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Abstract—Frequency-modulated continuous-wave (FMCW)
multiple-input multiple-output (MIMO) long-range radars cur-
rently employed for autonomous robotics have limited maximum
range. By employing transmit beamforming and beam scanning,
the range can be increased. However, the beam scanning time
reduces the achievable velocity resolution. In this paper, we
propose an FMCW MIMO radar, operating at 77 GHz, with
transmit (TX) beamforming with subarrays to increase the range.
We employ four TX subarrays, each having three antennas, with
analog beamforming. Compared to TX beamforming as one TX
array, our approach provides sufficiently wide beams alleviating
beam scanning, further, without substantially reducing the virtual
elements of the MIMO radar. We implement the radar signal
processing pipeline on a ZYNQ Ultrascale+ ZCU106 FPGA to
achieve real-time processing. Furthermore, we employ a graph
neural network to detect objects using the radar point cloud.
Preliminary results are presented to confirm the operation of the
proposed FMCW MIMO radar.

Index Terms—FMCW radar, MIMO radar, beamforming,
autonomous robotics, graph neural networks.

I. INTRODUCTION

A robot can only act following sensing and perception of
its environment. Autonomous robotics, therefore, require a
variety of sensing modalities to ensure complete situational
awareness [1], [2]. The expectations for situational awareness
are especially pronounced in the case of autonomous vehicles,
where life and limb are at stake. In fact, rapid automation of
driving functions has stimulated research into advanced driver
assistance systems. Reliable and resilient sensory perception
dictates the adoption of multi-modal sensing. A robotic vehicle
with advanced driver assistance systems needs to employ a
clever mix of radars, lidars, ultrasonics, and cameras to sense,
fuse, and then perceive its operational environment [3]-[5].

Multi-modal sensor technologies have their pros and cons.
For example, the high pixel resolution of a camera provides
the best representation of the surroundings for further pro-
cessing through machine learning. However, the calculation of
distances to the surrounding objects is crucially important in
autonomous vehicles, which is quite tedious for video signals.
Lidar, on the other hand, uses time of flight measurements
of laser pulses, which in turn provides a reasonably high
resolution and accuracy without demanding high computa-
tional complexity from the associated edge processor [6], [7].

The problem with both video and lidar technologies is the
lack of robustness, as the optical sensing involved is prone
to weather conditions and physical blockages. In contrast,
radar can be designed to provide accurate measurements of
distance, velocity, and angle of the objects regardless of the
weather conditions and is not as easily blocked. For example,
radar penetrates dielectric obstacles such as wooden sheets,
vegetation, plastic signs better than lidar [8], [9]. Nevertheless,
radar can be constrained in range and furnish unacceptably low
resolution, especially at long sensing distances.

Current use cases of radar in automotive applications can
be classified according to their ranging capability. Long-range
radar is used for automotive cruise control; medium-range
radar is used for lane-change assist, cross-traffic alert, blind-
sport detection and rear-collision warning; and short-range
radar is used for park assist, obstacle detection and pre-
crash detection [10]. Continuous-wave radar has been the
mostly used type of radar in automotive applications due
to the high implementation complexity of classical pulsed
radar. Frequency shift keying and linear frequency modulated
waveforms are the most appropriate waveforms that can be
employed for continuous-wave radars [11]. Linear frequency-
modulated continuous-wave (FMCW) radar is the most fre-
quently used radar [12] in autonomous robotics.

Despite wide usage, FMCW radars are constrained in sev-
eral features. For example, a finer range resolution essentially
requires a larger bandwidth, leading to the use of a more
spacious spectrum such as 77 GHz Ka-band. Moreover, a
higher range requires high transmission power; the limits
of power amplifiers at such high frequencies has led to
the exploration of novel directive antennas and beamforming
techniques to reach high ranges that are required for fully
autonomous driving applications [13]-[17]. The use of such
techniques causes the field-of-view (FoV) to narrow down
and the angular resolution of the radar to decrease. On one
hand, to address the narrower FoV, beam-scanning can be
employed. On the other hand, a long scanning time will
degrade the velocity resolution of the radar. Furthermore,
the angular resolution degradation is due to the decrease in
the effective number of transmitting and receiving antenna
elements resulting from beamforming. A key requirement for
detection and identification of objects in autonomous robotics
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is a dense point cloud of the radar’s perceptive area. Multiple-
input multiple-output (MIMO) processing techniques improve
the angular resolution of the radar, creating a much larger
virtual array of antennas. However, such a high-resolution
radar has a significant memory and computational complexity,
which makes real-time processing challenging.

We propose a long-range FMCW MIMO radar operating
at 77 GHz for autonomous robotics in this paper. Instead
of transmit (TX) uniform linear array (ULA), we employed
four TX subarrays, each having three antenna elements and
generating an independent beam using analog beamforming.
Our approach increases the range of the radar without deteri-
orating the FoV due to sufficiently wide beams. Furthermore,
our approach does not reduce the virtual elements of the
MIMO radar substantially, leading to an angular resolution of
1.8° with a 16-element receive array. We implement the radar
signal processing pipeline on a ZYNQ Ultrascale+ ZCU106
FPGA in order to achieve real-time processing. The angle of
arrival (AoA) estimation is performed in a host computer after
the processing at the FPGA. We then generate a radar point
cloud and employ a graph neural network (GNN) to detect
the objects. Preliminary simulation and experimental results
confirm the operation of the proposed FMCW MIMO radar.

II. PROPOSED MIMO RADAR ARRAY PROCESSOR

We present the proposed FMCW MIMO radar processor in
this section. The overall architecture consists of the radar front
end, FPGA, and a host computer for visualization and post
processing as shown in Fig. 1. We select the specifications
of the FMCW MIMO radar as: maximum range = 300 m,
range resolution = 3.5 m, maximum velocity = 100 km/h,
velocity resolution= 1.6 km/h, and bandwidth = 86.77 MHz.
The TX array is designed to generate Ny, = 4 transmit beams,
each using a three-element subarray with analog beamforming
whereas the receive (RX) array contains N,., = 16 antenna
elements as shown in Fig. 2. The RX array and four TX
subarrays are configured as ULAs, and the antennas are de-
signed as following the reference design of Texas Instruments
series fed antenna [18]. Phase shift for all the three elements
in a subarray is fixed so that each subarray acts as a single
element with a narrower 3 dB beamwidth and higher gain
compared to a single element. TX and RX arrays result a
Nip X N, = 64 element virtual ULA, i.e., MIMO radar, when
used with time division multiplexing. For the virtual ULA, the
boresight angular resolution A6, for a A/2-spaced array, is

360°
7T X Nig X Ny

The radar signal processing chain is predominately im-
plemented on an FPGA, and the object detection using a
radar point cloud is achieved through a GNN. The FPGA
architecture and object detection through a GNN (with a brief
review) are presented in the next two subsections, respectively.

Al = = 1.8°.

A. Radar Signal Processing on an FPGA

The architecture of the radar signal processing pipeline
is shown in Fig. 3. The pipeline is designed to handle a
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Fig. 1. High level overview of the architecture of the system : Antenna array
and the transceiver ICs are on a single PCB as an FPGA Mezzanine Card.
Range and Doppler FFTs are performed on the FPGA. A built-in Gigabit
Ethernet interface is used to stream the data to a host computer for further
processing.
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Fig. 2. Detailed antenna configuration: Each of the subarrays will create a
single transmit beam that can be operated in time-division multiplexing. The
resulting virtual array will have 4 x 16 virtual antenna elements spaced at
0.5\ at 77 GHz.
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Fig. 3. The real-time radar processing pipeline: The double buffers are

implemented on either BRAM or URAM, Xilinx LOGICORE™ FFT IP in
radix-4 butterfly architecture is used for FFTs. At the current stage, an inbuilt
Gigabit Ethernet MAC is utilized to stream data to a host computer, and a
Direct Memory Access controller is used to communicate data between PL
and PS via DDR4 memory.

continuous stream of data in real-time. After the analog-to-
digital converters (ADCs), double buffers are placed at the first
stage to handle the data rate mismatches between the incoming
data stream and the pipeline. They can buffer data up to one
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chirp in each receiver channel in each of the buffers. Next, the
samples are streamed into the range discrete Fourier transform,
implemented as a fast Fourier transform (FFT). An instance
of Xilinx FFT IP core is utilized in 4-channel parallel Radix-4
butterfly configuration. The output samples are then buffered
again. In contrast to the first buffer, this stores samples of
chirps of a complete radar frame and outputs the frames in
the dimension of chirps, which is required by the Doppler
FFT processing. The Doppler FFT is also implemented in a
manner identical to the range FFT with the exception of the
FFT length. The next double buffer serves two purposes: rate
handling between the processing chain and the direct memory
access (DMA) engine and packetizing the data for DMA
transfers. The DMA engine uses an AXI4-Stream interface
to read data from the programmable logic (PL) to dynamic
read access memory (DRAM). AXI4-Stream TLAST signal is
used to indicate the end of a DMA packet transfer. The double
buffer generates the TLAST signal according to a preset packet
length. The samples of each of the four channels are organized
in an interleaved manner to fit into the 128-bit AXI4-Stream
bus.

One of the built-in Gigabit Ethernet controllers is used with
Xilinx Light Weight Internet Protocol stack to relay the data to
a host computer for further processing and visualization using
Python. First, the received packets are processed to rearrange
the samples from each virtual element and create the radar
cube. The range-speed response of the first element in the
RX array is employed to differentiate object areas using a
threshold. Next, the range-speed responses of all the sixteen
RX channels are coherently summed to calculate the angle
FFT using the numpy FFT library function. We generate the
point cloud by selecting the bins of the three-dimensional
range-speed-angle FFT data cube that have magnitudes greater
than the threshold. Here, we do not apply a constant false
alarm rate for preliminary simulations and experiments. The
point cloud consisting of the detected objects is then sent to
a GNN running on the host computer.

B. Object Detection using a GNN

The approaches employed to detect objects within point
clouds using deep neural networks can be divided into three
major groups: point-based, grid-based, and graph-based meth-
ods. Point-based methods work directly with the input point
clouds and do not require any prior data transformations.
As a result, they retain all the structural information of the
point cloud. However, these approaches do not account for the
specific relationships between individual points, even though
they can still consider the structure of local groups to some
extent. Grid-based approaches involve converting point clouds
into a structured grid representation using a process called
discretization or voxelization. This allows the application of
convolutional neural networks for various computer vision
tasks. Nevertheless, this creates a sparse representation of
data due to the loss of information during the initial data
transformation. Graph-based techniques convert the input point
cloud into a graph representation for processing and can

be classified into three types: convolutional, attentional, and
message-passing neural networks. In GNNs, each point serves
as a node in the graph, without losing any structural informa-
tion, and models the relationships among them as edges in the
graph.

In radar point cloud processing, the sparsity of the point
clouds remains challenging. Thus, using a GNN is beneficial
as it uses not only the point features but also the relationships
among them. In the graph construction, detected points are
used as nodes of the graph, preserving structural information
of the point cloud, and modeling the relationships among them
as edges in the graph.

We employ RadarGNN [19] to perform multi-class object
detection on the radar point cloud. The RadarGNN consists of
four steps: data preparation, graph construction, the GNN, and
the detection heads. The GNN used in RadarGNN is based
on the pointGNN architecture [20], originally proposed for
lidar point cloud processing. The point GNN architecture is
comprised of two main parts and generates a comprehensive
feature representation for the connected detection heads. The
initial feature embedding creates a high-dimensional non-
contextual feature representation from the low-dimensional
node and edge features. To achieve this, a shared multi-
layer perceptron with four layers is used for node feature
embedding, while another multi-layer perceptron with three
layers is used for edge feature embedding. The detection
heads are constructed using a shared multi-layer perceptron
that comprises two consecutive layers with a linear activation
function, providing flexibility in the output space. This module
is responsible for predicting bounding boxes for each point in
a given point cloud.

We note that the nodes in the graph are characterized
by their absolute spatial coordinates (x,y), velocity vectors
(vg, vy), and radar cross-section. The edge generation process
encodes the relationships between points by creating edges
and incorporating edge features. The open-source RadarScenes
dataset [21] is used for training the GNN.

III. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we present the preliminary simulation re-
sults for the antenna arrays and experimental results for the
proposed MIMO radar array processor.

A. Radiation Pattern of TX Subarrays

We first consider the beampattern generated by a three-
element subarray with analog beamforming. Note that the
antennas are designed following the reference design of the
Texas Instruments series-fed antenna [18]. The three-element
subarray is simulated on Ansys HFSS software, and the
radiation pattern on the azimuth plane is shown in Fig. 4,
where the beam is directed towards to the broadside direction.
Note that the maximum gain is increased from 10.87 dB [18]
to 14.92 dB due to beamforming, therefore increasing the
range of the radar. Furthermore, we note that the beam width
is wide enough to cover the full FoV of a long-range radar,
typically +£15° [12].
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Fig. 4. Radiation pattern of a TX three-element subarray on the azimuth
plane. The maximum gain is increased from 10.87 dB [18] to 14.92 dB due
to beamforming; simulated at 77 GHz.

TABLE I
OBJECTS IN THE SYNTHETIC RADAR SCENE
. Radar Cross Velocity Azimuth .
Vehicle Section (m?)  (kmh~1) Angle Distance (m)

1 10 50 30° 100
2 40 96 10° 50
3 20 -80 —10° 40
4 10 25 —-30° 20

o5 o0 s 10 s
Speed (/s)

Speed (mis)

Fig. 5. On left - MATLAB simulation results of the radar consisting the new
antenna configuration, Tx analog beamforming; on right same system without
Tx analog beamforming, units are in dB. A Hanning window is used to limit
spectral leakage.

B. Implementation of the Radar Signal Processing Pipeline

We partially implement the radar signal processing pipeline
on a ZYNQ Ultrascale+ ZCU106 development kit only using
the first four virtual elements. The FPGA design is set to
operate at 100 MHz with a 64-point range and 256-point
Doppler FFT lengths as presented in Sec II-A. In radix-4
butterfly architecture, the Xilinx FFT IP requires 231 and
837 clock cycles for 64- and 256-point FFTs, respectively.
The IP core scaling settings are set to avoid any overflows

TABLE II
FPGA RESOURCE UTILIZATION : ZYNQ ULTRASCALE+
XCZUTEV-2FFVC1156 MPSoC

Resource Utilization Utilization %
LUT 20029 8.69
LUTRAM 4406 4.33

FF 26584 5.77

BRAM 62.50 20.03
URAM 16 16.67

DSP 96 5.56

BUFG 4 0.74

during calculations. The proposed MIMO radar system has
a maximum beat frequency of ~17.4 MHz, which should be
quadrature sampled at a frequency of around 17.4/0.8 = 19.33
MSPS [22]. This will generate bursts of data up to 19.33
MSPS %2 x 16 bits = 618.56 Mbps per receive channel.
However, the available buffer sizes on transceiver ICs, number
of multiplexing TX beams, intervals between bursts of chirps,
buffer and processing latency in the digital design on the
FPGA, and the software performance running on the ZYNQ
PS (because we use an integrated Gigabit controller connected
to the ZYNQ PS.) can affect this maximum data rate. Nev-
ertheless, for the complete system with 4 TX beams and 16
receiving channels, an interface with a much larger throughput,
such as PCle, should be used. Currently, implementation is
limited due to the 1 Gbps Gigabit Ethernet interface, and the
implementation performs at around ~766 Mbps and 3.79 fps.

The FPGA resource utilization of the system is presented
in Table II. The main concern is on the Ultra RAM - URAM
and Block RAM - BRAM utilization. The memory available
as BRAM is not sufficient to implement all the buffers in
BRAMs; the Ultrascale specific Ultra - RAM has to be
used to store all the buffers on the PL with the minimum
possible access latency. The buffer size requirement will grow
significantly with the FFT sizes and the number of receive
channels. External DDR memory connected to the PL needs
to be utilized to store data to accommodate the buffers of the
complete proposed system.

C. Implemented RADAR Processing Chain Results

We employ MATLAB Phased Array Toolbox to generate
synthetic data to verify the operation of the array processor.
The setup consists of four vehicles with the parameters de-
scribed in Table 1. For simplicity, the antenna elements were
chosen to be Cosine antennas, a phased.ReplicatedSubarray
object was used to create the transmit array as given in
Fig. 2. In order to verify the performance, we implemented an
FMCW MIMO radar without Tx beamforming with the same
specifications [23]. The simulation results are presented in Fig.
5. We observe a noticeable improvement in the proposed radar
with TX beamforming compared to the FMCW MIMO radar
without TX beamforming.

The range speed response of the first channel of the hard-
ware processed radar is shown in Fig. 6. The brighter areas
correspond to detected targets, except for the spillover due to
the spectral leakage. Furthermore, the estimated ranges and

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on December 19,2024 at 07:28:40 UTC from IEEE Xplore. Restrictions apply.



TABLE III
ESTIMATED RANGE AND SPEED ACHIEVED WITH THE PROPOSED FMCW
MIMO RADAR AND THE ACTUAL RANGE AND SPEED.

Vehicle Actual HW output  Actual HW output
range (m)  range (m) speed (m/s)  speed (m/s)

1 100 114.29 13.88 10.19

2 50 57.14 1.11 0

3 40 42.85 50 50.93

4 20 28.57 20.83 20.37

Range (m)
Range (m)

0.00 1019 2037 3056 40,74 5093
Speed (ms~1)

203

7 3056 4074 5093
Speed (ms

-y

Fig. 6. On left : Range speed response of the first virtual element, hardware
processed. On right : thresholded image to detect the object indices for angle
FFT.

velocities are presented in Table III. The estimated ranges and
speeds are fairly close to the actual values, and the error is
mainly due to the fact that the resolution of the implemented
radar on the FPGA is low (= 28.64°) because our preliminary
experiments consider only four virtual elements out of 64
virtual elements.

IV. CONCLUSION AND FUTURE WORK

We propose a long-range FMCW MIMO radar operating
at 77 GHz for autonomous robotics. We employ four TX
subarrays, each having three antenna elements, to generate
independent beams with analog beamforming. Our approach
increases the range of the radar without deteriorating the
FoV and does not reduce the virtual elements of the MIMO
radar substantially. We partially implement the radar signal
processing pipeline on a ZYNQ Ultrascale+ ZCU106 FPGA.
The preliminary simulation and experimental results confirm
the operation of the proposed FMCW MIMO radar. Future
work includes the extension of the partial implementation to
the full system implementation on an FPGA and experimental
validation of the full system.
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