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Abstract

Aim: Species distribution models (SDMs) are increasingly applied across macroscales
using detection-nondetection data. These models typically assume that a single set of
regression coefficients can adequately describe species-environment relationships
and/or population trends. However, such relationships often show nonlinear and/or
spatially varying patterns that arise from complex interactions with abiotic and biotic
processes that operate at different scales. Spatially varying coefficient (SVC) models
can readily account for variability in the effects of environmental covariates. Yet, their
use in ecology is relatively scarce due to gaps in understanding the inferential benefits
that SVC models can provide compared to simpler frameworks.

Innovation: Here we demonstrate the inferential benefits of SVC SDMs, with a particu-
lar focus on how this approach can be used to generate and test ecological hypotheses
regarding the drivers of spatial variability in population trends and species-environ-
ment relationships. We illustrate the inferential benefits of SVC SDMs with simulations
and two case studies: one that assesses spatially varying trends of 51 forest bird spe-
cies in the eastern United States over two decades and a second that evaluates spatial
variability in the effects of five decades of land cover change on grasshopper sparrow
(Ammodramus savannarum) occurrence across the continental United States.

Main conclusions: We found strong support for SVC SDMs compared to simpler al-
ternatives in both empirical case studies. Factors operating at fine spatial scales, ac-
counted for by the SVCs, were the primary divers of spatial variability in forest bird
occurrence trends. Additionally, SVCs revealed complex species-habitat relationships
with grassland and cropland area for grasshopper sparrow, providing nuanced insights
into how future land use change may shape its distribution. These applications display
the utility of SVC SDMs to help reveal the environmental factors that drive species
distributions across both local and broad scales. We conclude by discussing the po-

tential applications of SVC SDMs in ecology and conservation.

KEYWORDS
Bayesian, Breeding Bird Survey, context dependence, imperfect detection, nonstationarity,
occupancy model, spatial autocorrelation
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1 | INTRODUCTION

Elucidating the factors that drive species distributions is a funda-
mental objective of ecology. Species distribution models (SDMs)
are the primary tool to study where and why species occur across
space and time (Guisan & Zimmermann, 2000). While SDMs can
leverage a variety of data types (e.g. presence-only, abundance),
they are commonly used with presence-absence (or detection-
nondetection) data in a parametric generalized-linear model
(GLM)-based framework, allowing for assessments of species-
environment relationships and probabilities of local-level occur-
rence. Parametric SDMs often describe species-environment
relationships via a single set of regression coefficients (e.g. linear
and quadratic terms) across the spatial extent of the data set, re-
sulting in a set of linear or unimodal response curves along all en-
vironmental predictors included in the model (Guisan et al., 2002).
When the spatial extent encompasses the entirety of the species
range, the combination of such species-environment response
curves characterizes the multivariate realized environmental niche
of a species (Guisan et al., 2017). However, when fitting SDMs
across large spatial extents, a single set of linear and quadratic
regression coefficients may not adequately describe species-envi-
ronment relationships, which can result from the true relationship
taking a complex, nonlinear form or variability in the relationship
across space (i.e. the relationship is context dependent, or nonsta-
tionary; Rollinson et al., 2021).

Complex, nonlinear and/or spatially varying species-environ-
ment relationships can arise from a variety of abiotic and biotic
processes that operate at different scales (Miller, 2012; Osborne
& Suéarez-Seoane, 2002). Interactions with abiotic factors, such
as historical disturbance regimes, fine-scale habitat characteris-
tics (e.g. vegetation quality) and environmental conditions (e.g.
soil content) can result in varying effects of environmental fac-
tors on species across their ranges (Rollinson et al., 2021). Given
spatial heterogeneity in resource availability, effects of environ-
mental factors on species occurrences may be stronger in areas
with limited resources compared to areas with abundant resources
(Pease, Pacifici, & Kays, 2022). If climate shapes species distribu-
tions, effects of climate change on species should be strongest
in areas near their climatic limits (Amburgey et al., 2018). For ex-
ample, Sultaire et al. (2022) found spatial variation in the effects
of increasing temperature and snow cover duration on snowshoe
hare (Lepus americanus) occurrence, suggesting that climate lim-
its their distribution in different ways across the species range.
Alternatively, spatially varying species-environment relationships
may arise from biotic processes such as local genetic adaptations
or spatial variation in species interactions. Pease, Pacifici, and
Kays (2022) found that spatial variability in the effect of forest
cover on white-tailed deer (Odocoileus virginianus) occurrence
across North Carolina was partially driven by variation in preda-
tion pressure across the state. Failing to account for such spatially
varying relationships can lead to misleading inferences on the
abiotic factors that influence where species occur, which could

have important implications for conservation recommendations
(Rollinson et al., 2021).

In addition to characterizing species-environment relation-
ships, monitoring data are often used in SDMs to quantify oc-
currence trends. Nonlinear and/or spatially varying occurrence
trends primarily arise from spatio-temporal changes in abiotic and
biotic factors that influence the species of interest (e.g. differ-
ences in land-use change across a species distribution). However,
such patterns can also arise from complex relationships to such
factors (e.g. the effect of land-use change is different in one part
of a species range compared to another). Quantifying spatial
variability in population change over time is a common objective
of biodiversity monitoring programs (Babcock et al., 2016; Bled
et al., 2013; Meehan et al., 2019), as such insights can help gen-
erate hypotheses about the drivers of population changes (e.g.
Crossley et al., 2021) and identify priority areas for conservation
or restoration (e.g. Ethier et al., 2017).

Numerous methods have been used to test hypotheses about
spatial variability and nonlinearity in species-environment rela-
tionships or occurrence trends. GLMs with interactions between
variables are simple, yet intuitive, ways to assess nonlinear and/or
spatially varying relationships (Spake et al., 2023). In addition, esti-
mating separate slopes (fixed or random) across pre-defined strata
(e.g. ecoregions, management units) is another common alternative
(e.g. Smith & Edwards, 2021). Furthermore, nonlinear functions
(e.g. thresholds) can be readily incorporated into parametric SDMs
(Hostetler & Chandler, 2015). However, these approaches require
a priori knowledge of covariates that interact with the variables of
interest, the functional forms of such relationships and/or the spa-
tial resolution of variability in the relationship, most of which are
unknown prior to analysis. Specifying interactions between multi-
ple drivers operating at different spatial scales is particularly critical
when working across macroscales, but difficult to accomplish using
the aforementioned approaches. More flexible approaches that can
readily accommodate complex species-environment relationships
without a priori knowledge of all interacting variables and the nature
of their interactions are thus needed.

Accordingly, there has been widespread use of MaxEnt (Phillips
et al., 2006) and random forests (Liaw & Wiener, 2002) to model
species distributions while accounting for complex species-environ-
ment relationships. MaxEnt uses combinations of different ‘feature
classes’, or mathematical functions, on covariates to characterize
nonlinear relationships in presence-only data, and random forests
fit ensembles of classification or regression trees within partitions
of the data based on covariate space (Valavi et al., 2021). Both ap-
proaches are widely used in ecology, but they are limited in their
ability to provide uncertainty estimates of species-environment
relationships and/or occurrence trends; they require all interacting
variables to be known and incorporated into the model; and they do
not account for imperfect detection (i.e. the failure to observe a spe-
cies at a site when it is present; Kellner & Swihart, 2014; Kéry, 2011).

In this paper, we discuss the use of spatially varying coefficients
(SVCs) in SDMs, a highly flexible approach for modelling nonlinear
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and/or spatially varying species-environment relationships, regard-
less of how they arise. SVC models are intuitive extensions of GLMs
that allow regression coefficients to vary smoothly across space.
By fitting SVC models within a hierarchical Bayesian framework,
we can generate predictions of species-environment effects and/
or trends across a spatial region of interest with full uncertainty
propagation, while simultaneously accounting for widespread ob-
servation errors, such as those due to imperfect detection. Recent
studies suggest an increasing interest in this framework for a vari-
ety of ecological applications due to the prevalence of heterogene-
ity in species-environment relationships across macroscales (e.g.
Meehan et al., 2019; Rollinson et al., 2021; Sultaire et al., 2022).
However, a comprehensive understanding of the inferential ben-
efits SVCs can provide compared to alternative approaches is
lacking. Thorson et al. (2023) recently highlighted seven ecological
questions that can be addressed with spatially varying coefficients.
Here, we build on their work by explicitly demonstrating the in-
ferential benefits of SVC SDMs compared to simpler approaches
with simulations and two case studies on breeding birds in the
United States. We conclude with a discussion of practical guide-
lines on when to use SVC SDMs instead of, or in addition to, simpler

alternatives.

2 | What are spatially varying
coefficients?

Here, we discuss SVCs in the context of occupancy models
(MacKenzie et al., 2002; Tyre et al., 2003), a specific form of hierar-
chical GLM that models imperfect detection, although our findings
are directly extensible to all parametric SDMs (i.e. GLMs). See Doser
et al. (2024) for full statistical details.

Let s; denote the spatial coordinates of site j, where j=1, ... ,J,
which are each sampled across t =1, ..., T primary time periods
(henceforth ‘seasons’). Note that data may be obtained for only one
season (i.e. T = 1), or for multi-season data sets in which sites do not
need to be sampled every season (i.e. missing values are allowed).
To account for imperfect detection, k=1, ... ,Kt(sj) sampling rep-
licates are obtained at site j during season t to estimate whether a
nondetection of the target species is truly an absence (MacKenzie
et al., 2002; Tyre et al., 2003). Note that the number of replicates
can vary across site/season combinations. Such replicates typically
come in the form of multiple visits to a site over a short period of
time within a season, but other forms of replication such as spa-
tial sub-sampling and multiple observers are possible (MacKenzie
etal., 2017). Let y, (s;) denote the observed detection (1) or nonde-
tection (0) of a study species at site j during survey k in season t, and
let z, (sj) denote the true presence (1) or absence (0) of the species
at site j during season t. Note we assume z, (sj) does not change
across replicate surveys within a given season (i.e. the ‘closure’ as-
sumption). We model the observed data y,,(s;) conditional on the
true occurrence status of the species at site j during season t (z, (sj)).
Specifically, we have
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0, z,(s;) =0
1

where p; (sj) is the probability of detecting the species at site j during
replicate survey k in season t. We model detection probability as a
function of site, season and/or survey-level (i.e. observation-level) co-

variates according to

logit (P (57)) = Ve (5)) @

where a is a vector of regression coefficients (including an intercept)
that describe the effect of covariates v, (s;) on detection.

The true occurrence status zt(si) is a partially observed vari-
able, such that if y;, (s;) = 1, we know z(s;) = 1 (since we assume
no false positives), but if y, (sj) =0 we do not know if the species
is truly absent from the site, or if we failed to detect it. We model
z(s;) as

z(s;) ~ Bernoulli(y(s;)), (3)

where y; (sj) is the occurrence probability of the species at site j during
season t. When fitting occupancy models, we can estimate species-
environment relationships through the effect of covariates on oc-
currence probability, wr(sj), within a GLM framework. For simplicity,
consider a single environmental variable, xt(sj ) that varies across each
spatial location s;and season t (e.g. temperature, precipitation). An SVC

occupancy model has the form

logit(w(s;)) = Bo + ne + Wo(s;) + By - Xc(5;) + wa(s;) - %c(5;), (4)

where g, is an intercept, 7, is a temporal random effect (i.e. season-
specific intercept) to account for unmodelled temporal autocorrelation
in occurrence probability (only applicable if T > 1), WO(Sj) is a spatial
random effect to account for unmodelled spatial variation in occur-
rence probability, 4 is the non-spatial effect of the covariate x; (sl-) and
Wy (sj) is the spatially varying effect of the covariate at each spatial
location's;.

The spatially varying effect in the SVC model can be estimated in
a variety of ways, including via generalized additive models (GAMs;
Wood, 2006) and Gaussian processes (Banerjee et al., 2014). We
focus on the latter due to their prevalence in spatial statistics,
their comparatively higher predictive performance (Golding &
Purse, 2016), and the potential for oversmoothing of relationships
with GAMs (Stein, 2014). Specifically, we have

w(s) ~ N(0,C(s,s",0)), (5)

where C(s,s/,e) is a J x J covariance matrix that is a function of the
distances between any pair of site coordinates s and s’ and a set of pa-
rameters (0) that govern the spatial process according to a spatial cor-
relation function. Here we use Nearest Neighbour Gaussian Processes
(Datta et al., 2016) as an efficient approximation to the full Gaussian
process and an exponential correlation function, which models the
correlation in the spatially varying effect of the covariate using two
parameters, = {o2, ¢}, where 52 is a spatial variance parameter and
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¢ is a spatial decay parameter. See Doser et al. (2024) for full details on

SVC occupancy models.

3 | How do spatially varying coefficient
models compare to simpler alternatives?

For comparison to alternative models, consider a more generalized

model of occurrence probability w(s;) with the form

logit (w(s;)) = Bo + 1t + Wo (s;) + F(xc(s;). B), (6)

where g, n; and wy (s;) are defined in (4), and f (x,(s;), B) is a generic
function that relates the covariate x,(s;) to occurrence probabil-
ity through a set of parameters B. Note that WO( ) and #n, can be
removed from (6) if not applicable for a target species/data set.
We consider five functional relationships to describe the rela-
tionship between y(s;) and x.(s;), which vary in their ability to
estimate nonlinear and/or spatially varying species environment

relationships:

Linear: f(x,(s;), ) = By - X¢(s;)

Quadratic: f(x,(s;), B) = f1 - X:(5;) + B2 - X2(s;)
Stratum: f(x,(s;), B) = 1 - X (5;) + Bastratum, - % (S))
Interaction: f(x,(s;), B) =f1 % (s;) + B2 - X (s;) % (s;)
SVC:f(x(5)). B) = By - %e(s5)) +wa(s;) - Xr<s,)

I A

The linear model simply assumes a linear species-environment
relationship. The quadratic model extends the linear model by al-
lowing the species-environment relationship to peak at some op-
timum level and subsequently decrease as one moves farther from
the optimum or peak at the extremes of the environmental vari-
able. The stratum model estimates an overall linear effect of the
environmental predictor as well as stratum-specific adjustments
(fixed or random) in the effect across a set of strata (e.g. manage-
ment units). The interaction model similarly estimates a linear spe-
cies-environment relationship, but allows for spatial variation in
this relationship in the form of an interaction with a second covari-
ate that varies across the J sites (x;‘ (sj)). The SVC model estimates
an overall linear species-environment relationship, but allows this
linear relationship to vary across each site in the data set. The
spatially varying adjustment in the SVC model (w; (sj)) serves as
a local adjustment of the species-environment relationship from
the overall effect g;. The SVC model can be viewed as an exten-
sion of the stratum model, where the strata are now individual
sampling sites, or as an extension of the interaction model, where
the interacting ‘covariate’ is unknown and estimated as part of the
model fitting process.

We performed a simulation study to compare the five afore-
mentioned models and assessed their ability to estimate species-
environment relationships of different forms. Briefly, we simulated
detection-nondetection data across a 20x20 grid, where occur-

rence probability was generated as a function of a single covariate

that took negative values at the southern portion of the simulated
area and positive values at the northern portion of the area. We var-
ied the true species-environment relationship across six different
functional forms (leftmost column, Figure 1): (1) linear; (2) quadratic;
(3) a separate linear effect across nine strata; (4) an interaction with
a second covariate that varied along the horizontal axis; (5) an inter-
action with an unknown (“missing”) covariate; and (6) the sum of the
five aforementioned components (i.e. “Full” effect). We simulated
50 data sets under each functional form of the species-environ-
ment relationship, and fit the five models to each data set using the
spOccupancy R package (Doser et al., 2022), where the interaction
model only incorporated the covariate that was assumed known, not
the unknown covariate. Model performance was compared using the
Widely Applicable Information Criterion (WAIC; Watanabe, 2010).
See Supplemental Information S1 for complete details.

The SVC model was consistently able to capture the true rela-
tionship across all six forms of the species-environment relation-
ship, while the simpler models only performed well in a subset of
scenarios (Figure 1). When the true species-environment was linear,
all models yielded virtually identical estimates of the species-envi-
ronment relationship that closely resembled the truth. The simpler
models with a pre-specified functional form (e.g. quadratic, stratum,
known interaction) outperformed the SVC model according to WAIC
when data were generated with the exact species-environment re-
lationship, suggesting that when the true form of the species-envi-
ronment relationship is known, simpler models should be used over
the more complicated SVC model. However, when the true species-
environment relationship was different from the form used to fit the
model, the simpler models were limited in their ability to capture the
underlying patterns (Figure 1) and performed substantially worse
according to WAIC (Supplemental Information S1: Table S1). The
SVC model was able to capture the true pattern in the relationship
even when the data were not generated with an SVC, indicating the
ability of SVC models to reveal simpler functional forms of species-
environment relationships when such relationships are unknown
prior to model fitting. Furthermore, the SVC model drastically out-
performed all other models when the species-environment relation-
ship interacted with an unknown variable (row 5, Figure 1), or when
the species-environment relationship was determined by multiple

components (row 6, Figure 1).

4 | Case study 1: Spatially varying
occurrence trends in eastern US forest birds

Quantifying spatially explicit trends can help identify areas of con-
servation interest (e.g. climate change refugia) as well as provide in-
sights on species range dynamics. In this case study, we assessed
occurrence trends of forest bird species across a ~4.04 million km?
region of the eastern United States (i.e. the continental United States
east of the 100th meridian) from 2000 to 2019 (T = 20 years) using
detection-nondetection data from the North American Breeding
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FIGURE 1 Estimates of a simulated species-environment relationship from different models (columns) under different patterns of the
species-environment relationship (rows). Red represents a negative effect, white no effect and blue a positive effect, with darker shades
representing stronger effects. The simulated covariate varies from negative at the bottom of the grid to positive at the top of the grid. The
true species-environment relationship is simulated as a linear effect (row 1), a quadratic effect (row 2), a separate linear effect across nine
strata (row 3), an interaction with a second covariate that varies along the horizontal axis (row 4), an interaction with an unknown (“missing”)
covariate (row 5) and the sum of all the aforementioned components (“Full” effect, row 6). Estimates are shown from five candidate models
relative to the truth (column 1), including a model with a: linear effect (column 2), quadratic effect (column 3), stratum-specific effect (column

4), interaction (column 5) and an SVC (column 6).

Bird Survey (BBS; Pardieck et al., 2020). We restricted our analysis
to a community of 66 eastern forest bird species following the habi-
tat classification of Bateman et al. (2020). We subsequently assessed
trends for 51 of the 66 species whose breeding ranges (derived from
BirdLife International, 2021) had at least 50% overlap with the study
area (Supplemental Information S2: Table S3). Our objectives for this
case study were to (1) develop spatially explicit maps of occurrence
trends for each of the 51 species across the eastern United States,
and (2) compare an SVC occupancy model to three alternative mod-
els that represent simple hypotheses regarding the drivers of dis-
tributional change. Specifically, our four hypotheses and associated

models were:

1. The species has a constant, linear trend across the eastern
United States (i.e. the linear model).

2. The species trend varies across broad ecologically distinct strata,
Bird Conservation Regions (i.e. strata model), as a result of differ-
ences in bird communities and habitat types.

3. The species trend interacts with the 30-year (1981-2010) climate
normal (i.e. temperature model). If climate shapes species distri-
butions, we would expect differences in species trends near the
climatic extremes as annual temperatures become increasingly
warm (e.g. positive trends at northern range boundary and nega-
tive trends at southern range boundary indicating a northward
shifting distribution).
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FIGURE 2 Summary of the spatially varying trend of the 51 forest bird species. The height of each bar corresponds to the proportion of
locations for the given species whose trend has the sign (i.e. positive, negative, no effect) and strength (i.e. strong, moderate) indicated by
the colour. Blue indicates support for positive trends and red indicates support for negative trends. More specifically: (1) Dark blue =Strong
Positive: P(trend >0)>0.8; (2) Light blue=Moderate Positive: 0.6 < P(trend>0) < 0.8; (3) White=No effect: 0.4 <P(trend >0) < 0.6; (4) Light
red=Moderate Negative: 0.2 < P(trend>0) <0.4; (5) Dark red =Strong Negative: P(trend >0) <0.2.

4. The species trend varies with a variety of interacting abiotic and
biotic variables that result in a complex spatially varying trend
across the species range (i.e. SVC model).

We used data from J= 1846 BBS routes (i.e. sites) sampled
at least once between 2000 and 2019 (mean number of sampled
years per route=15). BBS observers performed a three-minute
point count survey at each of 50 stops along each route, counting
all birds seen or heard within a 0.4km radius. We summarized the
data for each species at each site into K = 5 spatial replicates (each
comprising data from 10 of the 50 stops), where each replicate took
value 1 if the species was detected at any of the 10 stops in that
replicate, and value O if the species was not detected. While such
an approach has been used in previous studies with BBS data (e.g.
Rushing et al., 2020), this use of spatial replicates in an occupancy
modelling framework likely leads to violation of the closure assump-
tion (Kendall & White, 2009), and so we refer to our response as
species-specific occurrence (or “use”) rather than occupancy.

For each of the 51 species, we fit a multi-season occupancy
model where occurrence probability at each site j in each year t was
modelled as

logit(w(s;)) = Bo + Wo(s;) + B1 - TMAX(s;) + f(YEAR,, Brrenp ) + 11e> (7)

where f, and wy (sj) together represent the spatially varying inter-
cept, B, is the effect of the 30-year (1981-2010) maximum tempera-
ture climate normal on occurrence probability, 7, is an AR(1) random
year effect to accommodate residual temporal autocorrelation and
f(YEAR;, Brrenp ) is the estimated trend parameter(s) that varies in
form across the four models. For all models, we expressed detection
probability as a function of linear and quadratic effects of year, linear
and quadratic effects of survey day (to account for seasonal variation
in detection probability), and linear and quadratic effects of survey

replicate (to account for variability in detection probability over the
time of day). For each species, we used pre-existing published ranges
from BirdLife International (2021) and only included routes that fell in-
side a 50-km buffer of the species range when fitting the occupancy
model. Thirty-year average maximum temperature was calculated
from TerraClimate (Abatzoglou et al., 2018).

We compared the four models using the WAIC as an assess-
ment of model parsimony. Using realized observations from BBS in
2021, we additionally compared each model's ability to predict (i.e.
forecast) future occurrence of the species in 2021 using the area
under the receiver operating characteristic curve (AUC; Hosmer
et al., 2013) following approaches outlined by Zipkin et al. (2012).
See Supplemental Information S2 for full details.

We fit all models using Bayesian inference with Markov chain
Monte Carlo (MCMC) algorithms implemented in the spOccupancy
R package (Doser et al., 2022, 2024). Prior distributions were either
vague or weakly informative (Supplemental Information S2). We ran
three chains of each model for 100,000 MCMC iterations with a
burn-in period of 50,000 iterations and a thinning rate of 50, yield-
ing 3000 posterior samples. We assessed convergence using the po-
tential scale reduction factor (i.e. R; Brooks & Gelman, 1998). After
fitting each of the four alternative models, we predicted across the
range of each species in the study area to generate maps of occur-

rence trends across the 20-year period.

41 | RESULTS

There was strong support for spatial variability in 20-year occur-
rence trends across the eastern United States for the majority of
species in our analysis (Figure 2). The SVC model substantially out-
performed (i.e. AWAIC > 2) the linear trend model, strata model and
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maximum temperature interaction model for almost all species (49,
or 96%, out of 51) according to the WAIC. Among the three alterna-
tive models, the BCR model performed better than the temperature
model and linear model for 78% and 90% of species, respectively,
according to the WAIC, while the temperature model generally
showed less support across the 51 species, outperforming the linear
model for 57% of species. The two species with less support for the
SVC model (American woodcock and Eastern screech owl) had low
raw occurrence probabilities (i.e. <0.05). The SVC model requires
more observations than the simpler strata model to yield estimates
with reasonable uncertainty, which likely contributed to the higher
performance of the strata model for these two species. We found
more variable support for improvements in predictive performance
for the SVC model relative to the three alternative models. The SVC

model generally had the highest performance in predicting future

(a) GRCA Lincar (b) GRCA Strata
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species-specific occurrence, with AUC being highest for 69% (35 out
of 51) of species (Supplemental Information S2: Table S3).

The SVC model revealed spatial heterogeneity in occurrence
trends that was not evident in the three simpler alternative models.
Figure 3 shows the trend estimates for three example species (grey
catbird (GRCA), Eastern phoebe (EAPH), and wood thrush (WOTH))
from each of the four models. The SVC model revealed grey cat-
bird had predominately negative trends in the southern portion of
its range (except Louisiana and Mississippi) and positive or no direc-
tional trends in the northern states, indicating a potential northward
shift in its range. Both the temperature model and the strata model
were able to capture the general pattern of more negative trends
in the southern portion of the eastern United States, but they both
failed to capture more fine scale variability that was revealed by

the SVC model (i.e. positive trends in Louisiana and Mississippi and

(c) GRCA TMAX (d) GRCA SVC

(e) EAPH Linear (f) EAPH Strata

() EAPH TMAX (h) EAPH SVC

(i) WOTH Linear (j) WOTH Strata

(k) WOTH TMAX (1) WOTH SVC

Trend
(logit scale)

.

0 1

FIGURE 3 Median predictions of an occurrence trend from 2000 to 2019 for three example species from the four models: a spatial
occupancy model with a constant linear trend across the species range (Linear), a spatial occupancy model with a separate trend for each
Bird Conservation Region (Strata), a spatial occupancy model with a trend that interacts with 30-year average maximum temperature
(TMAX), and a spatially varying coefficient occupancy model estimating a spatially varying trend (SVC). Panels (a-d): grey catbird (3.79
million km?); Panels (e-h): Eastern phoebe (3.55 million km?); Panels (i-1): wood thrush (3.12 million km?). Values represent the change in log
odds of occurrence probability over one standard deviation of time (i.e. approximately 5.8 years).
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negative trends in northern Minnesota). We found the opposite pat-
tern for Eastern phoebe, where the strata and temperature models
were able to adequately capture a generally positive trend in south-
ern portions of the range and negative trend in northern portions of
the range, but did not capture more fine-scale variability in trends
revealed by the SVC model. Wood thrush trends were strongly neg-
ative along the eastern portion of its range and more positive in the
northwestern part of its range, which were largely captured by both
the SVC and strata model. In contrast, the lack of relationship be-
tween maximum temperature and trend for Wood Thrush resulted
in essentially no spatial variation in the trend from the temperature
model. This result illustrates the lack of flexibility in the interaction
models if the interacting variable does not adequately explain spatial
variability in the trend.

The temperature model revealed large heterogeneity in the sign
and significance of the interaction between maximum temperature
and the yearly trend (Supplemental Information S2: Figure S1), pro-
viding minimal support for climatic niche position being a consistent
driver of spatial variation in eastern forest bird occurrence trends.
Of the 51 total species, 18 species had a significant negative inter-
action (i.e. trends were less positive/more negative in areas with
higher temperatures), while 8 species had a significant positive in-
teraction (i.e. trends were more positive/less negative in areas with
higher temperatures). While such significant interactions indicate
some spatial variability in trends may be related to climatic position
within a range, the large improvement in model fit (and to a lesser
extent, prediction) of the SVC model compared to the temperature
model suggests that this relationship is not the primary driver of spa-
tial variability in occurrence trends for eastern forest birds. Similarly,
the improved performance of the strata model compared to the con-
stant linear trend model suggests spatial variability in trends may be
partially attributed to broad-scale variation in habitat and climate
conditions across Bird Conservation Regions. However, the im-
proved performance of the SVC model compared to the strata model
suggests that additional factors operating at finer spatial scales are
important contributors to spatial variability in occurrence trends.

5 | Case study 2: Effects of land cover
change on the grasshopper sparrow

Quantifying the effects of land cover change and resulting shifts
in habitat availability on species distributions is crucial for under-
standing the primary drivers of large-scale avian population declines
(Rosenberg et al., 2019). Grassland birds have experienced some
of the steepest population declines across all bird groups in North
America, largely due to habitat loss and agricultural intensification
(Stanton et al., 2018). However, the effects of shifts in land cover
on grassland bird species is unlikely to be constant across space as
a result of complex interactive effects with local climate, farmland
management practices or predation pressure. In this case study, we
demonstrate the ability of SVC models to provide insight on the
spatially varying effects of habitat change on the distribution of

grasshopper sparrow (Ammodramus savannarum) across the conti-
nental United States from 1970 to 2019. We again use data from the
North American BBS (Pardieck et al., 2020), collected over the 50-
year period at J = 2542 routes within the range of the grasshopper
sparrow (derived from BirdLife International [2021]) as described in
Case Study 1. Our objectives for this case study were to (1) develop
spatially explicit maps of the effect of change in grassland area and
cropland area on grasshopper sparrow occurrence; and (2) compare
a series of SVC and simpler alternative models to generate and test
hypotheses regarding the drivers of spatial variability in the effects
of habitat change.

We summarized the BBS data in the same manner as in Case
Study 1, using K =5 spatial replicates of detection-nondetection
data at each BBS route to model route-level occurrence across the
sparrow's range. We calculated annual amount of grassland area (nat-
ural grassland cover class) and cropland area (combined cropland and
hay/pasture cover classes) within 1km of each BBS route using data
from the USGS EROS Center (Sohl et al., 2016). We calculated annual
deviations in grassland and cropland area by subtracting the 50-year
average value at each site from each yearly value to assess effects of
temporal change in habitat separately from spatial variation in habi-
tat availability (Clement et al., 2019; Saunders et al., 2022).

We hypothesized that grasshopper sparrow occurrence would
be positively associated with grassland area change and that the ef-
fect would vary spatially as a result of: (1) a positive interaction with
the average amount of grassland area given grasshopper sparrow's
preference for landscapes comprised of large amounts of contiguous
grassland (Shaffer et al., 2021); (2) an interaction with temperature
such that effects of grassland area change are strongest near the
climatic extremes of the species range (i.e. range boundaries); and
(3) additional interactions with fine-scale habitat quality (e.g. grass-
land height, amount of litter; Shaffer et al., 2021) and management
actions that were not available as covariates for the model. We ex-
pected grasshopper sparrow occurrence to be negatively related to
cropland cover change across the Great Plains region, as an increase
in cropland cover in this region would likely correspond to a decrease
in grassland area (the dominant land cover type; Supplemental
Information S3: Figure S1). However, in areas with minimal grass-
land, we predicted a positive association between occurrence and
cropland area, as grasshopper sparrow occurrence has previously
been associated with hay-fields and cultivated fields when native
grassland is limited (Shaffer et al., 2021).

We fit five candidate models that varied in the functional forms
of the effects of grassland area change and cropland area change
to test our hypotheses (full details in Supplemental Information
S3). Specifically, our five models consisted of: (1) a linear model
with constant, linear effects of grassland and cropland change; (2)
a habitat interaction model with linear effects of grassland and
cropland change, an interaction of grassland change with 50-year
average grassland area, and an interaction of cropland change with
50-year average cropland area; (3) a temperature interaction model
with linear effects of grassland and cropland change that both also
had an interaction with average temperature conditions (i.e. 30-year
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maximum temperature calculated from TerraClimate as in Case
Study 1); (4) an SVC model; (5) the “full” model that contained SVCs,
interactive effects of temperature, and interactive effects of 50-
year average land-cover.

For each of the five candidate models, we fit a Bayesian multi-
season occupancy model using the spOccupancy R package (Doser
et al.,, 2022). Detection probability was modelled consistently across
the five models as a function of linear and quadratic ordinal date, a
random effect of year and a separate intercept of survey replicate to
account for variability in detection probability across the five spatial
replicates within a BBS route. Given our focus on inference of the
species-environment relationships, we compared candidate models
using the WAIC. Prior distributions were either vague or weakly in-
formative (Supplemental Information S3). For each model, we ran
three chains for 100,000 MCMC iterations with a burn-in period of
50,000 iterations and a thinning rate of 50, yielding 3000 posterior
samples. Convergence was assessed using the potential scale reduc-
tion factor and visual assessment of traceplots.

5.1 | RESULTS

We found strong support for spatial variability in the effects of
grassland and cropland cover change, with all models that in-
cluded an SVC and/or an interaction substantially outperforming
(i.e. AWAIC >2) the model with constant effects (Supplemental
Information S3: Table S1). The temperature interaction model
outperformed the habitat interaction model (AWAIC = 18.65),

(a) Grassland Change x Grassland Amount

(b) Grassland Change x Max Temp
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indicating maximum temperature was more important in explaining
spatial variability in the effect of habitat change than the amount of
habitat. Noticeably, including an SVC for the effect of grassland and
cropland change reduced WAIC (i.e. AWAIC = 774.90) substantially
more than either of the interaction models compared to the con-
stant model (AWAIC = 20.69 for the habitat interaction model and
AWAIC = 39.34 for the temperature interaction model). The model
including SVCs, a habitat interaction, and a temperature interaction
slightly outperformed the model with only SVCs (AWAIC = 3.32).
Altogether, these results suggest that interactions with temperature
and habitat explain some spatial variability in the effect of habitat
change on occurrence, but most of the variation in these effects is
the result of unexplained spatial variation that is accounted for by
the SVCs. Maps of the predicted effects of grassland and cropland
change from the candidate models reveal that models with the SVC
capture far more spatial variation in the effects of habitat change
than do models without SVCs (Figure 4).

The effects estimated from the candidate models revealed mixed
support for our hypotheses. The best performing model revealed a
range of positive and negative effects of habitat change across the
breeding range of the grasshopper sparrow. As predicted, the ef-
fect of grassland change was strongly positive in the Northern Great
Plains (where grassland availability is higher), suggesting that in heav-
ily grassland-dominated landscapes, loss of grassland would result
in declines in grasshopper sparrow occurrence probability. This is
further supported by the habitat interaction model, which revealed
a positive interaction between grassland change and average grass-

land area (Figure 4a). Surprisingly, we found near zero or negative

(c) Grassland Change SVC + Interactions

_ Latitude

Longitude
(d) Cropland Change x Cropland Amount

Longitude

(e) Cropland Change x Max Temp

& & N & & & &
N N N s $ $ N
S ) S N S S
Longitude

(f) Cropland Change SVC + Interactions

-]

T T
N & & N P

:

Z

2
Z

7,
£z

Longitude

Longitude

T T T T T T T T T

N & & & & & & & &
S N S K N S N
S S N S S > 8 N S S

Longitude

FIGURE 4 Median predictions of the effects of grassland change (top row) and cropland change (bottom row) on occurrence of
grasshopper sparrow (Ammodramus savannarum) from three of the five candidate models. Panels (a) and (d) show estimates from a model
with an interaction between land-cover change and average land-cover area over the 50-year period. Panels (b) and (e) show estimates from
a model with an interaction between land-cover change and 30-year average maximum temperature. Panels (c) and (f) show estimates from
a model with spatially varying coefficients for land-cover change and interactions with average land-cover area and maximum temperature.
Blue indicates a positive effect, white indicates no effect and red indicates a negative effect.

d ¥ “vT0T ‘8€T899FT

:sdny woiy papeoy

AsuDIT suowntoy) aanear) d[qesridde oy £q pauseAos are sapdNIe YO ‘esn JO s3[NI 10§ K1eIqI AUIUQ AJ[IA UO (SUONIPUOI-PUB-SULIR)/WOD" A[1M" KIRIqI[aur[uo//:sd)y) SUONIPUO)) pue SWLR Y, a1 23S “[$70T/21/61] U0 A1eiqry auruQ A2[ipy “KNsIoatup) aiel§ ueSIyorAl Aq $18€1°q28/1 111°01/10p/wod K1 A.



DOSER T AL.

100f13 Wl LEY Global Ecology A douralof
and Biogeography g

effects of grassland area change in the Southern Great Plains, in-
dicating increasing grassland in this area would result in no effect
or even declines of occurrence probability. Given the relatively high
amount of grassland and rangeland area in this region (Supplemental
Information S3: Figure S1), this could indicate a regional peak in the
optimal amount of grassland area for grasshopper sparrow occur-
rence probability, which is in line with previous work showing that
the preferred grassland size of the species varies across ecoregions
(Johnson & Igl, 2001). The temperature interaction model revealed
this pattern was partially related to a negative interaction with maxi-
mum temperature (Figure 4b; Gorzo et al., 2016). Grasshopper spar-
row occurrence probability was negatively related to cropland area
along most of its southern range boundary, in part due to a negative
interaction with maximum temperature (Figure 4). Alternatively, the
effect of cropland change was generally positive throughout the
Northeast and Midwest (Figure 4), which was related to a positive
interaction between cropland change and cropland area (Figure 4d).
In the northeastern and midwestern United States, where few na-
tive grasslands remain, the positive effect of cropland area change
indicates that increases in cropland area would result in increases
in occurrence probability. Furthermore, the northeast is largely
dominated by forest, and thus increases in cropland cover are likely
associated with declines in forest cover, which may partly explain
the positive effect of cropland cover change, as grasshopper spar-
rows avoid forest (Grant et al., 2004). While such assessments are
speculative, these insights are only possible because of the power of
SVC models to reveal fine-scale, multifaceted species-environment
relationships, which in turn can be used to inform local and regional
management priorities.

6 | DISCUSSION

Accounting for complex species-environment relationships is in-
creasingly important as the spatial and temporal extent of ecologi-
cal research expands (Rollinson et al., 2021). Widely used statistical
methods, such as interactions, stratification and nonlinear models,
can partially account for such patterns, but they are limited in their
ability to estimate spatially varying species-environment relation-
ships that arise from multiple interacting factors that themselves
vary spatially. Here we used spatially varying coefficients (SVCs)
in SDMs to model nonlinear and/or spatially varying species envi-
ronment relationships within a hierarchical GLM framework while
simultaneously addressing observational biases common in both
wildlife and plant datasets. Using simulations and two case studies,
we highlighted the inferential benefits of SVC SDMs to generate and
test ecological hypotheses regarding the factors driving spatial vari-
ability in estimated relationships and/or occurrence trends.

Our simulation study showed that SVC SDMs can accurately
capture complex, spatially varying species-environment relation-
ships under different forms, while they can also reveal more simple
species-environment relationships (e.g. linear, quadratic; Figure 1) if
such additional complexity is not supported by the data. Thus, when

little is known regarding the form of the species-environment rela-
tionship prior to model fitting, SVC SDMs can be used to generate
hypotheses on the true form of the relationship and associated abi-
otic and/or ecological drivers. When the true species-environment
relationship is known a priori, simpler parametric GLMs will likely
outperform SVC SDMs according to information criteria based on
the principle of parsimony. In such situations, our simulation sug-
gests that SVC SDMs will not generate erroneous conclusions, but
rather will reveal the simpler, parametric form of the true relation-
ship. When working across macroscales, it is unlikely that all inter-
acting variables are known and/or available prior to model fitting, in
which case SVC SDMs will outperform simpler alternatives (rows 5,
6; Figure 1) and help elucidate the ecological drivers of such patterns.

When assessing spatial variability in species-environment re-
lationships and/or trends, we recommend comparing SVC SDMs
with simpler parametric SDMs that represent explicit hypotheses,
as such comparisons can reveal the amount of support for differ-
ent drivers of spatially varying effects/trends (Pease, Pacifici, Kays,
& Reich, 2022). For example, in the eastern forest bird case study,
the temperature model revealed a significant negative interaction
of trend and breeding season maximum temperature for 18 species
and a significant positive interaction for 8 species (Supplemental
Information S3 Figure S1). However, the SVC model was the best-
performing model for all 26 species with significant temperature in-
teractions, suggesting that while breeding season temperature often
explains some variation in occurrence trends, there are additional
factors that are important in explaining fine-scale variability in oc-
currence trends.

Whether SVC models improve predictive performance over
models that only include a spatially varying intercept is an ongo-
ing question. In our eastern forest bird case study, the SVC model
provided relatively minor improvements in predictive performance
compared to the simpler models when forecasting occurrence prob-
ability in 2021. All four models included a spatial random effect to
account for spatial variability in occurrence probability, and given the
likely small changes in the forest bird distributions from 2019 (the
last year in the modelled data set) to 2021, they all had similar abili-
ties to predict occurrence probabilities across the study region. SVC
models in other ecological and natural resource applications have
shown mixed results regarding their predictive benefits compared
to models with only a spatially varying intercept; some studies found
improved predictive performance of SVC models (May et al., 2023;
Sultaire et al., 2022), while others showed improvements that vary
depending on the species (Doser et al., 2024; Pease, Pacifici, &
Kays, 2022) or region (Babcock et al., 2015). Regardless, we echo the
statements of Thorson et al. (2023) that the primary benefits of SVC
SDMs relate to their improved ability to test and generate hypothe-
ses as well as answer relevant ecological questions regarding spatial
variability in species-environment relationships and trends.

In addition to theoretical contributions, the results from SVC
SDMs could be applied to multi-scale conservation and management
decisions. For example, in the grasshopper sparrow case study, we
found that loss of grassland area is most likely to have the largest
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negative impact on the species in the Northern Great Plains, em-
phasizing the importance of providing large, contiguous patches
of natural grassland to prevent further regional declines (Shaffer
et al., 2021). By performing similar analyses for multiple grassland
bird species, SVC SDM outputs could be used together as inputs
for spatial prioritizations. This could offer major improvements in
reserve design and help resource managers identify the exact lo-
cations where habitat restoration may be most beneficial to bird
communities (Grand et al., 2019). Alternatively, estimates of species
trends serve as the foundation for assigning conservation status
to species of greatest conservation need. Spatially varying trends
from SVC SDMs, like those generated in the eastern forest bird case
study, could be used to tailor action plans at local (i.e. state-level),
regional (i.e. ecoregion), and continental scales (Smith et al., 2024).
Ultimately, this could improve our understanding of how and why
conservation strategies in different regions lead to variable out-
comes. Estimation of local trends with SVC SDMs can also improve
predictions of species distribution changes (Barnett et al., 2021) in
response to invasive species (Thorson et al., 2023) and future cli-
mate and/or land-use changes (Gonthier et al., 2014).

While other approaches (e.g. GAMs, random forests, MaxEnt) are
commonly used in ecology to account for complex species-environ-
ment relationships, Bayesian spatially varying coefficient models are
an attractive alternative as they (1) do not require a priori knowledge
of interacting variables; (2) can readily provide uncertainty measures
associated with all estimates; and (3) are easily embedded in hierar-
chical modelling frameworks (i.e. occupancy models) used to address
observational biases prevalent in ecological data. Nevertheless, the
flexibility provided by Bayesian SVC SDMs can lead to computa-
tional and practical difficulties in their implementations. While the
Bayesian framework provides full uncertainty propagation into all
estimates and predictions, models can take substantial time to run.
For example, the full SVC model for the grasshopper sparrow case
study with a data set comprised of nearly 400,000 observations
took approximately 10h to run a single MCMC chain of 100,000
samples using spOccupancy (Doser et al., 2022). Additionally, the
ability of SVC SDMs to estimate complex spatially varying species-
environment relationships can require large sample sizes to achieve
reasonable levels of uncertainty compared to simpler alternatives.
This is particularly true when working with detection-nondetection
data, which provide relatively little information to estimate SVCs
compared to count (e.g. abundance) or continuous (e.g. biomass)
data sources used in many SDMs. In Supplemental Information S4,
we provide additional simulation studies that give insights on how
the reliability of SVC estimates scales with the number of spatial lo-
cations and number of seasons in the data set. When sample sizes
are limited, simpler approaches like stratification or interactions may
be more useful options to yield estimates of species-environment
relationships without considerable uncertainty. Lastly, confounding
can occur between the estimated spatially varying intercept and
spatially varying coefficients, especially when working with mod-
estly sized data sets (e.g. 500 data points), which could potentially
lead to misleading conclusions. However, when estimating SVCs for
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covariates that vary across time (e.g. a temporal trend or habitat
change as in our two case studies), confounding is minimized due
to the added temporal component of multi-season data. We have
found that recent guidelines for minimizing spatial confounding and
understanding its effects in spatially explicit SDMs are applicable
to SVC SDMs (Makinen et al., 2022), although further research is
needed to understand when such confounding may occur and how
to best mitigate it.

Spatial variability in species-environment relationships is prev-
alent throughout ecology (Rollinson et al., 2021) as a result of com-
plex interactions with abiotic and biotic variables, which are rarely all
known or available to be measured prior to statistical analysis. As we
demonstrate in this study, the use of spatially varying coefficients
in species distribution models can help elucidate the environmen-
tal factors that drive species distributional dynamics across both
local and broad spatial scales. This provides an improved ability to
test ecological hypotheses and inform multi-scale conservation and
management initiatives. When fitting SDMs across macroscales, we
encourage the comparison of SVC SDMs with simpler alternatives as
a means of advancing our understanding of the drivers of species-

environment relationships across space.
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