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Figure 1. Overview of GraphEQA: A novel approach for utilizing real-time 3D metric-semantic hierarchical scene graphs and task-
relevant images as multimodal memory for grounding vision-language based planners to solve embodied question answering tasks in

unseen environments.

Abstract

In Embodied Question Answering (EQA), agents must
explore and develop a semantic understanding of an un-
seen environment in order to answer a situated question
with confidence. This remains a challenging problem in
robotics, due to the difficulties in obtaining useful seman-
tic representations, updating these representations online,
and leveraging prior world knowledge for efficient explo-
ration and planning. Aiming to address these limitations,
we propose GraphEQA, a novel approach that utilizes real-
time 3D metric-semantic scene graphs (3DSG) and task rel-
evant images as multi-modal memory for grounding Vision-
Language Models (VLMs) to perform EQA tasks in unseen
environments. We employ a hierarchical planning approach
that exploits the hierarchical nature of 3DSGs for structured
planning and semantic-guided exploration. Through exper-
iments in simulation on the HM-EQA dataset and in the real
world in home and office environments, we demonstrate that
our method outperforms key baselines by completing EQA
tasks with higher success rates and fewer planning steps.

1. Introduction

Embodied Question Answering (EQA) [9] is a challeng-
ing task in robotics, wherein an agent is required to ex-
plore and understand a previously unseen environment suf-
ficiently well in order to answer an embodied question in
natural language. Accomplishing this task efficiently re-
quires agents to rely on both commonsense knowledge of
human environments as well as ground its exploration strat-
egy in the current environment context. For example, to an-
swer the question “How many chairs are there at the dining
table?”, the agent might rely on commonsense knowledge
to understand that dining tables are often associated with
dining rooms and dining rooms are usually near the kitchen
towards the back of a home. A reasonable navigation strat-
egy would involve navigating to the back of the house to
locate a kitchen. To ground this search in the current envi-
ronment, however, requires the agent to continually main-
tain an understanding of where it is, memory of where it
has been, and what further exploratory actions will lead it
to relevant regions. Finally, the agent needs to observe the
target object(s) and perform visual grounding, in order to
reason about the number of chairs around the dining table,
and confidently answer the question correctly.

Maintaining a concise and effective memory and using



it to take actions in the environment is critical for solving
EQA tasks. Prior works have demonstrated the impressive
commonsense reasoning capabilities of Vision Language
Models (VLMs) as planning agents, while leveraging a se-
mantic map for retrieval [13] or semantic exploration [36].
In such approaches, the VLMs are not grounded in the cur-
rent environment and the tasks of commonsense reasoning
and context-based decision-making are disconnected. Re-
cent works [3, 35, 41, 50, 52] focus on maintaining memory
modules that can be queried by VLM agents for grounded
planning. To construct a semantically rich memory, prior
works either maintain a large set of images (not compact)
[27, 52] or have to perform an expensive offline processing
step to obtain a compact representation [3, 50, 51]. Thus,
such semantic memory modules are either semantically rich
[13, 46, 50], compact [35, 41], or online [41]—but not all
at the same time.

To address these limitations, we propose GraphEQA, an
approach for building an online, compact, multimodal se-
mantic memory that combines global, semantically-sparse,
and task-agnostic information from real-time 3D scene
graphs [18] with the local and semantically-rich informa-
tion from task-relevant images [51]. GraphEQA uses this
multimodal representation for grounding vision-language
planners to solve EQA tasks in unseen environments.
Specifically, we utilize a recent spatial perception sys-
tem [18] that incrementally creates a real-time 3D metric-
semantic hierarchical scene graph (3DSG), given sequential
egocentric image frames. We further augment this scene
graph with semantic room labels and semantically-enriched
frontiers. We also maintain a task-relevant visual memory
that keeps track of task-relevant images as the robot ex-
plores the environment. Finally, we employ a hierarchical
planning approach that utilizes the hierarchical nature of
scene graphs and semantically relevant frontiers for struc-
tured planning and exploration in an unseen environment
before using the multimodal memory to answer the embod-
ied question with high confidence.

We demonstrate that given our real-time multimodal
memory and hierarchical planning approach, the agent is
able to accomplish long-horizon tasks with significantly
fewer VLM planning steps, explores explainable task-
relevant frontiers, and succeeds in EQA tasks with a higher
rate than previous approaches. We demonstrate our results
on the HM-EQA dataset [36] in the Habitat simulation en-
vironment [53] and also in the real world using the Hello
Robot Stretch mobile manipulator in two indoor scenes.

The key contributions of this work are as follows:

* We present GraphEQA, a novel approach for using real-
time 3D metric-semantic hierarchical scene graphs and
task-relevant images as multimodal memory, for ground-
ing VLMs to solve EQA tasks in unseen environments.

* We propose an approach to enrich 3DSGs with 1) seman-

tically enriched frontiers and 2) semantic room labels.

* We propose a hierarchical VLM-based planning approach
that exploits the hierarchical nature of the enriched 3DSG
for structured exploration and planning.

* We provide extensive experimental results, both in simu-
lation on the HM-EQA dataset [36] and in the real-world
in two indoor environments, home and office, using the
Hello Robot Stretch RE2 mobile manipulator.

2. Related Work

3D semantic scene graph representations for planning:
3D semantic scene graphs [4, 12, 22, 37, 45] have re-
cently emerged as a compact, efficient, and semantically
rich representation for indoor environments, leading to re-
cent developments in both offline [6, 13, 24, 46] and on-
line scene graph generation methods [18, 26, 49]. Offline
methods [13, 46] focus on building open-vocabulary seman-
tic scene graphs, by semantically enriching the nodes and
edges of a scene graph (affordances and relationships) us-
ing open-vocabulary vision-language models [23, 32], and
utilizing these scene graphs for retrieval-based downstream
language-guided tasks.

Online methods [18, 26] are critical for real-time deploy-
ment of embodied agents in unseen environments for tasks
such as mobile manipulation or embodied question answer-
ing (EQA). However, these methods rely on closed set se-
mantics [ 18] or are restricted to a predefined set of tasks [26]
limiting their applicability to tasks that do not require com-
plex open-world reasoning. Our proposed approach finds a
middle ground between these offline and online approaches,
by maintaining a multimodal memory, wherein a 3D scene
graph is constructed online with closed-set semantics [18],
and is used by a VLM agent to actively guide the agent
towards task relevant areas where it can capture and store
semantically-rich images [51]. This multimodal memory
can then be used to solve open-world EQA tasks.

Recent works have explored the use of textual repre-
sentations of 3D scene graphs for grounding VLM-based
planners [1, 14, 33, 35]. These methods use 3DSGs for
object search or rearrangement tasks that can be completed
by relying solely on well-constructed scene graphs, but
do not consider EQA tasks that require more complex
semantic scene understanding.

Vision Language Models for 3D Scene Understanding
and Planning: Several previous works leverage the com-
monsense reasoning capabilities of foundation models for
long-horizon planning [2, 16, 17]. However, these methods
are not grounded in the context of the current environment
and additional tools are required to translate the LLM
plan to executable actions [8, 16, 25, 42]. Previous works
have explored the use of pre-trained vision language
models for building dense queryable open-vocabulary



3D semantic representations using explicit pixel-level
[10, 15, 19, 30, 56] or implicit neural [21, 38, 44] repre-
sentations. These maps are built offline and then used for
downstream retrieval-based tasks. However, such dense
representations are not scalable to large environments and
cannot be used to ground VLM-based planners.

Recent advancements in grounding VLM-based plan-
ners using videos [52, 57] are promising, but struggle with
scalability for long-horizon tasks in large environments.
VLMs have been used as planners while leveraging
semantic maps for retrieval [7, 13, 46] or semantic ex-
ploration [28, 36, 39, 54, 58], however such approaches
disconnect context-based decision-making and common-
sense reasoning. Offline methods that build topological
maps [40], keyframe selections [51], 3D semantic graphs
[6, 13, 24, 31, 46] and experience summaries [3, 5, 48, 50],
are unsuitable for real-time deployment in novel settings.
Online semantic scene graphs, while real-time, are limited
by closed-set semantics. Our approach introduces an on-
line, compact, and semantically rich multimodal memory
to effectively ground VLM planners for EQA tasks.

Embodied Question Answering: Embodied Ques-
tion Answering [9, 11, 47] has emerged as a challenging
paradigm for testing robotic task planning systems on their
ability to incrementally build a semantic understanding
of an environment in order to correctly answer an em-
bodied question with confidence. [36] builds an explicit
task-specific 2D semantic map of the environment to guide
exploration, [3, 50] build offline experience modules that
the LLM can query, [27] uses video memory to answer
embodied questions using long-context VLMs. We focus
on building agents that do not disconnect the semantic
memory from the planner by grounding the planner in a
compact scene representation for solving EQA tasks online.

3. Preliminaries
3.1. Hierarchical 3D Metric-semantic Scene Graphs

3D metric-semantic scene graphs (3DSGs) provide a struc-
tured, layered representation of environments, encoding
spatial, semantic, and relational information [4, 22, 37]. Re-
cent works, Clio [26] and Hydra [18], introduce an efficient
real-time framework for incremental construction of metric
and semantic SG layers encoding low-level geometries as
well as high-level semantics at multiple levels of abstrac-
tion including objects, regions, rooms, buildings, etc.
Hydra 3DSGs are comprised of the following layers:
Layer 1 (bottom): a metric-semantic 3D mesh, Layer 2:
objects and agent, Layer 3: regions or places, Layer 4:
rooms, and Layer 5 (top): building. Intra-layer edges be-
tween nodes denote ’traversability’, while inter-layer edges
denote ’belonging’. For example, an edge between regions

in Layer 3 denotes traversability between these regions. An
edge between an object and a room means the object is lo-
cated in that room. 3DSGs are constructed using RGB and
depth images from the robot’s camera, camera pose and
camera intrinsics. Using off-the-shelf image segmentation
models [59], the object nodes are assigned semantic object
labels.

3.2.2D Occupancy Mapping and Frontier Detection

3D voxel-based occupancy maps are a simple and effective
way for storing explored, occupied and unexplored regions
of an environment for planning and navigation. As the robot
explores, using depth data and camera intrinsics, occupancy
of the voxels is updated using Volumetric Truncated Signed
Distance Function (TSDF) fusion. TSDF integrates depth
observations to update voxels as occupied or free, while ar-
eas beyond a certain threshold are marked unexplored. Typ-
ically, the 3D occupancy map is projected into 2D, where
frontiersboundaries between explored and unexplored re-
gionsare identified to guide further exploration. We employ
this approach in our method for identifying frontiers, clus-
tering them and adding them to the scene graph.

3.3. HM-EQA Dataset

The Habitat-Matterport Embodied Question Answering
(HM-EQA) dataset introduced by Yadev et al. [53] is based
in the Habitat-Matterport 3D Research Dataset (HM3D) of
photo-realistic, diverse indoor 3D scans [34]. The dataset is
composed of 500 multiple choice questions from 267 differ-
ent scenes which fall in the following categories: identifica-
tion, counting, existence, state, and location. We use this
dataset to benchmark our results against baselines in simu-
lation. An example question from the HM-EQA dataset is
shown below. This particular example is of type “location”.

Question: I need to find light blue pillow. Where is it
currently located?
A) In the bedroom B) In the bathroom

C) In the hallway D) In the home office space
Answer: A
4. Proposed Approach

An overview of our proposed approach is shown in Fig. 2.
We consider the task of embodied question answering,
wherein an embodied agent is required to explore an indoor
environment until it can answer a multiple choice question
with high confidence. As the agent explores the environ-
ment, it incrementally constructs a 3D scene graph using
Hydra [18] (Sec. 3.1) as well as a 2D occupancy map for
frontier selection (Sec. 3.2) in real time. This scene graph is
enriched with semantic information to facilitate hierarchical
planning and semantic-guided frontier exploration, details
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Figure 2. Overall GraphEQA architecture. As the agent explores the environment, it used its sensor data (RGBD images, semantic map, camera poses
and intrinsics) to construct a 3D metric-semantic hierarchical scene graph (3DSG) as well as a 2D occupancy map for frontier selection in real time. The
constructed 3DSG is enriched as discussed in Sec. 4.1. From the set of images collected during each trajectory execution, a task-relevant subset is selected,
called the task-relevant visual memory ( Sec. 4.2). A VLM-based planner ( Sec. 4.3) takes as input the enriched scene graph, task-relevant visual memory, a
history of past states and actions, and the embodied question and outputs the answer, its confidence in the selected answer, and the next step it needs to take
in the environment. If the VLM agent is confident in its answer, the episode is terminated, else the proposed action is executed in the environment and the

process repeats.

of which are provided in Sec. 4.1. While navigating in the
environment, the agent also maintains in memory a small set
of task-relevant images. Details on how this visual memory
is constructed are provided in Sec. 4.2. Finally, a hierarchi-
cal VLM-based planner utilizes the enriched scene graph
and the task-relevant visual memory, to explore an unseen
environment until it can answer an embodied question with
high confidence. At every planning step, the planner outputs
a high level action, which is executed in the environment
while the scene graph, visual memory, and frontiers are all
updated in real time. The planner architecture is explained
in detail in Sec. 4.3.

4.1. Scene Graph Construction and Enrichment

We use Hydra [18] to construct a layered metric-semantic
scene graph as mentioned in Sec. 3.1. We also maintain
a 2D occupancy map of the environment depicting the ex-
plored, occupied, and unexplored navigable regions of the
environment as mentioned in Sec. 3.2. We perform room
and frontier enrichment steps to enable semantic-guided ex-
ploration and hierarchical planning.

Room enrichment: Room nodes in Hydra’s 3DSG are as-
signed generic labels such as RO, R1, etc. To enrich them
with semantic information, we prompt an LLM to assign
semantic labels to each of the room nodes. We use a simple
prompt “Which room are these objects <object list> most
likely located in?” where <object list> is the list of all ob-
jects located in a certain room in scene graph. The output
of the LLM is used to update the room labels.

Frontier enrichment: Frontiers are boundaries between
explored and unexplored regions in a 2D occupancy map,
and are useful for guiding greedy exploration in unseen en-
vironments. However, they do not encode semantic infor-
mation on whether exploring a certain frontier will provide

useful information for answering an embodied question. To
enrich our 3DSG with semantic information that can enable
task-relevant exploration, we extract frontier nodes from the
2D occupancy map, cluster them, and add them as indepen-
dent nodes to the scene graph. Next, we find top-k object
nodes nearest to each clustered frontier node (within a max-
imum distance). We add edges to the scene graph connect-
ing each frontier node to its top-k object neighbors. This
semantic information can now be utilized by a VLM-based
planner to select the most semantically-relevant frontier to
explore next. For example, when searching for a kettle, it
might be useful to choose a frontier node which is near to a
fridge, kitchen counter, or stove. For general exploration, it
could be useful to choose frontier nodes near doors. We use
k = 3 and maximum distance = 2m in our experiments but
can be varied based on the environment.

4.2. Task-relevant Visual Memory

At every planning step, the agent needs to execute a high
level action in the environment (more details in Sec. 4.3).
During action execution, images are stored in a buffer at a
specified sampling frequency to avoid multiple similar re-
peated images. Images from this buffer, along with key-
words from the question/task, are then processed using
SigLIP [55] to obtain the text-image relevancy score for
each image. Using this score, only the top-k most relevant
images are maintained in the buffer and the rest are dis-
carded. We use k£ = 2 in this work. We append these top-k
images together, along with the current view of the agent,
and use it as the visual input to the VLM planner at the next
planning step as shown in Fig. 2

4.3. Hierarchical Vision-Language Planner

Our planner architecture is shown in Fig. 3. We use GPT-40
[29] for our VLM-based planner. Below we describe in



detail its key components:

Inputs: At every planning step t, the VLM planner
takes as input a multiple choice question ¢ € (), the
choices a € A, the enriched scene graph Sf, and the
task-relevant visual memory {Zy}& |, where K is the
number of images in memory. Additionally, we pro-
vide the planner with a structured history #H; and the
agent’s current state X;. X; is defined in the follow-
ing format: "The agent is currently at node
<agent_node_id> at position <agent_position>
in room <room_id> <room.name>", where information
in ‘<->’ is populated from Sy .

Outputs: Given the inputs, the planner is required to
output an answer a; € A to the multiple choice question,
a boolean value ¢; € {True, False} representing whether
it is confident in answering the question, its current nu-
meric confidence level pf € [0,1], and the next action
u; that the agent should take. We require the planner
to also output the reasoning behind the choice of action
and its confidence in the answer. Finally, the planner is
required to plan the next few steps, selecting from two high
level action types: <Goto_Object_node> (object_id)
and <Goto_Frontier_node> (frontier_id), where
object_id and frontier_id are selected from Sf. Se-
lecting an object node enables further visual examination of
relevant visited areas. Selecting a frontier node enables visitation
of unexplored areas. To prevent the planner from hallucinating
non-existent nodes, we employ the structured output capabilities
of GPT-40. Finally, the planner is required to output a brief de-
scription of the current scene graph as well as a brief description
of the input images. We track and update the history H; at each
time ¢ such that Ht+1 = Xt +ar +ct + p; + ur + Ht.

Hierarchical planner and frontier exploration: For ac-
tions of the type <Goto_Object_node> (object_id), we
enforce a hierarchical planning structure by requiring the planner
to first reason about which room to go to by selecting a room
node, then a region node (within the selected room) and finally
the object node to go to. This planning structure reflects the
hierarchical structure of the 3D scene graph, and forces the
planner to reason about the hierarchical semantics of the scene to
explore and answer the embodied questions. For actions of the
type <Goto_Frontier_node> (frontier_id), we require
the planner to provide the reasoning behind the choice of frontier
node by referring to the object nodes connected to the selected
frontier by edges in the scene graph. This enforces semantic
reasoning in the frontier selection process such that frontiers
chosen are task-relevant and are information gathering, e.g., near
doors.

Termination condition: A planning episode is terminated
when the planner outputs ¢; = True or pf > 0.9, i.e., when
it is confident in answering the question. The episode is also
terminated if ¢ > 13,42, When maximum allowed planning steps
have been reached.

Q: Where did I leave my water bottle?

Current state

History «— —
{Agent node}

Enriched

Hierarchical Planner
e
3DSG S

= <Goto Object Node> (O5)
or
==>»<Goto Frontier Node> (F2)

(Answer: [4][B][c][D] |4%| 4: in the kitchen

| (configene [ vES[[NO] ]3> [no]

—

Task-relevant

Visual Memory P
Object node

Scene graph Image :| m‘n m‘> L‘

description description rontier node

Figure 3. VLM Planner Architecture. The Hierarchical Vision-Language
planner takes as input the question, enriched scene graph, task-relevant vi-
sual memory, current state of the robot (position and room) and a history of
past states, actions, answers and confidence values. The planner chooses
the next <Goto-Object_node> action hierarchically by first selecting
the room node and then the object node. The <Goto_Frontier_node>
action is chosen based on the object nodes connected to the frontier via
edges in the scene graph. The planner is asked to output a brief reasoning
behind choosing each action. The planner also outputs an answer, confi-
dence in its answer, reasoning behind the answer and confidence, the next
action, a brief description of the scene graph and the visual memory.

Prompt description: Here we share some key aspects of
our prompting scheme. We provide the planner with a system
level prompt detailing how to understand the scene graph
structure. We explain the criteria behind choosing the actions:
hierarchically for object nodes and task-relevant or information
gathering for frontier nodes. We explain that the scene graph
can be imperfect/incomplete and that the planner should always
seek visual confirmation before answering the question with
confidence while employing the scene graph as a semantic map
for examining and exploring the scene. Finally, we prompt the
VLM to provide a brief description of the scene graph and the
input images, focusing on elements in the scene that are relevant
to the current task. The full prompt is available in Appendix 8.2.

5. Experimental Setup

We identify the key research questions this work aims to evaluate:

* Q1: Do hierarchical 3D scene graphs provide an effective
metric-semantic memory for solving embodied question an-
swering tasks?

* Q2: How does the real-time nature of GraphEQA compare to
offline approaches that provide the planner with full-state scene
graphs? Specifically, we aim to evaluate if GraphEQA can uti-
lize incrementally constructed state information to solve EQA
tasks and terminate based on confidence, without needing to
acquire full state information.

* Q3: Can GraphEQA effectively combine and reason about the
high-level, semantically-sparse and task-agnostic informa-
tion offered by scene graphs and the local, semantically-rich
and task-relevant from the visual memory to actively take in-
formation gathering actions until it can confidently answer an



embodied question?

5.1. Baselines and Ablations

To evaluate our method and answer the above research questions,
we compare our method against several baselines and focus on
methods that employ VLM-based planners for solving EQA or ob-
ject goal navigation tasks. We compare against a strong baseline,
Explore-EQA [36], which calibrates Prismatic-VLM [20] to an-
swer embodied questions confidently while maintaining a 2D se-
mantic memory and using prompted images to guide exploration.
Furthermore, to enable a more direct comparison to GraphEQA,
we also compare against a version of Explore-EQA which uses
GPT-40 as the VLM, a more powerful VLM as compared to
Prismatic-VLM. We call this baseline Explore-EQA-GPT40. We
use the above baselines to answer Q1 and Q3.

We also compare GraphEQA against a modified version of
SayPlan [35] which we call SayPlanVision. Similar to SayPlan,
SayPlanVision first constructs a scene graph of the whole scene
offline and then uses this scene graph for planning. Similar to
GraphEQA, SayPlanVision also has access to the task-relevant vi-
sual memory at every planning step. This baseline has the advan-
tage of having access to the whole scene graph at every planning
step, however has the disadvantage of requiring an expensive of-
fline scene graph generation step. We use this baseline to evaluate
the effectiveness of our real-time approach and answer Q2.

To further evaluate our method for Q3, we consider two ab-
lations: GraphEQA-SG and GraphEQA-Vis. In GraphEQA-
SG, the planner only has access to the real-time 3DSG and does
not have access to images. In GraphEQA-Vis, the planner only
takes the visual memory as input and exploration is done via
random frontier-based exploration. These baselines will help us
evaluate the benefits of using multi-modality in GraphEQA. Fi-
nally, we perform some additional ablations to evaluate the utility
of different components of our method: GraphEQA-NoEnrich,
which does not use frontier enrichment as mentioned in Sec. 4.1;
and GraphEQA-CurrView, which uses only the current view as
input to the VLM and does not choose additional task-relevant
keyframes as mentioned in Sec. 4.2.

Metrics: To compare the performance of our method against the
baselines and ablations discussed in Sec. 5.1, we use the follow-
ing three metrics: 1) Success Rate (%): an episode is considered a
success if the agent answers the embodied question correctly with
high confidence. Success rate is defined as the number of success-
ful episodes divided by the total number of episodes; 2) # Plan-
ning steps: For successful episodes, we record the total number
of VLM planning steps; 3) Trajectory length (meters): For suc-
cessful episodes, we record the total length of the path traveled
by the robot. We also report the success rates across the different
question types in the EQA dataset (see Sec. 5.2, below).

5.2. Experimental Domains

We evaluate GraphEQA and the baselines mentioned in Sec. 5.1,
in simulation in the Habitat-Sim [43] environment on the HM3D-
EQA dataset [36] and in the real-world in two different settings:
home and office. For the real-world setup, we deploy and evaluate
our proposed approach on the Hello Robot Stretch Research Edi-

Table 1. Comparison to baselines (Simulation): Success rate (%),
number of planning steps and L, the trajectory length. Methods
with a T indicate our implementations of that particular baseline.

Method Succ. Rate (%) #Planning steps L, (m)
Explore-EQA [36] 51.7 18.7 38.1
Explore-EQA-GPT4o! 46.4 3.4 6.3
SayPlanVision' 54.8 2.6 53
GraphEQA 63.5 5.1 12.6

Table 2. Ablations (Simulation): Success rate (%), number of
planning steps and L the trajectory length.

Ablation Succ. Rate (%) #Planning steps L, (m)
GraphEQA-SG 13.6 8.8 33.0
GraphEQA-Vis 45.7 1.0 39
GraphEQA-NoEnrich 59.5 5.1 11.1
GraphEQA-CurrView 53.1 5.7 12.2
GraphEQA 63.5 5.1 12.6

tion 2 (RE-2) ' mobile manipulation platform. All experiments
are conducted on a desktop machine with two (2) NVIDIA TITAN
RTX GPUs, 64GB of RAM, and an Intel i19-100900K CPU.

6. Experimental Results
6.1. Comparison to Baselines

Tab. 1 shows simulation results comparing GraphEQA to the
baselines discussed in Sec. 5.1 on the HM-EQA dataset [36].
GraphEQA has higher success rate as compared to Explore-
EQA and Explore-EQA-GPT40. Compared to Explore-EQA
our method completes the task in significantly lower planning
steps and navigates the environment more efficiently (lower tra-
jectory length). Explore-EQA-GPT40 has lower success rates
and qualitative results show that it tends to be overconfident and
terminates the episode early. GraphEQA outperforms SayPlanVi-
sion even though SayPlanVision has access to the complete scene
graph. Qualitative results point to an over-exploratory behavior
of SayPlanVision for certain task categories. SS:[update] We pro-
vide a more detailed discussion of these results aligned with our
research questions (Sec. 5) in the following Sec. 6.2.

6.2. Discussion

Q1: We observe from Tab. 1 that GraphEQA has higher
success rate as compared to Explore-EQA and Explore-EQA-
GPT4o, without the need to build an explicit 2D semantic task-
specific memory. This demonstrates the capability of 3DSGs to
provide an effective metric-semantic memory for EQA tasks. We
also observe that GraphEQA requires significantly lower number
of planning steps as compared to Explore-EQA. This is because,
unlike Explore-EQA, GraphEQA does not entirely rely on im-
ages as input to the VLM planner for building the semantic mem-
ory as well as planning, constraining the planner to choose from

'GraphEQA leverages the open-source codebase for Hello Robot’s
stretch_ai at https://github.com/hello-robot/stretch._ai



only regions that are visible in the current image. GraphEQA,
on the other hand, can use the hierarchical structure of the scene
graph as well as semantically-enriched frontier nodes to plan in
the entire explored space. We observe that Explore-EQA-GPT4o0
has lower success rate but also has significantly lower planning
steps as compared to GraphEQA. Quantitatively, we observe that
Explore-EQA-GPT4o is overconfident and terminates the episode
early. We hypothesize that, since the VLM is uncalibrated, without
access to a scene graph to ground the planner in the current envi-
ronment, Explore-EQA-GPT4o tries to answer the question using
commonsense reasoning and does not understand that it needs to
explore more. Additional error analysis (Sec. 6.4) reveals that
Explore-EQA-GPT4o0 has significantly high percentage of false
positives i.e. questions are answered successfully using common-
sense reasoning/guessing, without grounding in the answer in the
current scene. For more details, see Sec. 6.4. This provides addi-
tional evidence of the effectiveness of 3DSGs in enabling semantic
exploration by grounding the planner in the current environment.

Qualitatively, we observe that actions
<Goto_Object_node> (object_id) and
<Goto._Frontier_node> (frontier_id) chosen by

the planner are task-specific and explainable. For more qualitative
results please refer to Appendix 8.5.

Q2: We observe from Tab. 1 that GraphEQA performs better than
SayPlanVision which has access to the complete scene graph.
This is a surprising result since it is expected that given full scene
graph information, SayPlanVision would outperform GraphEQA
across all metrics. However, from a qualitative analysis of the re-
sults for SayPlanVision, we observe that given access to the com-
plete scene graph, the agent is overconfident about its choice of
object node actions, leading to shorter trajectory lengths in suc-
cessful cases, but also to increased failure cases. This points to
an interesting advantage of our real-time approach - incrementally
building memory by exploring task-relevant regions and maintain-
ing a more concise representation benefits EQA tasks.

Q3: We observe from Tab. 2 that in the absence of images, and
using only the 3DSG as input to the VLM planner, GraphEQA-
SG performs very poorly. This demonstrates that a semantic
scene graph constructed using closed-set semantics and without
any task-specific semantic enrichment, will provide an incomplete
and insufficient understanding of the environment, which is critical
for solving EQA tasks. Furthermore, we note that the performance
of the vision-only ablation GraphEQA-Vis also suffers. This is
because the agent takes random exploratory actions in the environ-
ment, with no semantic understanding of the overall scene. Addi-
tionally, without the presence of a scene graph to ground the agent
in the current environment, the agent exhibits overconfidence (very
few planning steps) and tries to answer the question solely based
on the current image (similar behavior as observed in Explore-
EQA-GPT40). GraphEQA outperforms both of these ablations
providing clear evidence of the utility of a multi-modal approach
for combining global spatial and semantic information from 3D
scene graphs with local but rich semantic information from im-
ages for solving challenging EQA tasks.

6.3. Additional Ablations:

Here we analyze two additional ablations, GraphEQA-NoEnrich
and GraphEQA-CurrView. We observe that GraphEQA-

Question: Did I leave any pot on the stove?
A. Two B. None C. Three D. One
Answer: B

()

True Positive

False positive

Figure 4. An example of a false positive case. The image on the left is
the image that can be used to answer the question correctly. The image on
the right is the image used by an agent to ’guess’ the answer correctly with
high confidence without grounding the answer in the current environment.

Question: Which pillows are there on the bed right now?
A. Green ones B. Black ones C. Red ones D. Purple ones
Answer: D

o
False negative

True Positive

Figure 5. An example of a false negative case. The question inquires
about the color of the pillow on the bed. The question is ambiguous. On
the left is the image that corresponds to the answer in the dataset i.e. purple
pillows. On the right is an image that the agent encounters during explo-
ration and answers that the pillows are ’green’ with high confidence. Given
the image, the answer is correct but is deemed incorrect in the dataset.

NoEnrich performs slightly worse than GraphEQA which demon-
strates that enriching the scene graph with additional semantic in-
formation in the form of edges between frontiers and nearest ob-
jects, as discussed in Sec. 4.1, lends itself to semantically in-
formed exploration. We observe that the performance drop is
worse in the case of GraphEQA-CurrView, where we do not use
task-relevant visual memory, but only the current view of the
agent. This demonstrates that task-relevant visual memory is very
useful in long-horizon tasks where the current view of the robot
might not be the best view for answering an embodied question.

6.4. Error analysis of competing baselines

Given the nature of the EQA tasks, it is possible that some of the
questions are answered successfully using only commonsense rea-
soning/guessing, without grounding the answer in the current envi-
ronment. We consider these cases as false positives. An example
of a false positive is shown in Fig. 4. Furthermore, we also no-
tice false negatives, where the answer was marked incorrect given
the answer in the data set, although given the current image and
scene graph, the answer seemed appropriate. Such cases exist due
to ambiguities in the dataset. An example of a false negative is
shown in Fig. 5. To get an estimate of the number of false posi-



Table 3. Error analysis (Simulation): Percentage %

GraphEQA  Explore-EQA  Explore-EQA-GPT40

True positive 58.18 31.58 22.81
True negative 31.82 44.74 46.49
False positive 6.36 16.67 24.56
False negative 3.64 7.02 6.14

Table 4. Success Rate (%) in simulation for task categories in the
HM-EQA dataset, for Identification, Counting, Existence, State,
and Location categories. Reported in terms of category successes
/ total number of category EQA tasks. T indicates our implemen-
tation of that baseline.

Method Ident. Counting Existence State Location
Explore-EQA 59.2  46.2 56.5 465 47.
Explore-EQA-GPT40t  32.5  44.2 564 423 40.8
SayPlanVision 75 44 .4 63.3 434 56
GraphEQA 778 579 69 652 64

tives and false negatives in our baselines, we uniformly sample a
set of 114 questions from the HM-EQA dataset and manually label
the results across the four categories: True Positives, True Nega-
tives, False Positives and False Negatives. The results are shown
in Tab. 3 where each number is a percentage of the total number
of questions considered (114).

From Tab. 3, we observe that, GraphEQA has the least number
of false positives and false negatives hence the success rates are
more reliable. We note that Explore-EQA-GPT4o has a consider-
able percentage of false positives, i.e. questions are answered cor-
rectly based on guessing without grounding the answer in the cur-
rent environment. This explains why Explore-EQA-GPT4o has
success rate comparable to Explore-EQA-GPT4o, even with con-
siderably fewer planning steps (Tab. 1) — answers questions based
on commonsense reasoning with high confidence and terminates
early. This provides further evidence that GraphEQA effectively
grounds GPT-4o0 in the current environment, is not overconfident
based on commonsense reasoning and explores the environment
until it can answer the question based on evidence.

6.5. Baseline Performance on Task Categories

Tab. 4 shows the performance of baselines and GraphEQA across
the different task categories in the HM-EQA dataset. GraphEQA
outperforms all other methods across all task categories, but is par-
ticularly more performant in comparison when considering Count-
ing and State tasks. It is worth noting that the Counting and State
categories are among the most challenging. Counting is often ob-
fuscated by objects that are semantically similar, resulting in mis-
counting, or by objects appearing merged together due to a partic-
ular view. SS:[update]

6.6. Real-world Experiments

We deploy GraphEQA on Hello Robot’s Stretch RE2 plat-
form in two real indoor environments, home and office, as shown
in Fig. 6. We design a set of 5 custom EQA questions for each en-

Figure 6. Real world environments for deployment of GraphEQA on
Hello Robot’s Stretch RE2 platform. Left: Home. Right: Office.

vironment, aligned with the task categories discussed in Sec. 3.3.
The complete list of questions is provided in the Appendix 8.3.
We utilize Detic [59] to obtain semantic maps which, along with
RGBD images, camera extrinstics, and instrinsics, are passed as
input to Hydra [18] to obtain the 3D metric-semantic scene graph.
Home Environment The home environment is shown Fig. 6.
Fig. 7 (a) shows results for the robot answering a ’state’
question How many white cushions are there on
the grey couch? A. One B. Two C. Three D.
Four In Fig. 7 (b), the robot is asked to answer the question
Is the front door, next to the staircase,
open? A. Yes, C. No. In both these scenarios, we note
that the agent chooses semantically informed actions to explore
the environment before answering the question with confidence.
Office Environment The office environment is shown Fig. 6.
Fig. 7 (c) shows the robot answering a ’existence’ question Is my
sweater on the blue couch? A. Yes B. No. The
agent moves along the lobby until the blue couch comes in view
and then approaches the couch to get a better view before answer-
ing the question with confidence. Full list of tasks and qualitative
results can be found in the Appendix Sec. 8.3

7. Conclusions, Limitations, and Future Work

We present GraphEQA, an approach for solving embodied ques-
tion answering tasks in unseen environments by grounding a
vision-language based planner in the context of the current en-
vironment by providing as input textual representations of real-
time 3D metric-semantic scene graphs and a task-relevant visual
memory. The planner employs a semantically-guided exploration
strategy for visiting semantically relevant frontiers and structurally
exploring rooms and objects before using this mulitmodal mem-
ory for confidently answering the embodied question. A limita-
tion of this approach is reliance on off-the-shelf segmentation and
detection models for creating semantic maps required for 3DSG
construction. The performance of our approach, hence, is directly
impacted by the performance of the detection method used and
the semantic categories in the scene graph are limited to the cat-
egories detected by the segmentation model. An exciting direc-
tion for future work includes enriching the scene graph online
with task-relevant node and edge features using open-set models.
Another limitation of our approach is that VLM-based planners
can be overconfident or underconfident when answering embodied
questions. Grounding calibrated models in real-time multi-modal



Planning step 1 Planning step 4 Planning step 6

I will explore a frontier that may lead to a To potentially find the staircase, I will The front door next to the staircase is
staircase or door. explore the frontier close to the couch. visible. and it appears to be closed.
Action: <Goto Frontier node> Action: <Goto Frontier node>
Confident: False Answer: No Confident: False Answer: No Confident: True Answer: No

Q: How many white cushions are there on the grey couch? A) 1. B) 2. C) 3. D) 4.

Planning step 1 Planning step 3 Planning step 5

I will choose a frontier to explore I need to see the couch entirely to The image clearly shows two white
unexplored areas. count the cushions. cushions on the grey couch.

Action: <Goto Frontier node> Action: <Goto Frontier node>

Confident: False Answer: 1 Confident: False Answer: 1 Confident: False 2

Q: Is my sweater on the blue couch? A. Yes B. No

Planning step 1 Planning step 3 Planning step 8 Planning step 11

The image shows a blue couch with The image shows a sweater on the

Exploration around the blue couch I cannot determine if the sweater !
will help find the blue sweater. is on the blue couch at the moment. Some clothing draped over it. blue couch.
Action: <Goto Object node> (couch) Action: <Goto Object node> (couch) HAction: <Goto Object node> (couch)

Confident: False Answer: No Confident: True

Confident: False Answer: No Confident: False Answer: No

Figure 7. Experiments from deploying GraphEQA on the Hello Robot Stretch RE2 platform in a home environment (a,b) and in an office (c). Each set of
images is from the head camera on the Stretch robot, and represents the top-k task-relevant images at each planning step. Provided under the images are the
answers, confidence levels, and explanations output from the VLM planner.

memory is another important direction for future work. 2,3
[4] Iro Armeni, Zhi-Yang He, JunYoung Gwak, Amir R. Zamir,
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8. Appendix
8.1. Habitat environment setup

The Habitat-Sim setup for our experiments is identical to the setup
used in [36]. The camera sensor settings are as follows: image
width = 640, image height = 480, camera height = 1.5m, cam-
era tilt = —30 degrees, field of view = 120 degrees. For generat-
ing trajectories for the <Goto_Object_node> (object_id)
and <Goto_Frontier_node> (frontier_id) actions, we
find the shortest path between the current agent position and
the desired object/frontier node location, on the obstacle-
free voxel space of of the 2D occupancy map. We ori-
ent the agent such that camera always points towards the
desired node location all along the trajectory. In case of
the <Goto_Object_node> (object_id) action, this maxi-
mizes the number of views that capture the target object. In case of
the <Goto_Frontier_node> (frontier_id) action, this
makes the agent look outwards into the unexplored areas.

8.2. Prompting

8.2.1 GPT Prompt

The full prompt provided to GPT4o for GraphEQA is given in
Sec. 8.5.1. In it we provide the scene graph description, descrip-
tion of the agent’s current state, agent prompt, and just generally
more descriptive text for more context.

8.2.2 Hierarchical Nature of 3DSGs and Planning

The portion of the prompt used to describe the scene graph in
GraphEQA clarifies to the VLM how layers and nodes are orga-
nized in a 3DSG. We take advantage of this structure by requiring
<Goto_object_node_step> to be organized such that the
VLM first chooses a room (level 4) to navigate to, then choosing
an object (level 2) in that room. This inherent structure and expla-
nation of it in the prompt guides the VLM to choose actions that
investigate objects that are semantically relevant to the question.

8.2.3 Structured Output

We employ the structured output capabilities of OpenAl’s Python
API to force a desired structure on what is output by GPT4o0. Be-
low is the create_planner_response function used in the
implementation of GraphEQA.

def create_planner_response (frontier_node_list,
room_node_list, region_node_list,
object_node_list, Answer_options):

class Goto_frontier_node_step (BaseModel) :
explanation_frontier: str
frontier_id: frontier_node_list

class Goto_object_node_step (BaseModel) :
explanation_room: str
explanation_obj: str
room_id: room_node_list
object_id: object_node_list

class Answer (BaseModel) :
explanation_ans: str
answer: Answer_options

explanation_conf: str
confidence_level: float
is_confident: bool

class PlannerResponse (BaseModel) :
steps: List[Union[Goto_object_node_step,
Goto_frontier_node_step]]
answer:
image_description: str
scene_graph_description:

Answer
str

return PlannerResponse

Code Listing 1. The create_planner_response function
used to structure output from GTP4o.

The create_planner_response function takes as in-
put enums for frontier nodes, room nodes, region nodes, ob-
ject nodes, and the answer options for the particular question
being answered by the VLM. These enums are used to popu-
late the member variables of the Goto_frontier_node_step,
Goto_object_node_step, and Answer classes, enforcing
both type as well as the options available when calling the Ope-
nAl APL

8.3. Real-world EQA experiments
8.3.1 Qualitative analysis

Workshop environment
GraphEQA was provided with the following multiple choice ques-
tion:




Figure 8. The merged images used by GraphEQA'’s task-relevant visual
memory. Upon seeing the image, GraphEQA explains its confidence: “In
the current image, a backpack is clearly visible on top of a chair, verifying
its location.”

Question: Where is the backpack?
A. On the chair

B. On the table

Answer: A

The agent first takes a <Goto_Object_node> (chair)
step in the environment after an initial rotate-in-place mapping
operation to populate the scene graph, choosing to investigate a
chair found in the environment. An explanation for this choice is
provided by the VLM: “Objects like the chair or table might have
the backpack, so checking close to these areas is essential.” The
robot then begins navigating to the chair to determine if the back-
pack is located there. During execution of the trajectory toward
the chair, GraphEQA leverages its task-relevant visual memory to
score three images encountered on its way to the chair. These im-
ages are shown in Fig. 8.

After finishing the execution of this trajectory, GraphEQA an-
swers the question with ‘On the chair’ and provides the following
explanation of its answer: “The backpack is visually confirmed to
be on the chair in the current image. The presence of the backpack
on the chair makes it clear that the correct answer to the question
is ’On the chair’.”

Question: Is the door to the lobby open?

A.Yes. B.No.

Answer: A

In this particular experiment, the agent takes
three  planning  steps, two of  which constitute
<Goto_Object_node> (cabinet) steps, and one
<Goto_Frontier_node> (frontier_id). For the

step prior to the final action during which the agent answers the
question correctly, the explanation of its current answer is “There
is no direct observation of the lobby door in the current view or
the scene graph. Since I've previously explored without finding
the door, and considering I do not have visual confirmation, I
cannot accurately determine if the door is open or closed.” after
which the agent takes the frontier step to explore, finding the
lobby door and correctly answering the question.

We ask the agent a second question regarding the location of a
blue water bottle, along with three multiple choice answers.

Question: Where is blue water bottle?
A. On the table

B. On the cabinet

C. On the floor

Answer: B

After exploring the environment with one
<Goto_Object_node> (cabinet) step, see Fig. 7, the
agent successfully finds the water bottle and confirms its location,
providing the following justification for its answer: “The image
shows a cabinet with some objects on top, including a blue water
bottle. There is also a computer monitor and various tools visible
on the countertop.”

Office environment We ask the following question in an office
setting.

Question: Is my sweater on the blue couch?
A. Yes
B. No Answer. A

The agent starts by taking a
<Goto_Object_node> (couch) step, to  explore
the blue couch. The following VLM explanation

of the object step clarifies GraphEQA is referring
to the blue couch: explanation_obj='I need
to locate the blue couch before I can
determine if the sweater is on it or not.’
object_id=<object_node_list.object_1: couch>

The low-level planner implementation on Hello Robot’s stretch
does not plan the entire path to the blue couch, however, resulting
in several more <Goto_Object_node> (couch) steps before
answering the question confidently after 11 steps.

8.3.2 Additional experiments

Six additional experiments are provided in Fig. 9 and Fig. 10. They
include both success and failure cases in real world environments.

8.4. Additional Quantitative results
8.4.1 Zero-shot reasoning for commonsense questions

We perform this evaluation to answer the following question: how
many questions in the HM-EQA dataset can be answered cor-
rectly purely based on commonsense reasoning or guessing, with-
out exploring the environment? We aim to perform this analy-
sis to roughly estimate the percentage of false positives that can
occur in the HM-EQA dataset using different VLMs. To answer
this question we define the following three additional baselines:
EQAZeroShotGPT40, EQAZeroShotPrismatic and EQAZe-
roShotGPT40QuestionOnly. EQAZeroShotGPT4o evaluates
the zero-shot performance of GPT-40 when answering an EQA
question using the initial image and the question. EQAZe-
roShotPrismatic evaluates the zero-shot performance of the cal-
ibrated Prismatic model from Explore-EQA [36] when answer-
ing an EQA question using the initial image and the question

EQAZeroShotQuestionOnly evaluates the zero-shot perfor-
mance of GPT-40 when answering an EQA question using only
the question. In all the above baselines, no exploration steps are



Table 5. Additional baselines (Simulation): Success rate (%)

Method Succ. Rate (%)
Explore-EQA [36] 51.7
Explore-EQA-GPT40 46.4
SayPlanVision 54.8
GraphEQA 63.5
EQAZeroShotGPT40 17.2
EQAZeroShotPrismatic 1.8
EQAZeroShotGPT40QuestionOnly 6.6

taken. Prompts for the above baselines are identical to ones used
by Explore-EQA [36]. An episode is considered a success if the
question is answered correctly and with high confidence (> 0.5).
Tab. 5 shows the simulation results for the baselines mentioned
above compared to the baselines discussed in Sec. 5.1. We ob-
serve that, given only the question, EQAZeroShotQuestionOnly
answers 6.6% of the questions correctly with high confidence.
This can be attributed to the VLM answering questions based on
commonsense reasoning or even just random guessing, and get-
ting them correct. EQAZeroShotPrismatic answers only 1.8%
of the questions correctly with a confidence > 0.5. This can
be attributed to the fact that the Prismatic VLM is calibrated to
avoid overconfident behavior in the absence of evidence, hence
the zero-shot confidence values are low. EQAZeroShotGPT4o0
answers 17.2% of the questions correctly with high confidence.
To evaluate whether these questions were answered based on ac-
tual evidence in the initial image or purely based on commonsense
reasoning/guessing, we further qualitatively evaluated the success-
ful cases. Among the 17.2% that EQAZeroShotGPT4o0 answers
successfully, 8.8% were answered based on actual evidence in the
initial image. These questions could be answered using the initial
image. The remaining 8.4% were answered based on common-
sense reasoning/guessing without any evidence from the environ-
ment. Thus, 8.4% is the rough estimate of the false positives that
can occur in the HM-EQA dataset using GPT-40 based methods.



8.5. Qualitative results

8.5.1 Choosing object-nodes and frontiers semantically

In 8.5.1 we provide a qualitative examples of GraphEQA planner choosing to go near a "couch’ to better answer a question about living
room lights. This shows that the planner chooses task-relevant objects to guide exploration. In 8.5.1 we provide a qualitative examples of
GraphEQA planner choosing task-relevant frontier nodes and object nodes to guide exploration.

Qualitative results - choosing task-relevant object nodes

Is the living room light on?
A. (Do not choose this option)
B. (Do not choose this option)
C. No
D. Yes.
Answer: D
At t=0::
Agent state: The agent is currently at node agentl at position [-2.928846836090088,
-1.5354466438293457, 4.291640281677246] at room node: room0O with name living room
Action: explanation room=I need to further investigate the living room to possibly find indicators

like light switches or bulbs. explanation obj=Going near the blue couch might provide a better
view of the surroundings, including light fixtures. room id=room 0: ’1living room’ object
id=object 13: ’couch’

Answer: explanation ans= I need to explore more areas related to lighting in the living room
before answering confidently. answer=Answer options A: ’ (Do not choose this option)’ explanation
conf='The scene graph and current image do not provide enough information on lighting. Going near
specific objects like the couch could help.’ confidence level=0.2 is confident=False

At t=1::

Agent state: The agent is currently at node agent7 at position [-2.2595670223236084,
-2.6618852615356445, 4.291640281677246] at room node: room 0 with name living room

Answer: explanation ans=’'The image clearly shows a light fixture on the ceiling that appears to be
on. This indicates that the living room light is indeed on.’ answer=D ’'Yes’ explanation conf=’The
light fixture being on is visible in the image, providing clear evidence that the living room light
is on.’ confidence level=0.9 is confident=True

Qualitative example of GraphEQA planner choosing task-relevant object nodes for exploration.
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Qualitative results - choosing task-relevant frontier nodes

Is the kitchen sink currently free of dishes?
A. (Do not choose this option)
B. (Do not choose this option)
C. Yes, it’s empty
D. No, there are dishes.
Answer: C
At t=0::
Agent state: The agent is currently at node agent 1 at position [0.9115259647369385,
-0.7087370157241821, -1.5000251531600952] at room node: room 0 with name bedroom
Action: explanation frontier="The kitchen typically contains objects like chairs, tables, etc.
Frontier 4 is near objects that could indicate a transition to a dining or kitchen area, as it is

near the couch and chair, which might lead to a kitchen. It’s worth exploring this frontier to
find the kitchen." frontier id= frontier 4

Answer: explanation ans="Currently, the kitchen is not visible in the scene. The scene graph and
current image provide information about a bedroom, but not a kitchen. Therefore, I can’t answer
whether the kitchen sink is free of dishes." answer= A: ' (Do not choose this option)’ explanation
conf="1 haven’t yet gathered any information on the kitchen or the sink from my current location in
the bedroom, and no other regions of the building have been explored yet." confidence level=0.0 is
confident=False

At t=1::

Agent state: The agent is currently at node agent 6 at position [2.5569498538970947,
2.228832721710205, -1.5000251531600952] at room node: room O with name living room

Action: explanation frontier="The frontier 2 is connected to objects like the table, cabinet,
fridge, and plates, which might lead to a kitchen area or provide a clue to the sink’s status."

frontier id=frontier 2

Answer: explanation ans=’Currently, there is no visual confirmation of a sink in the image

or scene graph, and insufficient detail to determine if the kitchen sink is free of dishes.’
answer=A: ’ (Do not choose this option)’ explanation conf="The scene graph and current image give
no direct view of a kitchen sink or its status, so it’s uncertain whether it’s free of dishes."
confidence level=0.2 is confident=False

At t=2::

Agent state: The agent is currently at node agent 11 at position [2.6420648097991943,
-0.10468387603759766, -1.5000251531600952] at room node: room 0 with name living room

Action: explanation room=’To determine if the kitchen sink is free of dishes, I need to transition
from the living room to the kitchen area, where the sink is likely located. Frontiers associated
with kitchen-related objects can guide me there.’ explanation obj="To check the sink, moving
towards the ’'plates’ near object 41 might lead to the kitchen area." room id=room 0: ’1living room’
object id=object 41: ’plates’

Answer: explanation ans="Currently, I don’t have enough information to directly answer if the
kitchen sink is free of dishes, based on the image or scene graph. Further exploration is

needed to confirm the state of the sink." answer=A: ’ (Do not choose this option)’ explanation
conf="Given my current location and the items visible, I can’t see the sink or its contents. I
need to navigate closer to where I suspect the sink might be, based on kitchen-related objects like
plates." confidence level=0.3 is confident=False

At t=3::

Agent state:The agent is currently at node agent 21 at position [1.7573769092559814,
-0.35986196994781494, -1.5000251531600952] at room node: room 0 with name living room

Answer: explanation ans=’The image shows the kitchen, and the sink area is visible. There

are no dishes in the sink, indicating it is empty.’ answer=C: "Yes, it’s empty" explanation
conf='The image clearly shows the sink, and there are no dishes visible, providing clear evidence
to confidently answer the question.’ confidence level=1.0 is confident=True

Qualitative example of GraphEQA planner choosing task-relevant frontier and object nodes for exploration.



Prompt

Agent prompt: You are an excellent hierarchical graph planning agent. Your goal is to navigate an
unseen environment to confidently answer a multiple-choice question about the environment. As you
explore the environment, your sensors are building a scene graph representation (in Jjson format)
and you have access to that scene graph.

Scene graph description: A scene graph represents an indoor environment in a hierarchical

tree structure consisting of nodes and edges/links. There are six types of nodes: building,
rooms, visited areas, frontiers, objects, and agent in the environment. The tree structure is

as follows: At the highest level 5 is a ’building’ node. At level 4 are room nodes. There

are links connecting the building node to each room node. At the lower level 3, are region and
frontier nodes. ’'region’ node represent region of room that is already explored. Frontier nodes
represent areas that are at the boundary of visited and unexplored areas. There are links from
room nodes to corresponding region and frontier nodes depicted which room they are located in.

At the lowest level 2 are object nodes and agent nodes. There is an edge from region node to

each object node depicting which visited area of which room the object is located in. There are
also links between frontier nodes and objects nodes, depicting the objects in the vicinity of a
frontier node. Finally the agent node is where you are located in the environment. There is an
edge between a region node and the agent node, depicting which visited area of which room the agent
is located in.

Current state description: CURRENT STATE will give you the exact location of the agent in the
scene graph by giving you the agent node id, location, room-id and room name.

General Description: Given the current state information, try to answer the question. Explain
the reasoning for selecting the answer. Finally, report whether you are confident in answering
the question. Explain the reasoning behind the confidence level of your answer. Rate your

level of confidence. Provide a value between 0 and 1; 0 for not confident at all and 1 for
absolutely certain. Do not use just commonsense knowledge to decide confidence. Choose TRUE,

if you have explored enough and are certain about answering the question correctly and no further
exploration will help you answer the question better. Choose ’'FALSE’, if you are uncertain of the
answer and should explore more to ground your answer in the current environment. Clarification:
This is not your confidence in choosing the next action, but your confidence in answering the
question correctly. If you are unable to answer the question with high confidence, and need

more information to answer the question, then you can take two kinds of steps in the environment:
Goto_object-node_step or Goto-frontier_node_step You also have to choose the next action, one which
will enable you to answer the question better. Goto_object_node_step: Navigates near a certain
object in the scene graph. Choose this action to get a good view of the region around this
object, if you think going near this object will help you answer the question better. Important
to note, the scene contains incomplete information about the environment (objects maybe missing,
relationships might be unclear), so it is useful to go near relevant objects to get a better view
to answer the question. Use a scene graph as an imperfect guide to lead you to relevant regions to

inspect. Choose the object in a hierarchical manner by first reasoning about which room you should
goto to best answer the question, and then choose the specific object. Goto_frontier_node_step:
If you think that using action ‘‘Goto._object_node_step’’ is not useful, in other words, if you

think that going near any of the object nodes in the current scene graph will not provide you with
any useful information to answer the question better, then choose this action. This action will
navigate you to a frontier (unexplored) region of the environment and will provide you information
about new objects/rooms not yet in the scene graph. It will expand the scene graph. Choose this
frontier based on the objects connected this frontier, in other words, Goto the frontier near which
you see objects that are useful for answering the question or seem useful as a good exploration
direction. Explain reasoning for choosing this frontier, by listing the list of objects (<id> and
<name>) connected to this frontier node via a link (refer to scene graph).

While choosing either of the above actions, play close attention to "HISTORY’ especially the
previous ’Action’s to see if you have taken the same action at previous time steps. Avoid taking
the same actions you have taken before. Describe the CURRENT IMAGE. Pay special attention to
features that can help answer the question or select future actions. Describe the SCENE GRAPH.
Pay special attention to features that can help answer the question or select future actions.’’

Prompt 1: The prompt used in the implementation of GraphEQA.



Supplemental Real-world Experiments

Question: Is my sweater on the yellow Question: Where is blue water bottle?

chair? A.On the table
A. Yes B.On the cabinet
B. No C.On the floor

Answer:

Answer: A
- \

(b) “““““‘Il““‘l‘\l\l“\

Planning step 1

Planning step 1

The image provides clear visual
evidence of the sweater on the
yellow chair

I can see the blue color of the bottle on the
table clearly, solidifying my answer.

Confident: True Answer: Yes Confident: True Answer: On the table

Question: Where is red traffic cone?

A.On the table
B.On the cabinet
C.On the floor
Answer:

(d) ‘; \!l‘ll“[l“\ ‘!l‘ll“[l‘ll

Planning step 1

Planning step 2

I need to check nearby floors in the vicinity of
to confirm the location of the red traffic cone.

Action: <Goto_Object_node> (trash_can)

not see a red traffic cone.
Action: <Goto_Object_node> (box)

Confident: False Answer: On the floor

There are objects visible in the image, but I do

Confident: False Answer: On the floor

Question: Where is the trashcan?
A. Next to the TV

B. Next to the door

Answer: A

Planning step 1

The image shows the trash can clearly
positioned near the furniture.

Confident: True Answer: Next to the door

Planning step 3

The red traffic cone was visible in the images
and its placement is confirmed as being on the
floor.

Confident: True Answer: On the floor

Figure 9. Additional experiments from deploying GraphEQA on the Hello Robot Stretch RE2 platform in a workshop environment (b, ¢, d) and in an office
(a). (c) and (d) are failure cases. Each set of images is from the head camera on the Stretch robot, and represents the top-k task-relevant images at each
planning step. Provided under the images are the answers, confidence levels, and explanations output from the VLM planner.



Question: Is there a bottle on one of the desks?
A. Yes

B. No

Answer: A

Planning step 1 Planning step 2
To check for a bottle, I'll move towards the

closest table. Given that the image clearly shows multiple

surfaces but does not include a recognizable
Action: <Goto_Object node> (table) bottle, there is no bottle.

Confident: False Answer: No Confident: True Answer: No

Question: Where is my backpack?
A.On the yellow chair

B.On the blue couch

Answer: A

Planning step 1

The image provides a clear view of the backpack's
location on the chair.

Confident: True Answer: On the yellow chair

Figure 10. Additional experiments from deploying GraphEQA on the Hello Robot Stretch RE2 platform in an office environment (e, f). (e) is a failure
case. Each set of images is from the head camera on the Stretch robot, and represents the top-k task-relevant images at each planning step. Provided under
the images are the answers, confidence levels, and explanations output from the VLM planner.
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