
Reference Implementation of Smart Scheduler: A CI-Aware, AI-Driven
Scheduling Framework for DNN-HPCWorkloads

SWATHI VALLABHAJOYULA, SANDEEP SATISH BUDHYA, and RAJIV RAMNATH, The Ohio State

University, USA

Many modern scienti�c workloads in HPC centers rely heavily on AI-driven tasks, particularly deep neural network (DNN) training
workloads. E�ciently managing and scheduling these workloads via SLURM interfaces requires users to comprehensively understand
available resources, allocation policies, and suitable execution con�gurations alignedwith their models’ estimated resource requirements
and constraints. Typically, scheduling jobs involves using default con�gurations, adjusting them as needed, or requesting maximum
available limits to ensure uninterrupted execution. However, this approach can lead to job interruptions due to underprovisioning,
prolonged wait times, ine�cient resource utilization, and increased costs from overprovisioning. These issues ultimately degrade
cluster performance, emphasizing the need for a more e�cient solution like an AI-enabled Scheduler framework that can pro�le the
DNN workloads and estimate and provision resources dynamically. The existing resource estimation models are trained independently
to predict various aspects of batch processing and scheduling, which do not work cohesively to orchestrate a job execution. In our work,
we propose to introduce a framework that investigates the feasibility of implementing an iScheduler framework, which transforms the
traditional SLURM resource provisioning work�ow into an AI-enabled scheduler that plugs di�erent estimators where needed to
orchestrate work�ow by generating a cyberinfrastructure-aware execution plan, schedules and monitors jobs till completion. We
demonstrate the feasibility of our framework by orchestrating a user-speci�c DNN training workload.

CCS Concepts: • Software and its engineering ! Designing software; • Computing methodologies ! Cost-sensitive learning.

Additional KeyWords and Phrases: AI4CI, AI4OPT, ML, estimation scalability, model, execution time estimation, work�ow orchestration

ACM Reference Format:
Swathi Vallabhajoyula, Sandeep Satish Budhya, and Rajiv Ramnath. 2024. Reference Implementation of Smart Scheduler: A CI-Aware,
AI-Driven Scheduling Framework for DNN-HPC Workloads. 1, 1 (April 2024), 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

High-performance computing (HPC) environments have become indispensable for handling various scienti�c workloads,
where resources are shared and allocated using batch scheduling based on user requests. Users typically rely on their
experience or recommended defaults from Cyberinfrastructure (CI) to estimate resource needs. They aim to secure
resources that enable job completion with minimal wait times, interruptions, and, optionally, adjustments to allocation
costs.

With the increasing popularity of Deep Neural Network (DNN) models and a huge shift towards Machine Learning
(ML) and DNN-driven scienti�c research is observed and these work�ows span from training novel models from scratch
to �ne-tuning state-of-the-art architectures. This shift has prompted HPC centers to deploy more GPU-powered clusters

Authors’ address: Swathi Vallabhajoyula, vallabhajosyula.2@buckeyelink.osu.edu; Sandeep Satish Budhya, budhya.1@buckeyemail.osu.edu; Rajiv
Ramnath, ramnath.6@osu.edu, The Ohio State University, Columbus, Ohio, USA, 43201.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Vallabhajosyula, Budhya and Ramnath

Fig. 1. A,C: The user interaction workflows without and with the iScheduler Framework; B: The Proposed iScheduler Framework
with Implementation So�ware Stack Details

to accommodate the in�ux of AI workloads.1. HPC centers have seen a splurge in resource demands as more researchers
are initiating AI-driven approaches in their work�ows, which are heavily computing-dependent and expensive.

Researchers must comprehend their workloads and �ne-tune their allocation requests. Researchers can ensure that
everyone receives a fair share of resource allocations by e�ectively utilizing these resources. A wealth of CI documents,
articles, and blogs o�er best practices for resource allocation for DNN workloads, considering factors such as batch and
epoch scaling, choice of optimizers, and memory requirements. Furthermore, research initiatives have been undertaken
to study and understand AI workloads, improve resource allocation, and develop new hardware architectures/chips for
compute-intensive AI training, inferencing, and generative AI modeling. Datasets like The MIT Supercloud Dataset 2

have been created to facilitate research on workload pro�ling and estimating resource requirements, particularly for
deep neural network (DNN) workloads.

To enhance the e�ciency of DNN workloads against the available resources, signi�cant advancements have been
made in the development of AI-based resource estimation models and Reinforcement Learning (RL) based schedulers.
These models estimate DNN memory requirements and training times, pro�le user workloads, monitor DNN jobs, and
scale frameworks accordingly. They represent a signi�cant step forward in the �eld, o�ering researchers new tools to
optimize resource utilization. (See section 2 for related literature).

However, accessing these models remains challenging for end-users who request resources and schedule
jobs due to the absence of reproducible code or ready-to-use components. To our knowledge, no framework is
available to seamlessly integrate these models for automating end-to-end job scheduling (from development
to execution). Our work aims to bridge this gap by introducing an iScheduler reference framework. This framework
orchestrates job execution by leveraging various AI models designed to allocate resources and monitor jobs via helper
functions and API calls (to interact with HPC centers).

The iScheduler Framework (as shown in Figure 1 B) o�ers the following features to orchestrate the job execution3:

• Provides an end-user helper tool, the iScheduler Helper Python module, to interact with cloud-hosted estimators
for fetching resource requirements and orchestrating job submissions.

• Utilizes a database (DB) to store system information and policies, aiding predictions and decision-making before
job submission using SLURM commands.4

1Clusters like ’cardinal’ at OSC are deployed, and chipsets like NVIDIA Blackwell are being released
2https://registry.opendata.aws/dcc/
3The entire iScheduler framework (from Figure 1, B) can be con�gured on one server (or node), and the users need to deploy only the iScheduler Helper
python module on their work environment
4We used the CI documentation and SLURM commands to create the DB

Manuscript submitted to ACM

Reference Implementation of Smart Scheduler: A CI-Aware, AI-Driven Scheduling Framework for DNN-HPC
Workloads 3

• O�ers intermediate predictions (memory, walltime, queueing times), execution status, and cost feasibility against
available systems, allowing manual usage or job delegation (via Intelligence Plane).

• Includes an Intelligence Plane (IP) Service for job submission, monitoring, and tracking on behalf of the user
(using TAPIS APIs)

• Supports plug-and-play upgrades of AI estimators as container images, running as TAPIS apps.

We delineate framework components in Section 3 and illustrate the work�ow for training vision models in Section 4.
Leveraging TAPIS, we execute estimators and run the target training workload as applications.While certain components
have broad applicability, we focus on prototyping a work�ow for training DNN workloads for three main reasons: a)
the increasing adoption of neural networks in workloads, b) the deterministic nature of DNN workloads, facilitating the
development of AI-based estimators with wider applicability and reducing the need for individual workload pro�ling,
and c) the simplicity of checkpointing and re-training models, enabling dynamic scaling and reallocation.

The code for all components and an example can be found on GitHub 5

2 BACKGROUND

Conventional User Job Execution Lifecycle: A typical user interacts with HPC environments (depicted in Figure 1,
A) by developing their applications, consulting CI documentation for suitable resources, submitting batch allocation
requests, and monitoring job progress. If a job fails, users diagnose issues and analyze runtime requirements before
resubmitting. This iterative process, known as online analytics, aims to address submission errors, enhance performance,
and experiment with parameters for scalability and accuracy improvement. However, it is both costly and time-
consuming.

2.1 Existing Research

Various AI-driven models have emerged for enhanced scheduling, each addressing di�erent aspects. For instance,
DNNMem[2] focuses on estimating memory requirements, while TPUGraphs[3] predict training times per epoch.
Frameworks like HARP[7] conduct o�ine pro�ling of DNN training loops to understand resource needs. Conversely,
models like Scavenger[4] perform online pro�ling, adjusting allocations based on consumption. Some models predict
job start times, while others, like Mirage[1], use reinforcement learning for scheduling GPU jobs. Despite advancements,
these models exhibit high estimation errors and require assistance in resource allocation. For example, our walltime
estimator for DNNs has a 20% error rate. While models like Scavenger o�er better accuracy (4-20% errors), they can
only pro�le jobs while executing.

In our previous research, HARP[5–7], demonstrated o�ine pro�ling’s viability for user-centric work�ows and
developed specialized AI-based walltime estimators. We compared default job con�gurations with our estimators’ pre-
dictions, assessing feasibility and cost-e�ectiveness. HARP involved: 1) pre-pro�ling user workloads against prede�ned
con�gurations to generate training data; 2) training o�-the-shelf estimators, dynamically selecting optimal models
based on validation accuracies; and 3) manual con�guration of CI policies to estimate predictions’ cost and feasibility.
However, users needed to run all three steps once to create and store estimators locally, requiring local HARP
instances and familiarity with its modules.

5https://github.com/manikyaswathi/iSchedulerFramework

Manuscript submitted to ACM

4 Vallabhajosyula, Budhya and Ramnath

2.2 Opportunities for HPC Job Execution Workflow Enhancement

Current Bottlenecks: 1: Manual �ne-tuning is time-consuming, expensive, and resource-intensive, as depicted in
Figure 1A.; 2: Independent use of current models still needs more accurate resource requirement estimation, hindering
end-to-end job automation.; 3: Utilizing available queues rather than waiting for ideal con�gurations demands diligent
job monitoring and frequent rescheduling. For example, development queues o�er similar computing capabilities to
longer allocation queues but with limited allocation time (2 hours), requiring users to fragment their execution and
submit multiple jobs 6.

The proposed framework (Figure 1B) seamlessly integrates plug-and-play resource estimators by leveraging CI
awareness through a centralized database for end-to-end job execution. Key components of our architecture are (a) CI
database: Stores all CI policies and aids in Intelligence Plane decisions. (b) Model repository: Hosts AI estimator
models. (c) TAPIS Interface: Facilitates job scheduling across diverse CIs and clusters via APIs. (d) Intelligence
Plane (IP):Manages job scheduling, monitors execution progress, and adjusts schedules as needed. Additionally, our
iScheduler Helper module o�ers various functions for users to invoke suitable AI models for estimations based on their
con�gurations. The subsequent sections discuss further details on these components and an example work�ow.

3 ISCHEDULER: COMPONENTS AND IMPLEMENTATION DETAILS

This section elaborates on the iScheduler components, including their objectives, implementation details, and rationale
behind the selected software stack. The current prototype is designed to facilitate DNN vision model training, and the
software stack choice aims to complement other ICICLE7 modules, such as cloud-to-edge orchestration.

Fig. 2. The user interaction with the iScheduler

4 ISCHEDULERWORKFLOWWITH A DNN TRAINING JOB EXECUTION SCENARIO

Figure 2 illustrates the user interaction �ow with the iScheduler Helper module to ascertain their job’s resource
requirements against available systems. It shows the orchestration of job execution with the Intelligence Plane.

Use Case: A user trains a ResNet50 vision model with 20k images and 50 epochs to improve accuracy by testing
various batch sizes. They utilize the iScheduler helper to manage resource requirements e�ciently. Workloads are

6Refer to the cluster batch limitations outlined in the respective CI documentation.
7https://icicle.osu.edu/

Manuscript submitted to ACM

Reference Implementation of Smart Scheduler: A CI-Aware, AI-Driven Scheduling Framework for DNN-HPC
Workloads 5

Table 1. Components of iScheduler Framework with so�ware requirements, implementation details, and functionalities

iScheduler Helper tool Database (S)

S/w: Python module
Easy to use with TensorFlow and PyTorch.
Actors:
-Developers: Create functions
to add work�ows.
-Users: Utilize functions to invoke i
nference models.
Functionality:
It o�ers an interface for end users to access the central
server functionalities via API calls.
Users con�gure their access tokens (TAPIS/DB).

S/w:MongoDB
-Chosen for its lightweight and NoSQL nature
-Ideal for prototype development, �exibility in schema
changes
Actors:
-Developers/Admins manage the database,
adding data automatically via a Python script
-Users interact with the database using the iScheduler
Functionality:
The DB stores CI details to estimate resource needs against
node con�gurations, validating allocation feasibility
and computing costs against batch limitations.

Intelligence Plane (S) AI Models (S)
S/W: Kafka, Spring, Flask
-Kafka is used to capture the pro�ling and progress
status of the executing jobs for online analytics.
-Flask: The consumers of the monitoring data that
invoke IP rules and make appropriate decisions.
Actors:
Developers - add more IP features
Users interact with IP using the iSchdulerHelper.
Functionality:
-Submits a TAPIS job on behalf of the user by creating
a job hook to monitor job progress.
-Maintains independent daemons for tracking job
progress and making ad-hoc decisions for rescheduling.
-The current prototype supports rescheduling jobs
based on progress and remaining allocation time

S/w: Images (Docker/Apptainer)
-Facilitates on-the-�y inferencing deployment
-Seamless integration with TAPIS for support
-Supports plug-and-play for developing new models
Actors:
-Developers/Admins create iScheduler helper functions
to add new work�ow estimation models
-Users invoke these models via the helper functions
Functionality:
-Replaces human estimations and incorporates
existing work (online and o�ine
analytic models) that could be invoked based on need
in the framework work�ow at appropriate times

The Framework user TAPIS to invoke AI models and automate the Job execution. Tapis framework serves as a cloud-hosted
API that enables the con�guration of various systems on multiple CIs, application registration, and job scheduling.
(S) - A server is needed to deploy the framework as a centralized service

single-node allocations managed through TAPIS, with checkpointing and callbacks ensuring job continuity and progress
monitoring.

Work�ow: The work�ow between the user and the Smart Scheduler is as follows:

• After con�guring the DNN architecture, the user invokes the appropriate iScheduler Helper function, providing
model details and desired batch sizes (32, 64).

• The Helper Function retrieves node con�gurations (CPU and GPU note con�gs for Pitzer Cluster) from the CI
database and runs estimators to provide resource predictions.

• The user reviews the estimations and selects an execution plan, either manually submitting the job or delegating
it to the Intelligence Plane. Result: A Pitzer CPU node can execute ResNet50 for all batch sizes with maximum
execution times of 9 and 9 hours and corresponding costs of $0.756 and $0.756 for batch sizes 32 and 64,
respectively. Additionally, Pitzer GPU (with a maximum of 32 GB memory) can handle only batch size 32 with
an estimated time of 2 hours and costs of $0.348.

Manuscript submitted to ACM

6 Vallabhajosyula, Budhya and Ramnath

• The user has two options after reviewing the estimation results: a) Manual Submission, where they con�gure
a SLURM script to submit the job themselves, and b) Delegating the job execution and monitoring To the
Intelligence Plane. The prototype demonstrates two feasibilities - submitting with the best con�gurations (ideal
system con�gurations for minimal interruptions) and based on system availability (CI queue state: number of
idle nodes, number of waiting jobs).

• Containerize the code, publish it to a publicly accessible location, and create a TAPIS Application.
• The Intelligence Plane manages job execution, submitting, and monitoring progress through callbacks. Jobs may
run as single tasks or cascading ones if exceeding maximum walltime. It reassesses plans after each sub-job,
adjusting or rescheduling as needed, triggering AI-�netuning loops for memory and walltime estimations. For
instance, submitting a job (batch size 32) with an ideal con�guration (Pitzer GPU) has an estimated job completion
of 28 hours (26 hours wait time + 2 hours execution) and $0.348 cost. Alternatively, executing based on availability
yields an estimated job completion of 9 hours (no waiting time as resources are allocated immediately) with
$0.756 cost.

O�oading the job execution-monitoring loop to the IP enables the utilization of various estimation models, including
o�ine pro�lers, estimated allocations based on cluster queue information, and online pro�les with prede�ned rules for
job execution. Opting for availability allows users to execute their jobs partially or entirely on less preferred nodes until
a desired allocation becomes available, reducing overall execution time, including wait times. Development queues,
with identical node con�gurations as full queues, are typically idle at night, making them ideal for utilization with the
scheduler framework without requiring manual monitoring of short cascading jobs. Employing an intelligent scheduler
can enhance the productivity of such compute-intensive work�ows and diminish the human-in-the-loop e�ort.

Our future work will focus on re�ning the current prototype to support DNN work�ow orchestration, collaborating
closely with domain experts. This involves validating and designing each component, such as ensuring the CI database
mirrors the SLURM DB, requiring collaboration with CI Admins for e�ective development.

REFERENCES
[1] Qiyang Ding, Pengfei Zheng, Shreyas Kudari, Shivaram Venkataraman, and Zhao Zhang. 2023. Mirage: Towards Low-interruption Services on Batch

GPU Clusters with Reinforcement Learning. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis. 1–13.

[2] Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang Lin, and Mao Yang. 2020. Estimating gpu memory consumption of deep
learning models. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 1342–1352.

[3] Mangpo Phothilimthana, Sami Abu-El-Haija, Kaidi Cao, Bahare Fatemi, Michael Burrows, Charith Mendis, and Bryan Perozzi. 2024. TpuGraphs: A
Performance Prediction Dataset on Large Tensor Computational Graphs. Advances in Neural Information Processing Systems 36 (2024).

[4] Sahil Tyagi and Prateek Sharma. 2023. Scavenger: A Cloud Service for Optimizing Cost and Performance of ML Training. In 2023 IEEE/ACM 23rd
International Symposium on Cluster, Cloud and Internet Computing (CCGrid). IEEE, 403–413.

[5] Manikya Swathi Vallabhajosyula and Rajiv Ramnath. 2022. Towards Practical, Generalizable Machine-Learning Training Pipelines to Build Regression
Models for Predicting Application Resource Needs on HPC Systems. In Practice and Experience in Advanced Research Computing (Boston, MA, USA)
(PEARC ’22). Association for Computing Machinery, New York, NY, USA, Article 43, 5 pages. https://doi.org/10.1145/3491418.3535172

[6] Manikya Swathi Vallabhajosyula and Rajiv Ramnath. 2023. Insights from the HARP Framework: Using an AI-Driven Approach for E�cient Resource
Allocation in HPC Scienti�c Work�ows. In Practice and Experience in Advanced Research Computing. 341–344.

[7] Swathi Vallabhajosyula and Rajiv Ramnath. 2022. Establishing a Generalizable Framework for Generating Cost-Aware Training Data and Building
Unique Context-Aware Walltime Prediction Regression Models. In 2022 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big
Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). 497–506.
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom57177.2022.00070

Manuscript submitted to ACM

https://doi.org/10.1145/3491418.3535172
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom57177.2022.00070

	Abstract
	1 Introduction
	2 Background
	2.1 Existing Research
	2.2 Opportunities for HPC Job Execution Workflow Enhancement

	3 iScheduler: Components and Implementation Details
	4 iScheduler Workflow with a DNN Training Job Execution Scenario
	References

