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Abstract—Frequency-modulated continuous-wave (FMCW)
multiple-input multiple-output (MIMO) long-range radars cur-
rently employed for autonomous robotics have limited maximum
range. By employing transmit beamforming and beam scanning,
the range can be increased. However, the beam scanning time
reduces the achievable velocity resolution. In this paper, we
propose an FMCW MIMO radar, operating at 77 GHz, with
transmit (TX) beamforming with subarrays to increase the range.
We employ four TX subarrays, each having three antennas, with
analog beamforming. Compared to TX beamforming as one TX
array, our approach provides sufficiently wide beams alleviating
beam scanning, further, without substantially reducing the virtual
elements of the MIMO radar. We implement the radar signal
processing pipeline on a ZYNQ Ultrascale+ ZCU106 FPGA to
achieve real-time processing. Furthermore, we employ a graph
neural network to detect objects using the radar point cloud.
Preliminary results are presented to confirm the operation of the
proposed FMCW MIMO radar.

Index Terms—FMCW radar, MIMO radar, beamforming,
autonomous robotics, graph neural networks.

I. INTRODUCTION

A robot can only act following sensing and perception of

its environment. Autonomous robotics, therefore, require a

variety of sensing modalities to ensure complete situational

awareness [1], [2]. The expectations for situational awareness

are especially pronounced in the case of autonomous vehicles,

where life and limb are at stake. In fact, rapid automation of

driving functions has stimulated research into advanced driver

assistance systems. Reliable and resilient sensory perception

dictates the adoption of multi-modal sensing. A robotic vehicle

with advanced driver assistance systems needs to employ a

clever mix of radars, lidars, ultrasonics, and cameras to sense,

fuse, and then perceive its operational environment [3]–[5].

Multi-modal sensor technologies have their pros and cons.

For example, the high pixel resolution of a camera provides

the best representation of the surroundings for further pro-

cessing through machine learning. However, the calculation of

distances to the surrounding objects is crucially important in

autonomous vehicles, which is quite tedious for video signals.

Lidar, on the other hand, uses time of flight measurements

of laser pulses, which in turn provides a reasonably high

resolution and accuracy without demanding high computa-

tional complexity from the associated edge processor [6], [7].

The problem with both video and lidar technologies is the

lack of robustness, as the optical sensing involved is prone

to weather conditions and physical blockages. In contrast,

radar can be designed to provide accurate measurements of

distance, velocity, and angle of the objects regardless of the

weather conditions and is not as easily blocked. For example,

radar penetrates dielectric obstacles such as wooden sheets,

vegetation, plastic signs better than lidar [8], [9]. Nevertheless,

radar can be constrained in range and furnish unacceptably low

resolution, especially at long sensing distances.

Current use cases of radar in automotive applications can

be classified according to their ranging capability. Long-range

radar is used for automotive cruise control; medium-range

radar is used for lane-change assist, cross-traffic alert, blind-

sport detection and rear-collision warning; and short-range

radar is used for park assist, obstacle detection and pre-

crash detection [10]. Continuous-wave radar has been the

mostly used type of radar in automotive applications due

to the high implementation complexity of classical pulsed

radar. Frequency shift keying and linear frequency modulated

waveforms are the most appropriate waveforms that can be

employed for continuous-wave radars [11]. Linear frequency-

modulated continuous-wave (FMCW) radar is the most fre-

quently used radar [12] in autonomous robotics.

Despite wide usage, FMCW radars are constrained in sev-

eral features. For example, a finer range resolution essentially

requires a larger bandwidth, leading to the use of a more

spacious spectrum such as 77 GHz Ka-band. Moreover, a

higher range requires high transmission power; the limits

of power amplifiers at such high frequencies has led to

the exploration of novel directive antennas and beamforming

techniques to reach high ranges that are required for fully

autonomous driving applications [13]–[17]. The use of such

techniques causes the field-of-view (FoV) to narrow down

and the angular resolution of the radar to decrease. On one

hand, to address the narrower FoV, beam-scanning can be

employed. On the other hand, a long scanning time will

degrade the velocity resolution of the radar. Furthermore,

the angular resolution degradation is due to the decrease in

the effective number of transmitting and receiving antenna

elements resulting from beamforming. A key requirement for

detection and identification of objects in autonomous robotics

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on December 19,2024 at 07:28:40 UTC from IEEE Xplore.  Restrictions apply. 



is a dense point cloud of the radar’s perceptive area. Multiple-

input multiple-output (MIMO) processing techniques improve

the angular resolution of the radar, creating a much larger

virtual array of antennas. However, such a high-resolution

radar has a significant memory and computational complexity,

which makes real-time processing challenging.

We propose a long-range FMCW MIMO radar operating

at 77 GHz for autonomous robotics in this paper. Instead

of transmit (TX) uniform linear array (ULA), we employed

four TX subarrays, each having three antenna elements and

generating an independent beam using analog beamforming.

Our approach increases the range of the radar without deteri-

orating the FoV due to sufficiently wide beams. Furthermore,

our approach does not reduce the virtual elements of the

MIMO radar substantially, leading to an angular resolution of

1.8◦ with a 16-element receive array. We implement the radar

signal processing pipeline on a ZYNQ Ultrascale+ ZCU106

FPGA in order to achieve real-time processing. The angle of

arrival (AoA) estimation is performed in a host computer after

the processing at the FPGA. We then generate a radar point

cloud and employ a graph neural network (GNN) to detect

the objects. Preliminary simulation and experimental results

confirm the operation of the proposed FMCW MIMO radar.

II. PROPOSED MIMO RADAR ARRAY PROCESSOR

We present the proposed FMCW MIMO radar processor in

this section. The overall architecture consists of the radar front

end, FPGA, and a host computer for visualization and post

processing as shown in Fig. 1. We select the specifications

of the FMCW MIMO radar as: maximum range = 300 m,

range resolution = 3.5 m, maximum velocity = 100 km/h,

velocity resolution= 1.6 km/h, and bandwidth = 86.77 MHz.

The TX array is designed to generate Ntx = 4 transmit beams,

each using a three-element subarray with analog beamforming

whereas the receive (RX) array contains Nrx = 16 antenna

elements as shown in Fig. 2. The RX array and four TX

subarrays are configured as ULAs, and the antennas are de-

signed as following the reference design of Texas Instruments

series fed antenna [18]. Phase shift for all the three elements

in a subarray is fixed so that each subarray acts as a single

element with a narrower 3 dB beamwidth and higher gain

compared to a single element. TX and RX arrays result a

Ntx×Nrx = 64 element virtual ULA, i.e., MIMO radar, when

used with time division multiplexing. For the virtual ULA, the

boresight angular resolution ∆θ, for a λ/2-spaced array, is

∆θ =
360◦

π ×Ntx ×Nrx

= 1.8◦.

The radar signal processing chain is predominately im-

plemented on an FPGA, and the object detection using a

radar point cloud is achieved through a GNN. The FPGA

architecture and object detection through a GNN (with a brief

review) are presented in the next two subsections, respectively.

A. Radar Signal Processing on an FPGA

The architecture of the radar signal processing pipeline

is shown in Fig. 3. The pipeline is designed to handle a
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Fig. 1. High level overview of the architecture of the system : Antenna array
and the transceiver ICs are on a single PCB as an FPGA Mezzanine Card.
Range and Doppler FFTs are performed on the FPGA. A built-in Gigabit
Ethernet interface is used to stream the data to a host computer for further
processing.

RX array - 16 elements

TX array - 4x 3 sub-arrays

λ/2 spacing

λ/2 spacing

λ/2 * 16 = 8λ

Fig. 2. Detailed antenna configuration: Each of the subarrays will create a
single transmit beam that can be operated in time-division multiplexing. The
resulting virtual array will have 4 x 16 virtual antenna elements spaced at
0.5λ at 77 GHz.
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Fig. 3. The real-time radar processing pipeline: The double buffers are
implemented on either BRAM or URAM, Xilinx LOGICORETM FFT IP in
radix-4 butterfly architecture is used for FFTs. At the current stage, an inbuilt
Gigabit Ethernet MAC is utilized to stream data to a host computer, and a
Direct Memory Access controller is used to communicate data between PL
and PS via DDR4 memory.

continuous stream of data in real-time. After the analog-to-

digital converters (ADCs), double buffers are placed at the first

stage to handle the data rate mismatches between the incoming

data stream and the pipeline. They can buffer data up to one
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chirp in each receiver channel in each of the buffers. Next, the

samples are streamed into the range discrete Fourier transform,

implemented as a fast Fourier transform (FFT). An instance

of Xilinx FFT IP core is utilized in 4-channel parallel Radix-4

butterfly configuration. The output samples are then buffered

again. In contrast to the first buffer, this stores samples of

chirps of a complete radar frame and outputs the frames in

the dimension of chirps, which is required by the Doppler

FFT processing. The Doppler FFT is also implemented in a

manner identical to the range FFT with the exception of the

FFT length. The next double buffer serves two purposes: rate

handling between the processing chain and the direct memory

access (DMA) engine and packetizing the data for DMA

transfers. The DMA engine uses an AXI4-Stream interface

to read data from the programmable logic (PL) to dynamic

read access memory (DRAM). AXI4-Stream TLAST signal is

used to indicate the end of a DMA packet transfer. The double

buffer generates the TLAST signal according to a preset packet

length. The samples of each of the four channels are organized

in an interleaved manner to fit into the 128-bit AXI4-Stream

bus.

One of the built-in Gigabit Ethernet controllers is used with

Xilinx Light Weight Internet Protocol stack to relay the data to

a host computer for further processing and visualization using

Python. First, the received packets are processed to rearrange

the samples from each virtual element and create the radar

cube. The range-speed response of the first element in the

RX array is employed to differentiate object areas using a

threshold. Next, the range-speed responses of all the sixteen

RX channels are coherently summed to calculate the angle

FFT using the numpy FFT library function. We generate the

point cloud by selecting the bins of the three-dimensional

range-speed-angle FFT data cube that have magnitudes greater

than the threshold. Here, we do not apply a constant false

alarm rate for preliminary simulations and experiments. The

point cloud consisting of the detected objects is then sent to

a GNN running on the host computer.

B. Object Detection using a GNN

The approaches employed to detect objects within point

clouds using deep neural networks can be divided into three

major groups: point-based, grid-based, and graph-based meth-

ods. Point-based methods work directly with the input point

clouds and do not require any prior data transformations.

As a result, they retain all the structural information of the

point cloud. However, these approaches do not account for the

specific relationships between individual points, even though

they can still consider the structure of local groups to some

extent. Grid-based approaches involve converting point clouds

into a structured grid representation using a process called

discretization or voxelization. This allows the application of

convolutional neural networks for various computer vision

tasks. Nevertheless, this creates a sparse representation of

data due to the loss of information during the initial data

transformation. Graph-based techniques convert the input point

cloud into a graph representation for processing and can

be classified into three types: convolutional, attentional, and

message-passing neural networks. In GNNs, each point serves

as a node in the graph, without losing any structural informa-

tion, and models the relationships among them as edges in the

graph.

In radar point cloud processing, the sparsity of the point

clouds remains challenging. Thus, using a GNN is beneficial

as it uses not only the point features but also the relationships

among them. In the graph construction, detected points are

used as nodes of the graph, preserving structural information

of the point cloud, and modeling the relationships among them

as edges in the graph.

We employ RadarGNN [19] to perform multi-class object

detection on the radar point cloud. The RadarGNN consists of

four steps: data preparation, graph construction, the GNN, and

the detection heads. The GNN used in RadarGNN is based

on the pointGNN architecture [20], originally proposed for

lidar point cloud processing. The point GNN architecture is

comprised of two main parts and generates a comprehensive

feature representation for the connected detection heads. The

initial feature embedding creates a high-dimensional non-

contextual feature representation from the low-dimensional

node and edge features. To achieve this, a shared multi-

layer perceptron with four layers is used for node feature

embedding, while another multi-layer perceptron with three

layers is used for edge feature embedding. The detection

heads are constructed using a shared multi-layer perceptron

that comprises two consecutive layers with a linear activation

function, providing flexibility in the output space. This module

is responsible for predicting bounding boxes for each point in

a given point cloud.

We note that the nodes in the graph are characterized

by their absolute spatial coordinates (x, y), velocity vectors

(vx, vy), and radar cross-section. The edge generation process

encodes the relationships between points by creating edges

and incorporating edge features. The open-source RadarScenes

dataset [21] is used for training the GNN.

III. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we present the preliminary simulation re-

sults for the antenna arrays and experimental results for the

proposed MIMO radar array processor.

A. Radiation Pattern of TX Subarrays

We first consider the beampattern generated by a three-

element subarray with analog beamforming. Note that the

antennas are designed following the reference design of the

Texas Instruments series-fed antenna [18]. The three-element

subarray is simulated on Ansys HFSS software, and the

radiation pattern on the azimuth plane is shown in Fig. 4,

where the beam is directed towards to the broadside direction.

Note that the maximum gain is increased from 10.87 dB [18]

to 14.92 dB due to beamforming, therefore increasing the

range of the radar. Furthermore, we note that the beam width

is wide enough to cover the full FoV of a long-range radar,

typically ±15◦ [12].
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Fig. 4. Radiation pattern of a TX three-element subarray on the azimuth
plane. The maximum gain is increased from 10.87 dB [18] to 14.92 dB due
to beamforming; simulated at 77 GHz.

TABLE I
OBJECTS IN THE SYNTHETIC RADAR SCENE

Vehicle
Radar Cross

Section (m2)

Velocity

(kmh−1)

Azimuth

Angle
Distance (m)

1 10 50 30
◦ 100

2 40 96 10
◦ 50

3 20 -80 −10
◦ 40

4 10 25 −30
◦ 20

Fig. 5. On left - MATLAB simulation results of the radar consisting the new
antenna configuration, Tx analog beamforming; on right same system without
Tx analog beamforming, units are in dB. A Hanning window is used to limit
spectral leakage.

B. Implementation of the Radar Signal Processing Pipeline

We partially implement the radar signal processing pipeline

on a ZYNQ Ultrascale+ ZCU106 development kit only using

the first four virtual elements. The FPGA design is set to

operate at 100 MHz with a 64-point range and 256-point

Doppler FFT lengths as presented in Sec II-A. In radix-4

butterfly architecture, the Xilinx FFT IP requires 231 and

837 clock cycles for 64- and 256-point FFTs, respectively.

The IP core scaling settings are set to avoid any overflows

TABLE II
FPGA RESOURCE UTILIZATION : ZYNQ ULTRASCALE+

XCZU7EV-2FFVC1156 MPSOC

Resource Utilization Utilization %

LUT 20029 8.69
LUTRAM 4406 4.33
FF 26584 5.77
BRAM 62.50 20.03
URAM 16 16.67
DSP 96 5.56
BUFG 4 0.74

during calculations. The proposed MIMO radar system has

a maximum beat frequency of ∼17.4 MHz, which should be

quadrature sampled at a frequency of around 17.4/0.8 = 19.33
MSPS [22]. This will generate bursts of data up to 19.33
MSPS ×2 × 16 bits = 618.56 Mbps per receive channel.

However, the available buffer sizes on transceiver ICs, number

of multiplexing TX beams, intervals between bursts of chirps,

buffer and processing latency in the digital design on the

FPGA, and the software performance running on the ZYNQ

PS (because we use an integrated Gigabit controller connected

to the ZYNQ PS.) can affect this maximum data rate. Nev-

ertheless, for the complete system with 4 TX beams and 16

receiving channels, an interface with a much larger throughput,

such as PCIe, should be used. Currently, implementation is

limited due to the 1 Gbps Gigabit Ethernet interface, and the

implementation performs at around ∼766 Mbps and 3.79 fps.

The FPGA resource utilization of the system is presented

in Table II. The main concern is on the Ultra RAM - URAM

and Block RAM - BRAM utilization. The memory available

as BRAM is not sufficient to implement all the buffers in

BRAMs; the Ultrascale specific Ultra - RAM has to be

used to store all the buffers on the PL with the minimum

possible access latency. The buffer size requirement will grow

significantly with the FFT sizes and the number of receive

channels. External DDR memory connected to the PL needs

to be utilized to store data to accommodate the buffers of the

complete proposed system.

C. Implemented RADAR Processing Chain Results

We employ MATLAB Phased Array Toolbox to generate

synthetic data to verify the operation of the array processor.

The setup consists of four vehicles with the parameters de-

scribed in Table I. For simplicity, the antenna elements were

chosen to be Cosine antennas, a phased.ReplicatedSubarray

object was used to create the transmit array as given in

Fig. 2. In order to verify the performance, we implemented an

FMCW MIMO radar without Tx beamforming with the same

specifications [23]. The simulation results are presented in Fig.

5. We observe a noticeable improvement in the proposed radar

with TX beamforming compared to the FMCW MIMO radar

without TX beamforming.

The range speed response of the first channel of the hard-

ware processed radar is shown in Fig. 6. The brighter areas

correspond to detected targets, except for the spillover due to

the spectral leakage. Furthermore, the estimated ranges and
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TABLE III
ESTIMATED RANGE AND SPEED ACHIEVED WITH THE PROPOSED FMCW

MIMO RADAR AND THE ACTUAL RANGE AND SPEED.

Vehicle
Actual
range (m)

HW output
range (m)

Actual
speed (m/s)

HW output
speed (m/s)

1 100 114.29 13.88 10.19
2 50 57.14 1.11 0
3 40 42.85 50 50.93
4 20 28.57 20.83 20.37

Fig. 6. On left : Range speed response of the first virtual element, hardware
processed. On right : thresholded image to detect the object indices for angle
FFT.

velocities are presented in Table III. The estimated ranges and

speeds are fairly close to the actual values, and the error is

mainly due to the fact that the resolution of the implemented

radar on the FPGA is low (= 28.64◦) because our preliminary

experiments consider only four virtual elements out of 64

virtual elements.

IV. CONCLUSION AND FUTURE WORK

We propose a long-range FMCW MIMO radar operating

at 77 GHz for autonomous robotics. We employ four TX

subarrays, each having three antenna elements, to generate

independent beams with analog beamforming. Our approach

increases the range of the radar without deteriorating the

FoV and does not reduce the virtual elements of the MIMO

radar substantially. We partially implement the radar signal

processing pipeline on a ZYNQ Ultrascale+ ZCU106 FPGA.

The preliminary simulation and experimental results confirm

the operation of the proposed FMCW MIMO radar. Future

work includes the extension of the partial implementation to

the full system implementation on an FPGA and experimental

validation of the full system.
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