Orchestrating a DNN training job using an iScheduler Framework: a use case

SWATHI VALLABHAJOYULA, SANDEEP SATISH BUDHYA, AKANSHA JAIN, MAAZ BAIG, and RA-
JIV RAMNATH, The Ohio State University, USA

Orchestrating DNN training jobs efficiently on HPC centers such as Ohio Supercomputer Center (OSC), Texas Advanced Computing
Center (TACC), and San Diego Supercomputer Center (SDSC) is crucial due to the prevalence of Al-driven workloads. However,
managing these workloads effectively requires a deep understanding of available resources, allocation policies, and suitable execution
configurations. Current approaches often lead to job interruptions, prolonged wait times, and inefficient resource utilization. To address
these challenges, we propose the deployment of an iScheduler framework. This framework aims to automate workflow orchestration
for DNN training by estimating resource needs (using existing state-of-art estimation models) and generating an infrastructure-aware
execution plan. In this study, we demonstrate the practical application of the iScheduler framework in orchestrating a user-specific
DNN training workflow, showcasing its capabilities in optimizing resource allocation and scheduling. This poster dives deeper into the

user case and shows all user interactions with iScheduler and the responses.
CCS Concepts: » Software and its engineering — Designing software; « Computing methodologies — Cost-sensitive learning.
Additional Key Words and Phrases: AI4CI, AI4OPT, ML, estimation scalability, model, execution time estimation, workflow orchestration

ACM Reference Format:
Swathi Vallabhajoyula, Sandeep Satish Budhya, Akansha Jain, Maaz Baig, and Rajiv Ramnath. 2024. Orchestrating a DNN training job

using an iScheduler Framework: a use case. 1, 1 (April 2024), 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 PROBLEM STATEMENT

HPC environments are vital for scientific workloads, but users often struggle to estimate resource needs accurately,
leading to job interruptions and inefficiencies. The rise of Al-driven workloads exacerbates this challenge, with HPC
centers facing increased demand for GPU-powered clusters. Despite available guidelines, optimizing resource allocation
for DNN workloads remains complex. Existing Al-based resource estimation models and schedulers aim to address this,
but accessing and integrating them into scheduling tasks is challenging for end-users. This gap motivates our work in
introducing an iScheduler framework designed to seamlessly integrate AI models for automating scheduling tasks,

thereby optimizing DNN workload efficiency and resource utilization.

2 METHODS

For the framework to simulate user interactions and manage the job execution workflow, it needs to address specific
queries based on user-defined configurations. For example, if a user intends to train a ResNet50 model on WikiFaces
Data with 20k images using the ADAM optimizer for 50 epochs, and desires to refine model accuracy by scaling batch

sizes (e.g., 8, 16, 32, 64), the framework should provide solutions for the following questions:

Authors’ Contact Information: Swathi Vallabhajoyula; Sandeep Satish Budhya; Akansha Jain; Maaz Baig; Rajiv Ramnath, The Ohio State University,
Columbus, Ohio, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 , Swathi Vallabhajoyula, Sandeep Satish Budhya, Akansha Jain, Maaz Baig, and Rajiv Ramnath

External Information from Cl webpages DNN Training Workload)
* ClInformation — queues, limits, o Resource Allocation
costs, hardware configurations Neural Training Model * Maximum Execution time
« Job Profiles - DNN metadata, Network Data Configs * Maximum Memory
Training metadata, Execution (E} * Allocation Queue (time, memory)
Configurations, performance stats Runtime A%v g g Manuall (1]
User 58> 0 Gonfigs 7} Manualy 1o, o
Reads Manuals 501 7,5,

1. Manually create a
Job Resource Allocation

(] 2. Submit the Job to Cl Interface

using Manual estimations

3. Observe the Job
Progress “status” and :
Perforéna?ce (sayby | 4 if job fails or doesn’t 9 k |||:|’>
using Grafana) perform as expected, Stop ol
the job and resubmit - repeat Challenges to Solutions

Fig. 1. A: The conventional user interaction workflow is depicted in the figure, highlighting the steps where users encounter challenges
and illustrating how an Al-enabled software can address these challenges effectively.

e What are the estimated resource requirements for training ResNet50 with different batch sizes?

e How will the execution time vary for each batch size configuration?

e What are the potential costs associated with training the model using different batch sizes?

e Can the model be trained within specified constraints such as available cluster resources and time limitations?

(as shown in Table 1)

Are there any optimal configurations that effectively balance resource utilization and job completion time?

Is it feasible to schedule jobs on the immediately available node instead of waiting for a more efficient allocation?
Additionally, can we preempt and resume execution on the preferred node once it becomes available? (as shown
in Table 1)

Is it viable to utilize development nodes that become idle after work hours to execute workloads? This could

enable jobs waiting for allocations on regular nodes to be executed at least partially before receiving a full

allocation)

Is it feasible to execute DNN training on CPU nodes until GPUs become available? ((as seen from Table 1,
CPU-only nodes are currently idle, even though the queue has pending jobs. However, many of these jobs are

multiple requests from a few user IDs and may not be allocated due to their maximum CPU core limitations

2.1 Steps for interacting with the job scheduler - iScheduler Framework.
The User imports the iSchedulerHelper tool and creates an instance (TAPIS and DB authentications are set up here).

(1) The User writes his DNN code (create his model, say ResNet50) to generate model summary JSON and prepares
the training data (processing Wikifaces data loop and getting the training meta-data).

(2) The User invokes the iSchdulerHelper to request resource estimations for executing his DNN loop against
different hyper-parameters.

(a) The estimator is invoked as shown in formula 1 - which in turn calls the DB ! to fetch node

IDB SChema could be found here: https://lucid.app/lucidchart/bdad353a-cf83-4a3b-b087-0f1807e54c64/edit?viewportjoc = —2230%2C —
1555%2C6169%2C2552%2C0ginvitationld = invsa2655f8 — f613 — 49c3 — b3f8 — ddb5c38ee8aa

Manuscript submitted to ACM

Orchestrating a DNN training job using an iScheduler Framework: a use case 3

Table 1. An overview of the available system state at two times (on and off work hours). ** A/I/T - Allocated/Idle/Total #-40-core
nodes. PD-Pending

cr Nodes Alloc Max Time At 11:00:00 CST At 5:00:00 CST
Cluster Partition min-max Type DD- Nodes ** Jobs Nodes ** Jobs
per Job HH:MM:SS A/N/T PD AT PD
development 1-4 CPU 2:00:00 17/1/18 8 15/3/18 0
TACC/ gpu-al00 1-4 GPU 48:00:00 65/8/73 76 69/4/73 72
lonestar6 | gpu-al00-dev 1-4 GPU 2:00:00 4/0/0 7 0/4/4 0
gpu-al00-small 1-1 GPU 48:00:00 24/0/24 6 22/2/24 0
OSC/ debug 1-4 GPU 1:00:00 23/1/24 0 24/0/24 0
ascend gpu 1-2 GPU 7-00:00:00 23/1/24 55 24/0/24 50
development 1-40 CPU 2:00:00 371/23/394 5 225/167/394 0
TACC/ normal 3-512 CPU 48:00:00 | 6194/1586/8008 | 1162 | 7649/123/8008 | 1184
frontera | rtx-dev 1-2 GPU 2:00:00 5/1/6 1 0/6/6 0
small 1-2 GPU 48:00:00 208/8/216 135 208/7/216 113
serial 1-1 CPU 7-00:00:00 99/55/164 | 2249 122/42/164 | 2246
OSC/ parallel 2-40 CPU 96:00:00 99/55/164 6 122/42/164 0
pitzer# gpuserial 1-1 GPU 7-00:00:00 11/3/14 0 13/1/14 2
gpuparallel 2-10 GPU 96:00:00 11/3/14 1 13/1/14 1

(b) The node configuration, user model, and training configs are passed to the memory and walltime estimators.

(c) We invoke the Memory and wall-time algorithms—and submit one or more TAPIS apps (controllers registered
as applications) based on how the resellers configure their modules.

(d) Wait for the estimators to execute, consolidate the results, and provide users results like in Table 2

(3) The User invokes an iSchduler function to fetch the feasible execution systems for the desired memory and
walltime requirements.

(a) The estimator is invoked as shown in formula 2 - which in turn calls the DBto fetch system queues

(b) The systems are validated against the feasibility of executions and respect execution costs. The availability
(idle nodes available on the queue) is computed, and the list is returned to the User.

(c) The User selects a configuration that suits their requirements or offloads the execution to the iScheduler (IP).

(d) If the job is offloaded to IP with a scheduling option such as "immediate availability," it is scheduled to be
executed on that queue even if better (high compute) queues are recommended but are unavailable at the
moment.

(e) As the job executes, it pushes the progress to the Kafka broker, and a FLASK consumer checks (a) the progress
is as planned and (b) If the "Ideal" queue is now available.

(f) The IP terminates the job if a better node becomes available and continues training from the last checkpoint
location.

(g) The IP monitors the job and compares progress left with allocation left to either reevaluate resources and reset
the job or continue moving the jobs. Table 2 shows the two examples of job orchestration based on resource

requirements and node availability.
The User invokes an iSchduler function to fetch the feasible execution systems for the desired memory and walltime
requirements.

Memeory, Walltime = Estimator(Features[DNN_Arch, Training_Data, DNN_HypParams, Systems] (1)
Manuscript submitted to ACM

* Parameters mongoDB
-
Neural Training Model gy - Job Profiles —
Network Data Configs —

, Swathi Vallabhajoyula, Sandeep Satish Budhya, Akansha Jain, Maaz Baig, and Rajiv Ramnath

Y g8 ®

{p1}

1 iScheduler Framework

Cl Information — queues, limits, costs, p
hardware configurations

metadata, Execution Configurations,
performance stats

Data and Al Model Reposito
~ O .
roe

~gi- .
1010
1010

DNN metadata, Training

2N

Memory Walltime
Prediction Models
Rule Engine for
scheduling,
rescheduling
Plug and Play support

duler

1. Create Possible
Job executions

e

gre:

OSC Clusters

=

TACC Clusters

\|
L=

£ @

ubmit the Job, Monitor for
and Reschedule if

Jobs Progress
&Performance

Stats:

Fig. 2. The proposed iScheduler Framework with a use case of estimate resource requirements for executing a DNN application

Table 2. The Estimation Results from executing the iScheduler Functions - Equation 1 and 2

Training Batch Mem (GB) System Posible | Est. (Hrs) | Feasible Q Idle? Cost ($)
20000 8 7.02 | Intel Xeon yes 11 | serial yes 0.924
20000 16 14.05 | Intel Xeon yes 10 | serial yes 0.84
20000 32 28.11 | Intel Xeon yes 9.2 | serial yes 0.7728
20000 64 56.23 | Intel Xeon yes 8.7 | serial yes 0.7308
20000 8 7.02 | NVIDIA V100 | yes 3 | gpuserial no 0.522
20000 16 14.05 | NVIDIA V100 | yes 3 | gpuserial no 0.522
20000 32 28.11 | NVIDIA V100 | yes 2.4 | gpuserial no 0.4176
20000 64 56.23 | NVIDIA V100 | no N/A | N/A no N/A
Allocation Config Execution Configutation:
Queue Name Training Samples Waitime (hrs) Cost ($) Total(hrs)
Without serial 20000 32 0 8.4 1.764 8.4
Preemption: | gpuserial 20000 32 26 2 0.42 28
Wlth. serial * 20000 12 0+ 4+ | 0.84 +0.294 6.4
Preemption | gpuserial 4 <X> 14 =1.134
Waitime, Cost = Estimator(Memory, Walltime, System_Queues) (2)
3 RESULTS

Table 2 displays the outcomes of the user workflow. It’s observed that although a slower node (serial) was allocated, the

cost of execution in non-preemption mode is higher due to the longer allocation time and the node not being ideal for

DNN training. However, the user’s job was executed even before an Ideal Node became available, thereby reducing the

waiting time. Similarly, in preemptive mode, as soon as the ideal nodes become available, the running job is terminated,

and the model continues training from the last checkpoint in the new allocation.

Manuscript submitted to ACM

	Abstract
	1 Problem statement
	2 Methods
	2.1 Steps for interacting with the job scheduler - iScheduler Framework.

	3 Results

