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Abstract

Aim: Species	distribution	models	(SDMs)	are	increasingly	applied	across	macroscales	
using	detection-	nondetection	data.	These	models	typically	assume	that	a	single	set	of	
regression	 coefficients	 can	 adequately	 describe	 species–environment	 relationships	
and/or	population	trends.	However,	such	relationships	often	show	nonlinear	and/or	
spatially	varying	patterns	that	arise	from	complex	interactions	with	abiotic	and	biotic	
processes	that	operate	at	different	scales.	Spatially	varying	coefficient	(SVC)	models	
can	readily	account	for	variability	in	the	effects	of	environmental	covariates.	Yet,	their	
use	in	ecology	is	relatively	scarce	due	to	gaps	in	understanding	the	inferential	benefits	
that	SVC	models	can	provide	compared	to	simpler	frameworks.
Innovation: Here	we	demonstrate	the	inferential	benefits	of	SVC	SDMs,	with	a	particu-
lar	focus	on	how	this	approach	can	be	used	to	generate	and	test	ecological	hypotheses	
regarding	 the	drivers	of	 spatial	 variability	 in	population	 trends	and	 species–environ-
ment	relationships.	We	illustrate	the	inferential	benefits	of	SVC	SDMs	with	simulations	
and	two	case	studies:	one	that	assesses	spatially	varying	trends	of	51	forest	bird	spe-
cies in the eastern United States over two decades and a second that evaluates spatial 

variability	in	the	effects	of	five	decades	of	land	cover	change	on	grasshopper	sparrow	
(Ammodramus savannarum)	occurrence	across	the	continental	United	States.
Main conclusions: We	found	strong	support	for	SVC	SDMs	compared	to	simpler	al-
ternatives	in	both	empirical	case	studies.	Factors	operating	at	fine	spatial	scales,	ac-
counted	for	by	the	SVCs,	were	the	primary	divers	of	spatial	variability	in	forest	bird	
occurrence	trends.	Additionally,	SVCs	revealed	complex	species–habitat	relationships	
with	grassland	and	cropland	area	for	grasshopper	sparrow,	providing	nuanced	insights	
into	how	future	land	use	change	may	shape	its	distribution.	These	applications	display	
the	utility	of	SVC	SDMs	to	help	reveal	the	environmental	factors	that	drive	species	
distributions	across	both	local	and	broad	scales.	We	conclude	by	discussing	the	po-
tential	applications	of	SVC	SDMs	in	ecology	and	conservation.

K E Y W O R D S
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1  |  INTRODUC TION

Elucidating	the	factors	that	drive	species	distributions	is	a	funda-
mental	objective	of	ecology.	Species	distribution	models	 (SDMs)	
are the primary tool to study where and why species occur across 

space	and	time	 (Guisan	&	Zimmermann,	2000).	While	SDMs	can	
leverage	a	variety	of	data	 types	 (e.g.	presence-	only,	abundance),	
they	 are	 commonly	 used	 with	 presence–absence	 (or	 detection-	
nondetection)	 data	 in	 a	 parametric	 generalized-	linear	 model	
(GLM)-	based	 framework,	 allowing	 for	 assessments	 of	 species–
environment	 relationships	 and	 probabilities	 of	 local-	level	 occur-
rence.	 Parametric	 SDMs	 often	 describe	 species–environment	
relationships	via	a	single	set	of	regression	coefficients	(e.g.	linear	
and	quadratic	terms)	across	the	spatial	extent	of	the	data	set,	re-
sulting	in	a	set	of	linear	or	unimodal	response	curves	along	all	en-
vironmental	predictors	included	in	the	model	(Guisan	et	al.,	2002).	
When	the	spatial	extent	encompasses	the	entirety	of	the	species	
range,	 the	 combination	 of	 such	 species–environment	 response	
curves characterizes the multivariate realized environmental niche 

of	 a	 species	 (Guisan	 et	 al.,	 2017).	 However,	 when	 fitting	 SDMs	
across	 large	 spatial	 extents,	 a	 single	 set	 of	 linear	 and	 quadratic	
regression	coefficients	may	not	adequately	describe	species–envi-
ronment	relationships,	which	can	result	from	the	true	relationship	
taking	a	complex,	nonlinear	form	or	variability	in	the	relationship	
across	space	(i.e.	the	relationship	is	context	dependent,	or	nonsta-
tionary;	Rollinson	et	al.,	2021).

Complex,	nonlinear	and/or	spatially	varying	species–environ-
ment	 relationships	 can	 arise	 from	a	 variety	 of	 abiotic	 and	biotic	
processes	that	operate	at	different	scales	(Miller,	2012;	Osborne	
&	 Suárez-	Seoane,	 2002).	 Interactions	 with	 abiotic	 factors,	 such	
as	 historical	 disturbance	 regimes,	 fine-	scale	 habitat	 characteris-
tics	 (e.g.	 vegetation	 quality)	 and	 environmental	 conditions	 (e.g.	
soil	 content)	 can	 result	 in	 varying	 effects	 of	 environmental	 fac-
tors	on	species	across	their	ranges	(Rollinson	et	al.,	2021).	Given	
spatial	 heterogeneity	 in	 resource	availability,	 effects	of	 environ-
mental	 factors	on	 species	occurrences	may	be	 stronger	 in	 areas	
with limited resources compared to areas with abundant resources 

(Pease,	Pacifici,	&	Kays,	2022).	If	climate	shapes	species	distribu-
tions,	 effects	 of	 climate	 change	 on	 species	 should	 be	 strongest	
in	areas	near	their	climatic	limits	(Amburgey	et	al.,	2018).	For	ex-
ample,	Sultaire	et	al.	 (2022)	found	spatial	variation	in	the	effects	
of	increasing	temperature	and	snow	cover	duration	on	snowshoe	
hare (Lepus americanus)	 occurrence,	 suggesting	 that	 climate	 lim-
its	 their	 distribution	 in	 different	ways	 across	 the	 species	 range.	
Alternatively,	spatially	varying	species–environment	relationships	
may	arise	from	biotic	processes	such	as	local	genetic	adaptations	
or	 spatial	 variation	 in	 species	 interactions.	 Pease,	 Pacifici,	 and	
Kays	 (2022)	 found	 that	 spatial	 variability	 in	 the	 effect	 of	 forest	
cover	 on	 white-	tailed	 deer	 (Odocoileus virginianus)	 occurrence	
across	North	Carolina	was	partially	driven	by	variation	 in	preda-
tion	pressure	across	the	state.	Failing	to	account	for	such	spatially	
varying	 relationships	 can	 lead	 to	 misleading	 inferences	 on	 the	
abiotic	 factors	 that	 influence	 where	 species	 occur,	 which	 could	

have	 important	 implications	 for	 conservation	 recommendations	
(Rollinson	et	al.,	2021).

In	 addition	 to	 characterizing	 species–environment	 relation-
ships,	 monitoring	 data	 are	 often	 used	 in	 SDMs	 to	 quantify	 oc-
currence	 trends.	 Nonlinear	 and/or	 spatially	 varying	 occurrence	
trends	primarily	arise	from	spatio-	temporal	changes	in	abiotic	and	
biotic	 factors	 that	 influence	 the	 species	 of	 interest	 (e.g.	 differ-
ences	in	land-	use	change	across	a	species	distribution).	However,	
such	 patterns	 can	 also	 arise	 from	 complex	 relationships	 to	 such	
factors	(e.g.	the	effect	of	land-	use	change	is	different	in	one	part	
of	 a	 species	 range	 compared	 to	 another).	 Quantifying	 spatial	
variability in population change over time is a common objective 

of	 biodiversity	monitoring	 programs	 (Babcock	 et	 al.,	2016;	 Bled	
et	al.,	2013;	Meehan	et	al.,	2019),	as	such	 insights	can	help	gen-
erate	 hypotheses	 about	 the	 drivers	 of	 population	 changes	 (e.g.	
Crossley	et	al.,	2021)	and	identify	priority	areas	for	conservation	
or	restoration	(e.g.	Ethier	et	al.,	2017).

Numerous	methods	 have	 been	 used	 to	 test	 hypotheses	 about	
spatial	 variability	 and	 nonlinearity	 in	 species–environment	 rela-
tionships	 or	 occurrence	 trends.	 GLMs	 with	 interactions	 between	
variables	are	simple,	yet	 intuitive,	ways	to	assess	nonlinear	and/or	
spatially	varying	relationships	(Spake	et	al.,	2023).	In	addition,	esti-
mating	separate	slopes	(fixed	or	random)	across	pre-	defined	strata	
(e.g.	ecoregions,	management	units)	is	another	common	alternative	
(e.g.	 Smith	 &	 Edwards,	 2021).	 Furthermore,	 nonlinear	 functions	
(e.g.	thresholds)	can	be	readily	incorporated	into	parametric	SDMs	
(Hostetler	&	Chandler,	2015).	However,	 these	 approaches	 require	
a	priori	knowledge	of	covariates	that	interact	with	the	variables	of	
interest,	the	functional	forms	of	such	relationships	and/or	the	spa-
tial	 resolution	 of	 variability	 in	 the	 relationship,	most	 of	which	 are	
unknown	prior	 to	 analysis.	 Specifying	 interactions	between	multi-
ple	drivers	operating	at	different	spatial	scales	is	particularly	critical	
when	working	across	macroscales,	but	difficult	to	accomplish	using	
the	aforementioned	approaches.	More	flexible	approaches	that	can	
readily	 accommodate	 complex	 species–environment	 relationships	
without	a	priori	knowledge	of	all	interacting	variables	and	the	nature	
of	their	interactions	are	thus	needed.

Accordingly,	there	has	been	widespread	use	of	MaxEnt	(Phillips	
et	 al.,	2006)	 and	 random	 forests	 (Liaw	&	Wiener,	2002)	 to	model	
species	distributions	while	accounting	for	complex	species–environ-
ment	relationships.	MaxEnt	uses	combinations	of	different	‘feature	
classes’,	 or	 mathematical	 functions,	 on	 covariates	 to	 characterize	
nonlinear	 relationships	 in	presence-	only	data,	 and	 random	 forests	
fit	ensembles	of	classification	or	 regression	trees	within	partitions	
of	the	data	based	on	covariate	space	(Valavi	et	al.,	2021).	Both	ap-
proaches	 are	widely	 used	 in	 ecology,	 but	 they	 are	 limited	 in	 their	
ability	 to	 provide	 uncertainty	 estimates	 of	 species–environment	
relationships	and/or	occurrence	trends;	they	require	all	 interacting	
variables	to	be	known	and	incorporated	into	the	model;	and	they	do	
not	account	for	imperfect	detection	(i.e.	the	failure	to	observe	a	spe-
cies	at	a	site	when	it	is	present;	Kellner	&	Swihart,	2014;	Kéry,	2011).

In	this	paper,	we	discuss	the	use	of	spatially	varying	coefficients	
(SVCs)	in	SDMs,	a	highly	flexible	approach	for	modelling	nonlinear	
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and/or	spatially	varying	species–environment	relationships,	regard-
less	of	how	they	arise.	SVC	models	are	intuitive	extensions	of	GLMs	
that	allow	 regression	coefficients	 to	vary	 smoothly	across	 space.	
By	 fitting	 SVC	models	within	 a	 hierarchical	Bayesian	 framework,	
we	can	generate	predictions	of	species–environment	effects	and/
or	 trends	 across	 a	 spatial	 region	of	 interest	with	 full	 uncertainty	
propagation,	while	simultaneously	accounting	for	widespread	ob-
servation	errors,	such	as	those	due	to	imperfect	detection.	Recent	
studies	suggest	an	increasing	interest	in	this	framework	for	a	vari-
ety	of	ecological	applications	due	to	the	prevalence	of	heterogene-
ity	 in	 species–environment	 relationships	 across	macroscales	 (e.g.	
Meehan	et	 al.,	2019;	Rollinson	et	 al.,	2021;	 Sultaire	et	 al.,	2022).	
However,	 a	 comprehensive	understanding	of	 the	 inferential	 ben-
efits	 SVCs	 can	 provide	 compared	 to	 alternative	 approaches	 is	
lacking.	Thorson	et	al.	(2023)	recently	highlighted	seven	ecological	
questions	that	can	be	addressed	with	spatially	varying	coefficients.	
Here,	we	 build	 on	 their	work	 by	 explicitly	 demonstrating	 the	 in-
ferential	benefits	of	SVC	SDMs	compared	 to	 simpler	 approaches	
with simulations and two case studies on breeding birds in the 

United	States.	We	conclude	with	 a	discussion	of	practical	 guide-
lines	on	when	to	use	SVC	SDMs	instead	of,	or	in	addition	to,	simpler	
alternatives.

2  |  What are spat ia l ly  var ying 
coef f ic ient s?

Here,	 we	 discuss	 SVCs	 in	 the	 context	 of	 occupancy	 models	
(MacKenzie	et	al.,	2002;	Tyre	et	al.,	2003),	a	specific	form	of	hierar-
chical	GLM	that	models	imperfect	detection,	although	our	findings	
are	directly	extensible	to	all	parametric	SDMs	(i.e.	GLMs).	See	Doser	
et al. (2024)	for	full	statistical	details.

Let	sj	denote	the	spatial	coordinates	of	site	 j,	where	 j = 1, … , J ,	
which are each sampled across t = 1, … , T primary time periods 

(henceforth	‘seasons’).	Note	that	data	may	be	obtained	for	only	one	
season (i.e. T = 1),	or	for	multi-	season	data	sets	in	which	sites	do	not	
need	to	be	sampled	every	season	 (i.e.	missing	values	are	allowed).	
To	account	 for	 imperfect	detection,	k = 1, … ,Kt

(

sj

)

 sampling rep-
licates are obtained at site j during season t to estimate whether a 

nondetection	of	the	target	species	 is	truly	an	absence	 (MacKenzie	
et	al.,	2002;	Tyre	et	al.,	2003).	Note	that	the	number	of	replicates	
can vary across site/season combinations. Such replicates typically 

come	in	the	form	of	multiple	visits	to	a	site	over	a	short	period	of	
time	within	 a	 season,	 but	 other	 forms	 of	 replication	 such	 as	 spa-
tial	 sub-	sampling	 and	multiple	 observers	 are	 possible	 (MacKenzie	
et	al.,	2017).	Let	yt,k

(

sj

)

	denote	the	observed	detection	(1)	or	nonde-
tection	(0)	of	a	study	species	at	site	 j during survey k in season t,	and	
let zt

(

sj

)

	denote	the	true	presence	(1)	or	absence	(0)	of	the	species	
at site j during season t.	 Note	we	 assume	 zt

(

sj

)

 does not change 

across	replicate	surveys	within	a	given	season	(i.e.	the	‘closure’	as-
sumption).	We	model	 the	observed	data	yt,k

(

sj

)

 conditional on the 

true	occurrence	status	of	the	species	at	site	 j during season t (zt
(

sj

)

 ).	
Specifically,	we	have

where pt,k
(

sj

)

	is	the	probability	of	detecting	the	species	at	site	 j during 

replicate survey k in season t.	We	model	 detection	probability	 as	 a	
function	of	site,	season	and/or	survey-	level	(i.e.	observation-	level)	co-
variates according to

where �	is	a	vector	of	regression	coefficients	(including	an	intercept)	
that	describe	the	effect	of	covariates	vt,k

(

sj

)

 on detection.

The	 true	occurrence	 status	zt
(

sj

)

 is a partially observed vari-
able,	such	that	if	yt,k

(

sj

)

= 1,	we	know	zt
(

sj

)

= 1 (since we assume 

no	false	positives),	but	if	yt,k
(

sj

)

= 0	we	do	not	know	if	the	species	
is	truly	absent	from	the	site,	or	if	we	failed	to	detect	it.	We	model	
zt
(

sj

)

 as

where � t

(

sj

)

	is	the	occurrence	probability	of	the	species	at	site	 j during 

season t.	When	fitting	occupancy	models,	we	can	estimate	species–
environment	 relationships	 through	 the	 effect	 of	 covariates	 on	 oc-
currence	probability,	� t

(

sj

)

,	within	a	GLM	framework.	For	simplicity,	
consider	a	single	environmental	variable,	xt

(

sj

)

,	that	varies	across	each	
spatial location sj and season t	(e.g.	temperature,	precipitation).	An	SVC	
occupancy	model	has	the	form

where �0	 is	an	 intercept,	�t	 is	a	temporal	random	effect	 (i.e.	season-	
specific	intercept)	to	account	for	unmodelled	temporal	autocorrelation	
in	occurrence	probability	 (only	applicable	 if	T > 1),	w0

(

sj

)

 is a spatial 

random	effect	 to	 account	 for	 unmodelled	 spatial	 variation	 in	occur-
rence	probability,	�1	is	the	non-	spatial	effect	of	the	covariate	xt

(

sj

)

 and 

w1

(

sj

)

	 is	 the	 spatially	 varying	effect	of	 the	 covariate	at	 each	 spatial	
location sj.

The	spatially	varying	effect	in	the	SVC	model	can	be	estimated	in	
a	variety	of	ways,	including	via	generalized	additive	models	(GAMs;	
Wood,	2006)	 and	 Gaussian	 processes	 (Banerjee	 et	 al.,	2014).	We	
focus	 on	 the	 latter	 due	 to	 their	 prevalence	 in	 spatial	 statistics,	
their	 comparatively	 higher	 predictive	 performance	 (Golding	 &	
Purse,	2016),	 and	 the	potential	 for	oversmoothing	of	 relationships	
with	GAMs	(Stein,	2014).	Specifically,	we	have

where C
(

s, s′,�
)

 is a J × J	covariance	matrix	 that	 is	a	 function	of	 the	
distances	between	any	pair	of	site	coordinates	s and s′	and	a	set	of	pa-
rameters (�)	that	govern	the	spatial	process	according	to	a	spatial	cor-
relation	function.	Here	we	use	Nearest	Neighbour	Gaussian	Processes	
(Datta	et	al.,	2016)	as	an	efficient	approximation	to	the	full	Gaussian	
process	 and	 an	 exponential	 correlation	 function,	 which	models	 the	
correlation	 in	 the	spatially	varying	effect	of	 the	covariate	using	 two	
parameters,	� =

{

�2,�
}

,	where	�2 is a spatial variance parameter and 

(1)yt,k
�
sj

�
∼

⎧
⎪⎨⎪⎩

0, zt
�
sj

�
=0

Bernoulli
�
pt,k

�
sj

��
, zt

�
sj

�
=1

,

(2)logit
(

pt,k
(

sj

))

= vt,k

(

sj

)

�,

(3)zt
(

sj

)

∼ Bernoulli
(

� t

(

sj

))

,

(4)logit
(

� t

(

sj

))

= �0 + �t + w0

(

sj

)

+ �1 ⋅ xt
(

sj

)

+ w1

(

sj

)

⋅ xt
(

sj

)

,

(5)w1(s) ∼ N
(

0,C
(

s, s�,�
))

,
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�	is	a	spatial	decay	parameter.	See	Doser	et	al.	(2024)	for	full	details	on	
SVC	occupancy	models.

3  |  How do spat ia l ly  var ying coef f ic ient 
models compare to s impler  a lternat ives?

For	comparison	to	alternative	models,	consider	a	more	generalized	
model	of	occurrence	probability	� t

(

sj

)

	with	the	form

where �0,	�t and w0

(

sj

)

	are	defined	in	(4),	and	f
(

xt
(

sj

)

,�
)

 is a generic 

function	 that	 relates	 the	 covariate	xt
(

sj

)

 to occurrence probabil-
ity	through	a	set	of	parameters	�.	Note	that	w0

(

sj

)

 and �t can be 

removed	 from	 (6)	 if	 not	 applicable	 for	 a	 target	 species/data	 set.	
We	 consider	 five	 functional	 relationships	 to	 describe	 the	 rela-
tionship between � t

(

sj

)

 and xt
(

sj

)

,	 which	 vary	 in	 their	 ability	 to	
estimate nonlinear and/or spatially varying species environment 

relationships:

1. Linear: f
(

xt
(

sj

)

,�
)

= �1 ⋅ xt
(

sj

)

2. Quadratic: f
(

xt
(

sj

)

,�
)

= �1 ⋅ xt
(

sj

)

+ �2 ⋅ x
2
t

(

sj

)

3. Stratum: f
(

xt
(

sj

)

,�
)

= �1 ⋅ xt
(

sj

)

+ �2,STRATUMj
⋅ xt

(

sj

)

4. Interaction: f
(

xt
(

sj

)

,�
)

=�1 ⋅xt
(

sj

)

+�2 ⋅x
∗

t

(

sj

)

⋅xt
(

sj

)

5. SVC: f
(

xt
(

sj

)

,�
)

= �1 ⋅ xt
(

sj

)

+ w1

(

sj

)

⋅ xt
(

sj

)

The	linear	model	simply	assumes	a	linear	species–environment	
relationship.	The	quadratic	model	extends	the	linear	model	by	al-
lowing	the	species–environment	relationship	to	peak	at	some	op-
timum	level	and	subsequently	decrease	as	one	moves	farther	from	
the	optimum	or	peak	at	the	extremes	of	the	environmental	vari-
able.	The	stratum	model	estimates	an	overall	 linear	effect	of	the	
environmental	 predictor	 as	well	 as	 stratum-	specific	 adjustments	
(fixed	or	random)	in	the	effect	across	a	set	of	strata	(e.g.	manage-
ment	units).	The	interaction	model	similarly	estimates	a	linear	spe-
cies–environment	 relationship,	 but	 allows	 for	 spatial	 variation	 in	
this	relationship	in	the	form	of	an	interaction	with	a	second	covari-
ate that varies across the J sites (x∗

t

(

sj

)

).	The	SVC	model	estimates	
an	overall	linear	species–environment	relationship,	but	allows	this	
linear	 relationship	 to	 vary	 across	 each	 site	 in	 the	 data	 set.	 The	
spatially	 varying	 adjustment	 in	 the	SVC	model	 (w1

(

sj

)

)	 serves	 as	
a	 local	adjustment	of	the	species–environment	relationship	from	
the	overall	effect	�1.	The	SVC	model	can	be	viewed	as	an	exten-
sion	 of	 the	 stratum	model,	 where	 the	 strata	 are	 now	 individual	
sampling	sites,	or	as	an	extension	of	the	interaction	model,	where	
the	interacting	‘covariate’	is	unknown	and	estimated	as	part	of	the	
model	fitting	process.

We	 performed	 a	 simulation	 study	 to	 compare	 the	 five	 afore-
mentioned	models	 and	 assessed	 their	 ability	 to	 estimate	 species–
environment	relationships	of	different	forms.	Briefly,	we	simulated	
detection-	nondetection	 data	 across	 a	 20 × 20	 grid,	 where	 occur-
rence	probability	was	generated	as	a	function	of	a	single	covariate	

that	took	negative	values	at	the	southern	portion	of	the	simulated	
area	and	positive	values	at	the	northern	portion	of	the	area.	We	var-
ied	 the	 true	 species–environment	 relationship	 across	 six	 different	
functional	forms	(leftmost	column,	Figure 1):	(1)	linear;	(2)	quadratic;	
(3)	a	separate	linear	effect	across	nine	strata;	(4)	an	interaction	with	
a	second	covariate	that	varied	along	the	horizontal	axis;	(5)	an	inter-
action	with	an	unknown	(“missing”)	covariate;	and	(6)	the	sum	of	the	
five	 aforementioned	 components	 (i.e.	 “Full”	 effect).	We	 simulated	
50	 data	 sets	 under	 each	 functional	 form	 of	 the	 species–environ-
ment	relationship,	and	fit	the	five	models	to	each	data	set	using	the	
spOccupancy	R	package	(Doser	et	al.,	2022),	where	the	interaction	
model	only	incorporated	the	covariate	that	was	assumed	known,	not	
the	unknown	covariate.	Model	performance	was	compared	using	the	
Widely	Applicable	 Information	Criterion	 (WAIC;	Watanabe,	2010).	
See Supplemental Information S1	for	complete	details.

The	SVC	model	was	consistently	able	to	capture	the	true	rela-
tionship	 across	 all	 six	 forms	 of	 the	 species–environment	 relation-
ship,	while	 the	 simpler	models	only	performed	well	 in	 a	 subset	of	
scenarios (Figure 1).	When	the	true	species–environment	was	linear,	
all	models	yielded	virtually	identical	estimates	of	the	species–envi-
ronment	relationship	that	closely	resembled	the	truth.	The	simpler	
models	with	a	pre-	specified	functional	form	(e.g.	quadratic,	stratum,	
known	interaction)	outperformed	the	SVC	model	according	to	WAIC	
when	data	were	generated	with	the	exact	species–environment	re-
lationship,	suggesting	that	when	the	true	form	of	the	species–envi-
ronment	relationship	is	known,	simpler	models	should	be	used	over	
the	more	complicated	SVC	model.	However,	when	the	true	species–
environment	relationship	was	different	from	the	form	used	to	fit	the	
model,	the	simpler	models	were	limited	in	their	ability	to	capture	the	
underlying patterns (Figure 1)	 and	 performed	 substantially	 worse	
according	 to	WAIC	 (Supplemental Information S1: Table S1).	 The	
SVC	model	was	able	to	capture	the	true	pattern	in	the	relationship	
even	when	the	data	were	not	generated	with	an	SVC,	indicating	the	
ability	of	SVC	models	to	reveal	simpler	functional	forms	of	species–
environment	 relationships	 when	 such	 relationships	 are	 unknown	
prior	to	model	fitting.	Furthermore,	the	SVC	model	drastically	out-
performed	all	other	models	when	the	species–environment	relation-
ship	interacted	with	an	unknown	variable	(row	5,	Figure 1),	or	when	
the	 species–environment	 relationship	was	 determined	by	multiple	
components	(row	6,	Figure 1).

4  |  C ase study 1:  Spat ia l ly  var ying 
occurrence trends in eastern US forest  b irds

Quantifying	spatially	explicit	trends	can	help	identify	areas	of	con-
servation	interest	(e.g.	climate	change	refugia)	as	well	as	provide	in-
sights	on	 species	 range	dynamics.	 In	 this	 case	 study,	we	assessed	
occurrence	trends	of	forest	bird	species	across	a	~4.04	million	km2 

region	of	the	eastern	United	States	(i.e.	the	continental	United	States	
east	of	the	100th	meridian)	from	2000	to	2019	(T = 20	years)	using	
detection-	nondetection	 data	 from	 the	 North	 American	 Breeding	

(6)logit
(

� t

(

sj

))

= �0 + �t + w0

(

sj

)

+ f
(
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    |  5 of 13DOSER et al.

Bird	Survey	(BBS;	Pardieck	et	al.,	2020).	We	restricted	our	analysis	
to	a	community	of	66	eastern	forest	bird	species	following	the	habi-
tat	classification	of	Bateman	et	al.	(2020).	We	subsequently	assessed	
trends	for	51	of	the	66	species	whose	breeding	ranges	(derived	from	
BirdLife	International,	2021)	had	at	least	50%	overlap	with	the	study	
area (Supplemental Information S2: Table S3).	Our	objectives	for	this	
case	study	were	to	(1)	develop	spatially	explicit	maps	of	occurrence	
trends	for	each	of	the	51	species	across	the	eastern	United	States,	
and	(2)	compare	an	SVC	occupancy	model	to	three	alternative	mod-
els	 that	 represent	 simple	 hypotheses	 regarding	 the	drivers	 of	 dis-
tributional	change.	Specifically,	our	four	hypotheses	and	associated	
models were:

1.	 The	 species	 has	 a	 constant,	 linear	 trend	 across	 the	 eastern	
United	 States	 (i.e.	 the	 linear	 model).

2.	 The	species	trend	varies	across	broad	ecologically	distinct	strata,	
Bird	Conservation	Regions	(i.e.	strata	model),	as	a	result	of	differ-
ences in bird communities and habitat types.

3.	 The	species	trend	interacts	with	the	30-	year	(1981–2010)	climate	
normal	(i.e.	temperature	model).	If	climate	shapes	species	distri-
butions,	we	would	expect	differences	in	species	trends	near	the	
climatic	 extremes	 as	 annual	 temperatures	 become	 increasingly	
warm (e.g. positive trends at northern range boundary and nega-
tive trends at southern range boundary indicating a northward 

shifting	distribution).

F I G U R E  1 Estimates	of	a	simulated	species–environment	relationship	from	different	models	(columns)	under	different	patterns	of	the	
species–environment	relationship	(rows).	Red	represents	a	negative	effect,	white	no	effect	and	blue	a	positive	effect,	with	darker	shades	
representing	stronger	effects.	The	simulated	covariate	varies	from	negative	at	the	bottom	of	the	grid	to	positive	at	the	top	of	the	grid.	The	
true	species–environment	relationship	is	simulated	as	a	linear	effect	(row	1),	a	quadratic	effect	(row	2),	a	separate	linear	effect	across	nine	
strata	(row	3),	an	interaction	with	a	second	covariate	that	varies	along	the	horizontal	axis	(row	4),	an	interaction	with	an	unknown	(“missing”)	
covariate	(row	5)	and	the	sum	of	all	the	aforementioned	components	(“Full”	effect,	row	6).	Estimates	are	shown	from	five	candidate	models	
relative	to	the	truth	(column	1),	including	a	model	with	a:	linear	effect	(column	2),	quadratic	effect	(column	3),	stratum-	specific	effect	(column	
4),	interaction	(column	5)	and	an	SVC	(column	6).
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6 of 13  |     DOSER et al.

4.	 The	species	trend	varies	with	a	variety	of	interacting	abiotic	and	
biotic	 variables	 that	 result	 in	 a	 complex	 spatially	 varying	 trend	
across	the	species	range	(i.e.	SVC	model).

We	 used	 data	 from	 J = 1846	 BBS	 routes	 (i.e.	 sites)	 sampled	
at	 least	 once	 between	 2000	 and	 2019	 (mean	 number	 of	 sampled	
years	 per	 route = 15).	 BBS	 observers	 performed	 a	 three-	minute	
point	count	survey	at	each	of	50	stops	along	each	route,	counting	
all	birds	seen	or	heard	within	a	0.4 km	radius.	We	summarized	the	
data	for	each	species	at	each	site	into	K = 5 spatial replicates (each 

comprising	data	from	10	of	the	50	stops),	where	each	replicate	took	
value	1	 if	 the	species	was	detected	at	any	of	 the	10	stops	 in	 that	
replicate,	and	value	0	 if	 the	species	was	not	detected.	While	such	
an	approach	has	been	used	in	previous	studies	with	BBS	data	(e.g.	
Rushing	et	al.,	2020),	this	use	of	spatial	replicates	in	an	occupancy	
modelling	framework	likely	leads	to	violation	of	the	closure	assump-
tion	 (Kendall	&	White,	 2009),	 and	 so	we	 refer	 to	 our	 response	 as	
species-	specific	occurrence	(or	“use”)	rather	than	occupancy.

For	 each	 of	 the	 51	 species,	 we	 fit	 a	 multi-	season	 occupancy	
model where occurrence probability at each site j in each year t was 

modelled as

where �0 and w0

(

sj

)

 together represent the spatially varying inter-
cept,	�1	is	the	effect	of	the	30-	year	(1981–2010)	maximum	tempera-
ture	climate	normal	on	occurrence	probability,	�t	 is	an	AR(1)	random	
year	 effect	 to	 accommodate	 residual	 temporal	 autocorrelation	 and	
f
(

YEARt ,�TREND

)

	 is	 the	 estimated	 trend	 parameter(s)	 that	 varies	 in	
form	across	the	four	models.	For	all	models,	we	expressed	detection	
probability	as	a	function	of	linear	and	quadratic	effects	of	year,	linear	
and	quadratic	effects	of	survey	day	(to	account	for	seasonal	variation	
in	 detection	 probability),	 and	 linear	 and	 quadratic	 effects	 of	 survey	

replicate	 (to	 account	 for	 variability	 in	detection	probability	over	 the	
time	of	day).	For	each	species,	we	used	pre-	existing	published	ranges	
from	BirdLife	International	(2021)	and	only	included	routes	that	fell	in-
side	a	50-	km	buffer	of	the	species	range	when	fitting	the	occupancy	
model.	 Thirty-	year	 average	 maximum	 temperature	 was	 calculated	
from	TerraClimate	(Abatzoglou	et	al.,	2018).

We	 compared	 the	 four	 models	 using	 the	WAIC	 as	 an	 assess-
ment	of	model	parsimony.	Using	realized	observations	from	BBS	in	
2021,	we	additionally	compared	each	model's	ability	to	predict	(i.e.	
forecast)	 future	 occurrence	of	 the	 species	 in	 2021	using	 the	 area	
under	 the	 receiver	 operating	 characteristic	 curve	 (AUC;	 Hosmer	
et	al.,	2013)	 following	approaches	outlined	by	Zipkin	et	al.	 (2012).	
See Supplemental Information S2	for	full	details.

We	 fit	 all	models	 using	Bayesian	 inference	with	Markov	 chain	
Monte	Carlo	(MCMC)	algorithms	implemented	in	the	spOccupancy 

R	package	(Doser	et	al.,	2022,	2024).	Prior	distributions	were	either	
vague	or	weakly	informative	(Supplemental	Information	S2).	We	ran	
three	 chains	 of	 each	model	 for	 100,000	MCMC	 iterations	with	 a	
burn-	in	period	of	50,000	iterations	and	a	thinning	rate	of	50,	yield-
ing	3000	posterior	samples.	We	assessed	convergence	using	the	po-
tential	scale	reduction	factor	(i.e.	R̂;	Brooks	&	Gelman,	1998).	After	
fitting	each	of	the	four	alternative	models,	we	predicted	across	the	
range	of	each	species	in	the	study	area	to	generate	maps	of	occur-
rence	trends	across	the	20-	year	period.

4.1  |  RESULTS

There	was	 strong	 support	 for	 spatial	 variability	 in	 20-	year	 occur-
rence	 trends	 across	 the	 eastern	United	 States	 for	 the	majority	 of	
species in our analysis (Figure 2).	The	SVC	model	substantially	out-
performed	(i.e.	ΔWAIC > 2)	the	linear	trend	model,	strata	model	and	

(7)logit
(

� t

(

sj

))

= �0 + w0

(

sj

)

+ �1 ⋅ TMAX
(

sj

)

+ f
(

YEARt ,�TREND

)

+ �t ,

F I G U R E  2 Summary	of	the	spatially	varying	trend	of	the	51	forest	bird	species.	The	height	of	each	bar	corresponds	to	the	proportion	of	
locations	for	the	given	species	whose	trend	has	the	sign	(i.e.	positive,	negative,	no	effect)	and	strength	(i.e.	strong,	moderate)	indicated	by	
the	colour.	Blue	indicates	support	for	positive	trends	and	red	indicates	support	for	negative	trends.	More	specifically:	(1)	Dark	blue = Strong	
Positive:	P(trend > 0) > 0.8;	(2)	Light	blue = Moderate	Positive:	0.6 < P(trend > 0) ≤ 0.8;	(3)	White = No	effect:	0.4 < P(trend > 0) ≤ 0.6;	(4)	Light	
red = Moderate	Negative:	0.2 < P(trend > 0) ≤ 0.4;	(5)	Dark	red = Strong	Negative:	P(trend > 0) < 0.2.
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    |  7 of 13DOSER et al.

maximum	temperature	interaction	model	for	almost	all	species	(49,	
or	96%,	out	of	51)	according	to	the	WAIC.	Among	the	three	alterna-
tive	models,	the	BCR	model	performed	better	than	the	temperature	
model	and	 linear	model	 for	78%	and	90%	of	species,	 respectively,	
according	 to	 the	 WAIC,	 while	 the	 temperature	 model	 generally	
showed	less	support	across	the	51	species,	outperforming	the	linear	
model	for	57%	of	species.	The	two	species	with	less	support	for	the	
SVC	model	(American	woodcock	and	Eastern	screech	owl)	had	low	
raw occurrence probabilities (i.e. <0.05).	 The	 SVC	model	 requires	
more observations than the simpler strata model to yield estimates 

with	reasonable	uncertainty,	which	likely	contributed	to	the	higher	
performance	of	the	strata	model	for	these	two	species.	We	found	
more	variable	support	for	improvements	in	predictive	performance	
for	the	SVC	model	relative	to	the	three	alternative	models.	The	SVC	
model	 generally	 had	 the	highest	performance	 in	predicting	 future	

species-	specific	occurrence,	with	AUC	being	highest	for	69%	(35	out	
of	51)	of	species	(Supplemental Information S2: Table S3).

The	 SVC	 model	 revealed	 spatial	 heterogeneity	 in	 occurrence	
trends that was not evident in the three simpler alternative models. 

Figure 3	shows	the	trend	estimates	for	three	example	species	(grey	
catbird	(GRCA),	Eastern	phoebe	(EAPH),	and	wood	thrush	(WOTH))	
from	 each	 of	 the	 four	models.	 The	 SVC	model	 revealed	 grey	 cat-
bird	had	predominately	negative	trends	 in	the	southern	portion	of	
its	range	(except	Louisiana	and	Mississippi)	and	positive	or	no	direc-
tional	trends	in	the	northern	states,	indicating	a	potential	northward	
shift	in	its	range.	Both	the	temperature	model	and	the	strata	model	
were	able	 to	capture	 the	general	pattern	of	more	negative	 trends	
in	the	southern	portion	of	the	eastern	United	States,	but	they	both	
failed	 to	 capture	more	 fine	 scale	 variability	 that	 was	 revealed	 by	
the	SVC	model	(i.e.	positive	trends	in	Louisiana	and	Mississippi	and	

F I G U R E  3 Median	predictions	of	an	occurrence	trend	from	2000	to	2019	for	three	example	species	from	the	four	models:	a	spatial	
occupancy	model	with	a	constant	linear	trend	across	the	species	range	(Linear),	a	spatial	occupancy	model	with	a	separate	trend	for	each	
Bird	Conservation	Region	(Strata),	a	spatial	occupancy	model	with	a	trend	that	interacts	with	30-	year	average	maximum	temperature	
(TMAX),	and	a	spatially	varying	coefficient	occupancy	model	estimating	a	spatially	varying	trend	(SVC).	Panels	(a–d):	grey	catbird	(3.79	
million	km2);	Panels	(e–h):	Eastern	phoebe	(3.55	million	km2);	Panels	(i–l):	wood	thrush	(3.12	million	km2).	Values	represent	the	change	in	log	
odds	of	occurrence	probability	over	one	standard	deviation	of	time	(i.e.	approximately	5.8 years).
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negative	trends	in	northern	Minnesota).	We	found	the	opposite	pat-
tern	for	Eastern	phoebe,	where	the	strata	and	temperature	models	
were	able	to	adequately	capture	a	generally	positive	trend	in	south-
ern	portions	of	the	range	and	negative	trend	in	northern	portions	of	
the	range,	but	did	not	capture	more	fine-	scale	variability	 in	trends	
revealed	by	the	SVC	model.	Wood	thrush	trends	were	strongly	neg-
ative	along	the	eastern	portion	of	its	range	and	more	positive	in	the	
northwestern	part	of	its	range,	which	were	largely	captured	by	both	
the	SVC	and	strata	model.	 In	contrast,	 the	 lack	of	relationship	be-
tween	maximum	temperature	and	trend	for	Wood	Thrush	resulted	
in	essentially	no	spatial	variation	in	the	trend	from	the	temperature	
model.	This	result	illustrates	the	lack	of	flexibility	in	the	interaction	
models	if	the	interacting	variable	does	not	adequately	explain	spatial	
variability in the trend.

The	temperature	model	revealed	large	heterogeneity	in	the	sign	
and	significance	of	the	interaction	between	maximum	temperature	
and the yearly trend (Supplemental Information S2: Figure S1),	pro-
viding	minimal	support	for	climatic	niche	position	being	a	consistent	
driver	of	spatial	variation	 in	eastern	forest	bird	occurrence	trends.	
Of	the	51	total	species,	18	species	had	a	significant	negative	inter-
action (i.e. trends were less positive/more negative in areas with 

higher	temperatures),	while	8	species	had	a	significant	positive	 in-
teraction (i.e. trends were more positive/less negative in areas with 

higher	 temperatures).	 While	 such	 significant	 interactions	 indicate	
some spatial variability in trends may be related to climatic position 

within	a	range,	the	large	improvement	in	model	fit	 (and	to	a	 lesser	
extent,	prediction)	of	the	SVC	model	compared	to	the	temperature	
model	suggests	that	this	relationship	is	not	the	primary	driver	of	spa-
tial	variability	in	occurrence	trends	for	eastern	forest	birds.	Similarly,	
the	improved	performance	of	the	strata	model	compared	to	the	con-
stant linear trend model suggests spatial variability in trends may be 

partially	 attributed	 to	 broad-	scale	 variation	 in	 habitat	 and	 climate	
conditions	 across	 Bird	 Conservation	 Regions.	 However,	 the	 im-
proved	performance	of	the	SVC	model	compared	to	the	strata	model	
suggests	that	additional	factors	operating	at	finer	spatial	scales	are	
important contributors to spatial variability in occurrence trends.

5  |  C ase study 2:  Ef fec t s of  land cover 
change on the grasshopper sparrow

Quantifying	 the	 effects	 of	 land	 cover	 change	 and	 resulting	 shifts	
in	 habitat	 availability	 on	 species	 distributions	 is	 crucial	 for	 under-
standing	the	primary	drivers	of	large-	scale	avian	population	declines	
(Rosenberg	 et	 al.,	 2019).	 Grassland	 birds	 have	 experienced	 some	
of	the	steepest	population	declines	across	all	bird	groups	in	North	
America,	 largely	due	to	habitat	 loss	and	agricultural	 intensification	
(Stanton	et	al.,	2018).	However,	 the	effects	of	 shifts	 in	 land	cover	
on	grassland	bird	species	is	unlikely	to	be	constant	across	space	as	
a	result	of	complex	interactive	effects	with	local	climate,	farmland	
management	practices	or	predation	pressure.	In	this	case	study,	we	
demonstrate	 the	 ability	 of	 SVC	models	 to	 provide	 insight	 on	 the	
spatially	 varying	 effects	 of	 habitat	 change	 on	 the	 distribution	 of	

grasshopper sparrow (Ammodramus savannarum)	 across	 the	 conti-
nental	United	States	from	1970	to	2019.	We	again	use	data	from	the	
North	American	BBS	(Pardieck	et	al.,	2020),	collected	over	the	50-	
year period at J = 2542	routes	within	the	range	of	the	grasshopper	
sparrow	(derived	from	BirdLife	International	[2021])	as	described	in	
Case	Study	1.	Our	objectives	for	this	case	study	were	to	(1)	develop	
spatially	explicit	maps	of	the	effect	of	change	in	grassland	area	and	
cropland	area	on	grasshopper	sparrow	occurrence;	and	(2)	compare	
a	series	of	SVC	and	simpler	alternative	models	to	generate	and	test	
hypotheses	regarding	the	drivers	of	spatial	variability	in	the	effects	
of	habitat	change.

We	 summarized	 the	 BBS	 data	 in	 the	 same	manner	 as	 in	 Case	
Study	 1,	 using	K = 5	 spatial	 replicates	 of	 detection-	nondetection	
data	at	each	BBS	route	to	model	route-	level	occurrence	across	the	
sparrow's	range.	We	calculated	annual	amount	of	grassland	area	(nat-
ural	grassland	cover	class)	and	cropland	area	(combined	cropland	and	
hay/pasture	cover	classes)	within	1 km	of	each	BBS	route	using	data	
from	the	USGS	EROS	Center	(Sohl	et	al.,	2016).	We	calculated	annual	
deviations	in	grassland	and	cropland	area	by	subtracting	the	50-	year	
average	value	at	each	site	from	each	yearly	value	to	assess	effects	of	
temporal	change	in	habitat	separately	from	spatial	variation	in	habi-
tat	availability	(Clement	et	al.,	2019;	Saunders	et	al.,	2022).

We	 hypothesized	 that	 grasshopper	 sparrow	occurrence	would	
be	positively	associated	with	grassland	area	change	and	that	the	ef-
fect	would	vary	spatially	as	a	result	of:	(1)	a	positive	interaction	with	
the	average	amount	of	grassland	area	given	grasshopper	sparrow's	
preference	for	landscapes	comprised	of	large	amounts	of	contiguous	
grassland	(Shaffer	et	al.,	2021);	(2)	an	interaction	with	temperature	
such	 that	 effects	of	 grassland	 area	 change	 are	 strongest	 near	 the	
climatic	extremes	of	 the	species	range	 (i.e.	 range	boundaries);	and	
(3)	additional	interactions	with	fine-	scale	habitat	quality	(e.g.	grass-
land	height,	amount	of	litter;	Shaffer	et	al.,	2021)	and	management	
actions	that	were	not	available	as	covariates	for	the	model.	We	ex-
pected grasshopper sparrow occurrence to be negatively related to 

cropland	cover	change	across	the	Great	Plains	region,	as	an	increase	
in	cropland	cover	in	this	region	would	likely	correspond	to	a	decrease	
in grassland area (the dominant land cover type; Supplemental 

Information S3: Figure S1).	However,	 in	 areas	with	minimal	 grass-
land,	we	predicted	a	positive	association	between	occurrence	and	
cropland	 area,	 as	 grasshopper	 sparrow	 occurrence	 has	 previously	
been	 associated	with	 hay-	fields	 and	 cultivated	 fields	when	 native	
grassland	is	limited	(Shaffer	et	al.,	2021).

We	fit	five	candidate	models	that	varied	in	the	functional	forms	
of	 the	effects	of	grassland	area	change	and	cropland	area	change	
to	 test	 our	 hypotheses	 (full	 details	 in	 Supplemental Information 

S3).	 Specifically,	 our	 five	 models	 consisted	 of:	 (1)	 a	 linear	 model	
with	constant,	 linear	effects	of	grassland	and	cropland	change;	 (2)	
a	 habitat	 interaction	 model	 with	 linear	 effects	 of	 grassland	 and	
cropland	 change,	 an	 interaction	 of	 grassland	 change	with	 50-	year	
average	grassland	area,	and	an	interaction	of	cropland	change	with	
50-	year	average	cropland	area;	(3)	a	temperature	interaction	model	
with	linear	effects	of	grassland	and	cropland	change	that	both	also	
had	an	interaction	with	average	temperature	conditions	(i.e.	30-	year	
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maximum	 temperature	 calculated	 from	 TerraClimate	 as	 in	 Case	
Study	1);	(4)	an	SVC	model;	(5)	the	“full”	model	that	contained	SVCs,	
interactive	 effects	 of	 temperature,	 and	 interactive	 effects	 of	 50-	
year	average	land-	cover.

For	each	of	the	five	candidate	models,	we	fit	a	Bayesian	multi-	
season occupancy model using the spOccupancy	R	package	(Doser	
et	al.,	2022).	Detection	probability	was	modelled	consistently	across	
the	five	models	as	a	function	of	linear	and	quadratic	ordinal	date,	a	
random	effect	of	year	and	a	separate	intercept	of	survey	replicate	to	
account	for	variability	in	detection	probability	across	the	five	spatial	
replicates	within	a	BBS	route.	Given	our	focus	on	inference	of	the	
species–environment	relationships,	we	compared	candidate	models	
using	the	WAIC.	Prior	distributions	were	either	vague	or	weakly	in-
formative	 (Supplemental Information S3).	 For	 each	model,	we	 ran	
three	chains	for	100,000	MCMC	iterations	with	a	burn-	in	period	of	
50,000	iterations	and	a	thinning	rate	of	50,	yielding	3000	posterior	
samples.	Convergence	was	assessed	using	the	potential	scale	reduc-
tion	factor	and	visual	assessment	of	traceplots.

5.1  |  RESULTS

We	 found	 strong	 support	 for	 spatial	 variability	 in	 the	 effects	 of	
grassland	 and	 cropland	 cover	 change,	 with	 all	 models	 that	 in-
cluded	 an	 SVC	 and/or	 an	 interaction	 substantially	 outperforming	
(i.e. ΔWAIC	 > 2)	 the	 model	 with	 constant	 effects	 (Supplemental 

Information S3: Table S1).	 The	 temperature	 interaction	 model	
outperformed	 the	 habitat	 interaction	 model	 (ΔWAIC = 18.65),	

indicating	maximum	temperature	was	more	important	in	explaining	
spatial	variability	in	the	effect	of	habitat	change	than	the	amount	of	
habitat.	Noticeably,	including	an	SVC	for	the	effect	of	grassland	and	
cropland	change	reduced	WAIC	(i.e.	ΔWAIC = 774.90)	substantially	
more	 than	 either	 of	 the	 interaction	models	 compared	 to	 the	 con-
stant model (ΔWAIC = 20.69	for	the	habitat	interaction	model	and	
ΔWAIC = 39.34	for	the	temperature	interaction	model).	The	model	
including	SVCs,	a	habitat	interaction,	and	a	temperature	interaction	
slightly	 outperformed	 the	model	 with	 only	 SVCs	 (ΔWAIC = 3.32).	
Altogether,	these	results	suggest	that	interactions	with	temperature	
and	habitat	explain	some	spatial	variability	 in	the	effect	of	habitat	
change	on	occurrence,	but	most	of	the	variation	in	these	effects	is	
the	result	of	unexplained	spatial	variation	that	 is	accounted	for	by	
the	SVCs.	Maps	of	the	predicted	effects	of	grassland	and	cropland	
change	from	the	candidate	models	reveal	that	models	with	the	SVC	
capture	 far	more	 spatial	 variation	 in	 the	effects	of	habitat	 change	
than	do	models	without	SVCs	(Figure 4).

The	effects	estimated	from	the	candidate	models	revealed	mixed	
support	for	our	hypotheses.	The	best	performing	model	revealed	a	
range	of	positive	and	negative	effects	of	habitat	change	across	the	
breeding	 range	 of	 the	 grasshopper	 sparrow.	As	 predicted,	 the	 ef-
fect	of	grassland	change	was	strongly	positive	in	the	Northern	Great	
Plains	(where	grassland	availability	is	higher),	suggesting	that	in	heav-
ily	grassland-	dominated	 landscapes,	 loss	of	grassland	would	 result	
in	 declines	 in	 grasshopper	 sparrow	 occurrence	 probability.	 This	 is	
further	supported	by	the	habitat	interaction	model,	which	revealed	
a positive interaction between grassland change and average grass-
land area (Figure 4a).	Surprisingly,	we	found	near	zero	or	negative	

F I G U R E  4 Median	predictions	of	the	effects	of	grassland	change	(top	row)	and	cropland	change	(bottom	row)	on	occurrence	of	
grasshopper sparrow (Ammodramus savannarum)	from	three	of	the	five	candidate	models.	Panels	(a)	and	(d)	show	estimates	from	a	model	
with	an	interaction	between	land-	cover	change	and	average	land-	cover	area	over	the	50-	year	period.	Panels	(b)	and	(e)	show	estimates	from	
a	model	with	an	interaction	between	land-	cover	change	and	30-	year	average	maximum	temperature.	Panels	(c)	and	(f)	show	estimates	from	
a	model	with	spatially	varying	coefficients	for	land-	cover	change	and	interactions	with	average	land-	cover	area	and	maximum	temperature.	
Blue	indicates	a	positive	effect,	white	indicates	no	effect	and	red	indicates	a	negative	effect.
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effects	of	 grassland	area	 change	 in	 the	Southern	Great	Plains,	 in-
dicating	 increasing	grassland	 in	 this	area	would	 result	 in	no	effect	
or	even	declines	of	occurrence	probability.	Given	the	relatively	high	
amount	of	grassland	and	rangeland	area	in	this	region	(Supplemental 

Information S3: Figure S1),	this	could	indicate	a	regional	peak	in	the	
optimal	 amount	 of	 grassland	 area	 for	 grasshopper	 sparrow	occur-
rence	probability,	which	is	in	line	with	previous	work	showing	that	
the	preferred	grassland	size	of	the	species	varies	across	ecoregions	
(Johnson	&	Igl,	2001).	The	temperature	interaction	model	revealed	
this	pattern	was	partially	related	to	a	negative	interaction	with	maxi-
mum temperature (Figure 4b;	Gorzo	et	al.,	2016).	Grasshopper	spar-
row occurrence probability was negatively related to cropland area 

along	most	of	its	southern	range	boundary,	in	part	due	to	a	negative	
interaction	with	maximum	temperature	(Figure 4).	Alternatively,	the	
effect	 of	 cropland	 change	 was	 generally	 positive	 throughout	 the	
Northeast	and	Midwest	 (Figure 4),	which	was	related	to	a	positive	
interaction between cropland change and cropland area (Figure 4d).	
In	the	northeastern	and	midwestern	United	States,	where	few	na-
tive	grasslands	remain,	the	positive	effect	of	cropland	area	change	
indicates that increases in cropland area would result in increases 

in	 occurrence	 probability.	 Furthermore,	 the	 northeast	 is	 largely	
dominated	by	forest,	and	thus	increases	in	cropland	cover	are	likely	
associated	with	declines	 in	 forest	 cover,	which	may	partly	 explain	
the	positive	effect	of	cropland	cover	change,	as	grasshopper	spar-
rows	avoid	forest	(Grant	et	al.,	2004).	While	such	assessments	are	
speculative,	these	insights	are	only	possible	because	of	the	power	of	
SVC	models	to	reveal	fine-	scale,	multifaceted	species–environment	
relationships,	which	in	turn	can	be	used	to	inform	local	and	regional	
management priorities.

6  |  DISCUSSION

Accounting	 for	 complex	 species–environment	 relationships	 is	 in-
creasingly	important	as	the	spatial	and	temporal	extent	of	ecologi-
cal	research	expands	(Rollinson	et	al.,	2021).	Widely	used	statistical	
methods,	such	as	 interactions,	stratification	and	nonlinear	models,	
can	partially	account	for	such	patterns,	but	they	are	limited	in	their	
ability	 to	 estimate	 spatially	 varying	 species–environment	 relation-
ships	 that	 arise	 from	multiple	 interacting	 factors	 that	 themselves	
vary	 spatially.	 Here	 we	 used	 spatially	 varying	 coefficients	 (SVCs)	
in	SDMs	to	model	nonlinear	and/or	spatially	varying	species	envi-
ronment	 relationships	within	 a	 hierarchical	GLM	 framework	while	
simultaneously addressing observational biases common in both 

wildlife	and	plant	datasets.	Using	simulations	and	two	case	studies,	
we	highlighted	the	inferential	benefits	of	SVC	SDMs	to	generate	and	
test	ecological	hypotheses	regarding	the	factors	driving	spatial	vari-
ability in estimated relationships and/or occurrence trends.

Our	 simulation	 study	 showed	 that	 SVC	 SDMs	 can	 accurately	
capture	 complex,	 spatially	 varying	 species–environment	 relation-
ships	under	different	forms,	while	they	can	also	reveal	more	simple	
species–environment	relationships	(e.g.	linear,	quadratic;	Figure 1)	if	
such	additional	complexity	is	not	supported	by	the	data.	Thus,	when	

little	is	known	regarding	the	form	of	the	species–environment	rela-
tionship	prior	to	model	fitting,	SVC	SDMs	can	be	used	to	generate	
hypotheses	on	the	true	form	of	the	relationship	and	associated	abi-
otic	and/or	ecological	drivers.	When	the	true	species–environment	
relationship	 is	 known	 a	 priori,	 simpler	 parametric	GLMs	will	 likely	
outperform	SVC	SDMs	according	 to	 information	criteria	based	on	
the	 principle	 of	 parsimony.	 In	 such	 situations,	 our	 simulation	 sug-
gests	that	SVC	SDMs	will	not	generate	erroneous	conclusions,	but	
rather	will	reveal	the	simpler,	parametric	form	of	the	true	relation-
ship.	When	working	across	macroscales,	 it	 is	unlikely	that	all	 inter-
acting	variables	are	known	and/or	available	prior	to	model	fitting,	in	
which	case	SVC	SDMs	will	outperform	simpler	alternatives	(rows	5,	
6; Figure 1)	and	help	elucidate	the	ecological	drivers	of	such	patterns.

When	 assessing	 spatial	 variability	 in	 species–environment	 re-
lationships	 and/or	 trends,	 we	 recommend	 comparing	 SVC	 SDMs	
with	 simpler	 parametric	 SDMs	 that	 represent	 explicit	 hypotheses,	
as	 such	 comparisons	 can	 reveal	 the	 amount	 of	 support	 for	 differ-
ent	drivers	of	spatially	varying	effects/trends	(Pease,	Pacifici,	Kays,	
&	Reich,	2022).	For	example,	 in	the	eastern	forest	bird	case	study,	
the	 temperature	model	 revealed	 a	 significant	 negative	 interaction	
of	trend	and	breeding	season	maximum	temperature	for	18	species	
and	 a	 significant	 positive	 interaction	 for	 8	 species	 (Supplemental 

Information S3 Figure S1).	However,	 the	SVC	model	was	the	best-	
performing	model	for	all	26	species	with	significant	temperature	in-
teractions,	suggesting	that	while	breeding	season	temperature	often	
explains	 some	variation	 in	 occurrence	 trends,	 there	 are	 additional	
factors	that	are	 important	 in	explaining	fine-	scale	variability	 in	oc-
currence trends.

Whether	 SVC	 models	 improve	 predictive	 performance	 over	
models that only include a spatially varying intercept is an ongo-
ing	question.	 In	our	eastern	forest	bird	case	study,	the	SVC	model	
provided	relatively	minor	 improvements	in	predictive	performance	
compared	to	the	simpler	models	when	forecasting	occurrence	prob-
ability	in	2021.	All	four	models	included	a	spatial	random	effect	to	
account	for	spatial	variability	in	occurrence	probability,	and	given	the	
likely	small	changes	 in	the	forest	bird	distributions	from	2019	(the	
last	year	in	the	modelled	data	set)	to	2021,	they	all	had	similar	abili-
ties	to	predict	occurrence	probabilities	across	the	study	region.	SVC	
models in other ecological and natural resource applications have 

shown	mixed	 results	 regarding	 their	predictive	benefits	 compared	
to	models	with	only	a	spatially	varying	intercept;	some	studies	found	
improved	predictive	performance	of	SVC	models	(May	et	al.,	2023; 

Sultaire	et	al.,	2022),	while	others	showed	improvements	that	vary	
depending	 on	 the	 species	 (Doser	 et	 al.,	 2024;	 Pease,	 Pacifici,	 &	
Kays,	2022)	or	region	(Babcock	et	al.,	2015).	Regardless,	we	echo	the	
statements	of	Thorson	et	al.	(2023)	that	the	primary	benefits	of	SVC	
SDMs	relate	to	their	improved	ability	to	test	and	generate	hypothe-
ses	as	well	as	answer	relevant	ecological	questions	regarding	spatial	
variability	in	species–environment	relationships	and	trends.

In	 addition	 to	 theoretical	 contributions,	 the	 results	 from	 SVC	
SDMs	could	be	applied	to	multi-	scale	conservation	and	management	
decisions.	For	example,	in	the	grasshopper	sparrow	case	study,	we	
found	that	 loss	of	grassland	area	 is	most	 likely	 to	have	the	 largest	
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negative	 impact	on	 the	 species	 in	 the	Northern	Great	Plains,	 em-
phasizing	 the	 importance	 of	 providing	 large,	 contiguous	 patches	
of	 natural	 grassland	 to	 prevent	 further	 regional	 declines	 (Shaffer	
et	al.,	2021).	By	performing	similar	analyses	 for	multiple	grassland	
bird	 species,	 SVC	 SDM	outputs	 could	 be	 used	 together	 as	 inputs	
for	 spatial	 prioritizations.	 This	 could	 offer	major	 improvements	 in	
reserve	 design	 and	 help	 resource	managers	 identify	 the	 exact	 lo-
cations	 where	 habitat	 restoration	 may	 be	 most	 beneficial	 to	 bird	
communities	(Grand	et	al.,	2019).	Alternatively,	estimates	of	species	
trends	 serve	 as	 the	 foundation	 for	 assigning	 conservation	 status	
to	 species	 of	 greatest	 conservation	 need.	 Spatially	 varying	 trends	
from	SVC	SDMs,	like	those	generated	in	the	eastern	forest	bird	case	
study,	could	be	used	to	tailor	action	plans	at	 local	 (i.e.	state-	level),	
regional	(i.e.	ecoregion),	and	continental	scales	(Smith	et	al.,	2024).	
Ultimately,	 this	 could	 improve	our	understanding	of	how	and	why	
conservation	 strategies	 in	 different	 regions	 lead	 to	 variable	 out-
comes.	Estimation	of	local	trends	with	SVC	SDMs	can	also	improve	
predictions	of	species	distribution	changes	(Barnett	et	al.,	2021)	 in	
response	 to	 invasive	 species	 (Thorson	et	 al.,	2023)	 and	 future	 cli-
mate	and/or	land-	use	changes	(Gonthier	et	al.,	2014).

While	other	approaches	(e.g.	GAMs,	random	forests,	MaxEnt)	are	
commonly	used	in	ecology	to	account	for	complex	species–environ-
ment	relationships,	Bayesian	spatially	varying	coefficient	models	are	
an	attractive	alternative	as	they	(1)	do	not	require	a	priori	knowledge	
of	interacting	variables;	(2)	can	readily	provide	uncertainty	measures	
associated	with	all	estimates;	and	(3)	are	easily	embedded	in	hierar-
chical	modelling	frameworks	(i.e.	occupancy	models)	used	to	address	
observational	biases	prevalent	in	ecological	data.	Nevertheless,	the	
flexibility	 provided	 by	 Bayesian	 SVC	 SDMs	 can	 lead	 to	 computa-
tional	and	practical	difficulties	 in	their	 implementations.	While	the	
Bayesian	 framework	 provides	 full	 uncertainty	 propagation	 into	 all	
estimates	and	predictions,	models	can	take	substantial	time	to	run.	
For	example,	the	full	SVC	model	for	the	grasshopper	sparrow	case	
study	 with	 a	 data	 set	 comprised	 of	 nearly	 400,000	 observations	
took	 approximately	 10 h	 to	 run	 a	 single	MCMC	 chain	 of	 100,000	
samples using spOccupancy	 (Doser	et	al.,	2022).	Additionally,	the	
ability	of	SVC	SDMs	to	estimate	complex	spatially	varying	species–
environment	relationships	can	require	large	sample	sizes	to	achieve	
reasonable	 levels	of	uncertainty	compared	 to	simpler	alternatives.	
This	is	particularly	true	when	working	with	detection-	nondetection	
data,	 which	 provide	 relatively	 little	 information	 to	 estimate	 SVCs	
compared	 to	 count	 (e.g.	 abundance)	 or	 continuous	 (e.g.	 biomass)	
data	sources	used	in	many	SDMs.	In	Supplemental Information S4,	
we provide additional simulation studies that give insights on how 

the	reliability	of	SVC	estimates	scales	with	the	number	of	spatial	lo-
cations	and	number	of	seasons	in	the	data	set.	When	sample	sizes	
are	limited,	simpler	approaches	like	stratification	or	interactions	may	
be	more	useful	options	 to	yield	estimates	of	species–environment	
relationships	without	considerable	uncertainty.	Lastly,	confounding	
can occur between the estimated spatially varying intercept and 

spatially	 varying	 coefficients,	 especially	 when	working	with	mod-
estly	sized	data	sets	(e.g.	500	data	points),	which	could	potentially	
lead	to	misleading	conclusions.	However,	when	estimating	SVCs	for	

covariates that vary across time (e.g. a temporal trend or habitat 

change	 as	 in	our	 two	 case	 studies),	 confounding	 is	minimized	due	
to	 the	 added	 temporal	 component	of	multi-	season	data.	We	have	
found	that	recent	guidelines	for	minimizing	spatial	confounding	and	
understanding	 its	 effects	 in	 spatially	 explicit	 SDMs	 are	 applicable	
to	 SVC	SDMs	 (Mäkinen	et	 al.,	2022),	 although	 further	 research	 is	
needed	to	understand	when	such	confounding	may	occur	and	how	
to best mitigate it.

Spatial	variability	 in	species–environment	relationships	 is	prev-
alent	throughout	ecology	(Rollinson	et	al.,	2021)	as	a	result	of	com-
plex	interactions	with	abiotic	and	biotic	variables,	which	are	rarely	all	
known	or	available	to	be	measured	prior	to	statistical	analysis.	As	we	
demonstrate	 in	 this	study,	 the	use	of	spatially	varying	coefficients	
in species distribution models can help elucidate the environmen-
tal	 factors	 that	 drive	 species	 distributional	 dynamics	 across	 both	
local	and	broad	spatial	scales.	This	provides	an	improved	ability	to	
test	ecological	hypotheses	and	inform	multi-	scale	conservation	and	
management	initiatives.	When	fitting	SDMs	across	macroscales,	we	
encourage	the	comparison	of	SVC	SDMs	with	simpler	alternatives	as	
a	means	of	advancing	our	understanding	of	the	drivers	of	species–
environment relationships across space.
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