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Abstract

Let S € R™*™ be any matrix satisfying |1 — S||2 < en, where 1 is the all ones matrix and
| - |l2 is the spectral norm. It is well-known that there exists S with just O(n/e?) non-zero
entries achieving this guarantee: we can let S be the scaled adjacency matrix of a Ramanujan
expander graph. We show that, beyond giving a sparse approximation to the all ones matrix, S
yields a universal sparsifier for any positive semidefinite (PSD) matrix. In particular, for any
PSD A € R™ "™ which is normalized so that its entries are bounded in magnitude by 1, we show
that ||A — A o S|2 < en, where o denotes the entrywise (Hadamard) product. Our techniques
also yield universal sparsifiers for non-PSD matrices. In this case, we show that if S satisfies
I1=S]|2 < ﬁa/e) for some sufficiently large constant ¢, then ||A — A oSl < e-max(n, ||Al1),
where ||A]; is the nuclear norm. Again letting S be a scaled Ramanujan graph adjacency matrix,
this yields a sparsifier with 5(11/ €*) entries. We prove that the above universal sparsification
bounds for both PSD and non-PSD matrices are tight up to logarithmic factors.

Since A oS can be constructed deterministically without reading all of A, our result for PSD
matrices derandomizes and improves upon established results for randomized matrix sparsifi-
cation, which require sampling a random subset of O("lszg”) entries and only give an approxi-
mation to any fixed A with high probability. We further show that any randomized algorithm
must read at least (n/e?) entries to spectrally approximate general A to error en, thus proving
that these existing randomized algorithms are optimal up to logarithmic factors. We leverage
our deterministic sparsification results to give the first deterministic algorithms for several prob-
lems, including singular value and singular vector approximation and positive semidefiniteness
testing, that run in faster than matrix multiplication time. This partially addresses a significant
gap between randomized and deterministic algorithms for fast linear algebraic computation.

Finally, if A € {—1,0,1}"*" is PSD, we show that a spectral approximation A with ||A —
A||2 < en can be obtained by deterministically reading O(n/e) entries of A. This improves the
1/e dependence on our result for general PSD matrices by a quadratic factor and is information-
theoretically optimal up to a logarithmic factor.
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1 Introduction

A common task in processing large matrices is element-wise sparsification. Given an n X n matrix
A, the goal is to choose a small subset S of coordinates in [n] x [n], where [n] = {1,2,...,n}, such
that ||[A — A oS||s is small, where o denotes the Hadamard (entrywise) product and S is a sampling
matrix which equals r‘—;‘ on the entries in S, but is 0 otherwise. As in previous work, we consider

. def B . . .
operator norm error, where for a matrix B, ||B|l2 = supycgn % Elementwise sparsification

has been widely studied [AMO7, DZ11, AKL13, BKKS21] and has been used as a primitive in
several applications, including low-rank approximation [AMO07, Kunl5], approximate eigenvector
computation [AHKO0G, AMO7]|, semi-definite programming [AHIK05, d’A11]|, and matrix completion
[CR12a, CT10]. Without loss of generality, one can scale the entries of A so that the maximum
entry is bounded by 1 in absolute value, and we refer to such matrices as having bounded entries.
With this normalization, it will be convenient to consider the task of finding a small subset S with
corresponding sampling matrix S such that, for a given error parameter € € (0, 1),

|A—AoS|, <e n. (1)

One can achieve the error guarantee in (1) for any bounded entry matrix A with high probability
by uniformly sampling a set of O <"l:#> entries of A. See, e.g., Theorem 1 of [DZ11].! However,

there are no known lower bounds for this problem, even if we consider the harder task of universal
sparsification, which requires finding a fixed subset S such that (1) holds simultaneously for every
bounded entry matriz A. The existence of such a fixed subset S corresponds to the existence of
a deterministic sublinear query algorithm that constructs a spectral approximation to any A by
forming A oS (which requires reading just |S| entries of A). As we will see, such algorithms have
applications to fast deterministic algorithms for linear algebraic computation. We ask:

What is the size of the smallest set S that achieves (1) simultaneously for every bounded entry
matrix A?

Previously, no bound on the size of S better than the trivial O(n?) was known.

1.1 Our Results

Our first result answers the above question for the class of symmetric positive semidefinite (PSD)
matrices, i.e., those matrices A for which x’Ax > 0 for all vectors x € R", or equivalently,
whose eigenvalues are all non-negative. PSD matrices arise e.g., as covariance matrices, kernel
similarity matrices, and graph Laplacians, and significant work has considered efficient algorithms
for approximating their properties [WLZ16, CW17, XG10, Chall, ACK"16, MMMW21, SKO21].
We summarize our results below and give a comparison to previous work in Table 1.1.

We show that there exists a set S with |S| = O(n/e?) that achieves (1) simultaneously for all

bounded entry PSD matrices. This improves the best known randomized bound of O <%) for
algorithms which only succeed on a fixed matriz with high probability.

Theorem 1 (Universal Sparsifiers for PSD Matrices). There exists a subset S of s = O(n/e?)
entries of [n] x [n] such that, letting S € R™™"™ have S;; = "?2 for (i,5) € S and S;; = 0 otherwise,
simultaneously for all PSD matrices A € R™ "™ with bounded entries, |A — A o S|, < en.

!To apply Thm. 1 of [DZ11] we first rescale A so that all entries are < 1/n in magnitude, and note that ||A[|3 < 1
in this case. Thus, they sample s = O ("l:#) entries. Rescaling their error guarantee analogously gives (1).



Matrix | Approx. | Randomized Randomized Deterministic Deterministic
Type Type Error Sample Complexity Error Sample Complexity
<
kﬂ‘sooPng sparse en O(n/e?) (Thms 1, 3) en O(n/€e?) (Thms 1, 3)
O (mlogn) [ANIO7 O (os (/9 (Thm 4
[Allc <1 | sparse en ( < ) | L emax(n, ||All1) ( < ) (Thm 4)
Q(n/e?) (Thm 3) Q(n/e*) (Thm 6)
1Al < 1 O (22 ) (Thun 9)
AisPSD | AW en 0 (7" 1og€<1/€>) [MM17] en for A € {~1,0,1}"x"
Q(n/e) (Thm 10)
[A]loo <1 any en Q(n/e%) (Thm 11) emax(n, [[A|) Q(n/€e?) (Thm 7)

Table 1: Summary of results. Algorithms in the first two rows output a spectral approximation
that is sparse, as in (1). Our deterministic algorithms in this case follow directly from our universal
sparsification results. Algorithms in the last two rows can output an approximation of any form.

Theorem 1 can be viewed as a significant strengthening of a classic spectral graph expander
guarantee [Mar73, Alo86]; indeed, letting A = 1 be the all ones matrix, we have that if A oS
satisfies (1), then it matches the near-optimal spectral expansion of Ramanujan graphs, up to a
constant factor.” In fact, we prove Theorem 1 by proving a more general claim: that any matrix
S that sparsifies the all ones matrix also sparsifies every bounded entry PSD matrix. In particular,
Theorem 1 follows as a direct corollary of:

Theorem 2 (Spectral Expanders are Universal Sparsifiers for PSD Matrices). Let 1 € R™*™ be the
all ones matriz. Let S € R™™ be any matriz such that |1 — S|l2 < en. Then for any PSD matrix
A € R™™ with bounded entries, ||[A — A o S|z < en.

To prove Theorem 1 given Theorem 2, we let S be the edge set of a Ramanujan spectral
expander graph with degree d = O(1/¢?) and adjacency matrix G. We have s = nd = O(n/e?)

TL2 n

and S = %-G = 5G. Thus, the top eigenvector of S is the all ones vector with eigenvalue A\;(S) =
ZX\1(G) = n. All other eigenvalues are bounded by |X;(S)| = 2|\(G)| = O(% - Vd) = O(en).
Combined, after adjusting € by a constant factor, this shows that |1 — S||2 < en, as required.

Sparsity Lower Bound. We show that Theorem 1 is tight. Even if we only seek to approximate
the all ones matrix (rather than all bounded PSD matrices), S requires £2(n/e?) non-zero entries.

Theorem 3 (Sparsity Lower Bound — PSD Matrices). Let 1 € R™*"™ be the all-ones matriz. Then,
for any € € (0,1/2) with € > ¢/+/n for large enough constant ¢, any S € R™™ with |1 — S|l2 < en
must have (n/e?) nonzero entries.

Theorem 3 resolves an open question of [BKKS21], which asked whether a spectral approximation
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must have Q (w) non-zeros, where sr(A) = ||||i|||IF is the stable rank and ns(A) = max; :|:L.H1 ,
2 ‘12

where a; is the i*" row of A, is the ‘numerical sparsity’. They give a lower bound when sr(A) = O(n)
but ask if this can be extended to sr(A) = o(n). For the all ones matrix, sr(A) = 1 and ns(A) = n,
and so Theorem 3 resolves this question. Further, by applying the theorem to a block diagonal
matrix with r disjoint k& x k blocks of all ones, we resolve the question for integer sr(A) and ns(A).

2If we let d = s/n = O(1/€®) be the average number of entries per row of S, and let G € {0, 1}"*" be the binary
adjacency matrix of the graph with edges in S (i.e., G = % -S), then by (1) applied with A =1, A\i(G) = -5\ (S) =
FHA1(108) = H(M(1) £ en) = O(s/n) = O(d), while for i > 1, [M(G)| < ZF(JAi(1)] +en) < ed = o(Vd).



Non-PSD Matrices. The techniques used to prove Theorem 1 also give nearly tight universal
sparsification bounds for general bounded entry (not necessarily PSD) matrices. In this case, we

4
show that a subset S of O <"10g674(1/5)> entries suffices to achieve spectral norm error depending on

the nuclear norm ||Al];, which is the sum of singular values of A.

Theorem 4 (Universal Sparsifiers for Non-PSD Matrices). There exists a subset S of s =
4
O (%) entries of [n] x [n] such that, letting S € R™*™ have S;; = "?2 for (i,j) € S and

Sij = 0 otherwise, simultaneously for all symmetric matrices A € R™ ™ with bounded entries,
A — AoSll, <e-max(n, [Af). (2)

Note that for a bounded entry PSD matrix A, we have ||A|; = tr(A) = O(n) and so for PSD
matrices, (1) and (2) are equivalent.

Remark 1. Although Theorem 4 is stated for symmetric A, one can first symmetrize A by con-
sidering B = [0, A; AT,O]. Then for any z = (x,y) € R*, we have z'Bz = 2xT Ay, and
IBll1 = 2||A|l1, so applying the above theorem to B gives us a spectral approzimation to A.

As with Theorem 1, Theorem 4 follows from a general claim which shows that sparsifying the
all ones matrix to small enough error suffices to sparsify any bounded entry symmetric matrix.

Theorem 5 (Spectral Expanders are Universal Sparsifiers for Non-PSD Matrices). Let 1 € R™*™ be
the all ones matriz. Let S € R™ "™ be any matriz such that ||1—S|j2 < clogi% for some large enough

constant c. Then for any symmetric A € R™ "™ with bounded entries, ||A—AoS|2 < e-max(n, ||Al|1).

Theorem 4 follows by applying Theorem 5 where S is taken to be the scaled adjacency matrix
of a Ramanujan expander graph with degree d = O(log*(1/e)/¢*).

Lower Bounds for Non-PSD Matrices. We can prove that Theorem 4 is tight up to loga-
rithmic factors. Our lower bound holds even for the easier problem of top singular value (spectral
norm) approximation and against a more general class of algorithms, which non-adaptively and
deterministically query entries of the input matrix. The idea is simple: since the entries read by the
deterministic algorithm are fixed, we can construct two very different input instances on which the
algorithm behaves identically: one which is the all ones matrix, and the other which is one only on
the entries read by the algorithm and zero everywhere else. We show that if the number of entries
s that are read is too small, the top singular value of the second instance is significantly smaller
than the first (as compared to their Schatten-1 norms), which violates the desired error bound of
e -max(n, ||A|l1). To obtain a tight bound, we apply the above construction on just a subset of the
rows of the matrix on which the algorithm does not read too many entries. Here, we critically use
non-adaptivity, as this subset of rows can be fixed, independent of the input instance.

Theorem 6 (Non-Adaptive Query Lower Bound for Deterministic Spectral Approximation of
Non-PSD Matrices). For any € € (1/n'/*,1/4), any deterministic algorithm that queries entries of
a bounded entry matriz A non-adaptively and outputs o1 satisfying |o1(A) —o1] < e-max(n, ||A|1)
must read at least Q (%) entries. Here o1(A) = ||A|l2 is the largest singular value of A.

Observe that Theorem 4 implies the existence of a non-adaptive deterministic algorithm for the

4
above problem with query complexity O (TLlogT(l/e)) , since A oS can be computed with non-adaptive

determinstic queries and since ||A — A o S||2 < € - max(n, |[A|]1) implies via Weyl’s inequality that



|o1(A) — 01(A 0 S)| < e-max(n,||A|l1). Also recall that while Theorem 4 is stated for bounded
entry symmetric matrices, it applies to general (possibly asymmetric) matrices by Remark 1.
Note that Theorem 6 establishes a separation between universal sparsifiers and randomized

sparsification since randomly sampling O <"—l§’§ﬂ> entries of any A € R™*"™ achieves error en by

[DZ11]. In fact, for the problem of just approximating o1(A) to error +en, randomized algorithms
using just poly(logn, 1/€) samples are known [BCJ20, BDD23|. Theorem 6 shows that universal
sparsifiers for general bounded entry matrices (and in fact all non-adaptive deterministic algorithms
for spectral approximation) require a worse 1/e* dependence and error bound of e-max(n, [|A[|;). We
can extend Theorem 6 to apply to general deterministic algorithms that query A possibly adaptively,
however the lower bound weakens to €2(n/e?). Understanding if this gap between adaptive and non-
adaptive query deterministic algorithms is real is an interesting open question.

Theorem 7 (Adaptive Query Lower Bound for Deterministic Spectral Approximation of Non-PSD
Matrices). For any € € (1/y/n,1/4), any deterministic algorithm that queries entries of a bounded
entry matriz A (possibly adaptively) and outputs o1 satisfying |o1(A) — 1| < e-max(n, ||Al|1) must
read at least Q (%) entries. Here o1(A) = ||A|l2 is the largest singular value of A.

1.1.1 Applications to Fast Deterministic Algorithms for Linear Algebra

Given sampling matrix S such that || A—AoS||2 < e-max(n,||Al|1), one can use AoS to approximate
various linear algebraic properties of A. For example, by Weyl’s inequality [Wey 12|, the eigenvalues
of A oS approximate those of A up to additive error +e - max(n,||Al/1). Thus, our universal
sparsification results (Theorems 1, 4) immediately give the first known deterministic algorithms
for approximating the eigenspectrum of a bounded entry matrix up to small additive error with
sublinear entrywise query complexity. Previously, only randomized sublinear query algorithms were
known [WS00, MM17, MW17, TYUC17, BCJ20, BDD+23].

Further, our results yield the first deterministic algorithms for several problems that run in o(n®)
time, where w ~ 2.373 is the matrix multiplication exponent [AW21]. Consider e.g., approximating
the top singular value o1(A) (the spectral norm) of A. A (1 + e)-relative error approximation
can be computed in O(n?/\/€) time with high probability using O(log(n/€)/\/€) iterations of the
Lanczos method with a random initialization [KXW92, MM15]. This can be further accelerated e.g.,
via randomized entrywise sparsification [DZ11], allowing an additive +-en approximation to o1(A)
to be computed in O(n/ poly(e)) time. However, prior to our work, no fast deterministic algorithms
were known, even with coarse approximation guarantees. The fastest approach was just to perform
a full SVD of A, requiring ©(n“) time. In fact, this gap between randomized and deterministic
methods exists for many linear algebraic problems, and resolving it is a central open question.

By combining our universal sparsification results with a derandomized power method that uses a
full subspace of vectors for initalization, and iteratively approximates the singular values of AoS via
‘deflation’ [Saall|, we give to the best of our knowledge, the first o(n*) time deterministic algorithm
for approximating all singular values of a bounded entry matrix A to small additive error.

Theorem 8 (Deterministic Singular Value Approximation). Let A € R™ ™ be a bounded entry

symmetric matriz with singular values o1(A) > 02(A) > ... > 0,(A). Then there exists a deter-
ministic algorithm that, given € € (0,1), reads O(E%) entries of A, runs in O(%f) time, and returns
singular value approzimations o1(A),...,o,(A) satisfying for all i,

|0i(A) = i(A)] < e max(n, | Al}1).

Further, for all i < 1]/e, the algorithm returns a unit vector z; such that |||Azills — 0;(A)] <
e - max(n, |[All1) and the returned vectors are all mutually orthogonal.



The runtime of Theorem 8 is stated assuming we have already constructed a sampling matrix
S that samples O(E%) entries of A and satisfies Theorem 4. It is well known that, if we let S be the
adjacency matrix of a Ramanujan expander graph, it can indeed be constructed deterministically
in O(n/poly(e)) time [Alo21]. This is lower order as compared to the runtime of O (2—82) unless
€ < 1/n¢ for some large enough constant c¢. Further, for a fixed input size n (and in fact, for a range
of input sizes), S needs to be constructed only once — see Section 2 for further discussion.

Recall that if we further assume A to be PSD, then the error in Theorem 8 is bounded by
e-max(n, ||A]1) < en. The sample complexity and runtime also improve by poly(1/¢) factors due to
the tighter universal sparisfier bound for PSD matrices given in Theorem 1. Also observe that while
Theorem 8 gives additive error approximations to all of A’s singular values, these approximations
are only meaningful for singular values larger than e - max(n, ||A|1), of which there are at most
1/e. Similar additive error guarantees have been given using randomized algorithms [BDD 23,
WS23]. Related bounds have also been studied in work on randomized methods for spectral density
estimation [WWAF06, LSY 16, BKM22].

We further leverage Theorem 8 to give the first o(n*) time deterministic algorithm for testing if a
bounded entry matrix is either PSD or has at least one large negative eigenvalue < —e-max(n, [|A||1).
Recent work has focused on optimal randomized methods for this problem [BCJ20, NSW22|. We
also show that, under the assumption that o1(A) > a - max(n, [[A|;) for some a € (0,1), one can

deterministically compute &1(A) with |o1(A) — 51(A)| < € - max(n, ||A;) in O (%&ée)) time.
That is, one can compute a highly accurate approximation to the top singular value in roughly
linear time in the input matrix size. Again, this is the first o(n“) time deterministic algorithm for
this problem, and matches the runtime of the best known randomized methods for high accuracy

top singular value computation, up to a poly(log(n,1/«)) factor.

1.1.2 Beyond Sparse Approximations

It is natural ask if it is possible to achieve better than O(n/e€?) sample complexity for spectral
approximation by using an algorithm that does not output a sparse approximation to A, but can
output more general data structures, allowing it to avoid the sparsity lower bound of Theorem 3.
Theorems 6 and 7 already rule this out for both non-adaptive and adaptive deterministic algorithms
for non-PSD matrices. However, it is known that this s possible with randomized algorithms for
PSD matrices. For example, following [AKM " 17], one can apply Theorem 3 of [MM17] with error
parameter A = en. Observing that all ridge leverage score sampling probabilities are bounded by
1/X (e.g., via Lemma 6 of the same paper and the bounded entry assumption), one can show that
a Nystrom approximation A based on O(1/€) uniformly sampled columns satisfies [[A — Al[z < en
with high probability. Further A can be constructed by reading just O(1/€) columns and thus
5(71/ €) entries of A, giving a linear rather than quadratic dependence on 1/e as compared to
Theorem 1. Unfortunately, derandomizing such a column-sampling-based approach seems difficult
— any deterministic algorithm must read entries in Q(n) columns of A, as otherwise it will fail when
A is entirely supported on the unread columns.

Nevertheless, in the special case where A is PSD and has entries in {—1,0,1 , we show that
a spectral approximation can be obtained by deterministically reading just 5(71 /€) entries of A.

}nxn

Theorem 9 (Deterministic Spectral Approximation of Binary Magnitude PSD Matrices). Let A €
{=1,0,1}"*"™ be PSD. Then for any € € (0,1), there exists a deterministic algorithm which reads

(0] (nlign> entries of A and returns PSD A € {—1,0,1}"™" such that | A — Al < en.

Using Turén’s theorem, we show that Theorem 9 is information theoretically optimal up to a
log n factor, even for the potentially much easier problem of eigenvalue approximation:



Theorem 10 (Deterministic Spectral Approximation of Binary PSD Matrices — Lower Bound). Let
A €{0,1}™*™ be PSD. Then for any € € (0,1), any possibly adaptive deterministic algorithm which
approzimates all eigenvalues of A up to en additive error must read €2 (%) entries of A.

An interesting open question is if 5(71 /€) sample complexity can be achieved for deterministic
spectral approximation of any bounded entry PSD matriz, with a matrix A of any form, matching
what is known for randomized algorithms.

Finally, we show that the PSD assumption is critical to achieve o(n/e?) query complexity,
for both randomized and deterministic algorithms. Without this assumption, (n/e?) queries are
required, even to achieve (1) with constant probability for a single input A. For bounded entry
matrices, the randomized element-wise sparsification algorithms of [AM07, DZ11] read just O(n/€?)
entries of A, and so our lower bounds are the first to show near-optimality of the number of entries
read of these algorithms, which may be of independent interest.

Theorem 11 (Lower Bound for Randomized Spectral Approximation). Any randomized algorithm
that (possibly adaptively) reads entries of a binary matriz A € {0, 1}"*"™ to construct a data structure
f:R" x R™ — R that, for e € (0,1) satisfies with probability at least 99/100,

|f(x,y) —xT Ay| < en, for all unit x,y € R",

must read §2 (EILg) entries of A in the worst case, provided € = ) <h\)/g£),

1.1.3 Relation to Spectral Graph Sparsification

We remark that while our work focuses on general bounded entry symmetric (PSD) matrices, when
A is a PSD graph Laplacian matrix, it is possible to construct a sparsifier A with just O(n/e?)
entries, that achieves a relative error spectral approximation guarantee that can be much stronger
than the additive error guarantee of (1) [BSST13]. In particular, one can achieve (1 — €)x” Ax <
xTAx < (1 + e)xT Ax for all x € R". To achieve such a guarantee however, it is not hard to see
that the set of entries sampled in A must depend on A, and cannot be universal. Fast randomized
algorithms for constructing A have been studied extensively [ST04, SSO8, BSST13]. Recent work
has also made progress towards developing fast deterministic algorithms [CGL™20].

1.2 Road Map

We introduce notation in Section 2. In Section 3, we prove our main universal sparsification results
for PSD and non-PSD matrices (Theorems 1 and 4). In Section 4 we prove nearly matching lower
bounds (Theorems 3 and 6). We also prove Theorems 7 and 11 which give lower bounds for general
deterministic (possibly adaptive) spectral approximation algorithms, and general randomized algo-
rithms, respectively. In Section 5, we show how to give tighter deterministic spectral approximation
results for PSD matrices with entries in {—1,0,1}. Finally, in Section 6, we discuss applications of
our results to fast deterministic algorithms for singular value and vector approximation.

2 Notation and Preliminaries

We start by defining notation used throughout. For any integer n, let [n] denote the set {1,2,...,n}.

Matrices and Vectors. Matrices are represented with bold uppercase literals, e.g., A. Vectors are
represented with bold lowercase literals, e.g., x. 1 and 0 denote all ones (resp. all zeros) matrices



or vectors. The identity matrix is denoted by I. The size of these matrices vary based on their
applications. For a vector x, x(j) denotes its j** entry. For a matrix A, A;; denotes the entry in
the i*" row and ;' column. For a vector x (or matrix A), x (resp. AT) denotes its transpose.
For two matrices A, B of the same size, A o B denotes the entrywise (Hadamard) product.

Matrix Norms and Properties. For a vector x, ||x||2 denotes its Euclidean norm and ||x|[; =
> |1x(i)| denotes its £; norm. We denote the eigenvalues of a symmetric matrix A as A;(A) >
A2(A) > ... > A\ (A) in decreasing order. A symmetric matrix is positive semidefinite (PSD) if

Ai > 0 for all ¢ € [n]. The singular values of a matrix A are denoted as 01(A) > 02(A) > ... >
[Ax]2
[1x[l2

|A]lo denote the largest magnitude of an entry, | A[r = (3, ; A%)Y/? denote the Frobenius norm,
and ||Aljy = >_7, 0;(A) denote the Schatten-1 norm (also called the trace norm or nuclear norm).

on(A) > 0 in decreasing order. We let |Alls = max, = 01(A) denote the spectral norm,

Expander Graphs. Our universal sparsifier constructions are based on Ramanujan expander
graphs [LPS88, Mar73, Alo&6], defined below.

Definition 2.1 (Ramanujan Expander Graphs [LPS88]). Let G be a connected d-reqular, unweighted
and undirected graph on n vertices. Let G € {0,1}™*™ be the adjacency matriz corresponding to G
and \; be its it eigenvalue, such that \y > Xa > ... > \,. Then G is called a Ramanujan graph if:

Nl <2vVd—1, foralli>1.

Equivalently, letting 1 be the n x n all ones matriz, |1 — 5Gl2 < 5 -2v/d — 1.

Efficient Construction of Ramanujan graphs. Significant work has studied efficient construc-
tions for Ramanujan Graphs [Mar73, LPS88, Mor94, Cohl16], and nearly linear time constructions,
called strongly explicit constructions [Alo21], have been proposed. E.g., by Proposition 1.1 of [Alo21]
we can reconstruct for any n and d, a graph on n(1+ o(1)) vertices with second eigenvalue at most
(24 0(1))V/d in O(nd+ poly(d)) time. Additionally, in our applications, the expander just needs to
be constructed once and can then be used for any input of size n. In fact, a single expander can be
used for a range of input sizes, by the argument below.

Though the size of the expander above is (1 4+ o(1))n instead of exactly n, and its expansion
does not exactly hit the tight Ramanujan bound of 24/d — 1, we can let our input matrix A be the
top m x n principal submatrix of a slightly larger n(1 + o(1)) X n(1 + o(1)) matrix A’ that is zero
everywhere else. Then, the top n x n principal submatrix of a spectral approximation to A’ is a
spectral approximation to A. Thus, obtaining a spectral approximation to A’ via a Ramanujan
sparsifier on n(1+o0(1)) vertices suffices. Similarly, in our applications, we can adjust d = 1/ poly/(e)

by at most a constant factor to account for the (2+o0(1))v/d bound on the second eigenvalue, rather
than the tight Ramanujan bound of 2v/d — 1.

3 Universal Sparsifier Upper Bounds

We now prove our main results on universal sparsifiers for PSD matrices (Theorem 1) and general
symmetric matrices (Theorem 4). Both theorems follow from general reductions which show that
any sampling matrix S that sparsifies the all ones matrix to sufficient accuracy (i.e., is a sufficiently
good spectral expander) yields a universal sparsifier. We prove the reduction for the PSD case in
Section 3.1, and then extend it to the non-PSD case in Section 3.2.



3.1 Universal Sparsifiers for PSD Matrices
In the PSD case, we prove the following:

Theorem 2 (Spectral Expanders are Universal Sparsifiers for PSD Matrices). Let 1 € R™*™ be the
all ones matriz. Let S € R™™ be any matriz such that |1 — S|l2 < en. Then for any PSD matrix
A € R™™ with bounded entries, ||[A — A o S|z < en.

Theorem 1 follows directly from Theorem 2 by letting S be the scaled adjacency matrix of a
Ramanujan expander graph with degree d = O(1/€?) (Definition 2.1).

Proof of Theorem 2. To prove the theorem it suffices to show that for any x € R™ with [|x|2 = 1,
IxTAx —xT(AoS)x| < en Let vi,...,v, and A1,..., A\, be the eigenvectors and eigenvalues of A
so that A =3"" | A;v;v; . Then we can expand out thls eITor as:

n n
E N xTvivix — E AixT (vivl 0 8)x)
i=1 i=1

Z AixLvivlo (1 —8))x
i=1

IxTAx — xT(A 0 S)x| =

where we use that for any matrix M, M o1 = M. Now observe that if we let D; € R™*" be a
diagonal matrix with the entries of v; on its diagonal, then we can write v;v! o(1—S) = D;(1-S)D
Plugging this back in we have:

IxTAx — xT (Ao S)x Z)\XD (1-S)D;x

< Z&Hl — S|z - x"Dix
=1

<en- Z )\Z’XTD?X. (3)
i=1

In the second line we use that A is PSD and thus )\; is non-negative for all i. We also use that
IxTD;(1-S)D;x| < [|[1—S|2-|Dix||3 = |1 —S|j2-xD?x. In the third line we bound [|1—S||2 < en
using the assumption of the theorem statement.

Finally, writing x? D?x = Z?:l x(7)?v;(5)? and plugging back into (3), we have:

IxTAx — xT(AoS)x| <en- ZZ)\X
i=1 j=1

=en- > x()? Y Avi(j)?
j=1 i=1

n
= en- Y x(j)°Ay;
j=1
< en,

where in the last step we use that A;; <1 by our bounded entry assumption, and that x is a unit
vector. This completes the theorem. O



Remark 2. Note that we can state a potentially stronger bound for Theorem 2 by observing that
in the second to last step, |xT Ax —xT (A o S)x| < en - P x(j)?A;; = en - xTDx, where D is a
diagonal matrix containing the diagonal elements of A. That is, letting M < N denote that N — M
is PSD, we have the following spectral approximation bound: —en-D < A — (A oS) <en-D.

3.2 Universal Sparsifiers for Non-PSD Matrices

We next extend the above approach to give a similar reduction for universal sparsification of general
symmetric matrices.

Theorem 5 (Spectral Expanders are Universal Sparsifiers for Non-PSD Matrices). Let 1 € R™*™ be

the all ones matriz. Let S € R™*™ be any matriz such that [|[1—S|j2 < ) for some large enough

52n
clog?(1/e
constant c. Then for any symmetric A € R™ "™ with bounded entries, ||A—AoS|2 < e-max(n, ||Al|1).

Observe that as compared to the PSD case (Theorem 2), here we require that S gives a stronger
approximation to the all ones matrix. Theorem 4 follows directly by letting S be the scaled adjacency

matrix of a Ramanujan expander graph with degree d = O (logt#) (Definition 2.1).

Proof of Theorem 5. To prove the theorem, it suffices to show that for any x € R™ with ||x|2 = 1,

IxTAx — xT(A o S)x| < e-max(n,|All1). We will split the entries of x into level sets according

to their magnitude. In particular, let € = m and let £ = logy(1/€). Then we can write

X = Zfié x;, such that for any t € [n]:

-

x(t) ifie{1,2,...,¢} and |x
x(t) if i =0 and |x(t)| € [0,
x(t) ifi=¢+1and [x(t)| €

—~

e (s 3
|

]

-
5

/N

0 otherwise.

Via triangle inequality, we have:

/41
‘XTAX—XT(AOS)X‘ < Z !x?Ax—x?(AoS)x! . (5)
=0
We will bound each term in (5) by O(€ - max(n, ||Al1)) = O (%) =0 (%)
Summing over all £+ 2 terms we achieve a final bound of O(e - max(n,||All1)). The theorem then
follows by adjusting € by a constant factor.
Fixing i € {0,..., ¢}, let x1(t) = x(t) if |x(¢)] < ﬁ and xz,(t) = 0 otherwise. Let xpg(t) =
x(t) if |x(t)] > ﬁ and xg(t) = 0 otherwise. In the edge case, for i = ¢ + 1, let xg = x and
x7, = 0. Writing x = xg + x1, and applying triangle inequality, we can bound:

‘XZTAX —xI'(Ao S)x| < !xiTAxL —xF(Ao S)xL|+ !xZTAxH —xI'(Ao S)xr| . (6)

In the following, we separately bound the two terms in (6). Roughly, since x, has relatively small
entries and thus is relatively well spread, we will be able to show, using a similar approach to
Theorem 2, that the first term is small since sparsification with S approximately preserves XZTAXL.
On the otherhand, since xz has relatively large entries and thus is relatively sparse, we can show
that the second term is small since x! Axy is small (and x! (A o S)xy cannot be much larger).



Term 1: Well-Spread Vectors. We start by bounding ‘XZTAXL — XZT(A o S)XL|. Let vi,...,vy,
and A1, ..., \, be the eigenvectors and eigenvalues of A so that A = >}, /\kvkvg. Then we write:

\XTAXL - X; (Ao S)xr| = Z)\k x vkvka — Z)\kx vkvk o S)xr)
k=1 k=1

< Z |Ak| - ‘x?[vkvg o(1-— S)]XL‘ .
k=1

As in the proof of Theorem 2, if we let Dy € R™*™ be a diagonal matrix with the entries of vy
on its diagonal, then we have vivi o (1 — S) = Dy (1 — S)Dy. Further, x! Dy (1 — S)Dyx =
ngi(l — S)Dyvg, where D;, Dy, are diagonal with the entries of x; and x7 on their diagonals.
Plugging this back in we have:

x{ Ax —x] (AoS)xs| <D |\l [viDi(1 - 8)DLv|
k=1

n
<1 =Sz > Ikl IvE 2 IDsllz - IDLllz - [[vall2
k=1

<[t =S8ll2- > x| - IDilla - |Del2. (7)
k=1
21

Finally, observe that by deﬁnition, for any i € {0,...,0}, |Dill2 = max,cp [xi(t)] < 7 and

2lef Thus, |Dy|j2 - |Drll2 < 2. Fori=£¢+ 1, x;, = 0 by definition
and so, the bound [|D;|[2 - [Dll2 < 2 holds vacuously.

DLz = maxepy [xz(t)] <

Also, by the assumption of the theorem, [|1 — S|z < < &n. Plugging back into (7),

clog (1/ )
x] Ax —x] (AoS)x| <&n- = 1Al < €-JAfL, (8)
as required.
Term 2: Sparse Vectors. We next bound the second term of ( ‘XTAXH — X (A oS xH| We

write X; = X; p+X; N, where X; p and X;, N contain its positive and non—posmve entries respectively.
Similarly, write xg = xg p + xpg,n. We can then bound via triangle inequality:

IxIAxpy — xT (A o S)xy| < [xF Axp| + |xF (A o S)xy|
< [xI Axp| + [xLp(A o S)xp p| + [xLp(A o S)xp N
+ x5 (A o S)xp p| + |x] (A 0 S)xp | (9)
We will bound each term in (9) by O(én), giving that overall |x} Axy — x7 (A o S)xy| = O(én).

We first observe that
T
Ix; Axp| < [xilli - Ixmll - Ao

By assumption ||A|x < 1. Further, for i € {1,...,¢ + 1}, since ]xz( )| > 2 for all t and since

f
. For ¢ = 0, this bound holds

[xi][2 < 1, x; has at most 5= non-zero entrles Thus, ||x;]1 <

21

trivially since ||x;||1 < vn - [|xi]l2 <

10



Similarly, for i € {0,.../¢}, since ||xg|j2 < 1 and since |xg(t)| > ﬁ by definition, xz has at
most 2% - £2n non-zero entries. So ||xg|j1 < 2'€-+y/n. For i = £+ 1 = logy(1/€) + 1 this bound holds
trivially since ||xg|j1 < /7 - ||xgll2 < 2'€- /n. Putting these all together, we have

nooi _
i Asca] < [l - el - A lle < 2% -2 Vi = 2n (10)
We next bound ]xZP(A o S)xp p|. Since x; p and xp p are both all positive vectors, and since by
assumption ||A] <1,

%7 p(A 0 S)xp,p| < |x] pSxp,p|
< [x{ p1xp p| + x| p(1 — S)xp,p|

< kxiplly - lixmpll - oo + [1%ipll2 - Ixaplz - 1 =Sl (11)

Following the same argument used to show (10), ||x; p||1 - |xm,p|l1 - [|1|lc < 2€n. Further, since by

Clogﬁ% < én< én, and since x; p and xpy p both
are at most unit norm, ||x; p|l2 - [|xm.pll2 - |1 — S||2 < €n. Thus, plugging back into (11), we have
|xI'5(A o S)xp p| < 3en. Identical bounds will hold for the remaining three terms of (9), since for
eaéh, the two vectors in the quadratic form have entries that either always match or never match

on sign. Plugging these bounds and (10) back into (9), we obtain

the assumption of the theorem, ||[1 — S|l <

IxIAxpy — x7 (A o S)xy| < 2én + 4 - 3en < 14én, (12)

which completes the required bound in the sparse case.

Concluding the Proof. We finally plug our bounds for the sparse case (12) and the well-spread
case (8) into (6) to obtain:

!x;TFAx —xI'(Ao S)x| < 14én + €||A |y < 15¢- max(n, [|A[).

Plugging this bound into (5) gives that |x” Ax—x" (AoS)x| = O(e-max(n, ||Al|1)), which completes
the theorem after adjusting € by a constant factor. O

4 Spectral Approximation Lower Bounds

We now show that our universal sparsifier upper bounds for both PSD matrices (Theorem 1) and
non-PSD matrices (Theorem 4) are nearly tight. We also give Q(n/€?) query lower bounds against
general deterministic (possibly adaptive) spectral approximation algorithms (Theorem 7) and gen-
eral randomized spectral approximation algorithms (Theorem 11).

4.1 Sparsity Lower Bound for PSD Matrices

We first prove that every matrix which is an en spectral approximation to the all-ones matrix must
have Q(e%) non-zero entries. This shows that Theorem 1 is optimal up to constant factors, even for
algorithms that sparsify just a single bounded entry PSD matrix. The idea of the lower bound is
simple: if a matrix S spectrally approximates the all-ones matrix, its entries must sum to (n?).
Thus, if S has just s non-zero entries, it must have Frobenius norm at least (n?/y/s). Unless
s = Q(n/e?), this Frobenius norm is too large for S to be a en-spectral approximation of the all
ones matrix (which has ||1]|r = n.)

11



Theorem 3 (Sparsity Lower Bound — PSD Matrices). Let 1 € R™*"™ be the all-ones matriz. Then,
for any € € (0,1/2) with € > ¢/\/n for large enough constant ¢, any S € R™*™ with |1 — S||2 < en
must have Q(n/e?) nonzero entries.

Proof. 1f we let x € R™ be the all ones vector, then since [|x|3 = n, |1 — S||2 < en implies that
|xTSx — xT1x| = [xTSx — n?| < en?. This in turn implies:

2
n
T Sij2n2—6n227,

1,j€[n] i,j€n]

where the last inequality follows from the assumption that € < % If S has s non-zero entries, since

>_ijeln) 1Sijl is the £1-norm of the entries, and [|S||F is the fo-norm of the entries, we conclude by

{1 — {3 norm equivalence that ||S||z > % Zz’,je[n

1Ss5] > ’:/_ Therefore, by the triangle inequality,
7’L2

>_
2\/ e Ays

as long as s < %= so that \[ > 2n. Now, using that [|A|% =Y., 02(A) <n-||A]j3, we have:

2 4 3 3/2
n n n n
I-Slr2 2 = I1-SIF2 1 = [1-SB2 1 — [1-Sh2 ]~

4y/s 44/s

By our assumption that |1 — S||2 < en, this means that s = (2 (6%), concluding the theorem. O

11—=S[lr>|Sl|lr—1]|Fr =

4.2 Lower Bounds for Deterministic Approximation of Non-PSD Matrices

We next show that our universal sparsification bound for non-PSD matrices (Theorem 4) is tight
up to a log4(1 /€) factor. Our lower bound holds even for the easier problem of top singular value
(spectral norm) approximation and against a more general class of algorithms, which non-adaptively
and deterministically query entries of the input matrix. We show how to extend the lower bound
to possibly adaptive deterministic algorithms in Theorem 7, but with a 1/€? factor loss.

Theorem 6 (Non-Adaptive Query Lower Bound for Deterministic Spectral Approximation of
Non-PSD Matrices). For any € € (1/n1/4, 1/4), any deterministic algorithm that queries entries of
a bounded entry matriz A non-adaptively and outputs o1 satisfying |o1(A) —o1] < e-max(n, ||A|1)
must read at least Q (%) entries. Here o1(A) = ||Al|2 is the largest singular value of A.

Proof. Assume that we have a deterministic algorithm .4 that non-adaptively reads s entries of any
bounded symmetric matrix A and outputs ; with |01 (A) — 01| < emax(n,||Al/1). Assume for the
sake of contradiction that s < &t for some sufficiently small constant c.

Let T C [n] be a set of n?/2/s'/2 rows on which A reads at most /ns entries. Such a subset

must exist since the average number of entries read in any set of n3/? / sY/2 rows is 1;2 n- n2 = /ns.

Let 17 be the matrix which is 1 on all the rows in T and zero everywhere else Let St be the
matrix which matches 17 on all entries, except is 0 on any entry in the rows of T' that is not read
by the algorithm A. Observe that A reads the same entries (all ones) and thus outputs the same
approximation o1 for 17 and Sp. We now bound the allowed error of this approximation. 17 is

rank-1 and so:
n5/4
17l = o1(17) = [[1r][F = Y

12



We have ¢1(S7) < ||St|lr < n'/*s'/* since St has just /ns entries set to 1 — the entries that A
reads in the rows of 7. Using that S is supported only on the n3/2 / s'/2 rows of T', St has rank at
most n%/2/s'/2. Thus, we can bound:

3/4
7’L
Szl < ISzllF < n.

nb/4 . .
Now, since |o1(17) — 01(S7| > // —n!/4s1/4| our algorithm incurs error on one of the two

input instances at least

sl/4 n5/4

5/4
n®/4 n1/4s1/4‘

>
2 T 4s1/47

where the inequality follows since, by assumption, s < ¢ for some small constant ¢ and € > #,

5/4
and thus n!/4s1/4 < 2"1//4

The above is a contradiction when € < 1/4 since the above error is at least 1/4 - ||17]]; and
further, for s < <, the error it at least ;57 > en > €+ [[Sy||1 if we set ¢ small enough. Thus, on at
least one of the two input instances the error exceeds €-max(n, ||Al|1), yielding a contradiction. [

We can prove a variant on Theorem 6 when the algorithm is allowed to make adaptive queries.
Here, our lower bound reduces to Q(n/€?), as we are not able to restrict our hard case to a small
set of rows of the input matrix. Closing the gap here — either by giving a stronger lower bound in
the adaptive case or giving an adaptive query deterministic algorithm that achieves 5(71 /€?) query
complexity is an interesting open question.

Theorem 7 (Adaptive Query Lower Bound for Deterministic Spectral Approximation of Non-PSD
Matrices). For any € € (1/y/n,1/4), any deterministic algorithm that queries entries of a bounded
entry matriz A (possibly adaptively) and outputs o1 satisfying |o1(A) — 1| < e-max(n, ||Al|1) must
read at least Q (%) entries. Here o01(A) = ||All is the largest singular value of A.

Proof. Assume that we have a deterministic algorithm A that reads at most s entries of any bounded
entry matrix A and outputs ¢; with |01(A) — 71| < €- max(n, ||A|]1). Assume for the sake of
contradiction that s < %7 for some sufficiently small constant c.

Let S be the set of entries that A reads when given the all ones matrix 1 as input. Let S be
the matrix which is one on every entry in S and zero elsewhere. Observe that A reads the same
entries and thus outputs the same approximation o7 for 1 and S. We now bound the allowed error
of this approximation. 1 is rank-1 and has ||1||; = 01(1) = n. We have 01(S) < [|S||r = /s and
can bound [|S]1 < v/n-||S|lFr < Vsn < 01/:", where the last bound follows from our assumption
that s < 5. Now, since |o1(1) — 01(S| > |n — /s|, our algorithm incurs an error on one of the two
input instances at least

[n—+sl o

2 4
where the inequality holds since, by assumption, s < £ for some small constant ¢ and € > +/2,
€ n
and thus /s < 3.

The above is a contradiction when € < 1/4 since the error mentioned above is at least 1/2-]|1]|; =
C1/277/
€

1/2 - max(n, ||1]l1). Furthermore, since we have bounded [|S|; < , the error is greater than
€ - max(n, ||S|l1) when ¢ < 1. Thus, on at least one of the two input instances the error exceeds
e - max(n, |[Al]1), yielding a contradiction. O
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4.3 Lower Bound for Randomized Approximation of Non-PSD Matrices

Finally, we prove Theorem 11, which gives an Q(n/€?) query lower bound for spectral approximation
of bounded entry matrices that holds even for randomized and adaptive algorithms that approximate
A in an arbitrary manner (not necessarily via sparsification). In particular, we show the lower bound
against algorithms that produce any data structure, f(-,-), that satisfies | f(x,y) — x! Ay| < en for
all unit norm x,y € R"

To prove this lower bound, we let A be a random matrix where each row has binary entries
that are either i.i.d. fair coin flips, or else are coin flips with bias +e. Each row is unbiased with
probability 1/2 and biased with probability 1/2. We show that an en-spectral approximation to
A suffices to identify for at least a 9/10 fraction of the rows, whether or not they are biased —
roughly since the approximation must preserve the fact that x Ax is large when x is supported
just on this biased set. Consider a communication problem in the blackboard model, in which each
of n? players can access just a single entry of A. It is known that if the n players corresponding
to a single row of the matrix want to identify with good probability whether or not it is biased,
they must communicate at least Q(1/€2) bits [SWXZ22]. Further, via a direct sum type argument,
we can show that for the n? players to identify the bias of a 9/10 fraction of the rows with good
probability, ©(n/e?) bits must be communicated. Le., at least Q(n/€?) of the players must read
their input bits, yielding our query complexity lower bound.

Note that there may be other proof approaches here, based on a direct sum of n 2-player Gap-
Hamming instances [BJKS04, CR12b, BGPWI13], but our argument is simple and already gives
optimal bounds.

Section Roadmap. In Section 4.3.1, we formally define the problem of identifying the bias of a
large fraction of A’s rows as the (e,n)-distributed detection problem (Definition 4.2). We prove a
Q(n/e?) query lower bound for this problem in Lemma 3.. Then, in Section 4.3.2, we prove Theorem
11 by showing a reduction from the distributed detection problem to spectral approximation.

4.3.1 Distributed Detection Lower Bound

Here, we define additional concepts and notation specific to this section. For random variables X,
Y and Z, let H(X) denote the entropy, H(X|Y) denote the conditional entropy, I(X;Y’) denote
mutual information, and I(X;Y|Z) denote conditional mutual information [Cov99]. We also use
some ideas from communication complexity. Namely, we work in the blackboard model, where T
parties communicate by posting messages to a public blackboard with access to public randomness
with unlimited rounds of adaptivity. Let IT € {0,1}* denote the transcript of a protocol posted
to the blackboard, and let |II| denote the length of a transcript. For a fixed protocol with fixed
probability of success, we may assume, without loss of generality, that IT has a fixed pre-determined
length (see Section 2.2 of [Roul6]).

Our query complexity lower bound for spectral approximation will follow from a reduction from
the following testing problem.

Definition 4.1. (e-Distributed detection problem [SWXZ22]).  For fized distributions pg =
Bernoulli(1/2) and p1 = Bernoulli(1/2 + €), with € € [0,3], let x € {0,1}" be a random vector
such that x1,...,X, are sampled i.i.d. from uy, for V€ {0,1}. The distributed detection problem
is the task of determining whether V.=10 or V =1, given the values of x.

This decision problem can be naturally interpreted as a communication problem in the black-
board model, where n players each have a single private bit corresponding to whether a unique entry
of x is zero or one. Prior work takes this view to lower bound the mutual information between the

14



transcript of a protocol which correctly solves the e-Distributed detection problem with constant
advantage and the sampled bits in x in the case V = 0.

Theorem 12. (Theorem 6 in [SWXZ22]). Let I1 be the transcript of a protocol that solves e-
distributed detection problem with probability 1 — p for any fixed choice of p € [0,0.5). Then

I(XGTV = 0) = Q(e72).

Next, we define the (e,n)-Distributed detection problem, which combines n length-n e-
Distributed detection problems into a single joint detection problem.

Definition 4.2. ((e,n)-Distributed detection problem) For v € {0,1}" distributed uniformly on the
Hamming cube, generate the matriz A € {0,1}"*™ such that if v; = 0, then all entries in the i-th
row of A are i.i.d. samples from Bernoulli(1/2). Otherwise, let all entries in the i-th row be sampled
from Bernoulli(1/2 + €). The (e, n)-Distributed detection problem is the task of recovering a vector
v € {0,1}" such that ||v —vl|j1 < 5.

Again, this vector recovery problem has a natural interpretation as a communication problem,
where n? players each hold a single bit of information that corresponds to whether a unique entry
of A is zero or one. Throughout this section, we will view Definition 4.2 as a decision problem
or communication problem as needed. Let IT be the transcript of a protocol that solves the (e,n)-
Distributed detection problem in the communication model introduced at the beginning of this
section. Lower bounding the mutual information between the transcript, II, and the private in-
formation held by the players (the entries of A) lower bounds the length of the transcript via the
following argument.

Lemma 1. If II is the transcript of a protocol that solves the (e,n)-Distributed detection problem

and I(A;II) > b, then |II] > %.

Proof. For random variables X,Y, I(X;Y) < min{H(X), H(Y)} [Cov99]. If a random variable X
has finite support, then H(X) < log|supp(X)|. Recall that |II| is the number of bits in the transcript
and hence log 2" =log2 - [II| > H(IT) > I(A;II) > b. Hence, we conclude the statement. O

Next, we lower bound the number of entries in the matrix A that must be observed to solve a
variant of the (e,n)-Distributed detection problem, where we aim to correctly decide each index of
v with constant success probability, rather than constructing v such that ||[v —v[j; < g5. There
are three sources of randomness in this problem: 1) the initial randomness in sampling v, 2) the
random variable A which depends on v, and 3) the random transcript IT which depends on A. When
necessary to avoid confusion, we will be explicit regarding which of these variables are considered

fixed and which are considered as random in probabilistic statements.

Lemma 2. Let A and v be distributed as in the (e,n)-Distributed detection problem. Any protocol
with transcript 11 that constructs a vector ¥ such that P(v; = ¥;) > <& for all i € [n], (where the
randomness is with respect to A, v, and I1), must observe (%) entries of A in the worst case.

Proof. Consider A as n? players each holding a single bit of information corresponding to whether
a unique entry of A is zero or one. Here, let IT € {0,1}* be the transcript of a protocol that satisfies
P(v; =v;) > % for every ¢ € [n]. Note that any algorithm which solves this problem by querying k
entries of A implies a protocol for the communication problem which communicates k bits, since the
algorithm could be simulated by (possibly adaptively) posting each queried bit to the blackboard.
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First, we lower bound the un-conditional mutual information between the private information in
the i-th row of A and the transcript II. Note that v; is one or zero with equal probability, therefore,

(A TTv;) = %I(Ai; Mvi = 0) + %I(Ai;mvi — 1) > %I(Ai; TMjv; = 0).

Next, we decompose the mutual information by its definition and the chain rule, then, we use the
fact that 0 < H(v;) < 1 and that conditioning can only decrease the entropy of a random variable.

(AT = I(A;TIv) + H(vi|Ag, 1) — H(vi|Aj) = H(v;|I) + H(v;)
= I(A;10) > I(A;I0)v,) — 2.

Observe that determining v; with the guarantee P(v; = v;) > % solves the e-Distributed detection
problem with probability at least 1%. Therefore, by Theorem 12 I(A;;I|v; = 0) = Q(e2), and so
we can use the previous two equations to lower bound for the conditional mutual information:

I(AGT) > JT(AGTllvi = 0) 2= (). (13)

Next, we lower bound the total mutual information between A and II. Mirroring the argument
of Lemma 1 in [SWXZ22]|, we use that, for independent random variables, entropy is additive and
conditional entropy is subadditive to lower bound the mutual information between A and II:

T{As}icpnp 1) = H{ A i) — H{Ad}icp [IT)

> S H(A) -~ H(ALT)
=1

S nasm -2 (%),
i=1

where the last step follows from (13). By Lemma 1, [TI| = Q(I({A;}ign); 1)) = Q(Z). Therefore,

every algorithm which samples entries of A to construct a vector v satisfying P(v; = v;) > 1% must
observe at least Q(Z) entries of A. O

We now have the necessary results to prove a lower bound on the number of entries of A that
must be observed to solve the (e, n)-Distributed detection problem, which we do by reducing to the
problem in Lemma 2.

Lemma 3. Any adaptive randomized algorithm which solves the (e,n)-Distributed detection problem
with probability at least % (with respect to the randomness in v, A, and I1) must observe ()
entries of A.

Proof. Any algorithm that can produce a vector v such that ||V —v|[; < g5 with probability at least
%—8 could be used to guarantee that P(v; = v;) > % by the following argument.

For any input matrix A, create the matrix A such that A; = A(;), where ¢ is a permutation
sampled uniformly from the symmetric group of size n. Let v, be the vector which satisfies [v,]; =
Vo(i)- Run the considered protocol on A to recover u such that [[u — v, |1 < g5 with probability
9. Finally, let ¥; = u,-1(;) for all i € [n].

Then, P(v; = v;) = P([lu = vo|1 < 55) - P(ug-13) — vor1plllu = vo 1 < 55) = %—8 : % > 1%.
Since o (i) is uniformly distributed over [n], P(u,-1(; — Vo-1(5)l[lu — vo[[1 < g5) is the number of
correctly decided entries divided by n.

By Lemma 2, we conclude that solving the (e, n)-Distributed detection with probability at least

% requires observing (%) entries of A in the worst case. O
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4.3.2 Spectral Approximation Query Lower Bound

Next, we show that the (e,n)-Distributed detection problem can be solved using a spectral ap-
proximation of A, thereby implying a query complexity lower bound for spectral approximation.

Theorem 11 (Lower Bound for Randomized Spectral Approximation). Any randomized algorithm
that (possibly adaptively) reads entries of a binary matriz A € {0,1}"*™ to construct a data structure
f:R" xR™ — R that, for e € (0,1) satisfies with probability at least 99/100,

1f(x,y) —xT Ay| < en, for all unit x,y € R",

must read §2 (E%) entries of A in the worst case, provided € = () <10%)
Proof. We reduce solving the (e, n)-Distributed detection problem to constructing a spectral ap-
proximation satisfying the guarantee in the above theorem statement. Throughout this proof, let €4
be the parameter associated with the (e,n)-Distributed detection problem and es be the accuracy
of the spectral approximation.

Let A be the matrix associated with the (eg,n)-Distributed detection problem. Suppose that
by reading r entries of A, we can create a data structure f(-,-) satisfying:

f(x,y) = xTAy| < esnl|x]|2]ly 2. for all input x,y € R™.

We show that for € sufficiently small respect to €4, such a spectral approximation is sufficient
to solve the (e4,n)-Distributed detection problem with no further queries to A.

First, let B; denote the number of ones in the i-th row of A. Observe that B; ~ Binomial(n, 1/2)
if v; =0, and, B; ~ Binomial(n,1/2 + ¢4) if v; = 1. By Hoeffding’s inequality [Verl8],

—4nl 2
P (|BZ — E[Bj]| > \/4nlogn> < 2exp (ﬂ) = —.

2n n?

Therefore, by the union bound over all i € [n],

P <maSX\B,~ — E[Bj]| > \/4nlogn> <
1€

Let S1,S> C [n], such that |S;| = [S2| = 2. Then with probability at least 1 — 2,

S

| ] 2n
> B-Y Bi|<|E|> B - B —|—7-\/4n10gn

1€S] 1€S2 _iES1 1€Sy
=|E|> Bi—Y_ Bi||+0n*"logn). (14)
_i€S1 €S2

For large enough n, we have with probability at least % that there are at least 7 biased rows, since

the number of biased rows is distributed as Binomial(n,1/2). Define the set S* such that |S*| = §
and S* contains a maximal number of biased rows. Define the set S as,

S = argmax f(1,1g).

SI=3
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We will show that S can contain at most k < 2 + o(n) fewer biased rows than S*. By guarantee
of the spectral approximation and (14), (note 1LA1g = Zi,jes Ajj),

f(1,15:) = f(1,15) 2 17 Alg: — 17 A5 — 2e5n|1]f2]| L5+ |12
> E[1TA1g- —1T A1) + O(n*?logn) — 2e,n?

If S has k fewer biased rows than S*, then, E[lTAls* — 1T A1g] = eqnk. By the optimality of S,

f(1,15+) — f(1,15) < 0. Therefore, if €, = &, then,

2
0> f(1,1g:) — f(1,15) > eqnk — 2e,n® + O(n*?logn) = eqnk — % +0(n*?logn).

VL)

logn />’

Solving for k implies, k < g5 + O(%) By assumption of the theorem statement, é = o
therefore, k < g5 + o(n).

Let b be the number of biased rows in A. First, we consider the case where b = 5 exactly. In
this case, S* contains % biased rows, and hence, S contains at least ¥ — g5 — o(n) > & — & biased
rows for large enough n. Therefore, deciding all rows in S (i.e., ¥; = 1 for all i € S) are biased will
correctly decide (§ — 5)/% > —8 of the biased rows. By looking at the complement of S* and S,
we conclude that 18 of the unbiased rows are decided correctly as well. Hence, we can construct v
such that [|[v — V|1 < g5 by the assignment v; =1 for i € S and v; = 0 otherwise.

The number of blased rows is distributed as a binomial random variable, ie., b ~
Binomial(n, 1/2). Therefore, by Hoeffding’s inequaliy, (|b — 5| > 104/n) < 0.01. For large enough
n, 10y/n < 0.01 - n. Therefore, with probability at least 100, we can reduce to the case b = § by
assuming that at most an additional 0.01 - n rows are misclassified as biased or unbiased. Hence,
with probability at least 19(?0, a spectral approximation of A with es = O(eq) accuracy is sufficient
to recover at least —0 of the biased rows with probability at least 100

Correctly classifying - 15 of the rows as biased or unbiased requires observing (%) entries of
d

n n

A by Lemma 3. Since Q(%) = Q(%) entries of A must be observed to construct the spectral
d s
approximation used to solve the (e, n)-Distributed detection problem, we conclude the lower bound

of the theorem statement. O

Note that the assumption % =o0 <h‘)/gi

does not hold, then we must read nearly all entries of the matrix anyways. We also show that our
construction provides a lower bound even when the input is restricted to be symmetric.

> in the previous theorem is mild, since if this assumption

Corollary 1. The lower bound in Theorem 11 applies when the input is restricted to symmetric
binary matrices.

Proof. While construction used in Theorem 11 is not symmetric, we can modify it to give the same
lower bound for symmetric input. Let A be defined as in the proof of Theorem 11, and let A be
the Hermitian dilation of A, i.e.,

= 0 A

A_LTO}

Any query x” Ay can be simulated by the query X’ Ay, where X = [x,0]” and y = [0,y]”. The
size of A is n and the size of A is 2n, hence, if f is a spectral approximation of A such that,

f(%3) = xTAy| < (5) @n)[%]2]7]2, for all %, € R",
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then we can simulate f(-,-) such that,
|f(x,¥) = x" Ay| < esnl|x]|2]ly]l2, for all x,y € R".

Therefore, the proof of Theorem 11 applies to the Hermitian dilation A after adjusting for a constant
factor in the accuracy parameter €. O

5 Improved Bounds for Binary Magnitude PSD Matrices

We call a PSD matrix A € R™*" a binary magnitude PSD matriz if Vi, j € [n],|Ay;| € {0,1}, ie.,
if A € {—1,0,1}"*". In this section, we give deterministic spectral approximation algorithms for
such matrices with improved e dependencies. Specifically, we show that there exists a deterministic

nlogn

en error spectral approximation algorithm reading just O ) entries of the input matrix. This

improves on our bound for general bounded entry PSD matrices (Theorem 1) by a 1/e factor, while
losing a logn factor. Further, we show that it is tight up to a logarithmic factor, via a simple
application of Turan’s theorem [Turdl].

The key idea of our improved algorithm is that for any PSD A, we can write A = BT B, so that
A;; = (b;,bj), where b;,b; are the ith and j*" columns of B respectfully. Since A has bounded
entries, for any i, A;; = ||b;||3 < 1. Thus, we can apply transitivity arguments: if |A;;| = [(b;, b;)]|
is large (close to 1) and |A ;| = |(bj, b;)| is also large, then |A;z| = |(b;, by)| must be relatively
large as well. Thus, we can hope to infer the contribution of an entry to x’ Ax without necessarily
reading that entry, allowing for reduced sample complexity.

The logic is particularly clean when A is binary. In this case, we can restrict to looking at the
principal submatrix corresponding to ¢ € [n]| for which A;; = 1. The remainder of the matrix is
all zeros. For such 4, we have ||b;||2 = 1, and thus if A;; = 1 and Aj; = 1, we can conclude that
A, = 1. This implies that, up to a permutation of the row/column indices, A is a block diagonal
matrix, with rank(A) blocks of all ones, corresponding to groups of indices Sj with b; = b, for
all i,j € Sk. The eigenvalues of this matrix are exactly the sizes of these blocks, and to recover a
spectral approximation, it suffices to recover the set Sj corresponding to any block of size > en.

To do so, we employ a weak notion of expanders [Pip87, WZ93], that requires that any two
subsets of vertices both of size > en, are connected by at least one edge. Importantly, such expanders
can be constructed with O(n/e) edges — beating Ramanujan graphs, which would require Q(n/€?)
edges, but satisfy much stronger notions of edge discrepancy. Further, if we consider the graph
whose edges are in the intersection of those in the expander graph and of the non-zero entries in
A, we can show that any block of ones in A of size Q(en) will correspond to a large Q(en) sized
connected component in this graph. We can form this graph by querying A at 5(71/ €) positions
(the edges in the expander) and then computing these large connected components to recover a
spectral approximation. Each sparse connected component becomes a dense block of all ones in our
approximation, avoiding the sparsity lower bound of Theorem 3. Noting that we can extend this
logic to matrices with entries in {—1,0, 1}, yields the main result of this section, Theorem 9.

It is not hard to see that O(n/e) is optimal, even for binary PSD matrices (Theorem 10). By
Turan’s theorem, any sample set of size o(n/€) does not read any entries in some principal submatrix
of size en x en. By letting A be the identity plus a block of all ones on this submatrix, we force our
algorithm to incur en approximation error, since it cannot find this large block of ones.

Section Roadmap. We formally prove the block diagonal structure of binary magnitude PSD
matrices in Section 5.1. We leverage this structure to give our improved spectral approximation
algorithm for these matrices in Section 5.2. Finally, in Section 5.3 we prove a nearly matching lower
bound via Turan’s theorem.
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5.1 Structure of Binary Magnitude PSD Matrices

As discussed, our improved algorithm hinges on the fact that, up to a permutation of the rows and
columns, binary magnitude PSD matrices are block diagonal. Further, each block is itself a rank-1
matrix, consisting of two on-diagonal blocks of 1’s and two off-diagonal blocks of —1’s. Formally,

Lemma 4 (Binary Magnitude PSD Matrices are Block Matrices). Let A € {—1,0,1}"*" be PSD
and let \; for i € [n] be the eigenvalues of A, with Ay > Xy > ... > X, >0 and A\pp1 = ... =\, = 0.
Then, there exists a permutation matriz P such that

AM o 0 o

0 A® 0 0

PAPT = : : . : 0
0 0 ... A® ¢

0 0 ... 0 o0

Further, Each AW ¢ {—1,1}% s a \; x \; rank-1 PSD matriz. Letting S; denote the set of indices
corresponding to the principal submatrix A which we call its support set, S; can be partitioned
in to two subsets S;1 and S;o such that, if we let vi(j) =1 for j € Si and v;(j) = —1 for j € S;o,
then v1,...,v, are orthogonal and A = >0, ViVZT.

Proof. Since A is PSD, there exists B € R™*" with rows By,...,B, € R" such that A = BB”.
Note that either A;; = 0 or A;; = 1 for all i since A;; = ||B;||2 > 0. Also for any i, j € [n], if A;j =1
or A;; = —1, then Aj; = Aj; = 1. Otherwise, if Aj; or Aj; were 0, we would have [|B;||2 = 0 or
”Bj”g = 0 and thus Aij = BZB? =0.

Thus, if A;; = 1, we have A;; = ||B;]l2 = 1, Aj; = |B;|l2 = 1, and B/B; = 1. Le., we must
have B; = B;. Similarly, if A;; = —1, we have ||B;|l2 = ||Bj|2 = 1 and B/B; = —1 and so
B; = —B,. Finally, if A;; =0, then B; 1. B;. This implies that the indices [n] can be grouped into
disjoint subsets S1,52,...,S5, (S; C [n]) such that for any S; and any j,k € S;, either B; = B; or
B; = —B;. Also for any k € S; and ¢ € S; with ¢ # j, we must have By, L By. Label these subsets
such that |S1| > [S2] > ... > [Sp|. Now observe that any subset S; can be further divided into two
disjoint subsets S;1 and S;o such that if j,k € S;1 or j,k € Si2, Bj = By but if j € S;1 and k € Sjo
(or vice-versa), B; = —By,. Thus, the principal submatrix corresponding to S;, which we label A®
is a rank-1 block matrix with two blocks of all ones on the principal submatrices corresponding to
S;1 and S;9 and —1’s on all remaining entries.

For any S;, let v; € {0,1}" be a vector such that v;(j) = 1if j € Si1, vi(j) = —1if j € Sio
and v;(j) = 0 otherwise. Then, observe that Av; = |S;|v;. Thus, each |S;| is an eigenvalue of
A and each v; is an eigenvector. Since Si,..., S, has disjoint supports, vi,...,v, are orthogonal.
Further, tr(A) = Y7 ;A = .7 | |S;| and thus, all other eigenvalues of A are 0. Thus, we can
write A = S°F_, v;vI. This concludes the lemma. O

5.2 Improved Spectral Approximation of Binary Magnitude PSD matrices

Given Lemma 4, the key idea to efficiently recovering a spectral approximation to a binary magnitude
PSD matrix A is that we do not need to read very many entries in each block A® to identify the
block. We just need enough to identify a large fraction of the indices in the support set S;.

To ensure that our sampling is able to do so, we will sample according to the edges of a certain
type of weak expander graph, which ensures that any two vertex sets of large enough size are
connected. I.e., that we read at least one entry in any large enough off-diagonal block of our matrix.
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Definition 5.1 (en-expander graphs [WZ93, Pip87|). For any € € R, an en-expander graph is any
undirected graph on n vertices such that any two disjoint subsets of vertices containing at least en
vertices each are joined by an edge.

Moreover, it is not hard to show that en-expanders with just O(nlogn/e) edges exist.
Fact 1. [WZ93] A random d = O (l(’%) reqular graph is an en-expander with high probability.

We note that while a spectral expander graph, such as a Ramanujan graph, as used to achieve
Theorem 1, will also be an en-expander by the expander mixing lemma [CG02], such graphs require
O(n/€?) edges, as opposed to the O(n/¢) given by Fact 1. Further, while Fact 1 is not constructive, in
[WZ93] an explicit polynomial time construction of en-expander graphs is shown, with just an no
loss. This result can be plugged directly into our algorithms to give a polynomial time constructible
deterministic spectral approximation algorithm with O(n1+0(1)/ €) sample complexity.

Fact 2 (Constructive en-expanders [WZ93|). There is a polynomial time algorithm that, given an
no(1)

integer n and € € (0,1), constructs an en-expanding graph on n vertices with mazimum degree —

We now prove our main technical result, which shows that if we read the entries of a binary
magnitude PSD matrix A according to an en-expander graph, then we can approximately recover
all blocks of this matrix by considering the connected components of the expander graph restricted
to edges where A is nonzero.

Theorem 13 (Approximation via Sampled Connected Components). Let A € {—1,0,1}"*" be a
PSD matriz with eigenvalues A\ > Ao > ... > Xy > 0 and \pp1 = ... = A\, = 0. Let G be an
€/6 - n-expanding graph on n wvertices with adjacency matrix Bg. Let Ag be the binary adjacency
matriz with (Ag);j = 1 whenever (Bg)i; = 1 and |Ayj| = 1. Let G be the graph whose adjacency
matriz is Ag. Let Si,...,S, denote the support sets of A’s blocks (as defined in Lemma /) with
|Si| = i, and let G, be the induced subgraph of G restricted to S;. Finally, let C; C [n] be the
largest connected component of Gg,. We have:

Proof. First observe that since |S;| = \i, we trivially have that |C;| < A;. Thus, it remains to
show that |C;| > A\; — ¢/2 - n. This holds vacuously if A\; < €/2-n. Thus, we focus our attention
to A; > €/2-n. For contradiction assume |C;| < \; —€/2-n. Let My,..., M, C S; denote the
connected components of G, such that |[Mj| > ... > |M,|. So |C;] = M;j. Observe that since all
entries in A in the principal submatrix indexed by S; (i.e., in A® from Lemma 4) have magnitude
1, Gs, = Gg,. Consider two cases.

Case 1: |Cj| > €/6 - n. From our assumption: A; — |Cj| > €/2 - n which implies that > "_, [M;| >
€/2-n. Let C' = Jj_y Mj so |C'| > €/2-n. Since M, ..., M, are disconnected, there are no edges
from C’ to C; in G, and thus no edges in G, since Gg, = G's,. However, this contradicts the fact
that G is an €/6-n expander and thus must have at least one edge between any two set of vertices of
size at least €/6 - n (Definition 1). Thus we have a contradiction and our assumption A\; — |C;| > en
is incorrect. So we must have |C;| > A\; — en as needed.

Case 2: |C;| < €/6 - n. Since |C;| < €/6 - n, we have max;c(,| |M;]| < ¢/6 - n. Consider partitioning
these connected components into two sets, T and T5. Let Vi, Vs be the vertex sets corresponding
to these two partitions, i.e., V] = UMieTl M; and V, = UMieTz M;. Pick T} and T to minimize
[[Vi| = [Va||. Since max;ep, [M;] < €/6-n, for this optimal T3, 75, we must have ||[Vi]—[Va|| < €/6-n.
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Since V7 and V5 are disconnected in G’Si, they must be disconnected in Gg,. Thus, we must have
either |V4]| < €/6-n or |Va| < €/6 - n since any two subsets of vertices with size > €/6 - n must have
an edge between them in G due to it being an €/6 - n-expander. Assume w.l.o.g. that |Va| < €/6-n.
Then since |V1| + [Vo| = |Si| = A > €/2 - n, we must have |V;| > €/3 - n. However, this means that
[|Vi| = |V2|| > €/6-n, which contradicts the fact that we picked T4, T» such that ||V1|—|V2|| < €/6-n.

U

We now present our deterministic algorithm for spectral approximation of binary magnitude
PSD matrices, based on Theorem 13. The key idea is to compute all connected components of G —
the graph whose edges lie in the intersection of the edges of G and the non-zero entries of A. Any
large enough block in A (see Lemma 4) will correspond to a large connected component in this
graph and can thus be identified.

Algorithm 1 Deterministic spectral approximator using expanders

Input: PSD matrix A € {—1,0,1}"*" and € € (0,1).

1: Construct an €/6 - n-expanding graph G on n nodes with adjacency matrix Bg.

2: Let Ag be an n x n matrix such that (Ag);; = 1if (Bg);; = 1 and |A;;| = 1. Let G be the

graph corresponding to Ag.

3: Compute all connected components of G, C1,Cs,...,C, C [n].
4: Initialize A = 0"*".
5: fori=1,2,...,r do
6: if |CZ| > % then
7
8
9

Pick any j € C; and let A=A+ AjA?, where A; is the 4t column of A.
end if
: end for
10: return A.

Query complexity: Observe that Algorithm 1 requires querying A at the locations where Bg
is non-zero (to perform step 2). By Fact 1, there are €/6 - n-expander graphs with just O("log")
edges, so this requires O("lo#) queries. Further, in a graph with n nodes,there can be at most 2/¢
connected components of size > . Thus, line (7) requires total query complexity < 27" to read

one column of A corresponding to each large component identified.

Theorem 9 (Deterministic Spectral Approximation of Binary Magnitude PSD Matrices). Let A €
{=1,0,1}"*™ be PSD. Then for any e € (0,1), there exists a deterministic algorithm which reads

(0] (nlign> entries of A and returns PSD A € {—1,0,1}"™" such that | A — Al < en.

Proof. We will show that Algorithm 1 satisfies the requirements of the theorem. We have already
argued above that its query complexity is O("log").

By Lemma 4, we know that, up to a permutation, A is a block matrix with rank-1 blocks
AW A®  A® with support sets Si,. .., Sk Since G has edges only where A is non-zero, each
connected component C; in G is entirely contained within one of these support sets. Further, if
|Si| = A\i > en, then by Theorem 13, there is exactly one connected component, call it D; (the
largest connected component of Gg,) with vertices in S; and |D;| > €/2. If |S;| = A\; < en, then
there it at most one such connected component by Theorem 13 (there may be none).

So, Step 7 is triggered for exactly one connected component D; C S; for each S; with |S;| =
A; > en and at most one connected component for all other S;. If Line 7 is triggered, then we add
AjA;*-F to A. Observe that A is a column for j € S;, and thus by Lemma 4, A; is supported only
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on S;. We have that either Aj;(t) =1 on S;; and A;(t) = —1 on Sj, or Aj;(t) = —1 on S;; and
A;(t) = 1. That is, A; is equal to either v; or —v; as defined in Lemma 4.

So overall, letting Z C {S4,.. Sk} be the set of blocks for Wthh one connected component is
recovered in Line 7, A = Y icz Viv; . From Lemma 4, A = Z ", vivland so A — A= digz Viv; vl
Since the v; are orthogonal and since for i ¢ Z we must have A; = |S;| = [vivE s < en, thls gives

that ||A — Al|y < en, completing the theorem.
O

5.3 Lower Bounds for Binary PSD Matrix Approximation

nlogn
€

We can prove that our O ( ) query complexity for binary magnitude matrices is optimal up to

a logn factor via Turan’s Theorem, stated below. Our lower bound holds for the easier problem of
eigenvalue approximation for PSD A € {0,1}"*".

Fact 3 (Turan’s theorem [Turdl, Aig95]). Let G be a graph on n vertices that does not include a
(k + 1)-clique as a subgraph. Let t(n,k) be the number of edges in G. Then

(k —1)n?

<

Using Turan’s theorem we can prove:

Theorem 10 (Deterministic Spectral Approximation of Binary PSD Matrices — Lower Bound). Let
A €{0,1}™*™ be PSD. Then for any € € (0,1), any possibly adaptive deterministic algorithm which
approzimates all eigenvalues of A up to en additive error must read €2 (%) entries of A.

Proof. Let A be a deterministic algorithm that approximates the eigenvalues of a binary PSD input
matrix A to en additive error. Let Ay = I,,, i.e., the identity matrix. Let S C [n] x [n] be the first
2 off-diagonal entries read by A on input A. Since the choices of the algorithm are deterministic,
these same entries will be the first 2 entries queried by A from any input matrix which has ones on
the diagonal and zeroes in all entries of S, even if the algorithm is adaptive.

Without loss of generality, we can assume that the entries in S are above the diagonal, since
reading any entry below the diagonal of an input matrix would be redundant due to symmetry.
Consider a graph G with vertex set V' = [n| and undirected edge set E = S€, that is, the edge set

contains all undirected edges (i, j) such that (7,7), (j,i) € S for i,j € [n]. Hence, for all € € (0,1),

B = <n>_2:n_2_(2+2>>n_2_2_nzw
2 € 2 2 e 2 € 2.2
where the first inequality is true since 5 < %. Therefore, if we set k = 7, we conclude by the
contrapositive of Fact 3 that there exists a clique of size F in G. Let T' C E denote the set of edges
which forms this clique in G.

Construct A; such that [A;];; = [Agl;; for all 4,5 such that (4,7) € T and [A4];; = [Aq];; =1
for all 7, j such that (i,j) € T. Then, there is a principal submatrix containing all ones in A; where
the off-diagonal entries correspond to edges in T along with the diagonal entries which are all ones
by construction. Hence, A; contains a non-zero principal submatrix of size ', and so, it has an
eigenvalue that is at least <¢. Both Ay and A; have identical values on the diagonal and on the
first 2 off-diagonal entries read by A (i.e., the entries in S). Therefore, the 2 entries of Ag and
A, queried by A are identical, and hence A cannot distinguish these two matrices, despite the fact
their maximum eigenvalue differs by <
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After adjusting for constant factors, we conclude that any deterministic (possibly adaptive)
algorithm that estimates the eigenvalues of a {0, 1}-matrix to en additive error must observe (%)
entries of the input matrix in the worst case.

O

6 Applications to Fast Deterministic Algorithms for Linear Algebra

We finally show how to leverage our universal sparsifiers to design the first o(n“) time deterministic
algorithms for several problems related to singular value and vector approximation. As discussed
in Section 1.1.1, throughout this section, runtimes are stated assuming that we have already con-
structed a deterministic sampling matrix S satisfying the universal sparsification guarantees of
Theorem 1 or Theorem 4. When S is the adjacency matrix of a Ramanujan graph, this can be done
in O(n/ poly(e)) time — see Section 1.1.1 and Section 2 for further discussion.

In Section 6.1, we consider approximating the singular values of A to additive error
+emax(n, |Al|}). Observe that if we deterministically compute A = A oS with [|A — Ay <
emax(n, [|A|1) via Theorem 4, by Weyl’s inequality, all singular values of A approximate those of
A up to additive error £emax(n, ||A|1). Thus we can focus on approximating A’s singular values.

To do so efficiently, we will use the fact that A is sparse and so admits very fast 9] (614) time
matrix-vector products. Focusing on the top singular value, it is well known that the power method,
initialized with a vector that has non-negligible (i.e., ©(1/poly(n))) inner product with the top
singular vector vq of A, converges to a (1 =+ ¢€) relative error approximation in O(log n/€) iterations.
Le., the method outputs vi with (1 — e)o1(A) < ||A§1H~2 < 01(A). Each iteration requires a single
matrix-vector product with A yielding total runtime O (E%) Since vi is unknown, one typically
initializes the power method with a random vector, which has non-negligible inner product with vy
with high probability. To derandomize this approach, we simply try n orthogonal starting vectors,
e.g., the standard basis vectors, of which at least one must have large inner product with vq. This

simple brute force approach yields total runtime 9] (’Z—;), which, for large enough e, is o(n“).

To approximate more than just the top singular value, one would typically use a block power
or Krylov method. However, derandomization is difficult here — unlike in the single vector case, it
is not clear how to pick a small set of deterministic starting blocks for which at least one gives a
good approximation. Thus, we instead use deflation [Saall, AZL16]. We first use our deterministic
power method to compute ¥; with |A¥;||2 ~ o1(A). We then run the method again on the deflated
matrix ;‘;(I —v1vT), which we can still multiply by in O (6%) time. This second run outputs va

which is orthogonal to vi and which has ||A52ﬂ2 ~ o1 (A(I— GlVi)). Since vy gives a good

approximation to o1(A), we then argue that o1(A(I — v1Vv1)) ~ 02(A) and so [|[Avsa|2 & oa(A).

We repeat this process to approximate all large singular values of A. The key challenge is bounding
the accumulation of error that occurs at each step.

In Section 6.2 we apply the above derandomized power method approach to the problem of
testing whether A is PSD or has at least on large negative eigenvalue < —emax(n,|Al1). We
reduce this problem to approximating the top singular value of a shifted version of A.

Finally, in Section 6.3, we consider approximating o1(A) to high accuracy — e.g., to relative
error (1 + €) with € = 1/poly(n), under the assumption that o1(A) > amax(n,||Al|;) for some a.
Here, one cannot simply approximate o1(A) in place of 01(A), since the error due to sparsification
is too large. Instead, we use our deflation approach to compute a ‘coarse’ approximate set of top

singular vectors for A. We then use these singular vectors to initialize a block Krylov method run
log(n/e) n? log(l/s))

Py (@) ) iterations, giving total run time O < oly ()

on A itself, which we argue converges in O <
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The key idea in showing convergence is to argue that since o1(A) > amax(n, ||A||1) by assumption,
we have 0y/(A) < a/2[[Al1 < 01(A)/2. So, there must be at least some singular value o;,(A)
with p < 2/a that is larger than o,41(A) by a?/4 - max(n, |Al|1). The presence of this spectral
gap allows us to (1) argue that the first p approximate singular vectors output by our deflation
approach applied to A have non-neglible inner product with the true top k singular vectors of A
and (2) that the block Krylov method initialized with these vectors converges rapidly to a high
accuracy approximation to o1(A), via known gap-dependent convergence bounds [MM15].

6.1 Deterministic Singular Value Approximation

We start by giving a deterministic algorithm to approximate all singular values of a symmetric
bounded entry matrix A up to error +emax(n,||A1) in O(n2?/poly(e)) time. Our main result
appears as Theorem 8.

As discussed, we first deterministically compute a sparsified matrix A from A with |A —Al; <
emax(n, ||All1). We then use a simple brute-force derandomization of the classical power method
to approximate to the top singular value of A (Lemma 6). To approximate the rest of A’s sin-
gular values, we repeatedly deflate the matrix and compute the top singular value of the deflated
matrix (Lemma 7). By Weyl’s inequality, the singular values of A approximate those of A up
to emax(n, ||A||1) error. Thus, we can argue that our approximations will approximate to the
singular values of A itself, yielding Theorem 8. We first present the derandomized power method
that will be applied to A in Algorithm 2.

Algorithm 2 Deterministic Power Method for Largest Singular Value Estimation

Input: A € R™*" error parameter € € (0,1)

Cbgign/e) where ¢ is a sufficiently large constant.

1: Initialize ¢ =0, t =
2: for k=1—ndo
3: yi = € where ey is the k't standard basis vector.
4 for j=1—tdo

5 N (AAT)yk.
6: Yi < ”;’ﬁ

7 end for

8 if |ATyl2 > 7 then
9 Z < Yk-

10: 7+ ||ATz]s.

11: end if

12: end for

13: return z

Let A € R™™ be a matrix with its SVD given by A = UXV7” where U,V € R™ " are matrices
with orthonormal columns containing the left and right singular vectors respectively and X is a
diagonal matrix containing the singular values o1(A) > 02(A) > ... > 0,(A) > 0. Observe that
any vector y € R" can be written as y = Z?:l c;u; where ¢; are scalar coefficients and u; are the
columns of U. Then, we have the following well-known result which shows that when the starting

unit vector y has a large enough inner product with u; i.e., |¢1| > ﬁ, power iterations on AAT

converge to a 1 — € approximation to o(A) within 5(1 /€) iterations. We will leverage this lemma
to prove the correctness and runtime of our deterministic power method, Algorithm 2.
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Lemma 5 (Power iterations — gap independent bound). Let A € R™™™ be a matriz with largest

singular value o1(A) and left singular vectors uy,...,u,. Lety =Y 1" | c;u; be a unit vector where
1 _ Oflog(n/e)y _ _(AAT)y
ler]| > T Then, fort = O(f), if we set z = TAATI T2

|ATz]|s > (1 - €)a1(A).

Proof. We prove Lemma 5 for completeness. Let r = (AAT)'y. Then, z = m First observe
that AAT = Y7 02(A)wul. Thus, r = Y1 ci(0;(A))* ;. Let k € [n] be the smallest k
such that 0?(A) < (1 — €)o7(A). Observe that if no such k exists, then for any unit vector z,
|ATz||3 > 0,(A) > (1 — €)o1(A), and thus the lemma holds trivially.

Let r = rq +ry where r; = Zk 11 cio? (A)u; and ro = >0, ¢;02(A)u;. Then:

I} _ S dol'A) T dol(A) _ 5 <z>2<0i<A>>“.

3 S eoita) - Gof(A) T & \a) \oi(A)
Since ¢; < 1 for all ¢ € [n], and since by assumption |c1| > f’ [n]. Also, for
: oi(A) )2 2t 10g(1/5) 213 2
any i > k, (0 (A)) <(1 : €) and (1 —¢€)** < ¢ for t > O(f) Thus, we have ||r1||§ < n?.
Setting § = ;—22 we get ”:”2 < €
2
Next, observe that ||r||3 = |lr1|3 + ||r2]|3 which implies that |[r|3 < (1 + €2)|r1]]3 or |r1]]3 >

(1 — €)|lr||3. Thus, using the fact that r’ AATry = 0 and r7AATry > 0, and the fact that
02(A) > (1 —€)o?(A) for i < k, we get:

r"AATr = 1] AATr) + 1] AA Yy > ] AATT
> oji_1(A) - e 3
> (1-¢)?-of(A) - [|r3:

Finally dividing both sides of the above equation by ||r||3, we get zZ AATz > (1—¢€)?03(A). Taking
square root on both sides gives us, ||ATz||s > (1 — €)o1(A). O

Next we prove the correctness of Algorithm 2 using Lemma 5. The idea is to run power iterations
using all n basis vectors as starting vectors. At least one of these vectors will have high inner product
with ug, and so so this starting vector will give us a good approximation to o1(A) by Lemma 5.
We also prove that the squared singular values of the deflated matrix A — zz” A are close to the
squared singular values of the original matrix up to an additive error of ¢-o?(A). This will be used

to as part of the correctness proof for our main algorithm for singular value approximation.

Lemma 6. Let z be the output of Algorithm 2 for some matric A € R™™ with singular values
01(A) > 02(A) > ... > 0,(A) and error parameter € € (0,1) as input. Then:

(1—o(A) < A"z]; < o1 (A).

Further, for any i € [n]:
o} (A —zz" A) < 02,1 (A) + eai(A).

Proof. Let uy be the left singular vector corresponding to the largest singular value of A. Observe
that since ||uy ||z = 1, there exists at least one standard basis vector ey, such that e} -u;| > f After
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T\t
t iterations of the inner loop of Algorithm 2, we have y; = T (AA )'er Using Lemma 5, we thus

(AAT) eyl
have [[ATyg||2 > (1 — €)o1(A). Also since yy is a unit vector, we trivially have ||ATy.|l2 < o1(A)

for all k. Since for z output by Algorithm 2, ||ATz||z = maxy ||ATy}||2, we thus have:
(1 —e)or(A) < ||ATz[]y < 01(A), (15)

giving our first error bound.

We now prove the second bound on o?(A — zzT A). Using the Pythagorean theorem, ||A —
zz" A||% = ||A||% — ||zz" A||%. We have ||zz" A||% = tr(zzT AATzzT) = 27 AATz = |ATz|3. We
thus have |A — zzT A||% = ||A]|%2 — ||ATz|3. Combining this with (15):

1A — zz" Al < |AlF — (1 - ¢)°0f(A)
< |A[F — oF(A) + 2607 (A)
= A = A4l + 207 (A), (16)

where A; = ujul A is the best rank-1 approximation to A in the Frobenius norm, with ||[A—A4|% =

Yoo 02(A). So, we have:

i

D o} (A —22"A) = |A —zz" Al[p < |A - Ay} + 205 (A) =D 07 (A) + 2607 (A).
j=1 J=2

Simply subtracting 02(A — zz' A) from the lefthand side and pulling 0?(A — zz”) out of the
summation for some i € [n] gives that

o?(A —zzT A) + Z 0']2-(A —z2z" A) < Z UJZ(A) +2e0?(A). (17)
j#i,j€n—1] J=2

Using the eigenvalue min-max theorem (Fact 4), we have for all j € [n—1], 0;(A—zz" A) > 041(A).

Using this fact in (17),

of(A-zz"A)+ D 071(A) <) 0i(A) + 201 (A),
J#i.j€[n—1] Jj=2

which implies that o7(A — zz” A) < 02 ,(A) + 2e0%(A). This completes the proof after adjusting
€ by a factor of 2. O

We now state as Algorithm 3 our main deterministic algorithm for estimating k singular values of
a matrix by leveraging Algorithm 2 as a subroutine. We will then show that by applying Algorithm
3 to a sparse spectral approximation A of A, we can estimate the singular values of A up to error
+emax(n, |Al]1) in O(n2/ poly(e)) time.

Algorithm 3 Deterministic Singular Value Estimation via Deflation

Input: A € R™"*", error parameter € € (0,1), number of singular values to be estimated k < n
1 AL = A,
2: fori=1—k do
3: z; < output of Algorithm 2 with input A error parameter e.
4 AUFD A0 — 72T A,
5: end for
6: return zy,2z2, ...,z
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Lemma 7. Let {z1,29,...2zx} be the output of Algorithm 3 for some matriz A € R™*™ with singular
values 01(A) > 02(A) > ... > 0,(A) and error parameter € € (0,1) as input. Then, {z1,2z2, ...z}
are orthogonal unit vectors and for any i € [k]:

(1—€6)oi(A) < ||ATz|2 < 0i(A) + 01 (A)WVi - €

Proof. Let &; = ||[(A®@)Tz|5 for all 4. Since each z; is the output of Algorithm 2 with A®) as the
input, using the bound of Lemma 6, for any i € [k] we get that

(1—e)o1(AD) <5; <o (AD). (18)

Note that A®) = A(~1) _ Zi_ 1zl 1A=A— ZJ 12;Z TA =A-— Zi_1ZZT_1A where Z;_1 is a matrix
with i — 1 columns where the j* column is equal to z;. We first prove that Z;_; is a matrix with
orthonormal columns. First note that each z; is a unit vector since Algorithm 2 always outputs a unit
vector. We can prove that all z; are orthogonal to each other by induction. Suppose that all z; with
k € [j] are orthogonal to each other for some j < i—1. Now, AU+t = A — ZjZ;*-FA =(I- ZjZ;F)A
where I is the identity matrix. Observe that z;; lies in the column span of AUFD Thus, to prove
that z;4; is orthogonal to all z; with k € [j], it is enough to show that each such z; is orthogonal
to the column space of AUt . This follows since z; = ZjZ]Tzk since ZjZf is a projection onto

the span of z,...,2z;. Thus, (AUTD)T'z, = AT(I — Z; ZT)zk = AT(z; — zx) = 0. Thus, z;41 is

orthogonal to all z; with k € [j]. Hence, Z;_; is a matrix Wlth orthonormal columns. This implies
that Z;_1Z} | is a rank (i — 1) projection matrix.
By the above orthogonality claim, Z7 ;z; = 0 and we have &; = (AN Tz, = (AT —

ATZ, 1 ZT zi||2 = ||ATz]2. So, to prove the lemma, it is enough to bound &;. We first prove the
lower bound on ¢; using the min-max principle of eigenvalues, which we state below.

Fact 4 (Eigenvalue Minimax Principle — see e.g., [Bhal3]). Let A € R™™"™ be a symmetric matriz
with eigenvalues A\1(A) > Aa(A) > ... > A\, (A), then for all i € [n],

Ai(A) =  max min  x7 Ax = min max  x! Ax.
S dim(S)=1 x€S,||x||2=1 S dim(S)=n—i+1 x€S,||x|[2=1
By Fact 4, 01(AW)? = o1(A — Z; 1ZT |A)? = \((X — Z; 1 Z7 D)AAT(Q - Z,,ZF ) >
M(AAT) = UZ(A)2 since Z; 1Z! | is a rank i — 1 projection matrix. Thus, from (18), we get
5@' > (1 — E)O‘l(A(Z)) (1 — E)O‘Z(A)
We now prove the upper bound on &;. For any i € [k] and any j € [n] from Lemma 6 we have:

oHAY — 2zl AV) < 0%, (AV) + cot (A0,

Now using the fact that A®) —z;z2l AW = A —~Z; 1ZI A — 22/ A = A~ Z,ZI' A and 0,(A)) <
o01(A), we get:
03 (A —Z;Z]A) < 07, (A — Zi1Z] | A) + eai(A). (19)

From (18) we have &; < 01(A —Z;_1Z] ;A). Squaring both sides and applying the bound from (19)
i — 1 times repeatedly on the RHS, we get

<02(A—Z;i 1ZT |A) < 03(A —Z; 2ZT ,A) + e0i(A)
< 03(A —Zi 3ZT ;A) + 203 (A) < ... < 02(A)+i-€e-oi(A).

Finally, taking the square root on both sides and using that for any non-negative a,b \/a + Vb >
va + b gives us the upper bound. O
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Lemma 7 in place, we are now ready to state and prove our main result on deterministic singular
value estimation for any bounded entry matrix.

Theorem 8 (Deterministic Singular Value Approximation). Let A € R™ ™ be a bounded entry
symmetric matriz with singular values o1(A) > 02(A) > ... > 0,(A). Then there exists a deter-
ministic algorithm that, given e € (0,1), reads O(E%) entries of A, runs in O(Z—:) time, and returns

singular value approzimations o1(A),...,0,(A) satisfying for all i,
|0i(A) — 5i(A)| < e max(n, [|Al).

Further, for all i < 1]/e, the algorithm returns a unit vector z; such that |||Azills — 0;(A)] <
e - max(n, |[All1) and the returned vectors are all mutually orthogonal.

Proof. Note that A can have at most % singular values greater than e||Al[;. Thus, it is enough
to approximate only the top % singular values of A up to error € - max(n,||All1). The rest of
the singular values can be approximated by 0 to still have the required approximation error of
¢ - max(n,||Al;). Let A = A oS be the sparsification of A as described in Theorem 4, which

satisfies ||A — A|l2 < e - max(n,||Al]1). Using Weyl’s inequality we have for all ¢ € [n]:
|0i(A) = 03(A)] < €~ max(n, [|A]1).

Thus it is enough to approximate the top % singular values of A up to e max(n, |A|;) error and
then use triangle inequality to get the final approximation to the top % singular values of A. To do

so, we run Algorithm 3 with A as the input matrix, € as the error parameter, and k = [1/€] as
the number of singular values to be estimated. Using Lemma 7 we get orthonormal vectors z; for
i € [1] such that:

(1—€e)oi(A) < ||Azill2 < 0i(A) + o1 (A)Vi - €3, (20)

Let 5;(A) = ||Azy for i [1]. Now since o1(A) < n, using Weyl's inequality, we have o1(A) <
o1(A) + |[A — Allz < 01(A) + emax(n, ||A]1) < 2max(n,||A|1). Thus, for any ¢ € [[1/€]],

o1(A)Wi- e < 2emax(n, |Al1). So, from Equation (20), we get:

(1 —-¢)oi(A) <7i(A) < 0i(A) + 2¢ - max(n, [|A|1).
This gives us |5;(A) — 0;(A)| < 2¢ - max(n, |Al|1). Finally, we get:
5i(A) — 0i(A)] < [6i(A) — 0i(A)] + |oi(A) — 03(A)] < 3emax(n, || A1),
where the second inequality follows from the bound on |5;(A) — 0;(A)| and Weyl’s inequality which

gives us |05 (A) — 04(A)| < emax(n, ||A). This gives us the required additive approximation error
after adjusting € by constants. Next, observe that for i € [%L using triangle inequality:

[Azill2 — oi(A)] < [[|Azillz — [|Azill2] + [[|Azill2 — 0i(A)] < demax(n, A1),
where in the second step, the first term is bounded as |||[Az;|2 — ||Azi|l2] < |[(A — A)zills <

|A — Ally < emax(n, ||A|1). This gives us the second bound (after adjusting € by constants).

Sample Complexity and Runtime Analysis. By Theorem 4, the number of queries to A’s
entries need to construct A = AoS is O(E%) The loop estimating the singular values in Algorithm 3
runs % times and Algorithm 2 is called in Line 3 inside the loop each time with error parameter €3. At

the it" iteration of the loop in Algorithm 3, in Line 4 we have AGFD = A @) —ZZTZZTA —A— Z;*FZ;*FA
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Note that since the matrix A+ could be dense we don’t explicitly compute A+ 6 do power
iterations in Algorithm 2 with this matrix. Instead, in each step of power iteration in Line 5 of

Algorithm 2, we can first calculate Kyj in time 5(6%) and then multiply this vector first with
Z;?F and then with Z; in O(%) time to get ZZ-Z;TFA. Thus, each power iteration (Lines 5 and 6 of
Algorithm 2) takes O(e%) time. Since we call Algorithm 2 with error parameter €3, the number of

power iterations with each starting vector is O(%g@). There are also n different starting vectors.

Thus, each call to Algorithm 2 in Line 3 of Algorithm 3 takes 5(2—72) time. Thus, the total running

n

time of the algorithm is 6(5_82) (as the loop in Algorithm 3 runs % times). O

6.2 Deterministic PSD Testing

We next leverage our deterministic power method approach (Algorithm 2) to give an o(n*) time
deterministic algorithm for testing if a bounded entry matrix is either PSD or has at least one large
negative eigenvalue < —emax(n, ||Al1). An optimal randomized algorithm for this problem with
detection threshold —en was presented in [BCJ20]. The idea of our approach is to approximate the

which will be at smaller than 1 if A is PSD and greater than

maximum singular value of T —
1if A is en far from being PSD.

A
A2

Theorem 14 (Deterministic PSD testing with fo.-gap). Given ¢ € (0,1), let A € R™ ™ be a
symmetric bounded entry matriz with eigenvalues A1(A) > Ao(A) > ... > A\ (A) such that either
A is PSD i.e. A\y(A) > 0 or A is at least € - max(n, ||Alj1)-far from being PSD, i.e., A\y(A) <

—e-max(n, ||Al|1). There exists a deterministic algorithm that distinguishes between these two cases
by reading 9] (6%) entries of A and which runs in time 9] <Z—52)

Proof. Let A =AoS bea spar81ﬁcat10n of A as described in Theorem 4 with approximation
parameter 15 that satisfies ||A A, < 15 max(n, |Al|1). Using Weyl’s inequality we have for all

€ [n], Ni(A) = Mi(A)] < 55 max(n, || Al]).

Let &1(A) be the estlmate of |Allz = o1(A) output by Algorithm 2 with input A and error
parameter 155. Then by Lemma 6, we have:

Let B = = (111) A c1(B) be the estimate of o1(B) output by Algorithm 2 with input B and
o1

error parameter 1555- Then by Lemma 6, we again have:

€ -
— < < .
(1 1000) 71(B) < 51(B) < 01(B)
We now distinguish between the two cases as follows:

Case 1: When A is PSD, we have A,(A) > A, (A) — % = —% Now, 61(B) < 01(B) =

max([ (B)], An(B)) = max(|1 — 220, [1 - 2], )

First assume that |1 — ’\"(( ))| > |1 - 215%;‘ Now, 1 — Z((g)) <1+ 10&?(11)' Thus, 71(B) <
1+ 10;172A) Now, assume |1 — 27;? | <]1- E:; |. Then, we must have A1(A) > 0 as otherwise,
we will have 1 — ;T((E:)) >1- 0152; > 0. Thus, we get that o1(B !1 Ul(Ai‘ = (2;‘ =
11— | = 111/01%0 <5 <1tz 1(A)
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Case 2: When A is e-max(n, |A||1) far from being PSD, we have A,(A) < A\, (A) + %O’HA”” <

9 1 9
—1p€ - max(n, [[A||1). Observe that o1(B) > 1 — m)\n(A) > 1+ AT max(n, [[All1). Then,

~ € € 9 2
we have 71(B) > (1— 55) 01(B) > (1 — 1555) <1 + TEAT SRl max(n, ||A||1)) > 1+ 105, &)
2en
max(n, A1) > 1+ 051 ()
: ~ en : ~ 2en
Thus, in Case 1, we have 01(B) < 1+ 1051 () while for Case 2, we have 1(B) > 1+ 1051 (&)
So we can distinguish between the above two cases.

Sample Complexity and Runtime Analysis. The total runtime is the time taken to estimate

o1(A) and o1(B) using Algorithm 2 with error parameter ©(e). This is O (Z—f) since we run

O (%) iterations of the power method with n different starting vectors, where each iteration

takes time O (E%) since A and B both have O(n/€*) non-zero entries. The sample complexity

required for form A and B is O(n/e%).
O

6.3 High Accuracy Spectral Norm Approximation

Finally, we show that, under the assumption that o1(A) > amax(n, ||A||1) for some « € (0,1), we

~ 2
can deterministically compute &1 (A) such that o1(A) > (1 — €)o1(A) in O(%&GE)) time. This
allows us to set € to % to get a high accuracy approximation to o1 (A) in roughly linear time in the
input matrix size. This is the first o(n“) time deterministic algorithm for this problem, and to the
best of our knowledge matches the best known randomized methods for high accuracy top singular

value computation, up to a poly log(n, 1/«) factor. Our approach is described in Algorithm 4 below.

Algorithm 4 High Accuracy Spectral Norm Approximator

Input: Symmetric A € R"*" parameter «, and error parameter € € (0,1)
1: Let A = A oS where S is as specified in Theorem 4 with error parameter € = ca? for a
sufficiently small constant c.
2: Z <+ output of Algorithm 3 with inputs ;‘;, error parameter ¢ = ca*, and k = 2/a.

3: Z + Output of Block Krylov method (Algorithm 2 of [MM15]) with input matrix A, starting

' log(n/e)
03/2

4: return 1 (A) = /z{ AATZ;, where 2z is the first column of Z.

block Z, and number of iterations g = for some enough large constant c’.

Algorithm 4 first computes (Step 2) a coarse approximate subspace of top singular vectors for
A using our deflation based Algorithm 3 applied to the sparsified matrix A. This subspace is
then used in Step 3 to initialize a Block Krylov method applied to A to compute a much more
accurate approximation to o1(A). Our proof will leverage the analysis of Block Krylov methods
given in [MM15]. Specifically, we will apply Theorem 13 of [MM15] which bounds the number of

iterations required to find a (1 + €) accurate approximation to the top k singular values in terms of
ox(A)
op+1(A)
The proof of Theorem 13 in [MM15] uses a degree ¢ amplifying polynomial f(A) (for large

enough ¢) in the Krylov subspace to significantly separate the top k singular values from the rest.
It is shown that if the starting block Z is such that f(A) projected onto the column span of f(A)Z
is a good rank p approximation to f(A), then the approximate singular values and vectors output
by the Block Krylov method will be accurate. To prove this condition for our starting block, we

the singular value gap for some block size p > k.
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will apply the following well-known result, which bounds the error of any low rank approximation
to a matrix in terms of the error of the best possible low rank approximation.

Lemma 8 (Lemma 48 of [Woo14], proved in [BDMI14]). Let A = ASST +E be a low-rank matriz
factorization of A, with S € R™* and STS = 1. Let Z € R™ € with ¢ > k be any matriz such
that rank (STZ) = rank (S) = k. Let Q be an orthonormal basis for the column span of AZ. Then,

IA -~ QQTA|% < |E|E + |EZ(S"Z)" | %.

The above result lets us bound the difference between the Frobenius norm error of projecting
f(A) onto the column span of f(A)Z, and the error of the best rank p approximation of f(A). The
proof of Theorem 13 of [MM15] uses Lemma 4 of [MM15], (which in turn is proven using Lemma 8
above) to show that [|f(A) — QQTf(A)||% < n¢-||f(A) — (f(A)),||% where Q is an orthonormal
basis for AZ, where Z is a random starting block, ¢ is some constant, and (f(A)), is the best rank
p approximation to f(A). In order to apply this result in our setting, we need to show that the
same bound applies for our starting block Z, which is computed deterministically by Algorithm 3.

In particular, by Lemma 8, it suffices to bound || (VX' Z) ™|z, where V), contains the top p singular
vectors of A (which are identical to those of f(A)). That is, we need to ensure that the columns
of Z and the top p singular vectors of A have large inner product with each other. We next prove
that this is the case when there is a large gap between the top p singular values and the rest. We
will later show that under the assumption that o;(A) > « - max(n, ||Al]1), there is always some p
that satisfies this gap assumption.

Lemma 9 (Starting Block Condition). Let A € R™™" be a bounded entry symmetric matriz with
singular values o1(A) > 09(A) > ... > 0,(A). Let A = A oS where the sampling matriz S is as
specified in Theorem 4 with error parameter € = ca* for a sufficiently small constant ¢ and some
a € (0,1). For somek € [n], letZ € R™¥k be the output of Algorithm 3 with input A and parameters
k= % and € = ca’*. For some p < %, assume that for some constant cq,

0p(A) = 051 (A) > cra® - (max(n, [|A[1))%.

Also let V), € R™P be the matriz with columns equal to the p singular vectors of A corresponding
to its largest p singular values. Let Z,, contain the first p columns of Z. Then for some constant ca,

(V5 Zp)" |2 < con.

Proof. Before proving the main result, we will bound the error between ajz(A) and ||Az;||3 where

z; is a column of Z for any j € [2]. From Lemma 7, we have for any j € [2]:
1Azl > (1 - ca’)o;(A),

since we run Algorithm 3 with error parameter € = ca®. Also since ||A — Ally < ca® max(n, A1),
using Weyl’s inequality and the fact that 0;(A) < max(n, ||Al|1) we have (for some constant b)

0j(A) — ca’ max(n, [|A[1) < 0;5(A) < 0;(A) + ca’ max(n, | A1) < bmax(n, | Al}r).
Now, using triangle inequality,

|Az;]|2 > [|Azjs — |[(A — A)zjz > (1 — ca’)o;(A) — ca’ max(n, [|A ),
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where the second inequality uses that ||(A — A)zj|l2 < |A — Al2|z;]l2 < ca® max(n, ||A|)1). Thus,
using the bounds on 0;(A), we get:
|AZ]l2 > 05(A) — ca max(n, | A1) — calo(A) — ca* max(n, A1)
> 0j(A) = "o’ max(n, | A1),

for some constant ¢”. Finally, squaring both sides, we get for any j € [%]
|AzZ;][3 > o7 (A) — 2¢"a’o;(A) max(n, | A1) + (¢")*a® (max(n, [|Al]1))?
> JJZ(A) 2¢" o (max(n, || A]|1))2. (21)

We are now ready to prove the main result of the lemma. Note that showing || (VTZ )Tl < can

is equivalent to showing that O'mm(VTZ ) > 62 . Assume for contradiction that amm(V Z,) < <L,

— con’
Then there is some vector y with [[y[2 = 1 such that [|ZIV,ylls < c%n Let w = V,y. Observe
that ||w|l2 = 1 since V), has orthonormal columns. Then, for any column z; of Z,,
T T T 1
ooz = ] < w2yl < 22)

where the last step follows by our assumption. Then, using trlangle inequality and the above bound,
we have [|A(I—ww!)z;||o > ||Azi|l2 — [|AwwW! z;]|2 > ||Az;||2 — [ESEAY |Az;||2 — é, where the last

con

equality uses the fact that ||All2 < n since it has bounded entries. Thus, for any ¢ € [p], squaring
both sides of this bound, we get:

2|| Azl
IAT— ww)z3 > [|Az]3 ~ T

2
> || Az|3 — o max(n, | All1)
> 07 (A) — cza’ max(n, | A]1)?, (23)

for some constant c3, where the second inequality uses ||Az;||2 < n, and the last inequality uses (21).
Moreover since w is spanned by V,,, we have:

|Awl[3 > oin 1AV x|l > 05(A) > 0;,1(A) + c1a” - (max(n, | All1))?, (24)

where the final inequality is by the gap assumption in the lemma statement.

Consider the matrix W = [w, (I — ww?)Z,]. Next, we show that under our assumption that
Umin(vgzp) < 1 —, W will be very close to orthonormal, and further that by (23) and (24),
AW |2 > S°P7 +11 02(A) Since W has p+ 1 columns, this will lead to a contradiction since we must
have [AW ||Z < [|[AV 4% = EPH 2(A). In particular, using (23) and (24),

p
IAW |7 = [|Aw[3 + > AT —ww’)z]]3

i=1
> UI%H(A) + 103 - (max(n, |Al1) ZO‘Z — ezpa’ max(n, ||Al|1)?
p+1
> Y 0F(A) + caa’ max(n, |A]1)?, (25)
i=1
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for some constant ¢4 which will be positive as long as ¢; is large enough compared to ¢z (which can
be made arbitrary small by our setting of cg, ¢ in the lemma statement).

We will now show that all eigenvalues of WTW are close to 1, which implies that W is ap-
proximately orthogonal. This allows us to translate the bound on ||[AW||% given in (25) to an
orthonormal basis Q for the column span of W.

Observe that (WTW),;; = |[w||3 = 1 for i = 1 and using (22), (WIW),; — z 1zZ 1| =
|z; _1wwlz; 1| < c%% otherwise. Thus, [(WITW);; — 1| < c%% for all 4. Further, (W W)i; =
wl(I—wwT)z;_1 =0 when i # j and i = 1 as ||w||2 = 1 (and similarly when i # j and j = 1).
Also, when i # j and 4,5 > 1, (WIW), ;| = |zlz; — zl wwlz;| = |zl wwlz;| < C%# otherwise.
We can then apply Gershgorin’s circle theorem to bound the eigenvalues of WTW.

Fact 5 (Gershgorin’s circle theorem [Ger31]). Let A € R™ ™ with entries Ayj. Fori € [n], let R; be
the sum of absolute values of non-diagonal entries in the i™™ row. Let D(Ay, R;) be the closed disc
centered at A;; with radius R;. Then every eigenvalue of A lies within one of the discs D(A4;, R;).

From Fact 5, all eigenvalues of WT'W lie in the range [1 — ﬁ, 1+ ﬁ] Thus, WI'W is a full
2 2

rank matrix and so, W is a rank p+1 matrix. Let QSR” be the SVD of W, where Q € R**P*! and
R € RPHIXPHL are orthonormal matrices and S € RPFIXPL g a diagonal matrix of singular values
of W. Then, all eigenvalues of (WW)~1/2 or all diagonal entries of S~ lie in [1 - 35,1+ C“] for
some constant cs.

Now |[AQ[% = |[AWRS!||2 > (1 - %) |[AWR|2% > (1 — %) ||[AW||% (for some constant cg)
where the last step follows from the fact that |[AWR|% = |AW||% since R is an orthonormal
square matrix. Then we have

p+1
IAQE > (1 - —)HAWHF > " 07(A) + cra’ max(n, | A1), (26)
=1

for some constant ¢y, where the last inequality uses (25) and the fact that (1 —
%)eqe® max(n, |Af1)? — M = Q(a®max(n, ||Al/1)?). However, by the optimality of the
SVD for Frobenius norm low-rank approximation (based on the eigenvvalue min-max theorem
of Fact 4), for any matrix X € R™ P+ with orthonormal columns, |[AX|% < [[AV,|% =
> i oZ(A). This contradicts (26) which was derived using the assumption oumin(V} Zp) < L0

— can’

We now prove the main result of this section. We will first show that there will be a large (in
terms of O((a - max(n, [|Al1))¢)) singular value gap for some p < O(L) and then use Lemmas 8
and 9 to prove a gap dependent bound similar to Theorem 13 of [MM15].

Theorem 15 (High accuracy spectral norm approximation). Let A € R™ "™ be a bounded entry
symmetm’c matriz with largest singular value o1(A), such that o1(A) > « - max(n,||All1) for some

€ (0,1). Then there exists an 9] <%> time deterministic algorithm that computes z € R",
such that ||Az|2 > (1 —€)o1(A).

Proof. We will first show that there exists some p € % such that there is a large enough gap between

the squared singular values 012) (A)and o +1(A). For k = 2 we have 04(A) < % (max(n, [|Al;)) and

squaring both sides we have 02(A) < a -(max(m, ||A]|1))%. Also since g1(A) > o2 -max(n, |A[1)?,
we have 0} (A) — 02(A) > 302 (max( |A]l1))%. Thus there exists p € [2] such that

)
a2- maxi(n
(max(n, 1 411))° = 2a? - (max(n, | A]1)* (27)

3

73(A) — 021 (A) > 1

2
«
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Let Z be the output of step 2 of Algorithm 4. Let Z, € R™? be the matrix with the first p
columns of Z. Then performing Block Krylov iterations (i.e. step 3 of Algorithm 4) with Z as a
starting block can only yield a larger approximation for o;(A) as compared to doing Block Krylov
iterations with Z, as a starting block. Thus it suffices to show that Block Krylov iterations (step 3

of Algorithm 4) with starting block Z, produces some matrix Zp € R™*P with orthonormal columns

such that y/z] AATZ; > (1 — €)o1(A) where z; is the first columns of Zp.

To show this, we will be using Theorem 13 of [MM15] which bounds the number of iterations of
randomized Block Krylov iterations in terms of the singular value gap. To apply this in our setting,
we need to show that Z, is a good enough starting block. Specifically, let f(A) be the amplifying
polynomial used in the proof of Theorem 13 of [MM15]. Let Y be an orthonormal basis for the span
of f(A)Z,. Then, following the proof in [MM15], to prove the gap-dependent convergence bound,
we just need to show that

IF(A) = YYTF(A)IF < en®||f(A) = (F(A))plE

where (f(A)), is the best rank p approximation to f(A) and c is a constant. To prove this, we will
be proceeding in a similar manner as to the proof of Lemma 4 of [MM15]. Using Lemma 8, we have:

1F(A) =YY F(A)IE < [F(A) = (F(A)lE + I(F(A) = (F(A))p)Z, (U, Zp) " |17

where U, € R"*P contains the top p singular vectors of A as its columns (note that A is symmetric
so it has same left and right singular vectors). Thus, it suffices to show that

I(f(A) = (F(A))p)Zp(Up Zy) * |7 < en®|[ f(A) — (F(A))plE

for some constant ¢. Using the spectral submultiplicativity property, we have

I(f(A) = (F(A))p)Zp(Up Zy) * 1T < [I(F(A) = (F(AD) 17 1Zp(U; Zp) *13
< (F(A) = (FA))IFN(U5 Z,) 713,

where the second step uses the fact that [|Z,]|3 = 1. From Lemma 9, we have ||(ULZ,)" |2 < cin for
some constant c;. Thus, we have shown that doing Block Krylov iterations with starting block Z,
gives us the same guarantees as Theorem 13 of [MM15] for gap-dependent convergence of randomized
Block Krylov.

Specifically, we can apply the per-vector guarantee (equation 3 of [MM15]) i.e. if z; is the first
column of the matrix Z, after doing Block Krylov iterations, and v; is the singular vector of A
corresponding to its largest singular value, we have [vI AATv; -z, AATZ| < 60’12) L1(A) <edi(A).
This implies that /21 AATZ; > (1 —€)o1(A) (as vIAATv; = 03(A)).

Runtime Analysis. The time to compute Z from A in step 2 of Algorithm 4 with k& = % and

error parameter ¢ = ca? (for some small ¢ < 1) is 9] <a”—229), since we only need to estimate the top

% singular values, and estimating each singular value using power iterations in Algorithm 3 takes

. =~ [ kn?1 é
time O (%(n/e)
The number of iterations of the Block Krylov with starting block Z, is given by

(0] (log(n/e)/\/min(l, o1(A) 1)) as specified in Theorem 13 of [MMI15]. Thus, we first need

> as described in the analysis of Theorem 8.

) op+1(A)
o1 (A
to bound Up;(A)' We have:
2 2 A 2 A
gl(A) > Zp( ) > — . 3010( ) - > 13 321+§a3,
A~ PZ(A)  o3(A) — Jb - (max(n [AT)Y 1~ Ja



where the second inequality uses (27) and for the third inequality we use the fact that o,(A) <
o1(A)
op+1(A)

Thus, the number of iterations of Block Krylov in step 3 of Algorithm 4 is O(

> 1+ ca®, where ¢ is a large enough constant.

log(n/c)
a3/2

Theorem 7 of [MM15], for g iterations, Block Krylov takes time O(n’kq + nk?q?> + k3¢®) where
k= % Thus, the total time taken by step 3 of Algorithm 4 is 9] ("2 log(n/e) | "log25("/5) + logg("/E)).

max(n, ||A|l;). Taking square root we have

From

a5/2 a C|{15/2
Since O (%) asymptotically dominates each term of 9] (nz 1;)?/(?/ 94 nlogjg(n/ 9+ loii(s%g)),
: : 1ia O (7P log(n/e)
the total time taken by the Algorithm 4 is O (T) U

Remark. Since we can apply the per-vector guarantee (Equation 3 of [MMI15]) for Zp, i.e., the

output of Block Krylov in Algorithm 4, then for all p € (%] such that the condition in (27) holds
and any i < p, [vI AATv, —zT AATZ| < eag+1(A) < ea?(A), where Z; is the i*" column of Zp.
This implies for all i < p we have \/z;AATz; > (1—¢)o;(A) (as vl AATv; = 02(A)). Thus we are
able to approximate the top p singular values and corresponding singular vectors of A with high
accuracy using Algorithm 4, where the p'"' singular value of A satisfies the condition of (27).

7 Conclusion

Our work has shown that it is possible to deterministically construct an entrywise sampling matrix
S (a universal sparsifier) with just O(n/e®) non-zero entries such that for any bounded entry A
with [|[Allsc <1, [|[A — Ao S|z < e-max(n,[|Al;). We show how to achieve sparsity O(n/e?) when
A is restricted to be PSD (Theorem 1) and O(n/e') when A is general (Theorem 4), and prove that
both these bounds are tight up to logarithmic factors (Theorems 3 and 6). Further, our proofs are
based on simple reductions, which show that any S that spectrally approximates the all ones matrix
to sufficient accuracy (i.e., is a sufficiently good spectral expander) yields a universal sparsifier.

We apply our universal sparsification bounds to give the first o(n*) time deterministic algorithms
for several core linear algebraic problems, including singular value /vector approximation and positive
semidefiniteness testing. When A is restricted to be PSD and have entries in {—1,0, 1}, we show how
to give achieve improved deterministic query complexity of O(n/e€) to construct a general spectral
approximation A, which may not be sparse (Theorem 9). We again show that this bound is tight
up a to a logarithmic factor (Theorem 10)

Our work leaves several open questions:

1. An interesting question is if 6(71/6) sample complexity can be achieved for deterministic
spectral approximation of any bounded entry PSD matrix if the sparsity of the output is
not restricted, thereby generalizing the upper bound for PSD {—1,0, 1}-matrices proven in
Theorem 9. This query complexity is known for randomized algorithms based on column
sampling [MM17], however it is not currently known how to derandomize such results.

2. It would also be interesting to close the 9] (1/€2%) factor gap between our universal sparsification
upper bound of O(n/e*) queries for achieving e - max(n, |A||1) spectral approximation error
for non-PSD matrices (Theorem 4) and our €2(n/e?) query lower bound for general determin-
istic algorithms that make possibly adaptive queries to A (Theorem 7). By Theorem 6, our
universal sparsification bound is tight up to log factors for algorithms that make non-adaptive
deterministic queries to A. It is unknown if adaptive queries can be used to give improved
algorithms.
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3. Finally, it would be interesting to understand if our deterministic algorithms for spectrum
approximation can be improved. For example, can one compute an en additive error or a
(1 + €) relative error approximation to the top singular value ||A]|2 for bounded entry A and

constant € in o(n) time deterministically? Are there fundamental barriers that make doing
so difficult?
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