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Neural circuits are of paramount importance in the nervous system, as
they are the essential infrastructure in guiding animal behavior. However,
modeling the development of neural circuits poses significant challenges due
to inherent properties of the development process. First, the neural circuit de-
velopment process is transient, where the course of development can only be
observed once. Second, despite potentially sharing similar underlying mech-
anisms for development, neural circuits from different subjects possess dis-
tinct sets of neurons, which limits the sharing of information across subjects.
Third, neurons have diverse, unobserved activation times, which may ob-
scure the analysis of neural activities. In light of these challenges, this study
presents a novel approach aimed at clustering neurons based on their con-
necting behaviors while accommodating disparities at the neuron level. To
this end, we propose a dynamic stochastic block model that accommodates
unknown time shifts. We establish the conditions that guarantee the identifi-
ability of cluster memberships of nodes and representative connecting inten-
sities across clusters. Using methods for shape invariant models, we propose
computationally efficient semiparametric estimation procedures to simultane-
ously estimate time shifts, cluster memberships, and connecting intensities.
We illustrate the performance of the proposed procedures via extensive simu-
lation experiments. We further apply the proposed method on a motor circuit
development data from zebrafish to reveal distinct roles of neurons and iden-
tify representative connecting behaviors.

1. Introduction. Neural circuits are fundamental components of the nervous system that
play a crucial role in instructing animal behavior. Understanding the neural circuit develop-
ment is beneficial for understanding how the nervous system works, identifying the causes of
nervous system disorders, and developing new treatments for nervous system disorders. How-
ever, the study of neural circuit development has been limited by difficulty in data acquisition
until recently. Modern technologies have enabled the recording of individual neural activities
over extended durations, thereby facilitated the exploration of neural circuit development.

Using novel technologies, Wan et al. (2019) recorded the development of a neural circuit in
the spine of zebrafish during embryogenesis. The neural circuit development process involves
individual neurons forming functional connections, resulting in a highly interconnected net-
work. The process is illustrated in Figure 1(a), where nodes represent neurons and edges
represent functional connections between neurons. The dataset on neural circuit development
exhibits three inherent properties. First, the neural circuit development process is transient,
making it impossible to obtain repeated observations of the same system. Second, neural
circuits from different subjects possess distinct sets of neurons, despite potentially sharing
similar underlying developmental mechanisms. Third, neurons have different functional mat-
uration progress, resulting in different activation times (Wan et al. (2019)). The neural ac-
tivation times can obscure the similarity in neural connecting behavior. Figure 1(b) depicts
two neurons exhibiting seemingly distinct connecting behavior. However, upon adjusting the
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FI1G. 1. Isolated neurons form a densely connected network during embryogenesis of zebrafish. All time stamps
indicate the time since the experiment starts. Panel (a) displays neural network snapshots at 30, 90, and 150
minutes, where edges appear progressively over time. In the networks, nodes represent neurons, and edges rep-
resent functional connections between neurons. The horizontal axis is the anterior-posterior (AP) axis, and the
vertical axis is the left-right (LR) axis of zebrafish (see Wan et al. (2019) for details). Preprocessing steps for
obtaining these networks are available in Section S5 in the Supplementary Material (Zhang and Chen (2023)).
The star and triangle nodes are two neurons with similar connecting behaviour. Edges associated with the two
nodes are displayed as dashed and solid line segments, respectively. The rest of edges are displayed using faint
and thin lines. Panel (b) displays connecting behaviour of the two highlighted neurons. Vertical bars represent
the time points when edges associated with the two neurons are formed. The line types are consistent with Panel
(a). Panel (c) displays the adjusted connecting behaviour of the two highlighted neurons. Each vertical bar has
been shifted according to the estimated time shift of the associated edge, as determined by the proposed method.
Upon this adjustment, it becomes evident that the connecting behavior of the two neurons exhibits a high degree
of similarity.

connection times based on the estimated neural activation times using our proposed method,
Figure 1(c) shows that the two neurons actually share similar connecting behaviors. Addi-
tional examples of neuron pairs with similar connecting behavior can be found in Figure S14
in the Supplementary Material (Zhang and Chen (2023)). In light of these inherent properties,
our primary objective in this study is to cluster neurons based on their connecting behaviors
after accounting for diverse activation times. The resulting clusters are expected to comprise
neurons that play similar roles during neural circuit development.

Nonetheless, existing methods in the field of network analysis have limitations in identify-
ing clusters of neurons when varying activation times are present. A canonical approach for
clustering nodes in networks is the dynamic stochastic block models (see, e.g., Longepierre
and Matias (2019), Matias and Miele (2017), Matias, Rebaftka and Villers (2018), Pensky
(2019), Xing, Fu and Song (2010), Xu (2015), Xu and Hero (2014), Yang et al. (2011)).
In essence, the dynamic stochastic block model assumes that nodes in a network fall into
distinct clusters, and the probability of an edge forming between a pair of nodes over time,
that is, the connecting intensity, depends solely on the the cluster memberships of the two
nodes. For networks observed at a discrete time grid, the connecting intensities are typically
parameterized using Markov chains (see, e.g., Matias and Miele (2017), Xing, Fu and Song
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(2010), Xu (2015), Xu and Hero (2014), Yang et al. (2011)). For networks observed in con-
tinuous time, Matias, Rebafka and Villers (2018) propose to model recurrent instantaneous
edges (e.g., email exchanges) as point processes, where connecting intensities are estimated
nonparametrically. However, a crucial assumption in these models is that nodes within the
same cluster share identical connecting intensities, which is essential for identifiability and
estimation. Consequently, these models are unable to identify neural activation times and, as
a result, may overlook the similarity in connecting behavior among neurons.

A class of problems relevant to identifying neural activation times has been studied in
the context of shape invariant models (see, e.g., Bigot and Gadat (2010), Bigot et al. (2013),
Bigot and Gendre (2013), Bontemps and Gadat (2014), Vimond (2010)). These models aim to
align a set of curves that are identical up to unknown time shifts. However, the shape invariant
models are incapable of handling multiple clusters of curves, where the curves within each
cluster are identical up to unknown time shifts.

In this paper we propose a dynamic stochastic block model that allows for unknown node-
specific time shifts. We establish the identifiability of the time shifts, the cluster memberships,
and the connecting intensities under suitable assumptions in Section 2. We propose semi-
parametric estimation procedures that simultaneously estimate model parameters including
the time shifts in Section 3, along with computationally efficient algorithms in Section 4. We
investigate the performance of the proposed estimation procedures through simulation exper-
iments in Section 5. Finally, we use the proposed model to study neural behaviour during
embryogenesis of zebrafish in Section 6.

2. Dynamic stochastic block model. We model the development of neural circuits as a
dynamic network. Specifically, a dynamic network is defined as {G(¢) : G(t) = (V, E(1)),t €
[0, 00)}, where V = {1, 2, ..., p} denotes a fixed set of nodes across time and £(¢) represents
the set of edges at time ¢, defined as

E@)={(,j):i,j €V, nodes i, j are connected at time 7}.

In the context of neural circuits, V corresponds to the set of neurons, and £(¢) denotes the
set of functional connections between neurons at time 7. The functional connections among
neurons are identified by the highly correlated activities of neurons (see illustration in Sec-
tion S5.1 in the Supplementary Material, Zhang and Chen (2023)). These functional connec-
tions have the following properties: (i) no self-connection, that is, (i,i) ¢ £(¢) for any i € V
and ¢t > 0, (ii) undirected connections, that is, (i, j) € £(¢) if (j, i) € £(¢), (iii) no connections
at the onset of observation, that is, £(0) = &, and (iv) persistence, that is, (i, j) € £(t") for
any t' >t if (i, j) € £(¢). Further exploration of the persistence of connections can be found
in Figure S10 in the Supplementary Material (Zhang and Chen (2023)). For simplicity, we
assume that the network has stabilized by time 7', indicating that G(t) = G(T) forany t > T.
Hereafter, unless otherwise specified, we let (i, j) denote two arbitrary and distinct nodes,
thatis,i ## jand i, j € V.

For any pair of nodes (7, j), we define the connecting time as t; ; = inf{t € [0, T] :
(i, j) € £(1)}, that is, the time when nodes i and j connect, and we denote #; ; = oo if
{tel[0,T]:(@,j) € &)} is empty. We define the connecting process as N; j(t) =1(1; j <1),
t € [0, T], which is known as a point process or a counting process in the literature (see,
among others, Daley and Vere-Jones (2003)). The persistence of edges implies that N; ;(¢)
remains to be unity once an edge is formed. This type of point process is commonly studied
in survival analysis as the outcome (see, among others, Kleinbaum and Klein (2012)). We in-
troduce the (marginal) intensity A; ;(t) = Pr(dN; ;(t) = 1)/dt that we refer to as connecting

intensity, whose integral A; ;(T) = fOT Ai,j(t) dt is the connecting probability between nodes
i, j throughout [0, T']. In survival analysis the probability A; ;j(T) can be less than one due
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FIG. 2.  Graphical representation of our model. Panel (a) shows a matrix of representative connecting intensities
(fq.k) k x K - where the highlighted curve represents f; - ;. Panel (b) shows the connecting intensity between node

i and j after incorporating the time shift, where ; ; = smax(vi,v;) Jzi.2- Panel (c) shows the observed connecting
process, where E[AN; ;(t)] = 4; j(t)dt. Only the connecting process is observed in the data.

to censoring. In our setting we assume that there is no censoring, but A; ;(7') can still be less
than one since the final graph is not necessarily complete. Conditioning on that nodes i and j
are connected, the density of the connecting time, or connecting density, is A; j(t)/A; ;j(T).

Following the convention in Matias, Rebafka and Villers (2018) and Pensky (2019), we
assume that YV = Ule Ci, where C1, Cy, ..., Ck are disjoint clusters with distinct connecting
intensities to be specified in Assumption 1. Nodes within each cluster have identical connect-
ing intensities up to unknown time shifts. To be specific, denote [K] = {1, ..., K}, and let
z; € [K] be the cluster membership of node i for i € V. Then we assume that the connecting
intensity between nodes i and j satisfies that

(1) )ti,j(l):Swi’jfzi,zj(t),

where w; ; = max(v;, vj) with v;, v; € [0, T /2] being the time shifts of nodes i and j, S*
is the shift operator defined as S¥x(¢) = x(¢+ — w), and fz,-,z,—(') is a nonnegative function
with support in [0, /2] and || fz; z;Il1 < 1. For g, k € [K], the function f; «(-) is called the
representative connecting intensity between any pairs of nodes in clusters ¢ and k. Figure 2
shows a graphical representation of the proposed dynamic stochastic block model with time
shifts. Here the bounded supports for the representative connecting intensities and time shifts
are put in place to avoid the discussion of censoring, which can be easily relaxed.

The model presented in (1) is tailored to the neural circuit development data. Specifically,
w;, j is defined as the time when both neurons i and j are mature enough to establish func-
tional connections. As a result, the proposed model can be applied to identify the clusters
of neurons with similar connecting behaviour (i.e., C¢’s), the representative connecting be-
haviour of neurons (i.e., fy «’s), and activation time of neurons (i.e., v;’s). Nonetheless, the
model in (1) can be easily adapted to other applications with minor changes. For instance,
it can be used to analyze information exchanges, such as tweets, emails, or text messages
in social networks (see, e.g., Diesner and Carley (2005), Haythornthwaite (1996), Osatuyi
(2013)), where nodes represent individuals and edges represent the initiation of information
exchange between individuals on a particular topic. In this context, w; ; can be redefined
to represent the minimal time shifts of individuals i and j, signifying the time when either
individual i or j becomes intrigued by the topic.

The proposed model has close connections with two lines of research in the literature. First
of all, the proposed model generalizes the dynamic stochastic block model in Matias, Rebafka
and Villers (2018) by allowing unknown time shifts in connecting intensities between pairs
of nodes. In fact, if we average out time shifts to treat Ew,-,j [A;,j(-)]’s as the connecting inten-
sities, the proposed model reduces to the Poisson process stochastic block model (PPSBM)
in Matias, Rebafka and Villers (2018). Second, when there is only one cluster, that is, K =1,
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the proposed model reduces to a shape invariant model with point processes (Bigot et al.
(2013)), where the point processes are assumed to share a common intensity function subject
to time shifts. Hence, we call the proposed model as the shape invariant dynamic stochastic
block model, or SidSBM for short.

Additional conditions are required to ensure the identifiability of parameters in (1). In the
case without unknown time shifts, Matias, Rebafka and Villers (2018) establish the identifia-
bility of representative connecting intensities and cluster memberships, under the assumption
that all representative connecting intensities are distinct. In the case with one single cluster,
Bigot et al. (2013) ensure the identifiability of the common intensity function by assuming
a known distribution of time shifts. However, in our setting we need to simultaneously iden-
tify representative connecting intensities, cluster memberships, and time shifts. Therefore,
additional conditions are required for identifiability, as summarized in Assumption 1 and
Proposition 1.

ASSUMPTION 1. Denote true parameters in (1) by {v :i € V}, {f;k :q,k € [K]} and

{zf:ieV}. LetCy ={i € V:zi =g} for g € [K]. We assume the true parameters satisfy the
following conditions:

(C1) For any two distinct clusters ¢g,q’ € [K], g # ¢’, there exists at least one cluster
k € [K] such that f;,k #* SY q*/,k for any w € R.

(C2) For any ¢,k € [K], if fq*’k # 0, then max{v] :i € Cj} > min{v;f 1 j €C;}) and
min{v; :i € Cj} < max{v;‘ 1 jeCly.

(C3) For any g, k € [K], there exists a sequence of clusters (¢1, g2, ..., ¢q) € [K]* such
that g1 =g and g, =k and f gy Z0fori=1,. a—l where a € N, a>2.

(C4) There exist g, kg € [K] such that inf{r € [ 0 T]: qo ko (1) >0} =

PROPOSITION 1. Suppose that we observe connecting processes {N; j : i, j € V} and
that Assumption 1 holds. Then we can verify the following statements:

(P1) The cluster memberships {z} : i € V} and representative connecting intensities { fq* k
q,k € [K]} are identifiable up to a permutation of cluster labels.
(P2) The time shifts (v} : i € V} are identifiable, except for nodes in the set

() {i Vv <vjforany j €CL, orvi <vj forany j €V st A} ; #0}.

Assumption 1 lists the technical conditions that ensure the identifiability of the model.
Here we briefly explain how conditions in Assumption 1 lead to the identifiability in Propo-
sition 1, and we defer the detailed proof to Section S1 in the Supplementary Material (Zhang
and Chen (2023)). First, Condition C1 assumes that any two different clusters are distinct in
at least one of their connecting intensities with other clusters, which ensures the identifiability
of {z} :i € V}, up to a permutation of cluster labels. Second, Condition C2 requires that the
ranges of time shifts overlap for any two clusters with a positive connecting probability. As
a result, for any cluster g € [K], its nonzero connecting intensities { qu v S #0 ke [K]}
are identifiable up to a shared time shift. Moreover, Condition C3 grants that, for any pair
of nodes, there is a positive probability that these two nodes are directly or indirectly con-
nected. In other words, the network is not separable. Consequently, we can show that the
representative connecting intensities of all clusters are identifiable up to a global time shift.
Third, Condition C4 pins down the global time shift in a similar way as the zero-sum con-
straint in Bigot and Gendre (2013). Lastly, the definition of w; ; in (1) implies that there is a
set of nodes whose time shifts can not be identified. To see this, consider the case with one
cluster. The unidentifiable set (2) reduces to the node with the minimum time shift, which is
unidentifiable since the minimum time shift is always masked by other time shifts. We verify
in Section 6 that the conditions in Assumption 1 are feasible in real data.
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3. Estimation procedure. The estimation of stochastic block models can be performed
based on the squared error (Gao, Lu and Zhou (2015), Lei, Chen and Lynch (2020), Pensky
(2019)) or the likelihood (Matias, Rebafka and Villers (2018), Pavlovi¢ et al. (2020)). We opt
to extend the squared-error-based estimation approach to accommodate unknown time shifts,
as it allows us to leverage techniques employed in shape invariant models (Bigot and Gendre
(2013), Kneip and Engel (1995)) for fast computing.

In what follows, we represent vectors and matrices in boldface, for example, f =
(fq.0)q.kelk1» 2= (Zi)iev, V= (Vi)iev, and let L%r([O, T]) denote the space of nonnegative
squared integrable functions on [0, 7']. Recall that in our model, we only observe the connect-
ing processes {N; j : i, j € V}. The optimization problem associated with our model takes the
following form:

R T T
3) ¢z V) =agmin > { / SWii f2 (1) dr —2 / SV f,. . (1) dN; j(r)},
0 it 0 !

O1 i jev,i#j

Where w;, j = max(v;,v;) and O = {(f,z,v) : f € B{{XK,Z e [K]1?,v € [0, TP} with
={f € L? (0, TD : Il flln < 1}. The objective function in (3) is identical to the sum
of squared dev1at10ns of the observed connecting processes from their intensities up to a
constant. To estimate f nonparametrically, we employ a truncated basis expansion. In par-
ticular, we consider the functional space with truncated Fourier bases B¢, = {f € Bi :
[OT exp{—i2n €t/ T} f(t)dt =0 for |£| > £o}. The selection of the tuning parameter £y is dis-
cussed later in this section.
We notice that replacing the intensities {f,  : ¢, k € [K]} with the cumulative intensities
{(Fyr:Fgr@) = fé fqx(s)ds,t €[0,T],q,k € [K]} can avoid the frequency truncation. In
particular, the optimization problem based on cumulative intensities takes the following form:

@  (F29=agmin Y / (SU0F2 . (1) = 28" Fy, . (DN;,j (0} di
02 i,jeV,i#j

where w; ; = max(v;, v;) and @2 = {(F,z,v) : F € BX*X 2 € [K]P,v € [0, T]P} with B, =
{F e[0, 111071 Fis nondecreasing and right-continuous, F'(0) = 0}. The objective function
in (4) is almost identical to the one in (3), except for the use of N; ; and F; ; i In (4) a natural
nonparametric estimator of F is the empirical cumulative intensity, which does not require
frequency truncation.

However, the objective functions based on the plain vanilla L>-distance in (3) and (4) may
tend to overlook the information in the shapes of intensities. To see this, consider a simple
case where we assign one node to one of K clusters with known intensities and no time shifts.
In this case, problem (4) reduces to

T -
5) 7] = argmin Z |C,’:|/O { ;‘]’k(z‘)—NLk(t)|2dt,

21€IK] ke[K]

where {Ck k € [K]} are known clusters for nodes in V\{1}, {F 1 - 21,k € [K]} are known
cumulative intensities across clusters, and {N1 ke N1 k= 1CF1 Zjec* N1 .j-k € [K]} are
empirical cumulative intensities. The cumulative intensity, for example k(t) can be bro-
ken down into two parts: the cumulative distribution F7 O/ FE k(D) and the connecting
probability F’ Z*l «(T).Inasense the two parts can be seen as the shape and the scale of the cu-
mulative intensity. As shown in Figure 3(a), the minimizer Z; of the objective function in (5)
might be predominantly decided by scales. Moreover, the problem is exacerbated when time
shifts are unknown, as in (4). Figure 3(b) shows that the minimum might be achieved by over
estimating the time shifts.
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FI1G. 3. Deviation of the empirical cumulative intensity from the true cumulative intensity and from the minimiz-
er-induced cumulative intensities. Panel (a) shows that the objective function may select wrong cluster Z1 due to
the similarity in scales, despite the difference in shapes. Panel (b) shows that 0y, which minimizes the objective
function in (4), may shift the cumulative intensity away from the truth.

To address this issue, we propose a new loss function that separates the shape and scale.
We modify (4) as

(F, 2, %) = argminMc(F, z, v; y)
Cle

(6) Eargmin[ Z %/OT{

Oc L jes)

S Fry 2, (1) 2

SWi.j le',Zj (t) } d
Fry 2, (T)

Fy ;(T)

—ZNi,j(l‘)

ty S N (T) = Fo o (T ]
i,jeV,i#j

where y > 0 is a user-specified parameter, £(T) = {(i, j) :i,j € V,N; j(T) =1}, w; j =
max(v;, vj), and Oc = {(F,z,v) : Fe BS *X 2 [K1P,ve [0, T1P, F,, ., (T) > 0if (i, j) €
E(T)}. The objective function in (6) has two components. The first component is the sum
of squared deviations related to cumulative connecting distributions (i.e., shapes), and the
second component is the sum of squared deviations related to connecting probabilities (i.e.,
scales). The relative weight of shapes and scales is governed by y. The selection of y is
discussed later in this section. The estimator in (6) is based on the cumulative connecting
intensities; thus, we refer to it as SidSBM-C.

In a similar manner, we introduce SidSBM-P, an intensity-based estimator that solves the
following optimization problem:

(f.2,9) = argminMp (£, z, v y)
Op

(7 Eargmin[ Z %{fo

Or L jeem)

ty Y N - z,z,(Tﬂ

i,jeV,i#j

SU fai 2 (1)
Zz Zj (T)

T SYT forg; @)
d —2f Foo (1) le,,(t)}

where y, E(T), wj,j are defined the same way as in (6), F, ., (T) = fOT Jzi,z;(s)ds, and
Op={(t.z.v):fe B K. 2e[KIP.ve[0. TP, f. ., #£0if (i, j) € E(T)}.

We adapt the integrated classification likelihood (ICL) criterion (Biernacki, Celeux and
Govaert (2000), Daudin, Picard and Robin (2008)) to select tuning parameters including the
number of clusters K, the relative importance of intensity scales y, and the frequency trunca-
tion parameter £y. Integrated classification likelihood is based on a BIC-like approximation
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that has been adapted to semiparametric stochastic block models by Matias, Rebafka and
Villers (2018). For our model the integrated classification likelihood criterion takes the fol-
lowing form:

ICL= )" log{l—F;: (D} + Y log{faz, @ p}+ > IGllog(p~"|Ckl)
) @i, ))eéo @i, ))e& ke[K]

1 1 —1
— E(K —1logp — ZK(K+ 1){plog %,

where &g ={(, j):i,j€V,i < j,N; j(T)=0}and & ={(, j):i,j€V,i < j,N; j(T) =
1}. The sum of the first three terms can be seen as the complete-data log-likelihood, and the
last two terms are penalties for cluster memberships and connecting intensities. In the second
penalty term, we use £ to represent the degrees of freedom in each connecting intensity. For
optimization problem (6), we select K and y by maximizing ICL with £g = 2, where the
two degrees of freedom correspond to the shape and the scale. For optimization problem (7),
we select K, y, and £p by maximizing ICL. In practice, heuristic methods can be employed
for computationally efficient selection of tuning parameters. Further details are provided in
Section S4.1 in the Supplementary Material (Zhang and Chen (2023)).

REMARK 1. We can generalize the proposal to networks with recurrent edges, where the
edges are events that can happen more than one time. Instances of such networks include, but
are not limited to, email exchange networks, payment transaction networks, and bike sharing
networks (see, e.g., Diesner and Carley (2005), Lin, He and Peeta (2018), Loupos, Nathan
and Cerf (2019)). When the connecting intensities f have bounded supports, the optimization
problems (6) and (7) can be directly applied without modification, and the identifiability
results in Section 2 hold. When f have unbounded supports, identifiability requires additional
assumptions on the intensities f. For instance, we can assume that intensities in f are periodic,
and a full period is observed for each intensity in f (see, e.g., Bigot et al. (2013), Bigot and
Gendre (2013)). Furthermore, the optimization problem (7) can be applied directly, when the
intensity is periodic.

4. Algorithm. We now present an algorithm for solving the optimization problem (6).
The key observation in (6) is that it is straightforward to solve one set of parameters condi-
tioning on the others. The resulting algorithm resembles the classic k-means algorithm that
iterates between the centering and clustering steps. In particular, we can write the two steps
as follows:

A

9) (centering step) F,v=argminMc(F,Z,v;y),
F,v

A

(10) (clustering step) z =argminMc (ﬁ‘, Z,V;y).
z

In the centering step (9), we update Fand ¥, conditioning on the current estimates of cluster
memberships z. Given Z, the optimization problem (6) reduces to a well-studied problem in
the literature of shape invariant models (Bigot and Gadat (2010), Bigot et al. (2013), Bigot
and Gendre (2013)) The reduced optimization problem can be decoupled into two parts
concerning F and ¥, respectively. In the first part, we have the analytical solution of Fq k as

A §—max(¥;,0;) 7.
(11) Fq’k: Z 5 o L A qake[K]a
i€Cy,jeCh,i#] 1Cql1Ck| — (g = K)ICy |
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where ék = {i € V:Z; = k}. The estimator in (11) is the empirical cumulative intensity of
edges between clusters g and k, where self-edges are eliminated if ¢ = k.
dt},

In the second part, we solve for Vv via
where fi,k ={jeV:Zj=k, j#i,vj <v;}isthe collection of nodes in the kth cluster whose

time shifts are no larger than node i, and N,-,k(t) = |JAl-,k|_l >

-i,k(t) SUFy,.
i,k(T) Ei,k(T)

12 s=agmin X g [

V. ieVke[K]

jedis N; j(t) is the empirical
cumulative intensity of edges between node i and nodes in JA,k The optimization problem
in (12) can be solved by utilizing the well-known Parseval’s theorem to reframe the problem
in the Frequency domain. The Frequency domain offers a suitable environment for the appli-
cation of the gradient descent algorithm, which provides a solution to the problem. Details
of the gradients are available in Section S3 in the Supplementary Material (Zhang and Chen
(2023)).

Finally, we set the global shift as ¢ = min{t; ; — max(d;, v;) : i, j € V}, which is an ap-
proximation of inf{r € [0, T] : dﬁq,k(t) > 0 for some ¢q, k € [K]}. Specifically, we update F
and V as follows:

(13) Fyp < SFyx, g, kelK]; b <0, +¢, ieV.

The global shift ¢ is the minimum of p? numbers. As such, for small values of p, ¢ might be

subject to a large error, which might further compromise the accuracy of F and 9.
In the clustering step (10), we update each cluster membership Z; conditioning on current

F, ¥ and {zj:j €V, j+#1i}. The optimization problem in (6) reduces to, fori € V,

. . 5 Fi (1) k() 2
Zj = argmin Z {|Ck,—l|Fl k( )_ b T Z
(14) zi €[K] ke[K] lk( ) Z k(T)
- 1Ceil | P (T = Foy ()] }
where CAk,_i = ék\{i} and F; () = |CAk,_,~|_1 Z]eék [S_ma"(”’ ) N; ,j (). The objective

function in (14) can be seen as a “distance” between node i and cluster Cz,- that involves
differences in both shapes and scales.

The optimization problem in (6) is nonconvex; hence, the initialization scheme and the
convergence criterion are crucial for the performance of the algorithm (see Remarks 2 and 3).
The estimation procedure is summarized in Algorithm 1.

The algorithm to solve the optimization problem (7) closely resembles Algorithm 1. The
detailed algorithm is provided in Section S2 of the Supplementary Material (Zhang and Chen
(2023)). The objective function in (7) might suffer from plateaus in v, while the objective
function in (6) does not encounter this issue due to the utilization of cumulative intensities
(see Figure S1 in the Supplementary Material, Zhang and Chen (2023)).

REMARK 2. We initialize time shifts by the time of the first edge associated with each
node, that is,

(15) (O) =min{s; j:jeV}, ieV.
Letting F;(t[v)=(p— D7'Y jewit S~ max(vi,v -/)Ni, j(#), we initialize cluster memberships
by solving the following k-medoids problem:
TR Fu, ) 2
~ - ~ dts
F((TRO®)  F, (TIVO)

a6y 940 = argmin )" /
z€[K]P,peCy - xCx j v 0
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Algorithm 1: Iterative algorithm for SidSBM-C

Input: N, K, ¢, y

Initialize ¥©, 2 via (15) (16), and s = 0;

while not converge do
Update ¥6+D and FO+D via (11)~(13) with (z, v) = @®), ¥¢));
Update 26T via (14) with (v, F, z) = (30D F6+D 30y,
Evaluate the stopping criterion via (18);
s=s54+1;

end

Output: F®), ) §©).

where {114 : ¢ € [K]} are the medoids of the K clusters. Optimization problem (16) is a
simplification of problem (6), where v is given as v {Fy.k(t) : q,k € [K]} take values in
the known set {F; (t|\7(0)) ;i € V}, and y is set as zero. In practice, F; (tlff(o)) is evaluated on
an equispaced time grid as an L-vector

(a7 > (=i =) I[f-~<T])T
p_l l,j_L lJ L “eey ij= s

JeV\i}

where 7; j =1; ; — max(v(o) (0)) is the adjusted connecting time. The tuning parameter L
can be chosen such that 7/L 1s close to temporal resolution of the data. We note that the
proposed initialization scheme can not guarantee a global minimum. If feasible, we recom-
mend to use multiple random restarts by jittering the initial time shifts and shuffling the initial
cluster memberships for a small proportion of nodes.

REMARK 3. The proposed algorithm is stopped when, for a user-specified ¢,

() _ s+ FA*(S) _ FA‘(erl)
(18) |:{1 —ARI(i(S),i(H‘l))} + v A(‘; 2 I A ||2:| <e
V&2 [FS)
where || - ||5 is the L2-norm and 2®), ¥, F®) are estimates in sth iteration. This criterion

measures the overall change of model parameters between two consecutive iterations. We
use the change of model parameters rather than the change of loss function because the sta-
bilization of model parameters can ensure the stabilization of loss function. The change of
cluster memberships is measured using the Adjusted Rand Index (ARI) (Hubert and Arabie
(1985)). In particular, for two partitions C = {C, : g € [K1} and C" = {C; : k € [K']} such that
V = Ugerk1Cq = Urerx Ci» denoting ay = [Cy |, bx = |C;], and dg = |C; N Cy| for g € [K]
and k € [K'], then

d b
gk (9) =12, () e I/ (B)
b by .
5, () + Xk OO =12, (9) e ()1/(B)
If the two partitions are identical up to a permutation of cluster labels, then ARI equals one.

If one partition is purely random and the other one is fixed, then the expectation of ARI is
ZEero0.

(19) ARI =

5. Simulation.

5.1. Data generation and model specification. Random dynamic networks are gener-
ated from the proposed model. In particular, cluster memberships are generated by se-
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TABLE 1
Mean () and variance (02) of the connecting intensities for generating synthetic data. Each column
corresponds to one pair of (q, k). The value of B is specified in Section 5.2

(1, 1) (1,2) (1,3) (2,2) 2.,3) (3.3)
gk 20 208 2082 2082 2081/2 2083/2
ook 100 100872 100872 1008 1008~ 1008

quentially allocating p nodes into K = 3 clusters of equal size, that is, C; = {(p/K)(g —
1)+1,...,(p/K)q} for g € [K]. For any ¢, k € [K], the representative connecting inten-
sity between clusters ¢ and k takes the form f, x = 0.9 x F(uz,k/oqz’k, ,uq,k/aqz,k), where

F(M?L k /0(12’ o Mg k/ qu’ i) 1s the density of a Gamma distribution with mean 4 x and variance

crqz’ - Specifications of ug ’s and qu’ « S are provided in Table 1, where we introduce B to
control the separability between representative connecting intensities. Time shifts are gener-
ated from a uniform distribution that v; ~ U (0, W), i € V. The connecting time between any
nodes i and j is generated as t; ; = X; ; + max(v;, vj), where X; ; is drawn from fzi,zj for
any pair (I, j).

By altering p, 8, and W, we generate data with varying signal strengths. Intuitively, the
signal strength is positively associated with p and S, since increasing p increases the sample
size, and increasing B increases distinction among (/g k, qu’ ©)’s; the signal strength might
decrease when W increases as W controls the variation in time shifts.

We compare the performance of three methods, SidSBM-C (6), SidSBM-P (7), and the
Poisson process stochastic block model (PPSBM) by Matias, Rebafka and Villers (2018).
We apply SidSBM-C with K =3, € =0.01, y =0.01 and L = 200. The same set of tuning
parameters is used for SidSBM-P except for y = 0.0001 and £y = 4. We apply PPSBM using
the implementation in R by Giorgi et al. (2018) with the number of bins being 64.

5.2. Simulation results. We use two criteria to evaluate the performance of three meth-
ods described in Section 5.1. To measure the clustering performance, we calculate the ARI
introduced in (19). To measure the estimation performance, we calculate the mean integrated
squared error (MISE) between the estimated and the true connecting intensities

(20) MISE=— Y Bl foul
- 2 q, q, ’
(K= +K)/2 q.kelK1.q<k
where || - ||2 is the L?-norm. Note that SidSBM-C estimates cumulative intensities rather

than intensities. In order to make a fair comparison, we estimate intensities for SiIdASBM-C
using Gaussian kernel density estimators with bandwidth selected as suggested in Silverman
(2017).

Simulation results under various settings are provided in Figure 4. In all plots a smaller y-
coordinate indicates a better performance. Across all settings, both proposed methods outper-
form PPSBM, because PPSBM suffers from the presence of unknown time shifts. In addition,
SidSBM-C and SidSBM-P exhibit comparable performance, except when g reaches high val-
ues. This discrepancy may be caused by the limited ranges of supports of intensities when the
value of g is high as well as the large values of W. Supporting this hypothesis, Figure S5 in
the Supplementary Material (Zhang and Chen (2023)) demonstrates that a reduction in W re-
sults in a corresponding decrease of the discrepancy between the performance of SidSBM-C
and SidSBM-P. Interestingly, both proposed methods still outperform the PPSBM in settings
without time shifts (see Figure S8 in the Supplementary Material, Zhang and Chen (2023)).
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FI1G. 4. Performance of SidSBM-C, SidSBM-P and PPSBM in simulation with 1500 replicates. Simulated data
is generated under various p, B, W with default setting being p =30, B = 1.3, and W = 80. The y-axis is 1-ARI
in the first row and MISE in the second row, where smaller values indicate better performance. The proposals
outperform PPSBM in all settings due to their effectiveness in handling time shifts. Between the two proposals,
SidSBM-C and SidSBM-P have similar performance, except for when B > 1.5 due to limited intensity support
ranges and large time shifts.

Furthermore, Figure 4 shows that the overall performance of the three methods improves
as signal strengths increase. However, we note that there are four seemingly counterintuitive
observations. First, as p increases, PPSBM has stable ARI and increasing MISE. This is be-
cause PPSBM is not able to handle time shifts, thus will converge to erroneous estimators as
p increases. Second, increasing 8 enlarges MISE of the three methods, due to the increasing
average L2-norm of the representative connecting intensities. Third, the proposed methods
have stable performance as W decreases because estimators of cluster memberships and con-
necting intensities in proposed methods are invariant to time shifts. Fourth, the MISE values
appear to exhibit limited sensitivity to improved clustering performance. This pattern can be
attributed to several factors, including the small default values of p and g in the simulation
setting as well as the wide range of the y-axis in the figure. In general cases the MISE value
should exhibit sensitivity to improvements in clustering performance. Further supporting ev-
idence is provided in Section S4.4 in the Supplementary Material (Zhang and Chen (2023)).

The computing time of the three methods under consideration is shown in Figure 5(a). The
proposed methods outperform PPSBM in terms of computing time as well as scalability. In
particular, the computing time of both SidSBMs seems to increase sublinearly with respect to
the size of network p. To explain this phenomenon, we break down the total computing time
into the number of iterations between the centering and clustering steps, and the computing
time per iteration shown in Figure 5(b) and (c). We find that the computing time per iteration
is roughly linear in p, whereas the number of iterations decreases as p increases for p > 60.
This is a promising sign that the proposed methods can potentially handle large networks
with the computing cost being linear in the size of network.

One computational concern in nonconvex optimization is the requirement of multiple ini-
tializations to achieve global minimum. During our simulation experiment, we observe that
the initialization scheme in Remark 2 might lead to local minimums, for example, empty
clusters. Therefore, when the size of any estimated cluster is less than p/10, we restart the
algorithm by jittering the initial values, as discussed in Remark 2. In Figure 6(a) we see that
the proposed initialization scheme offers comparable performance to random initialization
with three restarts and that keep increasing the number of random restarts can only result in
diminishing improvement in performance. Furthermore, the proposed initialization scheme
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Fi1G. 5. Computing time of SidSBM-C, SidSBM-P and PPSBM in simulation with 1500 replicates. Simulated
data is generated under B = 1.3, W = 80, and a range of p. The proposals are computationally more efficient
than PPSBM and might be scalable to large networks.

requires only 1.07 restarts on average across the 1500 replicates, which is computationally
more efficient than random initialization with three or 10 restarts.

Finally, we demonstrate the performance of integrated classification likelihood (ICL) cri-
terion in Figure 6(b). We observe that, for both SidSBMs, ICL values reach maximu[n at the
correct number of clusters. More specifically, for SidSBM-C, ICL correctly selects K =3 in
all 1500 replicates, and for SiIdSBM-P, ICL selects K = 3 in 84.6% of the 1500 replicates.

6. Real data application. We utilize the proposed model to analyze the neural data set
from Wan et al. (2019). Wan and colleagues recorded the development of motor circuits in
the spinal cord of zebrafish. The developmental process was observed from approximately
17.5 hours to 22 hours postfertilization. In the data set that we analyze, a total of 96 neurons
are observed in the spinal cord. The spatial distribution of these neurons is depicted in Fig-
ure S11 in Supplementary Material (Zhang and Chen (2023)). Among the observed neurons,

(a) Estimation error vs. iterations (b) ICL criterion vs. the number of clusters
1.00 1 \\ Initialization Scheme -14004  Method
0.75 E;On%?nilm restart) — SidsBM-C o SidSBM-P(o=3)
- \ 2" Random (2 restarty) - =+ SidSBM-P({p=2) = = SidSBM-P({p=4)
= i . =+ Random (3 restarts) -1500
Eé 0.50 \’ % — = Random (10 restarts)
- N
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8 J Ll
-1700 4
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FIG. 6. Performance of proposed initialization scheme and model selection criterion (i.e., ICL) in simulation
with over 1500 replicates. Simulated data is generated under the setting with p =30, 8 = 1.9, and V = 80.
Panel (a) displays trajectories of 1-ARI and MISE as iterations proceed, using proposed initialization or random
initialization with restarts. When multiple restarts are applied, the best result is selected using the objective func-
tion in (6). The performance of proposed initialization scheme is comparable to random initialization with 10
restarts. Panel (b) displays values of the ICL criterion for various number of clusters. ICL is able to select the
correct number of clusters, that is, K = 3.
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40 neurons are located in the left spine, while the remaining 56 neurons are located in the
right spine. The activities and locations of neurons were recorded with calcium imaging and
processed by Wan et al. (2019). During the recorded period, neurons displayed increasing
synchronization over time that indicated the functional maturation of the motor circuit. At
around 22 hours postfertilization, the motor circuit was able to instruct early motor behav-
iors. We refer interested readers to Wan et al. (2019) for more experiment details. In this
analysis we aim to learning the roles of neurons during motor circuit development.

We apply SidSBM-C to the recorded development of neural networks where nodes repre-
sent neurons and edges represent synchronization between two neurons. Roughly speaking,
we define the connecting time between neurons (i.e., #; ;’s) to be the time point when the two
neurons have correlated activities. Details of preprocessing are available in Section S5 in Sup-
plementary Material (Zhang and Chen (2023)). Neural networks from the left and right spines
are treated as two separate networks in our analysis. To be specific, we apply SidSBM-C with
e =10"3, % =0.1 and L = 336 on the two networks separately, with estimates (f,, 2, V;)
and (f' R, ZR, VR). Here the value of y is selected using ICL, and it is noteworthy that the data
analysis results remain unchanged while y ranges from 0.01 to 0.3. We simultaneously select
the number of clusters (i.e., K) for both spines using the sum of ICLs for the two networks.
Each fit of the method takes about 30 seconds (using a machine with an AMD Epyc 7351
processor, 4 GB RAM, R 3.6.3). When accounting for the selection of both tuning parame-
ters (i.e., y € {0.01,0.03,0.1,0.3} and K € {2, 3,4, 5}), the overall computational time for
the obtained real data results is approximately eight minutes. Recall that Proposition 1 shows
that cluster memberships and intensities are identifiable up to a permutation of cluster labels.
Hence, we match the cluster memberships for the left spme (ie.,z L) and the right spine (i.e.,
Zr) by maximizing the sum of cross-correlations between f 7. and f R.

Flgure 7 shows that estimated representative connecting intensities for left and right spines,
that is, f, and fg, are highly consistent, although the estimation was done separately on
the two networks. In particular, intensities (fL L1, fL 1.2, fL 2,2) and (fR 1.1, fR 1.2, fR 2.2)
are almost identical. Furthermore, intensities fL,3,k and fR,3,k have similar shapes for k =
1,2, 3 despite having a time lag (see Figure S15 in Supplementary Material, Zhang and Chen
(2023)). We hypothesize that the time lag might be due to estimation errors, given the large
dispersion of f3’s and the small sizes of the third clusters. Since the two networks are
from the same zebrafish, it is natural to expect consistency between them. However, it is
worthwhile to emphasize that the estimation procedure does not enforce any constraints to
encourage consistency between estimated representative connecting intensities of the two
networks. The consistent representative connecting intensities from two sides of spine are
likely reflecting the true mechanism of neural circuit development.

In addition, time shifts of neurons in the same cluster can be very different. Indeed, time
shifts seem to be positively correlated with the AP-coordinates of neurons, as shown in Fig-
ure 8(a). Methods that do not account for time shifts may group neurons with similar time
shifts into the same cluster, leading to less consistent estimates of the intensities between the
left and right spines. For completeness we provide the results of applying PPSBM on this
data set in Section S6.5 in Supplementary Material (Zhang and Chen (2023)).

The estimated representative connecting intensities and time shifts reveal different roles of
the clusters during the development of neural circuits. First, neurons in Cluster 1 might be re-
sponsible for initiating neural circuit development, since they are the first to build edges both
in the representative connecting intensities and have the smallest time shifts. This early-active
behavior aligns with the recognized role of motoneurons (see, e.g., Blankenship and Feller
(2010), Wan et al. (2019), Wenner and O’Donovan (2001)). A noteworthy association exists
between neurons in Cluster 1 and motoneurons: 98% of neurons in Cluster 1 exhibit mnx/
expression, which is commonly associated with motoneurons (Jao, Appel and Wente (2012),
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FIG. 7. Estimated connecting intensities on the neural data set from Wan et al. (2019). The rows and columns
are indexed by clusters, as shown in the top-left squares on diagonal. For q,k = 1,2, 3, solid and dashed curves
at position (q, k) represent estimated representative connecting intensity fL’q, r and f R.q.k from the left and right
spines, respectively. Each subfigure contains a tabular legend, where the first row shows “L” for “left” and “R”
for “right,” the second row shows connecting probabilities, the third row shows the sizes of pairs of clusters.
Networks in the left and right spines are fitted separately, but the estimated representative connecting intensities
are highly consistent.
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FI1G. 8. Estimated time shifts and spatial distribution of neurons in both left and right spines. Each dot represents
a neuron, whose shape indicates the neuron’s estimated cluster membership and its mnx label provided in the data
set (see Wan et al. (2019) for details). Panel (a) shows that the time shifts might be positively correlated with the
AP-coordinates of neurons, where the solid line is the regression line with least absolute deviation (i.e., median
regression). Panel (b) shows that most of neurons in the dorsal side that belong to the mnx- population have the
same estimated cluster membership.
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Wan et al. (2019)). Second, neurons in Cluster 2 are likely to be recruited by neurons in Clus-
ter 1, because Cluster 2 tends to establish edges with Cluster 1 faster than among themselves.
The recruitment phenomenon of neurons aligns with findings in prior studies (Blankenship
and Feller (2010), Nishimaru et al. (2005), Wan et al. (2019)). Lastly, neurons in Cluster 3
have lower connecting probabilities and slower edge formation speed than neurons in the
other two clusters. We hypothesize that neurons in Cluster 3 may not manifest their functions
during the experiment period (i.e., 17.5 hours to 22 hours postfertilization), instead, they
might play essential roles in a later stage of the development, for instance, generation and
coordination of rhythmic motor patterns (Menelaou and McLean (2019), Song et al. (2020)).

REMARK 4. Interestingly, Figure 8(b) shows that 86.7% of the 15 mnx~ neurons
(see Wan et al. (2019) for details), which are located at the dorsal side of the spine, are
grouped into the same cluster. It is worthwhile to emphasize that the proposed method does
not use the spatial locations or the mnx labels of neurons. We suspect that the estimated
clusters might be biologically meaningful that warrants further investigation.

REMARK 5. The data analysis results substantiate the viability of the conditions in As-
sumption 1. We can see from Figure 7 that the three clusters demonstrate unique intensity
shapes, all intensities deviate from the constant zero function, and the values of fL,Ll(t)
and fR,l,l(t) become nonzero as soon as ¢ surpasses zero, which suggest the feasibility of
Conditions C1, C3, and C4 in this data set. Additionally, Figure S16 in the Supplementary
Material (Zhang and Chen (2023)) presents the distribution of time shifts for neurons within
the three clusters, which confirms the attainability of Condition C2 in the real data context.

7. Discussion. In this article we study the problem of estimating cluster memberships
and representative connecting intensities from dynamic networks with unknown time shifts.
We note that there are a few directions that can be explored in future works.

First of all, the proposed method assumes that edges are persistent and the network has
stabilized by the end of the experiment. These assumptions rule out networks where edges
can vanish or constantly change, such as biological neural networks during learning. We can
generalize the proposed model by introducing two separate intensities to characterize the
stochastic formation of edges and stochastic deletion of edges as in Kreis, Mammen and
Polonik (2019), Krivitsky and Handcock (2014).

Second, we only consider one network in this analysis. A natural extension is to consider
networks in a multiple-subject setting (Paul and Chen (2020), Pavlovic et al. (2020), Zhang,
Sun and Li (2020)). For instance, neural circuits from different zebrafish may share similar
connecting intensities that can be estimated simultaneously. In this direction a key issue to
address is how to match cluster labels across subjects that have different sets of nodes.

Finally, the theoretical properties of the proposed estimators have not been examined.
For static stochastic block models, the minimax convergence rate of the estimated con-
necting probabilities has been well-studied (see, e.g., Gao, Lu and Zhou (2015)). Recently,
Longepierre and Matias (2019) and Pensky (2019) establish the consistency and minimax
optimality for two specific dynamic stochastic block models. Based on the established frame-
work (Gao, Lu and Zhou (2015), Pensky (2019)), we may adapt the theory of shape invariant
models (Bigot et al. (2013), Bigot and Gendre (2013)) to discuss the theoretical properties of
joint estimation of time shifts and connecting intensities.

Data availability. The neural data set studied in Section 6 is available in Keller (2019).
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SUPPLEMENTARY MATERIAL

Supplement to “Semiparametric estimation for dynamic networks with shifted con-
necting intensities” (DOI: 10.1214/23-A0AS1870SUPPA; .pdf). Technical derivations and
proofs, details of implementation, additional results and figures are contained in this file.

Computer code for ‘“Semiparametric estimation for dynamic networks with shifted
connecting intensities’” (DOI: 10.1214/23-A0AS1870SUPPB; .zip). R code to reproduce the
simulation results and data analysis is available in the this file.
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