã1,...,ãk↓0

f(ã1, . . . , ãk) := (
k∑

i=1

ãi) log(
k∑

i=1

ãi) +
k∑

i=1

c
⇐
iãi,

with distinct c⇐i values, and this new problem has the same optimal value as the original problem in (23). Therefore,
we can safely assume that c1, . . . , cn are di"erent from each other for the remaining proof, i.e., ci ∈= cj , ⇑i ∈= j.

We introduce Lagrangian multipliers ↼i ↗ 0 for i = 1, . . . , n for the constraints. The corresponding Lagrangian
function is then given by

L(a1, . . . , an,↼1, . . . ,↼n) =
 n∑

i=1

ai


log

 n∑

i=1

ai


+

n∑

i=1

ciai ↓
n∑

i=1

↼iai.

By applying the Karush–Kuhn–Tucker condition, the optimal solution (a→1, . . . , a
→
n) must satisfy the gradient

condition
⇁L

⇁a→i
= 1 + log

 n∑

i=1

a
→
i


+ ci ↓ ↼i = 0, ⇑i = 1, 2, . . . , n, (24)

and the complementary slackness conditions

↼ia
→
i = 0, ⇑i = 1, 2, . . . , n. (25)

From (24), we deduce that

↼i = 1 + log
 n∑

i=1

a
→
i


+ ci, ⇑i = 1, 2, . . . , n,

which implies that ↼1, . . . ,↼n are distinct. Now, we consider two scenarios:

(i) If ↼i ∈= 0, ⇑i, then from (25) we get a
→
1 = a

→
2 = · · · = a

→
n = 0 and the objective value is zero.

(ii) If there exists i0 such that ↼i0 = 0, then from ↼i ↗ 0, ⇑i, we have that

i0 = argmin↼i = argmin ci.

Additionally, by (25), we have a
→
j = 0 for j ∈= i0 since ↼j ∈= ↼i0 = 0, and the corresponding a

→
i0 = e

↔ci0↔1 from
(24), yielding an objective value of ↓e

↔ci0↔1
< 0.

Therefore, when c1, . . . , cn are distinct and i0 = argmin ci, the minimizer is given by a
→
i0 = e

↔ci0↔1 and a
→
j = 0,

⇑j ∈= i0, and the optimal value is ↓e
↔ci0↔1. In summary, the optimal solution (a→1, . . . , a

→
n) to (23) satisfies∑n

i=1 a
→
i = e

↔mini=1,...,n ci↔1, and the corresponding optimal objective value is ↓e
↔mini=1,...,n ci↔1.
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Proof of Theorem 3.1

Proof. We first consider s = 1, with the radius being denoted by r1. Denote by ”(P, P̂ ) the space of all joint
distributions on X ⇓ X . Note that the empirical distribution P̂ is discrete with finite support {ς1, . . . ,ςn}.
Without loss of generality, we assume that P

→, the optimal solution to (13), is absolutely continuous with respect
to the pre-change measure Q because otherwise KL(P →||Q) = ↔. Since Q is dominated by µ, P → is also dominated
by µ.

Therefore, we consider all joint distributions ”(P, P̂ ) with a continuous marginal P (with respect to µ) and a
discrete marginal P̂ . Their joint distribution ”(P, P̂ ) can be characterized by the mixed joint density, denoted as

π(x,ςi) =
1

n
fi(x), where fi(x) ↗ 0,

∫

X
fidµ(x) = 1, ⇑i = 1, 2, . . . , n. (26)

Here the term 1/n corresponds to the probability mass function of its second marginal, while fi(x) can be viewed
as the conditional density function (with respect to the same dominating measure µ) of the first variable given
that the second variable equals ςi. Thus

∑n
i=1 π(x,ςi) =

1
n

∑n
i=1 fi(x) is the probability density function (with

respect to µ) of its first marginal P , which we denote as p. Also, define Pµ to be the set of all distributions
absolutely continuous with respect to measure µ. Note that Pµ is trivially convex.

To solve the constrained minimization problem in (13), we note that KL(P ||Q) is a convex functional in P , and
W1(P, P̂ ) ↓ r1 is a convex mapping of P into R. Since Pµ is dense with respect to the Wasserstein distance
for Lebesgue measure µ, meaning that there exists a distribution in Pµ that is arbitrarily close to any given
measure P . Thus it is easy to find some P

⇒
1 ↖ µ close to the empirical samples such that W1(P ⇒

1 , P̂ ) ⇒ r1. Also,
inf


KL(P ||Q) : P → Pµ,W1(P, P̂ ) ⇒ r1


↗ 0 > ↓↔. Then by Lagrange duality (Luenberger, 1969, Sec 8.6 Thm 1)

we have
inf


KL(P ||Q) : P → Pµ,W1(P, P̂ ) ⇒ r1


= max

ϱ↓0
inf

P↗Pµ


KL(P ||Q) + ↼W1(P, P̂ )↓ ↼r1


, (27)

and this maximum on the right-hand side is achieved at some ↼
→ ↗ 0.

Using the definition of Wasserstein distance, we have

W1(P, P̂ ) = inf
↽↗”(P,P̂ )

n∑

i=1

∫

X
c(x,ςi)π(x,ςi)dµ(x),

which, after substituting into (27), results in the following dual optimization problem to (13),

max
ϱ↓0


↓↼r1 + inf

↽

∫

X

 n∑

i=1

π(x,ςi)

log

∑n
i=1 π(x,ςi)

q(x)
dµ(x) +

n∑

i=1

∫

X
↼c(x,ςi)π(x,ςi)dµ(x)


.

Note that the inner problem can be written as

inf
↽

∫

X

 n∑

i=1

π(x,ςi)

log

∑n
i=1 π(x,ςi)

q(x)
dµ(x) +

n∑

i=1

∫

X
↼c(x,ςi)π(x,ςi)dµ(x)



s.t

∫

X
π(x,ςi)dµ(x) =

1

n
, ⇑i = 1, 2, . . . , n,

n∑

i=1

∫

X
π(x,ςi)dµ(x) = 1.

By the definition of mixed joint density π(x,ςi) in (26), the above problem is equivalent to the following
optimization problem over non-negative functions f1, f2, . . . , fn,

inf
f1,...,fn


1

n

∫

X

 n∑

i=1

fi(x)

log

1
n

∑n
i=1 fi(x)

q(x)
dµ(x) +

1

n

n∑

i=1

∫

X
↼c(x,ςi)fi(x)dµ(x)



s.t

∫

X
fi(x)dµ(x) = 1, ⇑i = 1, 2, . . . , n,

1

n

n∑

i=1

∫

X
fi(x)dµ(x) = 1.
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We now introduce Lagrangian multipliers ui → R, i = 1, 2, . . . , n and ↽̌ → R for the constraints. By strong duality
(Luenberger, 1969), we have that the value of the above minimization problem becomes

max
u1,...,un

inf
f1,...,fn


1

n

∫

X

n∑

i=1

fi(x)

log

∑n
i=1

1
nfi(x)

q(x)
+ ↼c(x,ςi)↓ ui + ↽̌


dµ(x) +

1

n

n∑

i=1

ui ↓ ↽̌


.

We can then solve the inner infimum problem for each value x to get the optimal f→
1 (x), . . . , f

→
n(x), since the

function inside the integral only depends on the particular value of x. From Lemma A.1 in the appendix, we have
that for each x, the inner minimization problem over f1(x), . . . , fn(x) has optimal solution satisfying

1

n

n∑

i=1

f
→
i (x) = q(x)e↔mini(ϱc(x,ϖi)↔ui)↔⇀̌↔1 = q(x)e↔Cω,u(x)↔⇀̌↔1

,

where the last equality is due to the definition in (15), and the corresponding optimum value for each x is
↓q(x)e↔Cω,u(x)↔⇀̌↔1. Moreover, to satisfy the constraint, the optimal Lagrangian multiplier ↽̌ must satisfy

↽̌ + 1 = log

(∫

X
q(x)e↔Cω,u(x)dµ(x)

)
.

Therefore, 1
n

∑n
i=1 f

→
i (x) is a probability density function and the corresponding objective value satisfies

1

n

∫

X

n∑

i=1

f
→
i (x)


log

∑n
i=1

1
nf

→
i (x)

q(x)
+ ↼c(x,ςi)↓ ui + ↽̌


dµ(x)↓ ↽̌

= ↓
∫

X
q(x)e↔Cω,u(x)↔⇀̌↔1

dµ(x)↓ ↽̌ = ↓1↓ ↽̌

= ↓ log

(∫

X
q(x)e↔Cω,u(x)dµ(x)

)
=: ↓ log ↽(↼, u),

where for notational simplicity we have defined ↽(↼, u) :=
∫
q(x)e↔Cω,u(x)dµ(x). The resulting outer maximization

problem is as in (14). After solving the dual optimization problem (14) and obtaining the optimal dual variable
↼
→
, u

→, we arrive at the optimal solution to the problem in (13), which is p
→ = p

ϱ→,u→
(x) = 1

n

∑n
i=1 f

→
i (x) ⇔

q(x)e↔Cω→,u→ (x), or more specifically

p
→(x) = q(x)e↔Cω→,u→ (x)↔⇀(ϱ→,u→)

.

In the case of a general order s ↗ 1, we will have c
s(x,ςi) in the above arguments, and the proof follows similarly.

The resulting LFD pdf p→(x) is still an exponentially tilting of q(x).

Example A.1. For illustrative purposes, we study the LFD under the setting where c(x, x⇐) = ∞x↓ x
⇐∞2 and the

Wasserstein order s = 2. We also assume univariate data and the standard normal pre-change distribution, i.e.,
Q = N (0, 1), and the dominating measure µ is the Lebesgue measure on R. We first derive a closed-form solution
of LFD for the extreme case where the number of empirical samples n = 1. In this case, the function Cϱ,u(x)
defined in Theorem3.1 equals Cϱ,u(x) = ↼(x↓ ς1)2 ↓ u, ⇑x. Then,

↽(↼, u) =

∫
1↙
2π

e
↔x2/2↔ϱx2+2ϱϖ1x↔ϱϖ2

1+u
dx =

1↙
1 + 2↼

e
↔ ω

1+2ωϖ2
1+u

,

and the optimal solution to problem (14) is given by

↼
→ =

ς
2
1

1 + 4rς2
1 ↓ 1

↓ 1

2
, if r2 ⇒ 1 + ς

2
1 ,

and ↼
→ = 0 otherwise. Note that a large radius yields ↼→ = 0 and the LFD will thus be identical to the pre-change

distribution. In practice, the radius has to be carefully chosen to avoid such scenarios so that the robust detection
problem is well-defined.
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For general n > 1, we provide an e!cient LFD-solving algorithm based on the following decomposition

↽(↼, u) =
n∑

i=1

∫

Ii

q(x)e↔ϱcs(x,ϖi)+uidx,

where Ii := {x → R : ↼cs(x,ςi)↓ ui ⇒ ↼c
s(x,ςj)↓ uj , ⇑j ∈= i}. Under previous conditions that s = 2 and

c(x, x⇐) = ∞x↓ x
⇐∞2, for i = 1, . . . , n, we have that

↼(x↓ ςi)
2 ↓ ui ⇒ ↼(x↓ ςj)

2 ↓ uj

which is equivalent to
2(ςj ↓ ςi)x ⇒ ui↔uj

ϱ + ς
2
j ↓ ς

2
i , ⇑j ∈= i if ↼ > 0

ui ↗ uj if ↼ = 0

This implies that Ii is a connected interval, i.e. Ii = [li, l̄i]. When ↼ > 0, we have

li = max
j:ϖj<ϖi

{
ui ↓ uj

2↼(ςj ↓ ςi)
+

ςj + ςi

2

}
,

l̄i = min
j:ϖj>ϖi

{
ui ↓ uj

2↼(ςj ↓ ςi)
+

ςj + ςi

2

}
,

and the decomposition yields

↽(↼, u) =
n∑

i=1

I

li < l̄i

 exp

ui ↓ ϱϖ2

i
1+2ϱ



2
↙
2↼+ 1

(
erf

(
2↼(l̄i ↓ ςi) + l̄i↙

4↼+ 2

)
↓ erf

(
2↼(li ↓ ςi) + li↙

4↼+ 2

))
,

where erf(z) := 2⇑
↽

∫ z
0 e

↔t2
dt is the error function. When ↼ = 0, Ii = R if i = argmaxui and Ii = ⇐ otherwise,

and thus ↽(0, u) = exp (maxi ui).

For general pre-change distributions, it is not guaranteed that we can find analytical solutions for the LFD for
n > 1. However, we note that the solution to the optimization problem in (14) is easy to compute numerically
for any n, s, and rs, regardless of the type of the pre-change distribution. This is due to the convexity of the
problem in (14).

A.2 Proofs for Section 4

We first present example distributions that satisfy the Transportation-Cost Inequality in Definition 4.1, to
demonstrate the wide applicability of the results in Section 4.

Examples of T1(c) inequality: For a discrete sample space with the Hamming metric c(x, y) = 1{x ⇓=y}, the
W1 distance satisfies the following inequality

W1(P,Q) = ∞P ↓Q∞TV ⇒


1

2
KL(Q||P ),

which is a consequence of Pinsker’s inequality. Hence, the T1(1/4) inequality holds for every probability measure
on the discrete sample space.

Examples of T2(c) inequality: For X = Rn and c(x, y) = ∞x ↓ y∞2, the standard n-dimensional Gaussian
distribution satisfies the T2(1) inequality, i.e., W2(P,Q) ⇒


2KL(Q||P ) for P being the n-dimensional Gaussian

distribution and Q being any distribution satisfying Q ↖ P . More generally, if P = N(µ,#), where µ is the mean
vector and # is the covariance matrix, then P satisfies the T2(c) inequality for c = 1/2κ, where κ ⇒ mini ↼i(#↔1),
representing the smallest eigenvalue of the inverse covariance matrix.
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Proof of Corollary 4.1

Proof. From the triangle inequality satisfied by the Wasserstein distance, we have

Ws(Q, P̂n) ↗ Ws(P,Q)↓Ws(P, P̂n),

and thus

PP {Ws(Q, P̂n) < rs} ⇒ PP {Ws(P, P̂n) > Ws(P,Q)↓ rs}
⇒ exp


↓ϱsn(Ws(P,Q)↓ rs)

2
/2c


,

where the last inequality follows from Theorem 4.1. Now, if

rs ⇒ Ws(P,Q)↓


2| log φ|c

ϱsn
,

then PP {Q → Pn} = PP {Ws(Q, P̂n) < rs} ⇒ φ.

Proof of Lemma 4.1

Proof. We first note that when (18) holds we have r↼,n ⇒ r↼,n. Then the result directly follows from the fact that
for any two events A,B,

P(A ≃B) = P(A)↓ P(A ≃B
c) ↗ P(A)↓ P(Bc).

Now, letting A = {P → Pn} and B = {Q /→ Pn}, and applying Corollaries 4.1 and 4.2, we get the desired
result.

Proof of Lemma 4.2

Proof. Throughout the proof we use the result from Lemma 4.1, i.e., under the given conditions, with probability
at least 1↓ 2φ, we have P → Pn and Q /→ Pn. To prove the first inequality in (19), note that when Q /→ Pn and
for any P → Pn,

EP

[
log

p
→
n(X1)

q(X1)

]
= KL(P ||Q)↓ KL(P ||P →

n)
(i)
↗ KL(P →

n ||Q)
(ii)
> 0,

where (i) follows from the WSB condition in Lemma 2.1, and (ii) follows from the fact that Q /→ Pn. Thus, by
(Siegmund, 1985, Prop. 8.21), EP

1 [ϖDR] < ↔. By Wald’s identity,

EP [ϖDR] =
EP [SεDR ]

EP

log p→

n(X1)
q(X1)

 ⇒ EP [SεDR ]

KL(P →
n ||Q)

, ⇑P → Pn.

Since by assumption EP

log p→

n(X1)
q(X1)

2
< ↔, following classical renewal analysis (e.g., see Siegmund (1985)), we

have
EP [SεDR ] = log ϱ + EP [SεDR ↓ log ϱ] = log ϱ · (1 + o(1)), as ϱ ↘ ↔.

Finally, we note that WADDP (ϖDR) ⇒ EP
1 [ϖDR] , ⇑P → Pn, since Sk ↗ 0 for all k ↗ 1 almost surely and Sk has a

recursive update structure. This completes the proof of the first inequality.

For the second inequality in (19), due to the triangle inequality for the Wasserstein metric, we have

Ws(P̂n, Q) ⇒ Ws(P̂n, P
→
n) +Ws(P

→
n , Q)

(iii)
⇒ rs +Ws(P

→
n , Q), (28)

where (iii) is due to P
→
n → Pn, and thus Ws(P̂n, P

→
n) ⇒ rs. On the other hand, under the event P → Pn, we have

Ws(P̂n, P ) ⇒ rs, which implies

Ws(P̂n, Q) ↗ Ws(P,Q)↓Ws(P̂n, P ) ↗ Ws(P,Q)↓ rs. (29)
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Combining (28) and (29) we have

Ws(P
→
n , Q) ↗ Ws(P̂n, Q)↓ rs ↗ Ws(P,Q)↓ 2rs. (30)

Further, since Q satisfies the Ts(c) inequality, we have

(Ws(P →
n , Q))2

2c
⇒ KL(P →

n ||Q).

Combining this with (30), we obtain

KL(P →
n ||Q) ↗ (Ws(P,Q)↓ 2rs)2

2c
.

Substituting this into the first inequality in (19) completes the proof.

A.3 Proofs for Section 5

Proof of Lemma 5.1

Proof. We define the following quantity

Z
(m)
j := log

p
→
(m)(Xj)

q(Xj)
.

First, we can assume that E↑[ϖDR(b)] < ↔, as otherwise the statement would be trivial. Consider the following
test based on the Shiryaev-Roberts (SR) statistic,

ϖ
R
b := inf




k → N :
M∑

m=1

k∑

n=1

k

j=n

e
Z(m)

j =:
M∑

m=1

R
(m)
k ↗ e

b




 .

Note that ϖ
R
b ⇒ ϖDR(b) since

∑M
m=1 R

(m)
k ↗ maxm=1,...,M S

(m)
k . Hence, E↑

[
ϖ
R
b

]
< ↔. Denoting Rk :=

∑M
m=1 R

(m)
k , we have

E↑ [Rk|Fk↔1] =
M∑

m=1

E↑


(1 +R

(m)
k↔1)e

Z(m)
k |Fk↔1


=

M∑

m=1

(1 +R
(m)
k↔1) = M +Rk↔1,

which implies that the sequence {(Rk ↓Mk)}k↓1 forms a martingale. Furthermore, since Rk → (0, eb) almost
surely on the event {ϖRb > k}, we have for any k ↗ 1,

E↑

∣∣(Rk+1 ↓M(k + 1))↓ (Rk ↓Mk)
∣∣
∣∣∣Fk


= E↑

∣∣Rk+1 ↓Rk ↓M
∣∣
∣∣∣Fk



⇒ E↑ [Rk+1|Fk] + (Rk +M) = 2(Rk +M) ⇒ 2(eb +M)

almost surely on the event {ϖRb > k}. Therefore, by the Optional Stopping Theorem,

E↑[RεR
b
] = ME↑[ϖRb ].

Since RεR
b
↗ e

b, it follows that E↑[ϖRb ] ↗ M
↔1

e
b and consequently

E↑[ϖDR(b)] ↗ E↑[ϖRb ] ↗ M
↔1

e
b
.
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Proof of Theorem 5.1

Proof. Let Pm := P(m)
nm . Recall that P →

(m) represents the LFD for the m-th class and that p→(m) denotes its density
with respect to the dominating measure µ. For the lower bound, we have

inf
ε ↑↗C(ϑ)

max
i=1,...,M

sup
Pi↗Pi

WADDPi(ϖ ⇐) ↗ max
i=1,...,M

sup
Pi↗Pi

inf
ε ↑↗C(ϑ)

WADDPi(ϖ ⇐) ↗ log ϱ

I→
(1 + o(1)),

where the last inequality follows from (Lai, 1998, Thm. 1) and the weak law of large numbers for independent
random variables.

For the upper bound, we consider the detection rule ϖDR(b) defined in (22). For any distribution Pi → Pi we have

EPi

[
log

p
→
(i)(X)

q(X)

]
= KL(Pi||Q)↓ KL(Pi||P →

(i)) ↗ KL(P →
(i)||Q),

where the last inequality is a consequence of the weak stochastic boundedness condition. Therefore, according to
(Lai, 1998, Thm. 4(ii)), we have

max
i=1,...,M

sup
Pi↗Pi

WADDPi(ϖDR(b)) ⇒
b

I→
(1 + o(1)).

By selecting b = bϑ = log ϱ + logM , we obtain

max
i=1,...,M

sup
Pi↗Pi

WADDPi [ϖDR(bϑ)] ⇒
log ϱ + logM

I→
(1 + o(1)) =

log ϱ

I→
(1 + o(1)).

Finally, from Lemma 5.1, the proof is complete since ϖDR(bϑ) → C(ϱ) when b = bϑ .

B IMPLEMENTATION DETAILS AND ADDITIONAL EXPERIMENTS

The original NGLR-CuSum test, as introduced in Liang and Veeravalli (2023), does not use any post-change
training samples. For a fair comparison with the proposed DR-CuSum test, we define and implement a modified
version that uses the post-change training samples in the following.

The NGLR-CuSum test in Liang and Veeravalli (2023) is defined as

ϖNGLR(b) := inf




k ↗ 1 : max
(k↔W )+<⇁≃k

k∑

j=⇁

log
p̂
k,⇁
↔j(Xj)

q(Xj)
↗ b




 , (31)

where W is the window size, and if we assume using a kernel density estimator (KDE) with some kernel function
K(·) and bandwidth h (Wasserman, 2006), the leave-one-out density estimate is

p̂
k,⇁
↔j(Xj) :=

1

(k ↓ ▷)h

k∑

i=⇁
i ⇓=j

K

(
Xi ↓Xj

h

)
, ⇑j → [▷, k].

To utilize the post-change training samples, we similarly define the modified NGLR-CuSum test as:

ϖNGLRws(b) := inf




k ↗ 1 : max
(k↔W )+<⇁≃k




k∑

j=⇁

log
p̂
k,⇁,ϖ
↔j (Xj)

q(Xj)
+

n∑

i=1

log
p̂
k,⇁,ϖ
↔j (ςi)

q(ςi)



 ↗ b




 , (32)

where

p̂
k,⇁,ϖ
↔j (Xj) :=

1

(k ↓ ▷+ n)h




k∑

i=⇁
i ⇓=j

K

(
Xi ↓Xj

h

)
+

n∑

i=1

K

(
ςi ↓Xj

h

)


 , ⇑j → [▷, k].
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We compare the detection delay of the DR-CuSum and NGLR-CuSum tests. Note that we simulate the detection
delay under the setting ϑ = 1, i.e., all samples are from the post-change regime. We emphasize that due to the
recursive structure of the DR-CuSum statistics and the independence in observations, the worst-case value of the
change-point for computing the WADD in (3) is ϑ = 1. This allows us to estimate the worst-case delays of the
DR-CuSum test by simulating the post-change distribution from time 1. However, the choice of change-point
ϑ = 1 does not guarantee a worst-case delay for the NGLR-CuSum test.

In Fig. 5, we compare the detection delay (simulated under the case ϑ = 1) of DR-CuSum and NGLR-CuSum
test. We use the same setting for pre- and post-change distribution as in Fig 1, i.e., the true pre- and post-change
distributions are N (0, 1) and N (0.5, 1), respectively. We see that given the training samples, the DR-CuSum
test (with the optimal radius) performs slightly worse than the modified NGLR-CuSum test. However, due to
the recursive CuSum update structure, the DR-CuSum test is computationally less expensive than the latter at
inference time.

For the multi-dimensional data as in Fig 3, we use the following product kernel in the leave-one-out density
estimate. For any j → [▷, k],

p̂
k,⇁,ϖ
↔j (Xj) :=

1

(k ↓ ▷+ n)
∏d

m=1 hm

⇓




k∑

i=⇁
i ⇓=j

d

m=1

K


X(m)

i ↓X(m)
j

hm


+

n∑

i=1

d

m=1

K


ω(m)

i ↓X(m)
j

hm



 . (33)

where x(m) denotes the m-th element of vector x and hm denotes the kernel bandwidth for the m-th element.

Figure 5: Comparison of DR-CuSum tests (solid lines) with the modified NGLR-CuSum tests (dashed lines)
defined in (32). The number of post-change training samples n = 25. The KDE with a Gaussian kernel is used in
the NGLR-CuSum test, with the bandwidth parameter h = 50↔0.2. All tests are first evaluated on the same set
of post-change training samples, and then the average performance over 30 di"erent sets of training samples is
reported.
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