
Orchestrating a DNN training job using an iScheduler Framework: a use case

SWATHI VALLABHAJOYULA, SANDEEP SATISH BUDHYA, AKANSHA JAIN,MAAZ BAIG, and RA-
JIV RAMNATH, The Ohio State University, USA

Orchestrating DNN training jobs e�ciently on HPC centers such as Ohio Supercomputer Center (OSC), Texas Advanced Computing
Center (TACC), and San Diego Supercomputer Center (SDSC) is crucial due to the prevalence of AI-driven workloads. However,
managing these workloads e�ectively requires a deep understanding of available resources, allocation policies, and suitable execution
con�gurations. Current approaches often lead to job interruptions, prolonged wait times, and ine�cient resource utilization. To address
these challenges, we propose the deployment of an iScheduler framework. This framework aims to automate work�ow orchestration
for DNN training by estimating resource needs (using existing state-of-art estimation models) and generating an infrastructure-aware
execution plan. In this study, we demonstrate the practical application of the iScheduler framework in orchestrating a user-speci�c
DNN training work�ow, showcasing its capabilities in optimizing resource allocation and scheduling. This poster dives deeper into the
user case and shows all user interactions with iScheduler and the responses.

CCS Concepts: • Software and its engineering ! Designing software; • Computing methodologies ! Cost-sensitive learning.

Additional KeyWords and Phrases: AI4CI, AI4OPT, ML, estimation scalability, model, execution time estimation, work�ow orchestration

ACM Reference Format:
Swathi Vallabhajoyula, Sandeep Satish Budhya, Akansha Jain, Maaz Baig, and Rajiv Ramnath. 2024. Orchestrating a DNN training job
using an iScheduler Framework: a use case. 1, 1 (April 2024), 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 PROBLEM STATEMENT

HPC environments are vital for scienti�c workloads, but users often struggle to estimate resource needs accurately,
leading to job interruptions and ine�ciencies. The rise of AI-driven workloads exacerbates this challenge, with HPC
centers facing increased demand for GPU-powered clusters. Despite available guidelines, optimizing resource allocation
for DNN workloads remains complex. Existing AI-based resource estimation models and schedulers aim to address this,
but accessing and integrating them into scheduling tasks is challenging for end-users. This gap motivates our work in
introducing an iScheduler framework designed to seamlessly integrate AI models for automating scheduling tasks,
thereby optimizing DNN workload e�ciency and resource utilization.

2 METHODS

For the framework to simulate user interactions and manage the job execution work�ow, it needs to address speci�c
queries based on user-de�ned con�gurations. For example, if a user intends to train a ResNet50 model on WikiFaces
Data with 20k images using the ADAM optimizer for 50 epochs, and desires to re�ne model accuracy by scaling batch
sizes (e.g., 8, 16, 32, 64), the framework should provide solutions for the following questions:

Authors’ Contact Information: Swathi Vallabhajoyula; Sandeep Satish Budhya; Akansha Jain; Maaz Baig; Rajiv Ramnath, The Ohio State University,
Columbus, Ohio, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 , Swathi Vallabhajoyula, Sandeep Satish Budhya, Akansha Jain, Maaz Baig, and Rajiv Ramnath

Fig. 1. A: The conventional user interaction workflow is depicted in the figure, highlighting the steps where users encounter challenges
and illustrating how an AI-enabled so�ware can address these challenges e�ectively.

• What are the estimated resource requirements for training ResNet50 with di�erent batch sizes?
• How will the execution time vary for each batch size con�guration?
• What are the potential costs associated with training the model using di�erent batch sizes?
• Can the model be trained within speci�ed constraints such as available cluster resources and time limitations?
(as shown in Table 1)

• Are there any optimal con�gurations that e�ectively balance resource utilization and job completion time?
• Is it feasible to schedule jobs on the immediately available node instead of waiting for a more e�cient allocation?
Additionally, can we preempt and resume execution on the preferred node once it becomes available? (as shown
in Table 1)

• Is it viable to utilize development nodes that become idle after work hours to execute workloads? This could
enable jobs waiting for allocations on regular nodes to be executed at least partially before receiving a full
allocation)

• Is it feasible to execute DNN training on CPU nodes until GPUs become available? ((as seen from Table 1,
CPU-only nodes are currently idle, even though the queue has pending jobs. However, many of these jobs are
multiple requests from a few user IDs and may not be allocated due to their maximum CPU core limitations

2.1 Steps for interacting with the job scheduler - iScheduler Framework.

The User imports the iSchedulerHelper tool and creates an instance (TAPIS and DB authentications are set up here).

(1) The User writes his DNN code (create his model, say ResNet50) to generate model summary JSON and prepares
the training data (processing Wikifaces data loop and getting the training meta-data).

(2) The User invokes the iSchdulerHelper to request resource estimations for executing his DNN loop against
di�erent hyper-parameters.

(a) The estimator is invoked as shown in formula 1 - which in turn calls the DB 1 to fetch node
1DB SChema could be found here: https://lucid.app/lucidchart/bdad353a-cf83-4a3b-b087-0f1807e54c64/edit?viewport;>2 = �2230%2⇠ �
1555%2⇠6169%2⇠2552%2⇠008=E8C0C8>=�3 = 8=E4026555 8 � 5 613 � 4923 � 135 8 � 331523844800

Manuscript submitted to ACM

Orchestrating a DNN training job using an iScheduler Framework: a use case 3

Table 1. An overview of the available system state at two times (on and o� work hours). ** A/I/T - Allocated/Idle/Total #-40-core
nodes. PD-Pending

CI/
Cluster Partition

Nodes
min-max
per Job

Alloc
Type

Max Time
DD-

HH:MM:SS

At 11:00:00 CST At 5:00:00 CST
Nodes ** Jobs Nodes ** Jobs
A/I/T PD A/I/T PD

TACC/
lonestar6

development 1-4 CPU 2:00:00 17/1/18 8 15/3/18 0
gpu-a100 1-4 GPU 48:00:00 65/8/73 76 69/4/73 72
gpu-a100-dev 1-4 GPU 2:00:00 4/0/0 7 0/4/4 0
gpu-a100-small 1-1 GPU 48:00:00 24/0/24 6 22/2/24 0

OSC/
ascend

debug 1-4 GPU 1:00:00 23/1/24 0 24/0/24 0
gpu 1-2 GPU 7-00:00:00 23/1/24 55 24/0/24 50

TACC/
frontera

development 1-40 CPU 2:00:00 371/23/394 5 225/167/394 0
normal 3-512 CPU 48:00:00 6194/1586/8008 1162 7649/123/8008 1184
rtx-dev 1-2 GPU 2:00:00 5/1/6 1 0/6/6 0
small 1-2 GPU 48:00:00 208/8/216 135 208/7/216 113

OSC/
pitzer#

serial 1-1 CPU 7-00:00:00 99/55/164 2249 122/42/164 2246
parallel 2-40 CPU 96:00:00 99/55/164 6 122/42/164 0
gpuserial 1-1 GPU 7-00:00:00 11/3/14 0 13/1/14 2
gpuparallel 2-10 GPU 96:00:00 11/3/14 1 13/1/14 1

(b) The node con�guration, user model, and training con�gs are passed to the memory and walltime estimators.
(c) We invoke the Memory and wall-time algorithms—and submit one or more TAPIS apps (controllers registered

as applications) based on how the resellers con�gure their modules.
(d) Wait for the estimators to execute, consolidate the results, and provide users results like in Table 2

(3) The User invokes an iSchduler function to fetch the feasible execution systems for the desired memory and
walltime requirements.

(a) The estimator is invoked as shown in formula 2 - which in turn calls the DBto fetch system queues
(b) The systems are validated against the feasibility of executions and respect execution costs. The availability

(idle nodes available on the queue) is computed, and the list is returned to the User.
(c) The User selects a con�guration that suits their requirements or o�oads the execution to the iScheduler (IP).
(d) If the job is o�oaded to IP with a scheduling option such as "immediate availability," it is scheduled to be

executed on that queue even if better (high compute) queues are recommended but are unavailable at the
moment.

(e) As the job executes, it pushes the progress to the Kafka broker, and a FLASK consumer checks (a) the progress
is as planned and (b) If the "Ideal" queue is now available.

(f) The IP terminates the job if a better node becomes available and continues training from the last checkpoint
location.

(g) The IP monitors the job and compares progress left with allocation left to either reevaluate resources and reset
the job or continue moving the jobs. Table 2 shows the two examples of job orchestration based on resource
requirements and node availability.

The User invokes an iSchduler function to fetch the feasible execution systems for the desired memory and walltime
requirements.

"4<4>A~,,0;;C8<4 = ⇢BC8<0C>A (�40CDA4B [⇡##_�A2⌘,)A08=8=6_⇡0C0,⇡##_�~?%0A0<B, (~BC4<B] (1)
Manuscript submitted to ACM

4 , Swathi Vallabhajoyula, Sandeep Satish Budhya, Akansha Jain, Maaz Baig, and Rajiv Ramnath

Fig. 2. The proposed iScheduler Framework with a use case of estimate resource requirements for executing a DNN application

Table 2. The Estimation Results from executing the iScheduler Functions - Equation 1 and 2

Training Batch Mem (GB) System Posible Est. (Hrs) Feasible Q Idle? Cost ($)
20000 8 7.02 Intel Xeon yes 11 serial yes 0.924
20000 16 14.05 Intel Xeon yes 10 serial yes 0.84
20000 32 28.11 Intel Xeon yes 9.2 serial yes 0.7728
20000 64 56.23 Intel Xeon yes 8.7 serial yes 0.7308
20000 8 7.02 NVIDIA V100 yes 3 gpuserial no 0.522
20000 16 14.05 NVIDIA V100 yes 3 gpuserial no 0.522
20000 32 28.11 NVIDIA V100 yes 2.4 gpuserial no 0.4176
20000 64 56.23 NVIDIA V100 no N/A N/A no N/A

Allocation Con�g Execution Con�gutation:
Queue Name Training Samples Waitime (hrs) Cost ($) Total(hrs)

Without
Preemption:

serial 20000 32 0 8.4 1.764 8.4
gpuserial 20000 32 26 2 0.42 28

With
Preemption

serial +
gpuserial 20000 32 0 +

4 <X>
4 +
1.4

0.84 + 0.294
= 1.134 6.4

,08C8<4,⇠>BC = ⇢BC8<0C>A ("4<>A~,,0;;C8<4, (~BC4<_&D4D4B) (2)

3 RESULTS

Table 2 displays the outcomes of the user work�ow. It’s observed that although a slower node (serial) was allocated, the
cost of execution in non-preemption mode is higher due to the longer allocation time and the node not being ideal for
DNN training. However, the user’s job was executed even before an Ideal Node became available, thereby reducing the
waiting time. Similarly, in preemptive mode, as soon as the ideal nodes become available, the running job is terminated,
and the model continues training from the last checkpoint in the new allocation.

Manuscript submitted to ACM

	Abstract
	1 Problem statement
	2 Methods
	2.1 Steps for interacting with the job scheduler - iScheduler Framework.

	3 Results

