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AbstractÐ Inverse Synthetic Aperture Radar (ISAR) imaging
presents a formidable challenge when it comes to small everyday
objects due to their limited Radar Cross-Section (RCS) and the
inherent resolution constraints of radar systems. Existing ISAR
reconstruction methods including backprojection (BP) often
require complex setups and controlled environments, rendering
them impractical for many real-world noisy scenarios. In this
paper, we propose a novel Analysis-through-Synthesis (ATS)
framework enabled by Neural Radiance Fields (NeRF) for
high-resolution coherent ISAR imaging of small objects using
sparse and noisy Ultra-Wideband (UWB) radar data with an
inexpensive and portable setup. Our end-to-end framework
integrates ultra-wideband radar wave propagation, reflection
characteristics, and scene priors, enabling efficient 2D scene
reconstruction without the need for costly anechoic chambers
or complex measurement test beds. With qualitative and quan-
titative comparisons, we demonstrate that the proposed method
outperforms traditional techniques and generates ISAR images
of complex scenes with multiple targets and complex structures
in Non-Line-of-Sight (NLOS) and noisy scenarios, particularly
with limited number of views and sparse UWB radar scans.
This work represents a significant step towards practical, cost-
effective ISAR imaging of small everyday objects, with broad
implications for robotics and mobile sensing applications.

I. INTRODUCTION

Inverse Synthetic Aperture Radar (ISAR) imaging is a

standard radar mode employed for target identification, typi-

cally involving a stationary radar and a maneuvering target to

collect various aspects of target reflectivity through motion.

To achieve a high-resolution image of the target in the

scene, reflected signals are coherently accumulated to obtain

a sufficiently large synthetic aperture. Although Synthetic

Aperture Radar (SAR) imaging of large objects such as

UAVs, drones, vessels, buildings, and cities is widespread

[1], [2], [3], imaging of small targets remains challenging due

to their small Radar Cross-Section (RCS) and limitations in

radar range resolution. Existing ISAR image reconstruction

methods typically require complex hardware setups [4], high-

precision measurement test beds [5], or noise-less expensive
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anechoic chambers [6], [7]. We propose an analysis-through-

synthesis optimization framework that leverages recent ad-

vances in neural rendering [8] to perform high-resolution

radar imaging that works in diverse conditions employing

merely an inexpensive, easy-to-use, portable setup. The

proposed framework integrates the physics governing radar

signal formation, scene priors, and noise models to enable

coherent ISAR image reconstructions.
The Neural Radiance Field (NeRF) technique [8] em-

ploys neural networks and differentiable volume rendering

to generate new perspectives of 3D scenes from 2D images.

Since its inception, NeRF has spurred substantial research

efforts [9], [10], resulting in optimizations and expansions

that improve accuracy and efficiency in synthesizing novel

views and reconstructing 3D geometry from measurements.

Recently, these techniques have extended to other sensing

modalities such as sonar [11], [12], [13], radar [14], [15],

[16], [17], and lidar [18], [19], [20]. Reconstructing large

targets such as satellites, buildings, or city maps has been ex-

plored using NeRF for these modalities. While RaNeRF [15]

and ISAR-NeRF [16] focus on neural rendering for space

target reconstruction, CSAR-Incoherent [17] and MOISST

[19] reconstruct urban scenes. However, imaging small tar-

gets has always posed a challenge due to their minimal

Radar Cross-Section (RCS) and sensor resolution limitations.

Recent work of Reed et al. [11] tackles small target synthesis

with sonar but faces challenges with imaging Non-Line-of-

Sight (NLOS) scenes due to the acoustic signal’s inability to

penetrate through different materials.
We present a novel 2D ISAR reconstruction algorithm, uti-

lizing an analysis-through-synthesis optimization approach

enabled by conventional NeRF [8] techniques, yet diverging

notably in sampling (spherical instead of line sampling)

and output representation (time series rather than intensity).

Through numerous experiments on simulated and hardware-

measured data, we demonstrate both quantitative and quali-

tative superiority of our approach over traditional techniques.

The key contributions of our work can be summarized as -

• We introduce an end-to-end analysis-through-synthesis

(ATS) framework that integrates ultra-wideband radar

wave propagation and reflection characteristics to facil-

itate 2D scene reconstruction.

• Our approach generates ISAR images without any

costly anechoic chambers or complex measurement test

beds, thereby reducing both cost and computation time

in the reconstruction process.

• Our method demonstrates superior performance com-

pared to conventional backprojection (BP) in both sim-



ulated and real scenes with multiple targets and complex

structures in Non-Line-of-Sight (NLOS) and noisy en-

vironments, particularly with limited number of views

and sparse UWB radar scans.

II. RELATED WORKS

A. ISAR Imaging

The concept of inverse synthetic aperture radar (ISAR)

emerged to resolve imaging scenarios involving moving

targets and stationary radars. Circular ISAR methods, specif-

ically designed for stationary radar systems, facilitate high-

resolution imaging of rotating targets by leveraging their cir-

cular motion. In ISAR imaging, conventional reconstruction

methods often necessitate intricate hardware configurations

[4], precise measurement environments [5], or costly ane-

choic chambers with minimal electromagnetic interference

[6], [7]. These requirements pose challenges in terms of ac-

cessibility and resource expenditure, limiting the widespread

adoption and scalability. Common approaches for ISAR

imaging include time-domain backprojection [23], a tech-

nique that reconstructs images by correlating received radar

data with expected echoes from target positions across the

scene, the Range-Doppler technique [24], which processes

radar data collected over multiple rotations, and the Polar

Format Algorithm (PFA) [25], which directly transforms

radar data from polar to Cartesian coordinates for wavefront

curvature correction to compensate for distortions in received

signals. However, these algorithms often face challenges of

non-uniform motion, cluttered environments, limited mea-

surement coverage, noise, motion compensation errors, and

limited resolution.

B. Deep Learning-based Imaging

Recent advancements in radar signal processing, coupled

with the emergence of machine learning techniques, have
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Fig. 1: Hardware and Measurement Setup: (a) Front view of

Time Domain P440 radar module with absorber behind the

antenna (b) Top view of the radar (c) JAYEGT [21] electron-

ically motorized turn-table (d) Electronically enhanced Floor

Cleaning Robot [22]

shown promise in overcoming these limitations. Deep learn-

ing, in particular, has emerged as a powerful tool for radar

image enhancement, target recognition, and clutter suppres-

sion. Convolutional neural networks (CNNs) and generative

adversarial networks (GANs) have demonstrated remarkable

capabilities in radar image processing. For ISAR imaging,

Hu et al. [26] introduced a CNN-based approach for recon-

structing high-resolution images from radar measurements.

Additionally, Tan et al. [27] demonstrated a CNN-based

method for SAR image denoising, showcasing the potential

of CNNs in improving SAR image quality and utility.

GANs, on the other hand, have been used for radar image

enhancement, exploiting their ability to generate realistic and

high-fidelity reconstructions from noisy or degraded input

[28], [29].

C. NeRF-based Techniques

The Neural Radiance Fields (NeRF) framework [8], ini-

tially introduced for synthesizing photorealistic 3D scenes

from images, presents a fascinating approach to improve

ISAR imaging capabilities. Capitalizing on NeRF’s ability to

generate novel views, researchers have adopted this approach

to tackle challenges in ISAR imaging including resolution

enhancement, motion compensation, and clutter suppression

exemplified in CoIR [14], RaNeRF [15], ISAR-NeRF [16],

and CSAR-Incoherent [17] works. These techniques have

explored reconstructing large targets like satellites, buildings,

or even city maps using NeRF. Notably, RaNeRF [15] and

ISAR-NeRF [16] focus on neural rendering for space target

reconstruction, while CoIR [14], CSAR-Incorherent [17],

and MOISST [19] target the reconstruction of outdoor and

urban scenes. However, these approaches mostly improve on

already reconstructed SAR images for novel view synthesis

rather than incorporating radar measurements as input signals

themselves. Our approach, on the other hand, employs an

analysis-through-synthesis optimization method, using an

implicit neural representation akin to NeRF, to predict point

scatterers within the scene and synthesize radar measure-

ments through a differentiable forward model, optimizing

the network by minimizing the loss between synthesized and

actual data.

III. HARDWARE AND MEASUREMENT SETUP

We utilize a monostatic time domain Ultra-WideBand

(UWB) Impulse Radar P440 [30] with time windowing

capabilities for sensing, allowing us to exclude unwanted

signal reflections and conduct indoor measurements with-

out costly anechoic chambers. It operates from 3.1 to 4.8

GHz frequency centering at 4.3 GHz. Figure 1 illustrates

the radar hardware and the measurement setup. Our ISAR

imaging measurement in an ordinary room employs the

UWB radar positioned at a fixed location, using coherent

pulse integration to enhance the signal-to-noise ratio, with the

radar sampling rate exceeding the maximum Doppler extent

for coherent processing into unaliased ISAR image. The

procedure involves placing the object of interest on a rotating

table in front of the radar system. We leverage JAYEGT [21],
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Fig. 2: illustrates our proposed analysis-through-synthesis (ATS) pipeline for radar image reconstruction. First, scene

coordinates are sampled using our spherical sampling scheme and encoded with a multi-resolution hash encoding. Next, the

encoded coordinates are fed into the NeRF network to predict scene scattering functions, which are then used to generate

radar measurements through a differentiable forward model. Training the network involves minimizing the loss between

estimated and true radar measurements for each scan of the sinogram.

an electronically motorized turn-table for placing the target

object and getting a steady rotational motion. Additionally,

we demonstrate the feasibility of collecting data with a

standard floor cleaning robot by integrating supplementary

circuitry (costing approximately $10) [22], which incorpo-

rates an ESP32 chip with Bluetooth functionality.

In this setting, radar measurements are acquired from

n virtual radar positions, or in our case, from 360◦ po-

sitions creating a circular synthetic aperture. These radar

measurements are aggregated to create a 2D sinogram, where

the x-axis represents the range in meters, and the y-axis

corresponds to ϕ in degrees. Each ϕ value aligns with a

radar position or a 1◦ rotation angle of the turn-table. While

the measurements are intended to be static for each angle,

in practice, data is continuously collected until the rotating

table completes a full revolution. The only requirements are

to maintain a constant rotational speed of the target during

the sensing period and to keep the axis of rotation unchanged

throughout the observation period.

IV. ANALYSIS-THROUGH-SYNTHESIS (ATS) PIPELINE

After acquiring the measurements (i.e. sinograms), our re-

construction process employs an analysis-through-synthesis

optimization technique, leveraging an implicit neural repre-

sentation (INR) similar to NeRF, in traditional view synthe-

sis. Figure 2 shows our proposed analysis-through-synthesis

(ATS) pipeline. At first, the scene coordinates are sampled

using our spherical sampling scheme for a given sensor

position. Then the sampled scene is passed through a multi-

resolution hash encoding block similar to Instant-NGP [31]

for generating the positional embedding v from each coordi-

nate. It uses hash functions to generate varied positional em-

bedding, capturing relative positions in a sequence at differ-

ent resolutions. In contrast to positional encoding, the multi-

resolution approach allows a more dynamic and flexible

representation of positional information. Then the encoded

coordinates are fed into the NeRF neural network of four

fully connected layers, referred to as the neural backprojec-

tion network NBP , parameterized by weights θBP . Through

this network, we predict the complex scattering function σ′

in the estimated scene Fθ(v). More precisely, the network

characterizes the scatterers at each location of the scene.

The scatterers within the scene are subsequently employed

to generate radar measurements (each scan in the sinogram)

through our differentiable forward model described in section

IV-A. Training the network involves minimizing the loss

between the synthesized measurements M(Fθ(v)) and actual

radar measurements y for each scan of the sinogram. In short,

by employing a neural network, we predict scene scatterers,

and then by employing a differentiable forward model, we

synthesize radar measurements over time.

A. Radar Forward Model

In this subsection, we present the radar forward mea-

surement model, which serves as the foundation for our

ATS pipeline. This model draws inspiration from a point-

based radar scattering model as outlined in [32], [33]. Such

point-scattering models provide computational feasibility and

differentiability, making them conducive to neural rendering.

Let x ∈ R
3 describe a 3D coordinate in a scene, σ(x) ∈ R

denote the amplitude of the scatterer at x in the scene, and

s(t) represent the transmitted UWB signal:

s(t) = e
− t2

2τ2
0 · cos (2πfct) (1)

Here, fc is the center frequency of the transmitted pulse,

and τ0 is the standard deviation that controls the pulse width

of the UWB signal.

Figure 3 illustrates the forward model geometry, with

transmitter and receiver origins designated as oT and oR



𝒐! ≈ 𝒐"	

𝑏! 𝒙𝒊 𝑇(𝒐!, 𝒙𝒊)

Scene

𝜒

Co- located 

TX RX  

𝑅# = 𝒐! − 𝒙𝒊 	

Ray

Spherical wavefronts

Ray-Sphere Intersection within the Target

Target

Fig. 3: Illustrates our forward model geometry and sampling

strategy. A transmitted ray (blue) is emitted towards the

scene, propagating to a scene χ weighted by the directivity

function bT (x) and transmission probability T (oT , x). All

transmitted rays within the antenna beamwidth (orange lines)

are then sampled at the intersection point of the sphere

(green) defined by range samples. TX and RX are collocated.

respectively. bT (x) represents the directivity function for

the transmitter and T (oT , x) is defined as the transmission

probability between a point in the scene and the origins

of the transmitter and receiver respectively, accounting for

occlusion effects in our model.

Let R = ||oT − x|| = ||oR − x|| denote the distance

between the point in the scene and the origins of the

transmitter and receiver. Then the receiver signals can be

expressed as:

r(t) =

∫

χ

2T (oT , x)bT (x)

(4π)3R4
L(σ(x))s

(

t− 2R

c

)

dx (2)

where χ denotes the set of all coordinates in the region

of interest in the scene, L(σ(x)) represents the Lambertian

scattering model of the scene point, and c is the speed of

light. Considering the co-location of transmitter and receiver

antennas, we assume equal transmission and reception prob-

abilities, hence the factor of 2 in the numerator.

However, pulses are transmitted and received within dis-

crete radial range bins in ultra-wideband radar systems.

These distances are often referred to as sets of points

lying on constant time-of-flight paths, also known as radial

wavefronts. Received pulses are coherently integrated based

on their constant time-of-flight range bins, thereby forming

radar range profiles. Consequently, we approximate the for-

ward model similar to [11] that captures these characteristics

given by the following equation:

r

(

t =
2R

c

)

=

∫

Er

2T (oT , x)bT (x)L(σ(x))dx. (3)

Here, Er delineates the sphere encompassing all points

within the constant time of flight for the radar’s forward

model geometry, σ(x) denotes the scene scatterer at x, and its

complex scattering function is estimated by a neural network,

represented as σ(x) = NBP (x; θBP ).

B. Spherical Sampling

In this subsection, we outline our method of sampling the

scene using spheres of constant time-of-flight to estimate the

transmission probabilities for transmitted rays.
In Figure 3 each green semi-circle corresponds to a

constant time-of-flight t = 2R/c which forms a sphere.

This sphere is centered where the transmitter and receiver

antennas coincide (OT ≃ OR), with a radius of R = ct/2.

The equation representing this sphere is:

x2 + y2 + z2 = R2. (4)

Now, by intersecting a sphere with radius ct
2 with a bundle

of rays originating from the transmitter and falling within the

beamwidth θBW , we obtain the sampled points in the scene.

The transmission ray, depicted in blue with direction d⃗Tj
, is

defined as

⃗xTij
= o⃗T + li · d⃗Tj

(5)

where li represents the depth samples along the ray calcu-

lated at which a ray intersects the sphere by substituting the

ray into Equation 4. This substitution results in a quadratic

equation from which we extract the positive root:

x =
−b+

√
b2 − 4ac

2a
(6)

where,

a = d⃗T · d⃗T , b = 2x⃗T · d⃗T , c = x⃗T · x⃗T −R2 (7)

We address occlusion by calculating transmission prob-

abilities between the transmitter/receiver and various scene

points using the method of Mildenhall et al. [8] and Reed

et al. [11]. These probabilities are expressed as the product

of exponential terms, where |σk| represents the magnitude

of the scattering coefficient at range bin k, and |lk+1 − lk|
denotes the distance between consecutive range bins:

T (o, xTi
) =

∏

k<i

e−(|σk|·|lk+1−lk|).

Utilizing the Lambertian scattering model, the scattered

intensity L(σ) is calculated as:

L(σ) = σ · (xTi
− oT )

||xTi
− oT ||

· 2T (o, xTi
).

These equations facilitate the computation of transmission

probabilities and scattered intensity, crucial for addressing

occlusion in the scene.

V. SYNTHETIC DATA EXPERIMENTS

To generate synthetic radar sinograms depicting various

point targets, we employ Equation 1. Four distinct synthetic

scenarios were simulated, each containing single, double,

triple, and quadruple targets within the scene. The corre-

sponding results are presented in Figure 4. ATS demonstrates

qualitative consistency with BP, exhibiting accurate scene

reconstruction in noise-free conditions and superior perfor-

mance in noisy conditions. BP, on the other hand, shows

strong artifacts around the corners of each reconstructed

scene when noise is added.
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Fig. 4: Simulated data in noise-free and noisy conditions. The rows show the Sinogram, BP, and ATS reconstructions

respectively for single, double, triple, and quad point targets.

TABLE I: Quantitative Metrics Comparison between differ-

ent Reconstruction Methods on Simulated Data with added

Gaussian Noise CN ∼ N (0, 0.1)

# Reflectors Method PSNR ↑ LPIPS ↓ MSE ↓

BP 11.797 1.055 0.062
One ATS 15.049 0.069 0.001

BP 11.296 1.050 0.069
Two ATS 14.611 0.047 0.004

BP 10.754 1.043 0.077
Three ATS 14.134 0.069 0.004

BP 10.266 1.035 0.084
Four ATS 13.746 0.118 0.004

A. Effect of Noise

To quantitatively evaluate our proposed ATS reconstruc-

tion against BP, we use three image metrics namely- PSNR

(Peak Signal to Noise Ratio), LPIPS (Learned Perceptual

Image Patch Similarity) [34], and MSE (Mean Squared

Error). Table I presents the comparison of quantitative met-

rics among various reconstruction methods on four different

simulated scenes with added Gaussian noise CN ∼ N (0, 0.1)
per scan. As shown in Table I, the proposed ATS consistently

outperforms BP across all metrics in noisy scenes.

B. Effect of Sparse Measurements

Figures 5a and 5b illustrate the influence of sparse mea-

surements in terms of skip angles on PSNR and LPIPS

metrics, respectively, for both BP and ATS across varying

numbers of simulated targets. With an increasing number

of targets, PSNR tends to decrease for both BP and ATS;

however, ATS consistently maintains higher PSNR values

compared to BP across all skip angles except for the single

reflector case where the PSNR difference is less than 0.4.

Similarly, ATS exhibits lower LPIPS values compared to BP

across all skip angles, indicating superior performance in

scenarios with limited measurements.

VI. REAL DATA EXPERIMENTS

Figure 6 illustrates ISAR imaging results obtained with

real data collected with - a single cylindrical object, two

cylindrical objects placed at varying distances apart, and

a square container. The second and third columns of the

figure illustrate reconstructed images using BP and ATS,

respectively. BP begins to exhibit artifacts as the complexity
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Fig. 5: Comparison of PSNR and LPIPS metrics for BP and

ATS with different numbers of simulated reflectors at various

skip angles

of the target scene increases. In contrast, ATS reconstruction

displays no artifacts and maintains the reconstructed targets’

dimensions more accurately to their original form.

A. Effect of Skip Angles on Real Scene Reconstruction

The impact of measurements with skip angles on the

reconstruction algorithms for imaging double soda cans

is depicted in Figure 7. Increasing skip angles introduces

significant artifacts in BP reconstruction, whereas ATS re-

construction only suffers from minor amplitude attenuation.

B. Effect of Partial Rotations on Real Scene Reconstruction

The effect of partial rotation of the target on BP and ATS

reconstructions of double soda cans is shown in Figure 8. It

can be observed that BP fails to reconstruct the secondary

object when the measurements are less than or equal to half

of the total 360 measurement angles.

Target BP ATS

Fig. 6: Real data (with full 360◦ views with 1 scan per

viewing angle) - Row 1: single soda can inside a cardboard

box, Row 2: two spray paint bottles 7 inches (17.78 cm)

apart, Row 3: double cans 27 inches (68.58 cm) apart, Row

4: square metal box with a side length of 9.5 inches (24.13

cm).

Skip Angles BP ATS

10◦

20◦

30◦

Fig. 7: Impact of skip angles on double soda cans imaging.

Row 1: 10◦ skip (36 scans), Row 2: 20◦ skip (18 scans),

Row 3: 30◦ skip (12 scans). Increasing skip angles leads

to notable artifacts in BP. In contrast, ATS reconstruction

experiences only a slight decrease in signal strength.
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0◦ to 180◦
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Fig. 8: Effect of limited measurement angles on double soda

cans imaging. Row 1: 90 scans (from 0◦ to 90◦), Row 2:

180 scans (from 0◦ to 180◦), and Row 3: 270 scans (from

0◦ to 270◦). BP fails to reconstruct the secondary object

when measurements are ≤ 180◦.

VII. APPLICATIONS OF ATS

A. Identification Applications:

Numerous studies have investigated embedding informa-

tion into objects for non-intrusive content recognition. Radar-

based methods like MechanoBeat [35], for instance, utilize

the oscillation frequency of 3D-printed tags to embed identi-

fication information into everyday objects. Motivated by this

concept, our objective in the subsequent experiments was to

integrate identification information into objects such as cylin-

drical containers and helmets by equipping them with 3D-

printed corner reflectors. We maintained a consistent number

of reflectors to ensure a constant Radar Cross-Section (RCS)

while varying their orientations to enhance robust detection

capabilities. We utilize 3D-printed octahedral corner reflec-

tors (20 mm radius) positioned in specific orientations to

encode identification information within objects. We apply

copper tapes onto the surfaces of the reflectors to further

enhance their reflectivity.

1) Plastic Container/Mug Identification: The top two

rows of Figure 9 displays imaging of a 3D-printed plastic

cylindrical container having two corner reflectors positioned

at 90◦ and 180◦ orientations respectively. The results show

that the ATS method can reasonably reconstruct the relative

positions of reflectors. In contrast, BP presents noticeable

artifacts, failing to provide clear tag reconstruction even after

a -30dB dynamic range adjustment.

2) Helmet Identification: In challenging environments

such as construction sites and firefighting scenarios where

line-of-sight may be obstructed, accurate ISAR imaging

facilitates easy identification of helmets through the attached

tags. Figure 9 (bottom two rows) presents imaging results

of helmets fitted with 3D-printed reflector tags at varying

orientations, showcasing the effectiveness of the ATS method

Target BP ATS

Fig. 9: Enhanced object identification using 3D printed

octahedral reflectors: Top two rows depict ISAR imaging of a

cylindrical container with corner reflectors placed at 90◦ and

180◦ orientations, while bottom two rows showcase ISAR

imaging of a construction helmet with reflectors positioned

at 120◦ intervals and in a linear alignment.

in accurately reconstructing reflectors’ positions. In contrast,

BP exhibits notable artifacts and inferior tag imaging, visible

only after a -30dB dynamic range adjustment.

B. Potential Imaging Applications:

The potential applications of ATS with radar technology

span various fields. For instance, in robot-environment inter-

action, ATS enables robots equipped with SAR capabilities

to thoroughly explore objects through scanning and recon-

struction, thereby enhancing environmental understanding.

In security scenarios, ATS can penetrate concealments to

reconstruct the internal structures of complex objects, aiding

in security clearance procedures by detecting concealed

weapons. Additionally, ATS could be used for unlabelled

warehouse package recognition and reconstruction, allowing

for the identification of package contents without repackag-

ing.

VIII. CONCLUSION AND FUTURE WORK

In conclusion, we have presented an ISAR imaging al-

gorithm that adopts an analysis-through-synthesis approach

inspired by conventional NeRF techniques. By estimating

scene scatterers through an implicit neural network and

optimizing with a differentiable forward model incorporating

radar wave propagation and reflection characteristics, our

analysis-through-synthesis framework demonstrates quanti-

tative and qualitative superiority over traditional backpro-

jection through extensive experiments on simulated and



hardware-measured data. Moreover, our approach eliminates

the need for costly anechoic chambers or complex measure-

ment testbeds, reducing both cost and computation time in

the reconstruction process. Leveraging the penetration capa-

bility of our radar forward model, we achieve reconstruction

in Non-Line-of-Sight scenarios such as imaging contents

inside a cardboard box.

Although ATS demonstrates superior performance over

BP in scenarios with noise and limited measurement space,

its drawback lies in its lack of real-time capability. Par-

ticularly in real-time applications where latency and speed

are crucial, ATS is still considered slow (4.36 seconds)

compared to BP (0.29 seconds) using NVIDIA RTX 3080Ti

GPU. Exploring strategies such as sub-sampling or skipping

may offer potential acceleration in measurement capture,

warranting further investigation. Additionally, extending the

framework to enable 3D volumetric reconstruction could

open up possibilities for imaging applications such as robot

environment interaction, security scanning, and warehouse

package imaging.
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