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ABSTRACT
The G�������� H���� A��������� problem asks: how can =
houses (each with a �xed non-negative value) be assigned to the =
vertices of an undirected graph⌧ , so as to minimize the “aggregate
local envy”, i.e., the sum of absolute di�erences along the edges
of ⌧? This problem generalizes the classical M������ L����� A��
��������� problem, as well as the well-known House Allocation
Problem from Economics, the latter of which has notable practi-
cal applications in organ exchanges. Recent work has studied the
computational aspects of G�������� H���� A��������� and ob-
served that the problem is NP-hard and inapproximable even on
particularly simple classes of graphs, such as vertex disjoint unions
of paths. However, the dependence of any approximations on the
structural properties of the underlying graph had not been studied.

In this work, we give a complete characterization of the approx-
imability of G��������H����A���������. We present algorithms
to approximate the optimal envy on general graphs, trees, planar
graphs, bounded-degree graphs, bounded-degree planar graphs,
and bounded-degree trees. For each of these graph classes, we then
prove matching lower bounds, showing that in each case, no signif-
icant improvement can be attained unless P = NP. We also present
general approximation ratios as a function of structural parame-
ters of the underlying graph, such as treewidth; these match the
aforementioned tight upper bounds in general, and are signi�cantly
better approximations for many natural subclasses of graphs. Fi-
nally, we present constant factor approximation schemes for the
special classes of complete binary trees and random graphs.

Some of the technical highlights of our work are the use of
expansion properties of Ramanujan graphs in the context of a
classical resource allocation problem, and approximating optimal
cuts in binary trees by analyzing the behavior of consecutive runs
in bitstrings.
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1 INTRODUCTION
In the EconCS community, the House Allocation Problem has been
a topic of signi�cant interest for some time [3, 16, 22, 29, 30]. In
its canonical form, the problem involves a set of = agents, a set
of = items (“houses”), and possibly di�erent valuation functions
for each agent. In general, given this framework, the problem asks
for an “optimally fair” allocation of the houses to the agents. For
instance, we might wish to minimize the total envy, or maximize
the number of envy-free pairs of agents. In this context, as it is
common in the fairness literature, an agent 8 envies an agent 9 in
a particular allocation if according to agent 8’s valuation function,
the item received by agent 9 is worth more than the item received
by agent 8; the amount of envy is the di�erence in these two values.
The canonical problem has been studied in a variety of contexts,
and is well-known as an algorithmically di�cult problem to solve,
for most reasonable fairness objectives.

Hosseini et al. [20] introduced a variant of the house allocation
problem called G�������� H���� A���������. In this setting,
there are = agents, but now they are placed on the vertices of an
undirected =-vertex graph ⌧ = (+ , ⇢). There are still = items with
arbitrary values, but the agents are identical in how they value these
= items (i.e., they all agree on the value of each house). G��������
H���� A��������� now asks: how do we allocate each house to
an agent so as to minimize the total envy along the edges of ⌧?

We remark here that the setting where the agents are on a graph
and only the envy along the graph edges is considered was studied
before as well by Beynier et al. [3], who considered ordinal pref-
erences in such a setting, and were interested in maximizing the
number of envy-free edges in the underlying graph.

Observe that G�������� H���� A��������� is a purely combi-
natorial problem: we are given an =-vertex graph ⌧ = (+ , ⇢) and
a multiset � = {⌘1, . . . ,⌘=} ✓ R�0. We wish to �nd the bijective
function c : + ! � that minimizes

Õ
(G,~)2⇢ |c (G) � c (~) |.

If the set of values were � = {1, . . . ,=}, then G�������� H����
A��������� would be identical to the well-knownM������ L���
��� A���������� problem. This was observed by Hosseini et al.
[20], who went on to show some remarkable di�erences between
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the two problems. For instance, while all hardness results carry over
fromM������ L����� A���������� to G�������� H���� A����
������, the latter is actually a signi�cantly harder problem even on
very simple graphs. In particular, inM������ L����� A�������
����, we can assume without loss of generality that the underlying
graph is connected; this is because an optimal solution is given by
taking each connected component separately, and optimally assign-
ing a contiguous subset of values to it. We lose this guarantee in
G�������� H���� A���������, even for small graphs with just
two connected components. As a typical example of the di�erences
between the two problems, observe that if the underlying graph
is a disjoint union of paths, then solving M������ L����� A��
��������� optimally takes linear time, but even on these simple
instances, G�������� H���� A��������� is NP-complete [20].

We do note, however, that all the hardness constructions by
Hosseini et al. [20] used the disconnectedness of the underlying
graphs crucially, in �nding reductions from bin packing instances.
Their results also show that for very simple classes of disconnected
graphs, G�������� H���� A��������� is inapproximable to any
�nite factor. However, these proof techniques do not carry over to
connected graphs, and so it was not known whether any of these
reductions would go through for connected graphs. For instance, a
well known result by Chung [7] states thatM������ L����� A��
��������� is solvable in polynomial time on trees; the complexity
of this problem for G�������� H���� A��������� was open.

1.1 Our Contributions
We present a complete characterization of the approximability of
G�������� H���� A��������� on various classes of connected
graphs, summarized in Table 1. In particular, for any instance on
the following graph classes, we show a polynomial-time1 algorithm
on an =-vertex graph ⌧ (with maximum degree �) in that class for
obtaining the stated multiplicative approximation to the optimal
envy, and then demonstrate a matching lower bound that shows
that any polynomial improvement on the approximation ratio is
impossible on that graph class unless P = NP:

• If⌧ is any connected graph, any allocation attains the trivial
upper bound of $ (=2) (Proposition 3.1). In Theorem 4.3, we
show that we cannot have an$ (=2�n )-approximation for any
n > 0. We also give a polynomial-time e$ (treewidth(⌧) · �)-
approximation algorithm (Corollary 3.5).

• If ⌧ is a tree, any allocation attains the trivial upper bound
of $ (=) (Proposition 3.1). In Theorem 4.2, we show that
we cannot have an $ (=1�n )-approximation for any n > 0.
This is in stark contrast toM������ L����� A����������,
where there are sub-quadratic algorithms for exact solu-
tions on trees [7]. We also explicitly show a simple divide-
and-conquer procedure (Algorithm 1) that gives the same
$ (� log=)-approximation in $ (= log=) time.

• If ⌧ is planar, Corollary 3.5 gives us a polynomial-time algo-
rithm to achieve an e$ (

p
=�)-approximation to the optimal

envy. In the worst case, � = ⇥(=), so this is a worst-case
approximation of e$ (=). Once again, Theorem 4.2 shows that
we cannot have an $ (=1�n )-approximation for any n > 0.

1In all our results, e$ hides polylog(=) factors

• If ⌧ is a bounded-degree graph, Corollary 3.5 gives us a
polynomial-time algorithm to achieve an e$ (treewidth(⌧))-
approximation to the optimal envy. Again, this is a worst-
case approximation of e$ (=). Using Theorem 4.6, we show
that we cannot have an $ (=1�n )-approximation for any n >
0. This is our most involved technical result, and it uses
expansion properties of Ramanujan graphs.

• If ⌧ is a bounded-degree planar graph, Corollary 3.5 gives
us a polynomial-time e$ (p=)-approximation algorithm. We
match this by showing that we cannot have an $ (=0.5�n )-
approximation for any n > 0 (Theorem 4.5).

• If⌧ is a bounded-degree tree, both Algorithm 1 and Corollary
3.5 give us a polynomial-time algorithm that outputs an e$ (1)-
approximation to the optimal envy. We show that �nding
the exact optimal envy is NP-hard (Theorem 4.10).

Note that assuming connectivity in the results above is necessary,
since Hosseini et al. [20] showed that disconnected graphs cannot
have the optimal envy approximated to any �nite factor. We give
the �rst known results for connected graphs.

We also show that for random graphs, any allocation is a (1 +
> (1))-approximation with high probability (Theorem 3.7).

Finally, we investigate complete binary trees in further detail.
We �rst show that the class of binary trees is not “well-behaved”,
by refuting a conjecture by Hosseini et al. [20] about the structural
properties of exact optimal allocations on binary trees by means of
a counterexample (Section 3.1). The hardness results in Theorems
4.2, 4.6, and 4.10 might have suggested that complete binary trees
cannot have > (log=)-approximations in general. We show, however,
that just the in-order traversal on a complete binary tree achieves
a 3.5-approximation to the optimal envy (Theorem 5.5). We also
show that this approximation ratio cannot be improved beyond
1.67 by a natural class (“value-agnostic”) of algorithms.

Our paper is organized as follows. In Section 2, we set up prelim-
inaries. In Sections 3 and 4, we present our upper and lower bounds
respectively from Table 1. In Section 5, we discuss binary trees. We
�nish with concluding remarks and open directions in Section 6.
Due to space constraints, we present brief proof sketches of our
main results; detailed proofs can be found in the full version [19].

1.2 Other Related Work
Our work is very close to the large body of results on the com-
putability of M������ L����� A����������. While �nding opti-
mal linear arrangements is intractable in general [12], there have
been several papers presenting approximation algorithms for the
problem [11, 13, 27], with the best known approximation ratio
being $ (

p
log= log log=) [13]. Note that it is relatively straight-

forward to show that an U-approximation algorithm for theM���
���� L����� A���������� problem yields an Uq approxima-
tion for the G�������� H���� A��������� problem where q =
max18=�1 (⌘8+1 � ⌘8 )/min18=�1 (⌘8+1 � ⌘8 ).

Our problem also generalizes the classical problem of M������
B��������, which asks how to partition a graph ⌧ into two almost
equally-sized components with the smallest number of edges going
across the cut. This problem is NP-complete [17] and it is also
known to be inapproximable by an additive factor of=2�n [6]. These
lower bounds carry over to the G�������� H���� A���������

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

826



Approximations for G�������� H���� A���������

Graph Class Upper Bound Lower Bound

Connected graphs
$ (=2) (Prop. 3.1)

l (=2�n ) (Thm. 4.3)
$ (treewidth(⌧) · � log2.5 =) (Cor. 3.5(iii))

Trees
$ (=) (Prop. 3.1)

l (=1�n ) (Thm. 4.2)
$ (� log=) (Alg. 1, Cor. 3.5(i))

Planar graphs $ (
p
=� log1.5 =) (Cor. 3.5(ii)) l (=1�n ) (Thm. 4.2)

Bounded-degree graphs $ (treewidth(⌧) · log2.5 =) (Cor. 3.5(iii)) l (=1�n ) (Thm. 4.6)

Bounded-degree planar graphs $ (p= log1.5 =) (Cor. 3.5(ii)) l (=0.5�n ) (Thm. 4.5)

Bounded-degree trees $ (log=) (Thm. 3.3, Cor. 3.5(i)) > 1 (NP-hard, Thm. 4.10)

Random graphs 1 +$ (
p
ln(=)/=) (Thm. 3.7)) w.h.p. –

Complete binary trees 3.5 (Thm. 5.5)) open (Conj. 6.1)
Table 1: Summary of our results. Here, � is the maximum degree of the graph in question, and the lower bounds assume P < NP.
Note that in all cases, the upper and lower bounds match up to polylogarithmic factors, showing that nontrivial improvements
to these upper bounds are impossible unless P = NP. All our upper bounds are polynomial time.

problem as well, although the latter is strictly harder. For instance,
M������ B�������� is known to be solvable exactly in polynomial
time for forests, butG��������H����A��������� is NP-hard [20].

The canonical house allocation problem has also been well-
studied in the literature. Recall that, in the canonical house al-
location problem, agents are allowed to disagree on the values of
the houses. In this setting, the existence and computational com-
plexity of envy-free allocations on graphs have been reasonably
well-studied [3, 5, 10], with the problem, unsurprisingly, being com-
putationally intractable inmost settings. There has also been several
lines of work studying the complexity of minimizing various no-
tions of envy when the underlying graph is complete [1, 16, 21, 25].
For a detailed survey of various lines of work where there are graph-
based constraints on the agents or goods, we refer the reader to
Biswas et al. [4].

2 MODEL AND PRELIMINARIES
We have a set of = agents + = [=] placed on the vertices of an
undirected graph ⌧ = (+ , ⇢). There are = houses, each with a non-
negative value, that need to be allocated to the agents. We represent
the houses simply by the multiset of values � = {⌘1, . . . ,⌘=}, and
assume WLOG that ⌘1  . . .  ⌘= . We will interchangeably talk
about the house with value ⌘8 and the real number ⌘8 . The pair
(⌧,� ) de�nes an instance of G�������� H���� A���������.

An allocation c : + ! � is a bijective mapping from agents (or
nodes) to house values. Given an allocation c and an edge (8, 9) 2 ⇢,
we de�ne the envy along the edge (8, 9) as |c (8) � c ( 9) |. Our goal
in G�������� H���� A��������� is to compute an allocation c⇤
that minimizes the total envy along all the edges of ⌧ :

Envy(c,⌧) :=
’

(8, 9)2⇢
|c (8) � c ( 9) |.

We adopt the following de�nition from Hosseini et al. [20] that
provides a geometric representation to visualize allocations.

De�nition 2.1 (Valuation Interval). For any instance (⌧,� ) of
G�������� H���� A���������, de�ne the valuation interval as the
closed interval [⌘1,⌘=] ⇢ R�0. For any allocation c , the envy along
the edge (8, 9) 2 ⇢ is exactly the length of the interval [c (8), c ( 9)]
(assuming c (8)  c ( 9)). We sometimes call the intervals [⌘8 ,⌘8+1]
for 1  8  = � 1 the smallest subintervals of the valuation interval.

An optimal allocation c⇤ would minimize the sum of the lengths
of the intervals corresponding to each of its edges. An allocation c
is U-approximate if Envy(c,⌧)  U · Envy(c⇤,⌧).

Fix any arbitrary class G of graphs (we allow G to be a singleton
set). We say an algorithm ALGG is de�ned on G if ALGG is well-
speci�ed and outputs a valid allocation on every instance (⌧,� )
of G�������� H���� A��������� with ⌧ 2 G. Such an algorithm
ALGG is an U-approximation if for all instances (⌧,� ) of G�����
���� H���� A��������� with ⌧ 2 G, ALGG always outputs an
U-approximate allocation. A 1-approximation is an exact algorithm.

De�nition 2.2 (Value-Agnostic Algorithms). An algorithm ALGG
de�ned on a graph class G is value-agnostic if on every input (⌧,� )
with⌧ 2 G, ALGG returns the same allocation on all instances where
the ordering of house values is the same (in other words, the algorithm
only requires the ordinal ranking and not the numerical values). If the
graph class G admits a value-agnostic U-approximation algorithm,
we say G is U-value-agnostic. Otherwise, it is U-value-sensitive.

How can we re-frame existing results on G�������� H����
A��������� in the light of De�nition 2.2? Hosseini et al. [20] show
that, unless P = NP, there is no 1-approximation algorithm ALGG
when G is the set of vertex-disjoint unions of paths, cycles, or stars.
In contrast, they show that value-agnostic exact algorithms exist
when G is the set of paths, cycles, or stars.

Of course, value-agnostic U-approximations are extremely pow-
erful algorithms, as they can exploit the graph structure indepen-
dently of the values in the G�������� H���� A��������� instance.
As we would expect, value-agnostic 1-approximations do not al-
ways exist, even on very simple graph classes and even if we allow
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(a)

(b)

(c)

(d)

Figure 1: (a) shows the graph  2 [ 3. (b), (c), and (d) show dif-
ferent valuation intervalswith di�erent optimal assignments
for  2[ 3. In particular, note that every optimal solution for
(b) requires the two smallest values to go to the  2, but every
optimal solution for (c) requires the three smallest values
to go to the  3, and an U-value-agnostic algorithm cannot
distinguish between the two, for any �nite U .

for unlimited time. For instance, consider the graph consisting of
the disjoint union of  2 and  3. Figure 1 shows that this graph does
not admit an U-value-agnostic algorithm for any �nite U .

Although all our examples so far use the disconnectedness of
the graphs to illustrate value-sensitivity, we will see in Section 5
that there are value-sensitive connected graphs as well.

For any graph ⌧ = (+ , ⇢), and ( ✓ + , we denote by X⌧ (() the
number of edges going across the cut ((,+ � () in⌧ . We will often
estimate X⌧ (() for various subsets ( . For :  = � 1, we de�ne
X⌧ (:) := min |( |=: X⌧ (() as the size of the smallest cut in ⌧ with
: vertices on one side. Of course, X⌧ (:) = X⌧ (= � :) for all : . A
(:,= � :)-cut in ⌧ will be any cut ((,+ � () with |( | = : .

We will use a few concepts from structural graph theory, most
notably that of cutwidth.

De�nition 2.3. For a graph ⌧ = (+ , ⇢) on = vertices, let f =
(E1, . . . , E=) be any ordering of + . The width of f is de�ned as

width(f,⌧) := max
1✓=�1

X⌧ ({E1, . . . , E✓ }) .

The cutwidth of ⌧ is the minimum width over all orderings of ⌧ , i.e.,

cutwidth(⌧) := min
f 2(=

width(f,⌧) .

The ordering f is often called a layout. An optimal layout is an
ordering that achieves the cutwidth of ⌧ . The cutwidth is closely
related to other standard notions of width used in structural graph
theory. In particular, we have the following chain of inequalities
(see Korach and Solel [23]):

treewidth(⌧)  pathwidth(⌧)  cutwidth(⌧)
 $ (� · pathwidth(⌧))  $ (� · treewidth(⌧) · log=) (1)

Finding the exact cutwidth of ⌧ in general is a di�cult algorith-
mic problem. It can be computed exactly for trees (along with an

optimal ordering) in time$ (= log=) [31]. However, even for planar
graphs, the problem is NP-complete [26].

If⌧ is su�ciently dense, there is a polynomial-time approxima-
tion scheme for the cutwidth [2]. In general, there is an e�cient
$ (log1.5 =)-approximation of the cutwidth known [24], which also
returns a layout achieving this ratio. We will use this process as a
subroutine several times in Section 3, for our upper bounds.

3 UPPER BOUNDS
The hardness of achieving optimal envy even on simple classes of
graphs (e.g., disjoint unions of paths) [20] immediately gives rise
to the question of whether we can approximate optimal solutions.
As stated before, we need to assume connectivity in general.

We start by making a trivial observation (Proposition 3.1): any al-
location of values to a connected graph is an $ (=2)-approximation
to the optimal envy, and in fact an $ (=)-approximation when the
graph is a tree. This is due to the fact that every smallest subinter-
val of the valuation interval is covered by at most |⇢ | edges, but
connectivity requires that it be covered by at least one edge.

Proposition 3.1. For any instance of G�������� H���� A������
���� on a connected graph ⌧ = (+ , ⇢), any allocation is an |⇢ |-
approximation to the optimal value.

In what follows, we �rst discuss how to improve this bound
for bounded-degree trees and then generalize this result to graphs
based on a structural parameter called the cutwidth. Finally, we
showcase how our bounds can be signi�cantly improved for the
special class of random (Erdős-Renyi) graphs.

3.1 Trees
In this section, we present a recursive polynomial-time (� log=)-
approximation algorithm for any instance of G�������� H����
A���������where the underlying graph is any tree with maximum
degree �. Thus, for any tree with maximum degree � = > (=/log=),
our algorithm provides a better approximation than Proposition 3.1.

We will use the following folklore fact2 without a proof.

Fact 3.2 (Folklore). Every =-vertex tree ) has a center of gravity:
i.e., a vertex E such that all connected components of ) � E have at
most =/2 vertices. This vertex E can be found in $ (=) time.

We will use Fact 3.2 in developing a recursive algorithm (Al-
gorithm 1) that obtains an $ (� log=)-approximation on trees. In
each call, the algorithm �rst �nds a center of gravity of the tree
and subsequently uses this vertex to identify disjoint subtrees and
solve the subproblems recursively on disjoint subintervals of the
valuation interval.

T������ 3.3. There is an $ (= log=)-time algorithm that, given
any instance on a tree with maximum degree �, returns an allocation
whose envy is at most � log= times the optimal envy.

We remark that with a slightly more careful analysis,3 we can
improve the approximation ratio to (1/2) · (1 + � + � log=). In
particular, for any instance on a binary tree, the optimal envy can
be (2 log=)-approximated in $ (= log=) time.
2For a proof of this fact, see, for instance, Chung [7], who attributes this as a folklore
result to Seidvasser [28], who claims the fact is well-known, but proves it anyway.
3Technically this involves tweaking the algorithm such that the center of gravity is
assigned slightly di�erently in line 7, and the partition of � is consistent with this.
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Algorithm 1 Recursive Algorithm TrickleDown() ,� )
Input: A G�������� H���� A��������� instance on a tree )

and a set of values � = {⌘1, . . . ,⌘=}.
Output: An $ (� log=)-approximate allocation.

1: if |) | = 1 then
2: Allocate the only house to the only vertex. ù Base case
3: else
4: Find a center of gravity E of ) .
5: Let ) � E = )1 + . . . +): , with |)8 | = =8 . ù :  �, =8  =/2.
6: Partition � into the following contiguous sets:

�1 = {⌘1, . . . ,⌘=1 },
�2 = {⌘=1+1, . . . ,⌘=1+=2 }

...

�: = {⌘=1+...+=:�1+1, . . . ,⌘=1+...+=: }.
7: Allocate ⌘= to vertex E .
8: for 8 2 {1, . . . ,:} do
9: Recursively call TrickleDown()8 ,�8 ).
10: return the resulting allocation.

3.2 Cutwidth
In this section, we generalize the result from Section 3.1 using
the structural graph theoretic property of cutwidth (De�nition
2.3). This will enable us to have a black-box process to obtain
envy approximations parameterized by the cutwidth. All of these
algorithms will be value-agnostic.

T������ 3.4. Let (⌧,� ) be a G�������� H���� A���������
instance de�ned on a connected graph ⌧ . Given a layout f that V-
approximates cutwidth(⌧), we can e�ciently construct an allocation
c that is a (V · cutwidth(⌧))-approximation to the optimal envy.

The next corollary follows from Theorem 3.4 and Equation 1
when combined with existing bounds on the cutwidth, treewidth,
or pathwidth [9, 23, 24] of certain graph families along with the
best known approximation results of these quantities [24, 31].

Corollary 3.5. There exist polynomial-time value-agnostic approxi-
mation algorithms for the following classes:
(i) An $ (� log=)-approximation algorithm on trees,
(ii) An$ (

p
=� log1.5 =)-approximation algorithm on planar graphs,

(iii) An $ (treewidth(⌧) · � log2.5 =)-approximation algorithm on
general connected graphs.

Note that for each class of graphs listed above � can be $ (=)
in the worst case, and for general connected graphs, treewidth(⌧)
can be$ (=) in the worst case as well. So, in the worst case, the �rst
and third results are asymptotically worse than the trivial bound
given by Proposition 3.1. However, for many natural subclasses of
these graphs, such as bounded-degree graphs and bounded-degree
trees, Corollary 3.5 yields strictly better approximation guarantees.

3.3 Random Graphs
We next consider random graphs, speci�cally Erdős-Renyi graphs,
where⌧ ⇠ G=,1/2 denotes a random graph on = nodes where every
edge is present with probability 1/2 and all edges are independent.

We show that G�������� H���� A��������� on such graphs can
be approximated up to a factor 1 + > (1) regardless of the valuation
interval. The central observation is that for any subset of nodes ( ,
X⌧ (() is tightly concentrated around |( | (= � |( |)/2.

Lemma 3.6. For ⌧ ⇠ G=,1/2,

Pr

8( ✓ + ,

����1 � X⌧ (()
|( | (= � |( |)/2

����  n
�
� 1 � exp(�⌦(n2=)) ,

for any n �
p
24 ln(=)/=.

Lemma 3.6, with n =
p
24 ln(=)/=, implies that with high proba-

bility, the cost of the optimum solution is at least

=�1’
8=1

(⌘8+1 � ⌘8 )X⌧ (8) �
=�1’
8=1

(⌘8+1 � ⌘8 ) (1 � n)8 (= � 8)/2,

whereas the cost of an arbitrary allocation is at most

=�1’
8=1

(⌘8+1 � ⌘8 ) (1 + n)8 (= � 8)/2.

Therefore, an arbitrary allocation has an approximation ratio of
(1 + n)/(1 � n) = 1 +$ (

p
ln(=)/=).

T������ 3.7. For⌧ ⇠ G=,1/2, any allocation is a 1+$ (
p
ln(=)/=)

approximation with probability at least 1 � 1/poly(=).

4 LOWER BOUNDS
Every algorithm presented in Section 3 is value-agnostic. It might
seem reasonable to assume, therefore, that there are more power-
ful approximation schemes that exploit the numerical values in �
in some way. Indeed, our results on random graphs suggest that,
for most graphs, we can do signi�cantly better. Remarkably, we
show in this section that this is not the case, and our value-agnostic
algorithms are strong enough to give us nearly optimal approxi-
mation guarantees. Speci�cally, we show inapproximability results
matching our upper bounds (up to polylog factors) for every class
of graphs considered. Our lower bounds will use reductions from
the U���� 3�P�������� problem.

De�nition 4.1 (3�P��������). Given a multiset of 3< naturals � =
{01, . . . ,03<} ✓ N>0 and a natural) 2 N>0 such that

Õ
9 2 [3<] 0 9 =

<) , 3�P�������� asks whether � can be partitioned into< triplets
((1, (2, . . . , (<) such that the sum of each triplet is equal to ) .

The 3�P�������� problem is NP-complete even when all the
inputs are given in unary and each item in� is strictly between) /4
and ) /2 [18]. We refer to this variant as U���� 3�P��������. Note
that U���� 3�P�������� is just a reformulation of B�� P������:
there are 3< integers that sum to <) , and we wish to �t these
integers into < bins each of capacity ) . The condition of three
integers in each bin is redundant, as it is implied by the constraint
that each integer is strictly between ) /4 and ) /2.

Some of our results and proofs in this section (speci�cally Theo-
rems 4.2 and 4.5) are very similar to results about the inapproxima-
bility of the balanced graph partition problem [14, 15]. The rest of
our proofs use novel gadgets and techniques.
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4.1 Trees and Planar Graphs
Recall that we presented two approximation guarantees for trees,
$ (=) (Proposition 3.1) and$ (� log=) (Corollary 3.5). Both of these
results are e$ (=) in the worst case.

T������ 4.2. For any constant n > 0, there is no e�cient$ (=1�n )
approximation algorithm forG��������H����A��������� on depth-
2 trees unless P = NP.

r

G1

. . .

G2

. . .

. . . G3<

. . .

⇠01 � 1 ⇠02 � 1 ⇠03< � 1

Figure 2: Mapping a U���� 3�P�������� instance to a tree.

P���� S�����. Given a U���� 3�P�������� instance, we con-
struct a graph according to Figure 2 where⇠ is some positive integer
we will decide later. The multiset of house values consists of ⇠)
houses with value 9 for each 9 2 [<], and one house with value 0.

If there is a valid 3-partition, we can construct an allocation with
envy at most 3<2. If there is no 3-partition, any allocation must
have envy at least ⇠ . We can now set ⇠ appropriately. ⇤

4.2 General and Bounded-Degree Graphs
In this section, we generalize the arguments from Section 4.1 to
other classes of graphs. The main technique is similar to that of
Theorem 4.2, so we just present ideas for the graph construction in
each of these proofs, with the details in Hosseini et al. [19].

We �rst match the $ (=2) upper bound for connected graphs
(Proposition 3.1 and Corollary 3.5).

T������ 4.3. For any constant n > 0, there is no e�cient$ (=2�n )
approximation algorithm for G�������� H���� A��������� on con-
nected graphs unless P = NP.

P���� S�����. We replace the ⇠08 -sized stars in Figure 2 with
⇠08 -sized cliques. The rest of the proof is similar to Theorem 4.2. ⇤

So far in our two lower bounds (Theorems 4.2 and 4.3), we were
able to use simple counting techniques, because counting edges
with non-zero envy in stars and cliques is straightforward. Our
next results will require much more careful analysis.

We will start with bounded-degree planar graphs. Our reduction
uses grid graphs instead of stars and cliques, and so we will need a
technical lemma to help us with estimating the number of edges
with nonzero envy.

Lemma 4.4. Let ⌧ = ⌧A83 (A , 2) be a grid graph with A rows and 2
columns such that A  2 . Let � ✓ + be any set of nodes in this graph
such that |�|  A2/2. Then, X⌧ (�) � min{

p
|�|, A/2}.

Armed with Lemma 4.4, we can now present our lower bound
on bounded-degree planar graphs.

T������ 4.5. For any constant n > 0, no e�cient $ (=0.5�n )
approximation algorithm exists for G�������� H���� A���������
on bounded-degree planar graphs unless P = NP.

P���� S�����. We replace the stars of size⇠08 in Figure 2 with
grid graphs containing ⇠ rows and ⇠08 columns. The rest of the
proof �ows similarly to Theorem 4.2. Lemma 4.4 helps in estimating
the envy blow-up if there is no 3-partition. ⇤

Note that Theorem 4.5 matches the $ (p=) upper bound from
Corollary 3.5.

Our next lower bound applies to arbitrary graphs with bounded
degree, and matches the $ (=) upper bound from Proposition 3.1
and Corollary 3.5. In this reduction, we use a recent polynomial-
time algorithm [8] to compute bipartite Ramanujan multigraphs
for any even number< of vertices, and any degree 3 � 3. At a high
level, we replace the star gadgets from the proof of Theorem 4.2
with these Ramanujan graphs and use the expansion properties of
Ramanujan graphs to prove a lemma similar to (and stronger than)
Lemma 4.4.

T������ 4.6. For any constant n > 0, there is no e�cient$ (=1�n )
approximation algorithm for theG��������H����A��������� prob-
lem on bounded-degree graphs unless P = NP.

4.3 Bounded-Degree Trees
Our �nal lower bound shows that G�������� H���� A���������
is NP-hard even when the underlying graph is a bounded degree
tree. We still useU���� 3�P�������� in our reduction but this proof
is signi�cantly di�erent from the previous ones. Our reduction will
use a gadget we call the �ower.4

De�nition 4.7. The �ower � (=,:) is a rooted tree with = nodes and
maximum degree : + 1, de�ned recursively as follows: for any : � 1,
� (1,:) is simply an isolated vertex which is the root node. For = > 1,
� (=,:) consists of a root node connected to the root nodes of 3 other
�owers � (=1,:), . . . , � (=3 ,:) such that
(a)

Õ3
8=1 =8 = = � 1,

(b) if = � 1 � : , then 3 = : if = and : have di�erent parities, and
3 = : � 1 otherwise,

(c) each =8 is odd,
(d) for any 8, 9 2 [3], |=8 � = 9 |  2.
To ensure consistency with �oral terminology, we refer to the root
node of the �ower � (=,:) as its pistil and the (recursively smaller)
�owers � (=1,:), . . . , � (=3 ,:) as its petals.

Before we use �owers, we show that they are well-de�ned and
e�ciently constructible.

Lemma 4.8. For any = � 1 and : � 3, the �ower � (=,:) exists and
can be constructed in poly(=,:) time.

The reason we build �owers is because they satisfy the two
following useful properties.

Lemma 4.9. Let � (=,:) be a �ower on the set of vertices # , and
suppose = � 10: , and = and : have di�erent parities. Then, � (=,:)
satis�es the following properties:
4To the best of our knowledge, our speci�c �ower graph is novel but it is possible
(likely even) that the term “�ower” has appeared before in the graph theory literature.
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(i) For any � ✓ # such that |�| is even and � does not contain the
pistil, X (�) � 2.

(ii) Each petal of � (=,:) has size in the interval
⇥ 4=
5: ,

6=
5:
⇤
.

These simple properties are all we need to show the hardness of
G�������� H���� A��������� on bounded-degree trees.

T������ 4.10. G�������� H���� A��������� is NP-hard on
bounded-degree trees.

� () , 99) � () , 99) � () , 99)

� (01, 99) � (03< , 99)

� (10) , 999) � (10) , 999) � (10) , 999) � (10) , 999)

� (02, 99)

� (10) , 999) � (10) , 999)

. . .

Figure 3: Mapping a U���� 3�P�������� instance to a bounded
degree tree. Here, the orange, red, and green circles corre-
spond to small, medium, and large �owers respectively.

P���� S�����. Given a U���� 3�P�������� instance, we con-
struct a graph according to Figure 3; the shaded circles correspond
to pistils and the white triangular blocks correspond to petals. The
house values are de�ned as follows: we have 4< + 1 unique values
such that the gaps between these values are exponentially decreas-
ing. That is, the gap between the least and the second least value
is signi�cantly larger than the gap between the second least and
the third least value and so on. For each unique value, there are )
houses with that value in the multiset � , with the exception of the
largest value which has enough houses (with that value) to ensure
the total size of the multiset � is equal to the number of nodes in
the graph.

We can show that in any optimal allocation, the �rst 3< clus-
ters must be allocated to �owers of the form � () , 99). The next
< clusters must be allocated in a way that creates a 3-partition
to minimize envy. That is, each of these values must be allocated
to three �owers of the form � (08 , 99) such that the total size of
these three �owers sums up to ) . If it is not possible to do this, the
minimum envy of the allocation is strictly higher. This allows us to
separate instances with a valid 3�P��������. ⇤

5 THE CURIOUS CASE OF COMPLETE BINARY
TREES

In this section, we investigate G�������� H���� A��������� on
instances where the underlying graph is a complete binary tree ⌫: .

Recall that such a tree has depth : , and 2:+1 � 1 vertices in total, of
which 2: are leaves. All leaves, furthermore, are at the same depth.

In Hosseini et al. [20, Theorem 4.11], it was shown that for any
binary tree (complete or otherwise), at least one optimal allocation
satis�es the local median property: the value at every internal node
is the median among the values given to that node and its two
children. The same authors surmised that, for any binary tree, at
least one optimal allocation satis�es the stronger global median
property: for every internal node E , either its left subtree gets strictly
lower-valued houses and its right subtree gets strictly higher-valued
houses, or the other way round. Note that if true, this would lead to
a straightforward recursive polynomial-time algorithm that would
compute an optimal allocation on (nearly) balanced binary trees.

We now give a refutation of this conjecture. We illustrate an
instance on a complete binary tree of depth 3, in which no opti-
mal allocation satis�es the global median property. This is a quite
surprising result that shows that the general problem on complete
binary trees may be much harder than expected.

Example 5.1. Consider the instance (⌫3,� ), where

� = {0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 3, 3, 3}.

See Figure 4. The top shows the only allocation satisfying the global
median property (up to re-ordering). The total non-negligible envy
incurred by this assignment comes out of the thick red edges of the ⌫3,
which incur a total envy of 6. However, the bottom shows an allocation
with an envy of 5 (incurred by the thick red edges), showing that the
global median is strictly sub-optimal.

0 0 0 0 1 2 3 3

0 0 1 3

0 3

1

1

2

1 2

0 0 0 0 1 1 3 3

0 0 1 3

0 3

2

2

2 1

Figure 4: Refutation of the global median property on com-
plete binary trees.

Fix an arbitrary instance of G�������� H���� A���������
on the complete binary tree ⌫: on = = 2:+1 � 1 vertices, and
consider the valuation interval. There are = values on the interval.
Of particular interest to us is the size of the smallest (8,= � 8)-cut,
i.e., X⌫: (8). Since X⌫: (8) = X⌫: (=�8), we canWLOG take 8  d=/2e.
We now need a de�nition.

De�nition 5.2 (Repunit Representation and Elegance). For any
< � 1, let a repunit representation of < be any �nite sequence
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< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
elegance(<) 1 2 1 2 3 2 1 2 3 2 3 2 3 2 1 2 3 2 3 4

Table 2: List of elegance(<) for 1  <  20.

(01, . . . ,0A ) 2 ZA satisfying

< =
A’
8=1

sgn(08 ) · (2 |08 | � 1)

where sgn(08 ) is 1 (resp. �1) if 08 � 0 (resp. 08 < 0). Note that every
< � 1 has a repunit representation (e.g., the length-< sequence of
all ones). We de�ne elegance(<) as the smallest A for which< has a
repunit representation (01, . . . ,0A ) of length A .

The intuition behind this de�nition is to capture the most “e�-
cient” way to write< as the sum or di�erence of binary repunits,
i.e., numbers of the form 11 . . . 1. For instance, elegance(10) = 2,
because 10 = (23 � 1) + (22 � 1), and there is no shorter repunit rep-
resentation. Similarly, elegance(12) = 2, as 12 = (24 � 1) � (22 � 1).
Note that 12 cannot be written as the sum of two repunits. Table 2
summarizes the elegance of all numbers up to 20.

The following proposition relates elegance to the size of the
smallest (8,= � 8)-cut in a complete binary tree, namely X⌫: (8).
Proposition 5.3. Let ⌫: be the complete binary tree on = = 2:+1 � 1
vertices. Then for 8  2: �1, elegance(8)�1  X⌫: (8)  elegance(8).

P���� S�����. For each edge going across a cut in ⌫: , one of its
endpoints is the root of a binary subtree, and it contributes a term
in a repunit representation (possibly along with an extra additive
term). Conversely, any repunit representation gives rise to a cut.
Therefore, cuts correspond to repunit representations up to a single
additive term. Minimizing both sides yields the result. ⇤

We note that if 8 ⌧ =, then in fact X⌫: (8) = elegance(8). There-
fore, elegance(8) actually characterizes the size of the minimum
(8,= � 8) cut in any su�ciently large binary tree.

Consider a value-agnostic algorithm for complete binary trees.
Such an algorithm would need to assign the house values in any
instance in some �xed order (E1, . . . , E=) to the vertices of ⌫: . The
following proposition shows that doing this cannot simultaneously
achieve the optimal cut on all smallest subintervals, and this leads
to a lower bound on the approximability.

Proposition 5.4. There is no value-agnostic algorithm for complete
binary trees that attains an approximation better than (5/3) ⇡ 1.67.

The counterexample in Proposition 5.4 and the failure of the
global median property (Example 5.1) may seem to suggest that,
even for complete binary trees, any constant approximation ratio
is unattainable. Remarkably, the following result shows that this is
not the case: there is a value-agnostic algorithm attaining a constant
approximation on any complete binary tree. Indeed, ordering the
vertices of ⌫: in the standard in-order traversal and allocating the
(sorted) values in that order yields a 3.5-approximation.

T������ 5.5. Let ⌫: be the complete binary tree on = = 2:+1 � 1
vertices. Then, on any house allocation instance on ⌫: , assigning the
houses in increasing order to the vertices of ⌫: in the standard in-order
traversal gives us a total envy at most 3.5 times the optimal value.

It is instructive to check why this technique does not hold for
arbitrary binary trees. Proposition 5.3 does not hold in general for
non-complete binary trees. A complete binary tree ensures that
there is always a binary subtree of the size given by a repunit
representation to include on one side of the cut, but we lose this
guarantee for non-complete trees.

We leave it as an open problem to construct either value-agnostic
deterministic algorithms that achieve an approximation ratio better
than 3.5, or to obtain any polynomial-time algorithm (which cannot
be value-agnostic) to obtain any approximation ratio better than
1.67 for complete binary trees. We believe there should be an exact
algorithm for this very special class of graphs, and hope that this
will instigate future research into this problem.

6 CONCLUSIONS
We explored the approximability of G�������� H���� A������
����, presenting tight approximation algorithms for several classes
of connected graphs, to our knowledge the �rst such results in the
area. In particular, we gave polynomial-time algorithms exploit-
ing graph structures to approximate the optimal envy on general
graphs, trees, planar graphs, bounded-degree graphs, bounded-
degree planar graphs, and bounded-degree trees; for each of these
classes, we also gave a matching lower bound. Our algorithms were
value-agnostic, i.e., they took into account only the input graph and
the ordering among the house values but not the values themselves.
We showed that any allocation on a random graph is a (1 + > (1))-
approximation, and also gave a value-agnostic algorithm to show a
3.5-approximation on all instances on complete binary trees.

The main question we leave for future work is the complexity
of G�������� H���� A��������� on complete binary trees. We
know by the results in Section 5 that no exact algorithm can be
value agnostic, but there seems to be no obvious way of leveraging
the values, on even such a structured class of graphs.

Conjecture 6.1. G�������� H���� A��������� is polynomial-time
solvable on complete binary trees.
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