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Abstract

Transformers have a remarkable ability to learn and execute tasks based on exam-
ples provided within the input itself, without explicit prior training. It has been
argued that this capability, known as in-context learning (ICL), is a cornerstone
of Transformers’ success, yet questions about the necessary sample complexity
and pretraining task diversity for successful ICL remain unresolved. In this work,
we provide precise answers to these questions using a solvable model of ICL for a
linear regression task with linear attention. We derive asymptotics for the learning
curve in a regime where token dimension, context length, and pretraining diversity
scale proportionally, and pretraining examples scale quadratically. Our analysis
reveals a double-descent learning curve and a learning transition between low and
high task diversity, which is empirically validated with experiments on realistic
Transformer architectures.

1 Introduction

Since their introduction by Vaswani et al. in 2017 [1], Transformers have become a cornerstone of
modern artificial intelligence (AI). Transformers achieve state-of-the art performance across many
domains, even those that are not inherently sequential [2] as originally intended. Strikingly, they
underpin breakthroughs achieved by large language models (LLMs) such as BERT [3], LLaMA
[4], and the GPT series [5–8]. The advancements enabled by Transformers have inspired much
research aimed at understanding their working principles. One key observation is that LLMs gain
new behaviors and skills as their number of parameters and the size of their training datasets grow
[7, 9–11]. A particularly important emergent skill is in-context learning (ICL), which describes the
model’s ability to learn and execute tasks based on the context provided within the input itself, without
the need for explicit prior training on those specific tasks. ICL enables language models to perform
new, specialized tasks without retraining, which is arguably a key reason for their general-purpose
abilities.

Despite many recent studies on understanding ICL, important questions about how and when ICL
emerges in LLMs are still mostly open. LLMs are trained (or pretrained) with a next token prediction
objective. How do the different algorithmic and hyperparameter choices that go into the pretraining
procedure affect ICL performance? What algorithms do Transformers implement for ICL? How
many pretraining examples are required for ICL to emerge? How many examples should be provided
within the input for the model to be able to solve an in-context task? How diverse should the tasks
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in the training dataset be for in-context learning of truly new tasks not encountered in the training
dataset? We address these questions by investigating a simplified model of a Transformer that captures
its key architectural motif: the linear self-attention module [12–17]. Linear attention includes the
quadratic pairwise interactions between inputs that lie at the heart of softmax attention, but it omits the
normalization steps and fully connected layers. This simplification makes the model more amenable
to theoretical analysis. Our main result is a sharp asymptotic analysis of ICL for linear regression
using linear attention, leading to a more precisely predictive theory than previous population risk
analyses or finite-sample bounds [13, 16]. The main contributions of our paper are structured as
follows:

We begin in §2 by developing a simplified parameterization of linear self-attention that allows
pretraining on the ICL linear regression task to be performed using ridge regression. Within this
simplified model, we identify a phenomenologically rich scaling limit in which the ICL performance
can be analyzed (§3). In this joint limit, we compute sharp asymptotics for ICL performance using
random matrix theory. Our theoretical results reveal several interesting phenomena (§4). First, we
observe double-descent in the model’s ICL generalization performance as a function of pretraining
dataset size, reflecting our assumption that it is pretrained to interpolation. Second, we uncover a
transition to in-context learning as the pretraining task diversity increases. This transition recapitulates
and builds on the empirical findings of [18] in full Transformer models. We further show through
numerical experiments that these insights from our theory transfer to full Transformer models with
softmax self-attention.

Understanding the mechanistic underpinnings of ICL of well-controlled synthetic tasks in solvable
models is an important prerequisite to understanding how it emerges from pretraining on natural data
[19].

2 Problem formulation

ICL of linear regression. In an ICL task, the model takes as input a sequence of tokens
{x1, y1, x2, y2, . . . , xℓ, yℓ, xℓ+1}, and outputs a prediction of yℓ+1. We will often refer to an in-
put sequence as a context. We will refer to ℓ as the context length. We focus on an approximately
linear mapping between xi ∈ Rd and yi = ⟨xi, w⟩+ ϵi ∈ R where ϵi is a Gaussian noise with mean
zero and variance ρ, and w ∈ Rd is referred to as a task vector. We note that the task vector w is
fixed within a context, but can change between different contexts. The model has to learn w from the
ℓ pairs presented within the context, and use it to predict yℓ+1 from xℓ+1.

Linear self-attention. The model that we will analytically study is the linear self-attention block
[20]. Linear self-attention takes as input an embedding matrix Z, whose columns hold the sequence
tokens. The choice of embedding matrix for a sequence is not unique; here, following the convention
in [15, 16, 20], we will embed the input sequence {x1, y1, x2, y2, . . . , xℓ, yℓ, xℓ+1} as:

Z =

[
x1 x2 . . . xℓ xℓ+1

y1 y2 . . . yℓ 0

]
∈ R(d+1)×(ℓ+1), (1)

where 0 in the lower-right corner is a token that prompts the missing value yℓ+1 to be predicted. For
appropriately-sized key, query, and value matrices K,Q, V , the output of a linear-attention block
[20–22] is given by

A := Z +
1

ℓ
V Z(KZ)⊤(QZ). (2)

The output A is a matrix while our goal is to predict a scalar, yℓ+1. Following the choice of positional
encoding in (1), we will take Ad+1,ℓ+1, the element of A corresponding to the 0 prompt, as the
prediction for yℓ+1, namely ŷ := Ad+1,ℓ+1.

Pretraining data. The model is pretrained on n sample sequences, where the µth sample is a
collection of ℓ + 1 vector-scalar pairs {xµ

i ∈ Rd, yµi ∈ R}ℓ+1
i=1 related by the approximate linear

mapping yµi = ⟨xµ
i , w

µ⟩+ ϵµi . Here, wµ denotes the task vector associated with the µth sample. We
make the following assumptions; we denote a sample from this distribution by (Z, yℓ+1) ∼ Ptrain.

• xµ
i are d-dimensional random vectors, sampled i.i.d. over both i and µ from N (0, Id/d).
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• At the start of training, construct a finite set of k elements, written Ωk = {w1, w2, . . . , wk} . The
elements of this set are independently drawn once from wi ∼i.i.d. N (0, Id). For 1 ≤ µ ≤ n, the
task vector wµ associated with the µth sample context is uniformly sampled from Ωk. Note that
the variable k controls the task diversity in the pretraining dataset. Importantly, k can be less than
n, in which case the same task vector from Ωk may be repeated multiple times.

• The noise terms ϵµi are i.i.d. over both i and µ, and drawn from N (0, ρ).

Parameter reduction. Before specifying a training procedure, we examine the prediction mecha-
nism of the linear attention module for the ICL task. We start by rewriting the output of the linear
attention module ŷ = Ad+1,ℓ+1 in an alternative form. Following [16], we define

V =

[
V11 v12
v⊤21 v22

]
, M =

[
M11 m12

m⊤
21 m22

]
:= K⊤Q, (3)

where V11 ∈ Rd×d, v12, v21 ∈ Rd, v22 ∈ R, M11 ∈ Rd×d, m12,m21 ∈ Rd, and m22 ∈ R.
Expanding (2), one can check that, where ⟨·, ·⟩ stands for the standard inner product, we have

ŷ =
1

ℓ

〈
xℓ+1, v22M

⊤
11

ℓ∑
i=1

yixi + v22m21

ℓ∑
i=1

y2i +M⊤
11

ℓ+1∑
i=1

xix
⊤
i v21 +m21

ℓ∑
i=1

yix
⊤
i v21

〉
, (4)

This expression reveals an interesting point. The first term 1
ℓ v22M

⊤
11

∑ℓ
i=1 yixi offers a hint about

how the linear attention module might be solving the task. The sum 1
ℓ

∑
i≤ℓ yixi is a noisy esti-

mate of E[xx⊤]w for that context. Hence, if the parameters of the model are such that v22M⊤
11

is approximately E[xx⊤]−1, this term alone makes a good prediction for the output. Motivated
by this observation, and a more detailed argument presented in Section SI-6 of the Supplementary
Information, we study the linear attention module with the constraint v21 = 0. In this case, we have
the model

ŷ = ⟨Γ, HZ⟩. (5)

for parameter matrix Γ ∈ Rd×(d+1) and input features HZ ∈ Rd×(d+1) given by

Γ := v22
[
M⊤

11/d m21

]
, HZ := xℓ+1

[
d
ℓ

∑
i≤ℓ yix

⊤
i

1
ℓ

∑
i≤ℓ y

2
i

]
. (6)

Model pretraining. The parameters of the linear attention module are learned from n samples of
input sequences {xµ

1 , y
µ
1 , . . . , x

µ
ℓ+1, y

µ
ℓ+1} for µ = 1, . . . , n. We estimate model parameters using

ridge regression, giving

Γ∗ = arg min
Γ

n∑
µ=1

(
yµℓ+1 − ⟨Γ, HZµ⟩

)2
+

n

d
λ∥Γ∥2F , (7)

vec(Γ∗) =

n

d
λI +

n∑
µ=1

vec(HZµ)vec(HZµ)⊤

−1
n∑

µ=1

yµℓ+1vec(HZµ), (8)

where λ > 0 is a regularization parameter, HZµ refers to the input matrix (6) populated with the µth
sample sequence, and vec(·) denotes the row-major vectorization operation.

Evaluation. For a given set of parameters Γ, the model’s generalization error is defined as

e(Γ) := EPtest

[(
yℓ+1 − ⟨Γ, HZ⟩

)2]
, (9)

where (Z, yℓ+1) ∼ Ptest is a new sample drawn from the probability distribution of the test dataset.
We consider two different test data distributions Ptest:

1. ICL task: xi and ϵi are i.i.d. Gaussians as above. However, each task vector wtest is drawn
independently from N (0, Id). We will denote the test error under this setting by eICL(Γ).

2. In-distribution generalization (IDG) task: Here take Ptest = Ptrain. In particular, the set of
unique task vectors {w1, . . . , wk} is identical to that used in the pretraining data. We will denote
the test error under this setting by eIDG(Γ). This task can also be referred to as in-weight learning.
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High performance on the IDG task but low performance on the ICL task indicates that the model
memorizes the training task vectors. Conversely, high performance on the ICL task suggests that the
model can learn genuinely new task vectors from the provided context. To understand the performance
of our model on both ICL and IDG tasks, we will need to evaluate these expressions for the pretrained
attention matrix Γ∗ given in (8). An asymptotically precise prediction of eICL(Γ∗) and eIDG(Γ∗)
will be a main result of this work.

3 Theoretical results

Joint asymptotic limit. We have now defined both the structure of the training data as well as
the parameters to be optimized. For our theoretical analysis, we consider a joint asymptotic limit in
which the input dimension d, the pretraining dataset size n, the context length ℓ, and the number of
task vectors in the training set k, go to infinity together such that

ℓ/d := α = Θ(1), k/d := κ = Θ(1), n/d2 := τ = Θ(1). (10)

Identification of these scalings constitutes one of the main results of our paper. As we will see, the
linear attention module exhibits rich learning phenomena in this limit.

ICL and IDG learning curves. Our theoretical analysis, explained in detail in the Supplementary
Information, leads to an asymptotically precise expression for the generalization error under the ICL
and IDG test distributions being studied. The exact expressions of can be found in Section SI-13.2
and Section SI-13.3 of the SI. For simplicity, we only present in what follows the ridgeless limit (i.e.,
λ → 0+) of the asymptotic generalization errors.

Result 1 (ICL generalization error in the ridgeless limit). Let

q∗ := (1 + ρ)
/
α , m∗ := Mκ (q

∗) , µ∗ := q∗Mκ/τ (q
∗), (11)

where Mκ(·) is defined in (177) and M′
κ(·) is the derivative of Mκ(q) with respect to q. Then

lim
λ→0+

eICL(τ, α, κ, ρ, λ) (12)

=


τ(1+q∗)

1−τ

[
1− τ(1− µ∗)2 + µ∗(ρ/q∗ − 1)

]
−2τ(1− µ∗) + (1 + ρ) τ < 1

(q∗ + 1)
(
1− 2q∗m∗ − (q∗)2M′

κ(q
∗) + (ρ+q∗−(q∗)2m∗)m∗

τ−1

)
− 2(1− q∗m∗) + (1 + ρ) τ > 1

Result 2 (IDG generalization error in the ridgeless limit). Let q∗, m∗, and µ∗ be the scalars defined
in (11). We have

lim
λ→0+

eIDG(τ, α, κ, ρ, λ) =

 τ
1−τ

(
ρ+q∗−2q∗(1−τ)(q∗/ξ∗+1)

1−p∗(1−τ) + τµ∗(q∗+ξ∗)2

q∗

)
τ < 1

τ
τ−1 [ρ+ q∗(1− q∗m∗)] τ > 1

, (13)

where ξ∗ = (1−τ)q∗

τµ∗ and p∗ =
(
1− κ

(
κξ∗

1−τ + 1
)−2)−1

.

We derive this result using techniques from random matrix theory. The full setup and technical
details are presented in the Supplementary Information in Section SI-9 through Section SI-13. The
computations involve analysis of the properties of the finite-sample optimal parameter matrix Γ∗. We
will now discuss various implications of these equations in the following sections.

4 Observed Phenomena

This section discusses two key results that are mathematically evident from our theoretical characteri-
sation of ICL and IDG error, namely a double descent in τ and a learning transition in κ. We show
how these phenomena follow directly from the theory, and further, remain present in realistic (non-
linear) transformer architectures. A detailed exposition of nonlinear architecture setup and training
procedures is given in Section SI-7 in the Supplementary Info. Specific parameter configurations and
more detailed descriptions of the figures are available in Section SI-8 in the Supplementary Info.
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Figure 1: Verification of theory in linear transformer (1a) and qualitative predictions for nonlinear
models (1b,1c). Figure 1a shows theory (solid lines) vs simulations (dots). 1b shows error curves
against τ for various architectures, consistent across token dimension d = 20, 40, 80. Double-
descent phenomena is confirmed: increasing n will increase error until an interpolation threshold is
reached. Coloured dashed lines indicate experimental interpolation threshold for that architecture
and d configuration. Figure 1c shows that the location of the interpolation threshold occurs for n
proportional to d2 for a range of architectures, as predicted by the linear theory. Dots are experimental
interpolation thresholds for various architectures, and dashed lines are best fit curves correspond to
fitting log(n) = a log(d) + b, each with a ≈ 2.
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Figure 2: Plot of gtask = eICL − eIDG against κ, illustrating sharp transition in performance as
pretraining diversity increases, compared with the dMMSE estimator. Figure 2a (loglog scale)
shows LT theory (solid lines) vs simulations (dots). Figure 2b shows gtask against κ (loglinear
scale) for the nonlinear architecture given in Figure 1b, demonstrating both consistency of κ scaling
across increasing dimension choices d = 20, 40, 80, as well as a similar sharp transition in task
generalisation familiar from the linear theory.

Double-descent in pretraining samples. How large should n, the pretraining dataset size, be for
the linear attention to succesfully learn the task in-context? In Figure 1a, we plot our theoretical
predictions for ICL error as a function of τ = n/d2 and verify them with numerical simulations.
Our results demonstrate that the quadratic scaling of sample size with input dimensions is indeed an
appropriate regime where nontrivial learning phenomena can be observed.

As apparent in Figure 1a, we find that the generalization error for the ICL task is not monotonic in
the number of samples. In the ridgeless limit, ICL error diverges at τ = 1, with the leading order
behavior proportional to (τ − 1)−1. This leads to a “double-descent” behavior [23, 24] in the number
of samples. As in other models exhibiting double-descent [23–25], the location of the divergence is
at the interpolation threshold: the number of parameters of the model (elements of Γ) is, to leading
order in d, equal to d2, which matches the number of pretraining samples at τ = 1. Figure 1 confirms
this phenomenon in a selection of nonlinear models. We recover a peak in error at the interpolation
threshold (given by n), and tracking the location of the interpolation threshold as d increases recovers
the quadratic scaling n ∼ d2.

Learning transition with increasing pretraining task diversity. It’s important to quantify if and
when a given model is actually learning in-context, that is, solving a new regression problem by
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adapting to the specific structure of the task rather than relying solely on memorized training task
vectors. We refer to this phenomenon as task generalization.

We posit that a model achieves task generalization when its performance on the ICL test distribution
matches its performance on the IDG test distribution. We will thus study the difference between
model errors on these two tasks, namely the quantity gtask = eICL − eIDG for a given model or
estimator. This difference being large implies the model, performing better on training tasks, has
not learned the true task distribution and is not generalising in task. Conversely, a small difference
between ICL error and IDG error suggests that the model is leveraging the underlying structure of the
task distribution rather than overfitting to and interpolating specific task instances seen in training.

Indeed gtask provides a benchmark to determine whether the model’s adaptation capabilities exceed
memorization, but it’s not the whole story. There is a crucial dependence on the parameter κ = k/d
that controls the diversity of the training task vectors. We will quantify the rate at which gtask for a
given model decreases as κ increases for two inference models: (1) the linear transformer considered
thus far, and (2) a memorization prior called the discrete minimum mean squared error (dMMSE)
estimator as in [18].

Linear transformer. Consider the linear transformer (LT) model ŷ = ⟨Γ∗, HZ⟩ with ICL and IDG
errors given by result 1 and result 2 respectively. How quickly does gLT

task limit to 0 as κ → ∞? By
expanding eICL − eIDG in κ we have gLT

task = O
(
κ−1

)
.

dMMSE estimator. We consider the performance of the following estimator, as considered in [18]:

wdMMSE :=
k∑

j=1

wje
− 1

2ρ

∑ℓ
i=1(yi−w⊤

j xi)
2

/
k∑

j=1

e−
1
2ρ

∑ℓ
i=1(yi−w⊤

j xi)
2

. (14)

The form of wdMMSE only depends on the training set tasks and so can be called a ‘perfect memorizer’
or a ‘memorization prior.’ In Section SI-14 we argue, for large κ, gdMMSE

task = O(κ−2/d).

We conclude that the linear transformer model is a markedly more efficient task generalizer than the
memorization-prior wdMMSE. The 1/κ decay in gLT

task vs the ≈ 1/κ2/d decay of gdMMSE
task suggests that

the linear transformer quickly learns an inference algorithm that generalizes in-context rather than
interpolates between training tasks. Simulations are shown in Figure 2a for our linear transformer
with theory lines for comparison, and in Figure 2b for a nonlinear transformer model. In both cases
we recover the prediction that the transformer architectures are implementing an internal algorithm
that can generalise in task much faster than a memorisation prior over the training tasks.

5 Conclusions

In this work, we compute sharp asymptotics for the in-context learning (ICL) performance in a
simplified model of ICL for linear regression using linear attention. This exactly solvable model
demonstrates a transition in the generalizing capability of the model as the diversity of pretraining
tasks increases, echoing empirical findings in full Transformers [18]. Additionally, we observe a
sample-wise double descent as the amount of pretraining data increases. Our numerical experiments
show that full, nonlinear Transformers exhibit similar behavior in the scaling regime relevant to our
solvable model. Our work represents a first step towards a detailed theoretical understanding of the
conditions required for ICL to emerge [19].

Finally, our results have some bearing on the broad question of what architectural features are required
for ICL [7, 11, 19]. Our work shows that a full Transformer—or indeed even full linear attention—is
not required for ICL of linear regression. However, our simplified model retains the structured
quadratic pairwise interaction between inputs that is at the heart of the attention mechanism. It is this
quadratic interaction that allows the model to solve the ICL regression task, which it does essentially
by reversing the data correlation. One would therefore hypothesize that our model is minimal in the
sense that further simplifications within this model class would impair its ability to solve this ICL
task. In the specific context of regression with isotropic data, a simple point of comparison would
be to fix Γ = Id, which gives a pretraining-free model that should perform well when the context
length is very long. However, this further-reduced model would perform poorly if the covariates
of the in-context task are anisotropic. More generally, it would be interesting to investigate when
models lacking this precisely-engineered quadratic interaction can learn linear regression in-context,
and if they are less sample-efficient than the attention-based models considered here.
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Supplementary Information
SI-6 Parameter Reduction

Recall that we can express the output of the linear attention mechanism (with full K,Q, V parameters)
as

ŷ =
1

ℓ

〈
xℓ+1, v22M

⊤
11

ℓ∑
i=1

yixi + v22m21

ℓ∑
i=1

y2i +M⊤
11

ℓ+1∑
i=1

xix
⊤
i v21 +m21

ℓ∑
i=1

yix
⊤
i v21

〉
, (15)

where ⟨·, ·⟩ stands for the standard inner product. We previously argued that the term

1

ℓ
v22M

⊤
11

ℓ∑
i=1

yixi (16)

makes a good prediction for the output. Further, the third term does not depend on outputs y, and
thus does not directly contribute to the ICL task that relies on the relationship between x and y.
Finally, the last term only considers a one dimensional projection of x onto v21. Because the task
vectors w and x are isotropic in the statistical models that we consider, there are no special directions
in the problem. Consequently, we expect the optimal v21 to be approximately zero by symmetry
considerations.

We note that Zhang et al. [16] provide an analysis of population risk (whereas we focus on empirical
risk) for a related reduced model in which they set v21 = 0 and m21 = 0. Consequently, the
predictors they study differ from ours (5) by an additive term. They justify this choice through an
optimization argument: if these parameters are initialized to zero, they remain zero under gradient
descent optimization of the population risk, given certain conditions.

SI-7 Experimental Details

Our experiments2 are done with a standard Transformer architecture, where each sample context
initially takes the form given by (1). The fully-parameterised linear transformer and softmax-
only transformer (which appear in fig. 1c) do not use MLPs. If MLPs are used (e.g. fig. 1b and
fig. 1c), the architecture consists of blocks with: (1) a single-head softmax self-attention with
K,Q, V ∈ Rd+1×d+1 matrices, followed by (2) a two-layer dense MLP with GELU activation and
hidden layer of size d + 1 [1]. Residual connections are used between the input tokens (padded
from dimension d to d+ 1), the pre-MLP output, and the MLP output. We use a variable number of
attention+MLP blocks before returning the final logit corresponding to the (d+ 1, ℓ+ 1)th element
in the original embedding structure given by (1). The loss function is the mean squared error (MSE)
between the predicted label (the output of the model for a given sample Z) and the true value yℓ+1.
We train the model in an offline setting with n total samples Z1, · · · , Zn, divided into 10 batches,
using the Adam optimizer [26] with a learning rate 10−4 until the training error converges, typically
requiring 10000 epochs3. The structure of the pretraining and test distributions exactly follows the
setup for the ICL task described in Section 2.

SI-8 Figure Details

Figure 1 Figure 1a: Simulated errors are calculated by evaluating the corresponding test error on
the corresponding optimised Γ∗. Parameters: d = 100, ρ = 0.01 κ = 0.5 Averages and standard
deviations are computed over 10 runs.
Figure 1b, Figure 1c: Interpolation thresholds shown in fig. 1c were computed empirically by
searching for location in τ of sharp increase in value and variance of training error at a fixed number

2Code to reproduce all experiments available on github.
3Note that larger d models are often trained for less epochs than smaller d models due to early stopping; that

said, whether or not early stopping is used in training does not affect either the alignment of error curves in
d-scaling nor the qualitative behaviour (double descent in τ and transition in κ).
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of gradient steps. The log-log plot demostrating quadratic scaling of n in d was best-fit on the data
points plotted. Explicitly, the exponents of d are afull linear = 1.87, asoftmax = 1.66, a2 blocks = 2.13,
a3 blocks = 2.08. Theory predicts a = 2.

Parameters: α = 1, κ = ∞, ρ = 0.01. For 1b variance shown comes from model trained over
different samples of pretraining data; lines show averages over 10 runs and shaded region shows
standard deviation.

Figure 3 Parameters for fig. 2a: d = 100, ρ = 0.01. Simulations deviate from theory curve at low
κ due to finite size effects. Averages and standard deviations for linear model are computed over 100
runs; dMMSE error is computed numerically over 1000-5000 runs.

Parameters for fig. 2b: τ = 10, α = 1, ρ = 0.01. Variance shown comes from 10 models trained
over different samples of pretraining data.

SI-9 Notation

Our derivations will frequently use the vectorization operation, denoted by vec(·). Note that we shall
adopt the row-major convention, and thus the rows of A are stacked together to form vec(A). We
also recall the standard identity:

vec(E1E2E3) = (E1 ⊗ E⊤
3 ) vec(E2), (17)

where ⊗ denotes the matrix Kronecker product, and E1, E2, E3 are matrices whose dimensions are
compatible for the multiplication operation. For any square matrix A ∈ R(L+1)×(L+1), we introduce
the notation

[M ]\0 ∈ RL×L (18)
to denote the principal minor of M after removing its first row and column.

Stochastic order notation: In our analysis, we use a concept of high-probability bounds known as
stochastic domination. This notion, first introduced in [27, 28], provides a convenient way to account
for low-probability exceptional events where some bounds may not hold.

We also use the notation X ≃ Y to indicate that two families of random variables X,Y are
asymptotically equivalent. Precisely, X ≃ Y , if there exists ε > 0 such that for every D > 0 we have

P
[
|X − Y | > d−ε

]
≤ d−D (19)

for all sufficiently large d > d0(ε,D).

SI-10 Moment Calculations and Generalization Errors

For a given set of parameters Γ, its generalization error is defined as

e(Γ) = EPtest

[(
yℓ+1 − ⟨Γ, HZ⟩

)2]
, (20)

where (Z, yℓ+1) ∼ Ptest is a new sample drawn from the distribution of the test data set. Recall that
Z is the input embedding matrix defined in (1) in the main text, and yℓ+1 denotes the missing value
to be predicted. The goal of this section is to derive an expression for the generalization error e(Γ).

Note that the test distribution Ptest crucially depends on the probability distribution of the task vector
w used in the linear model. Recall our discussions about Evaluation in 2. For the ICL test task,
and for the purposes of analytical tractability, we take w ∼ Unif(Sd−1(

√
d)). In high dimensions,

the characterization of ICL error using w ∼ Unif(Sd−1(
√
d)) will be identical to using the original

w ∼ N (0, I) used in the main paper body. For the ICL test task, we thus have w ∼ Unif(Sd−1(
√
d)),

the uniform distribution on the sphere . In what follows, we slightly abuse the notation by writing
w ∼ Ptest to indicate that w is sampled from the task vector distribution associated with Ptest.

Let w be the task vector used in the input matrix Z. Throughout the paper, we use Ew [·] to denote
the conditional expectation with respect to the randomness in the data vectors {xi}i∈[ℓ+1] and the
noise {ϵi}i∈[ℓ+1], with the task vector w kept fixed. We have the following expressions for the first
two conditional moments of (HZ , yℓ+1).
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Lemma 1 (Conditional moments). Let the task vector w ∈ be fixed. We have

Ew [yℓ+1] = 0, and Ew [HZ ] = 0. (21)

Moreover,

Ew [yℓ+1HZ ] =
1

d
w
[
w⊤, 1 + ρ

]
(22)

and

Ew

[
vec(HZ) vec(HZ)

⊤
]
=

(1 + ρ)

d
Id⊗

[
d
ℓ Id + (1 + ℓ−1)(1 + ρ)−1ww⊤ (1 + 2ℓ−1)w

(1 + 2ℓ−1)w⊤ (1 + 2ℓ−1)(1 + ρ)

]
.

(23)

Proof. Using the equivalent representations in (169) and (170), it is straightforward to verify the
estimates of the first (conditional) moments in (21). To show (22), we note that

HZ = (d/ℓ)zaz
⊤
b , (24)

where

za = Mw

[
s
u

]
and zb =

[
Mwh

(θwa/
√
d+ θϵ)

2/
√
d+ θ2q/

√
d

]
. (25)

Using the representation in (170), we have

Ew [yℓ+1HZ ] = (d/ℓ)Ew [yℓ+1za]Ew

[
z⊤b

]
. (26)

Computing the expectations Ew [yℓ+1za] and Ew

[
z⊤b
]

then gives us (22). Next, we show (23). Since
za and zb are independent,

E
[
vec(HZ) vec(HZ)

⊤
]
= (d/ℓ)2 E

[
zaz

⊤
a

]
⊗ E

[
zbz

⊤
b

]
. (27)

The first expectation on the right-hand side is easy to compute. Since Mw is an orthonormal matrix,

Ew

[
zaz

⊤
a

]
= Id (28)

To obtain the second expectation on the right-hand side of the above expression, we can first verify
that

Ew

[
Mwhh

⊤Mw

]
=

ℓ

d2

[
(1 + ρ)Id +

(ℓ+ 1)

d
ww⊤

]
. (29)

Moreover,

Ew

[
Mwh

(
(a/

√
d+ θϵ)

2/
√
d+ θ2q/

√
d
)]

=
ℓ(ℓ+ 2)(1 + ρ)

d3
w (30)

and

Ew

[(
(a/

√
d+ θϵ)

2/
√
d+ θ2q/

√
d
)2]

=
ℓ(ℓ+ 2)(1 + ρ)2

d3
. (31)

Combining (29), (30), and (31), we have

E
[
zbz

⊤
b

]
=

(ℓ/d)2(1 + ρ)

d

[
d
ℓ Id + (1 + ℓ−1)(1 + ρ)−1ww⊤ (1 + 2ℓ−1)w

(1 + 2ℓ−1)w⊤ (1 + 2ℓ−1)(1 + ρ)

]
. (32)

Substituting (28) and (32) into (23), we reach the formula in (23).

Proposition 1 (Generalization error). For a given weight matrix Γ, the generalization error of the
linear transformer is

e(Γ) =
1 + ρ

d
tr

Γ

[
d
ℓ Id + (1 + ℓ−1)(1 + ρ)−1Rtest (1 + 2ℓ−1)btest

(1 + 2ℓ−1)b⊤test (1 + 2ℓ−1)(1 + ρ)

]
Γ⊤


− 2

d
tr

(
Γ

[
Rtest

(1 + ρ)b⊤test

])
+ 1 + ρ,

(33)

where
btest := Ew∼Ptest [w] and Rtest := Ew∼Ptest

[
ww⊤

]
. (34)
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Remark 1. We use w ∼ Ptest to indicate that w is sampled from the task vector distribution
associated with Ptest. It is then straightforward to check that we want

(ICL) : btest = 0 and Rtest = Id. (35)

Proof. Recall the definition of the generalization error in (20). We start by writing

e(Γ) = vec(Γ)⊤E
[
vec(HZ) vec(HZ)

⊤
]
vec(Γ)− 2 vec(Γ)⊤ vec(E [yN+1HZ ]) + E

[
y2ℓ+1

]
,

(36)

where HZ is a matrix in the form of (6) and HZ is independent of Γ. Since yℓ+1 = x⊤
ℓ+1w + ϵ, with

ϵ ∼ N (0, ρ) denoting the noise, it is straightforward to check that

E
[
y2ℓ+1

]
= 1 + ρ. (37)

Using the moment estimate (23) in Lemma 1 and the identity (17), we have

vec(Γ)⊤E
[
vec(HZ) vec(HZ)

⊤
]
vec(Γ)

=
1 + ρ

d
tr

Γ

[
d
ℓ Id + (1 + ℓ−1)(1 + ρ)−1Rtest (1 + 2ℓ−1)btest

(1 + 2ℓ−1)b⊤test (1 + 2ℓ−1)(1 + ρ)

]
Γ⊤

 .
(38)

Moreover, by (22),

vec(Γ)⊤ vec
(
E [yℓ+1HZ ]

)
=

1

d
tr

(
Γ

[
Rtest

(1 + ρ)b⊤test

])
. (39)

Corollary 1. For a given set of parameters Γ, its generalization error can be written as

e(Γ) =
1

d
tr
(
ΓBtestΓ

⊤
)
− 2

d
tr
(
ΓA⊤

test

)
+ (1 + ρ) + E , (40)

where
Atest :=

[
Rtest (1 + ρ)btest

]
, (41)

Btest :=

[
1
α (1 + ρ)Id +Rtest (1 + ρ)btest

(1 + ρ)b⊤test (1 + ρ)2

]
, (42)

and Rtest, btest are as defined in (34). Moreover, E denotes an “error” term such that

|E| ≤
Cα,ρ max

{
∥Rtest∥op ,∥btest∥ , 1

}(
∥Γ∥2F /d

)
d

, (43)

where Cα,ρ is some constant that only depends on α and ρ.

Proof. Let

∆ =

[
d
ℓ (1 + ρ)Id + (1 + ℓ−1)Rtest (1 + 2ℓ−1)(1 + ρ)btest

(1 + 2ℓ−1)(1 + ρ)b⊤test (1 + 2ℓ−1)(1 + ρ)2

]
−Btest. (44)

It is straightforward to check that

E =
1

d
tr
(
Γ∆Γ⊤

)
(45)

=
1

d
vec(Γ)⊤(Id ⊗∆)vec(Γ) (46)

≤∥∆∥op
∥Γ∥2F
d

. (47)

The bound in (43) follows from the estimate that∥∆∥op ≤ Cα,ρ max
{
∥Rtest∥op ,∥btest∥ , 1

}
/d.
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Remark 2. Consider the optimal weight matrix Γ∗ obtained by solving the ridge regression problem
in (7). Since Γ∗ is the optimal solution of (7), we must have

n

d
λ∥Γ∗∥2F ≤

∑
µ∈[n]

(yµℓ+1)
2, (48)

where the right-hand side is the value of the objective function of (7) when we choose Γ to be the
all-zero matrix. It follows that

∥Γ∗∥2F
d

≤
∑

µ∈[n](y
µ
ℓ+1)

2

λn
. (49)

By the law of large numbers,
∑

µ∈[n] y
2
µ

n → 1 + ρ as n → ∞. Thus, ∥Γ∗∥2F /d is asymptotically
bounded by the constant (1 + ρ)/λ. Furthermore, it is easy to check that∥Rtest∥op = O(1) and
∥btest∥ = O(1) for the ICL task [see (35)]. It then follows from Corollary 1 that the generalization
error associated with the optimal parameters Γ∗ is asymptotically determined by the first three terms
on the right-hand side of (40).

SI-11 Analysis of Ridge Regression: Extended Resolvent Matrices

We see from Corollary 1 and Remark 2 that the two key quantities in determining the generalization
error e(Γ∗) are

1

d
tr(Γ∗A⊤

test) and
1

d
tr(Γ∗Btest(Γ

∗)⊤), (50)

where Atest and Btest are the matrices defined in (41) and (42), respectively. In this section, we
show that the two quantities in (50) can be obtained by studying a parameterized family of extended
resolvent matrices.

To start, we observe that the ridge regression problem in (5) admits the following closed-form
solution:

vec(Γ∗) = G
(∑

µ∈[n] yµ vec(Hµ)
)
/d, (51)

where G is a resolvent matrix defined as

G =
(∑

µ∈[n] vec(Hµ) vec(Hµ)
⊤/d+ τλI

)−1

. (52)

For our later analysis of the generalization error, we need to consider a more general, “parameterized”
version of G, defined as

G(π) =
(∑

µ∈[n] vec(Hµ) vec(Hµ)
⊤/d+ πΠ+ τλI

)−1

, (53)

where Π ∈ R(d2+d)×(d2+d) is a symmetric positive-semidefinite matrix and π is a nonnegative scalar.
The original resolvent G in (52) is a special case, corresponding to π = 0.

The objects in (51) and (53) are the submatrices of an extended resolvent matrix, which we construct
as follows. For each µ ∈ [n], let

zµ =

[
yµ/d

vec(Hµ)/
√
d

]
(54)

be an (d2 + d+ 1)-dimensional vector. Let

Πe =

[
0

Π

]
, (55)

where Π is the (d2 + d)× (d2 + d) matrix in (53). Define an extended resolvent matrix

Ge(π) =
1∑

µ∈[n] zµz
⊤
µ + πΠe + τλI

. (56)

By block-matrix inversion, it is straightforward to check that

Ge(π) =

[
c(π) −c(π)q⊤(π)

−c(π)q(π) G(π) + c(π)q(π)q⊤(π)

]
, (57)
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where

q(π) :=
1

d3/2
G(π)

(∑
µ∈[n] yµ vec(Hµ)

)
(58)

is a vector in Rd(d+1), and c(π) is a scalar such that

1

c(π)
=

1

d2

∑
µ∈[n]

y2µ + τλ− 1

d3

∑
µ,ν∈[n]

yµyν vec(Hµ)
⊤G(π) vec(Hν). (59)

By comparing (58) with (51), we see that

vec(Γ∗) =
√
d q(0). (60)

Moreover, as shown in the following lemma, the two key quantities in (50) can also be obtained from
the extended resolvent Ge(π).

Lemma 2. For any matrix A ∈ Rd×(d+1),

1

d
tr(Γ∗A⊤) =

−1

c(0)
√
d

[
0 vec(A)T

]
Ge(0)e1, (61)

where e1 denotes the first natural basis vector in Rd2+d+1. Moreover, for any symmetric and positive
semidefinite matrix B ∈ R(d+1)×(d+1), if we set

Π = Id ⊗B (62)

in (55), then
1

d
tr(Γ∗B(Γ∗)⊤) =

d

dπ

(
1

c(π)

)∣∣∣∣
π=0

. (63)

Proof. The identity (61) follows immediately from the block form of Ge(π) in (57) and the observa-
tion in (60). To show (63), we take the derivative of 1/c(π) with respect to π. From (59), and using
the identity

d

dπ
G(π) = −G(π)ΠG(π), (64)

we have

d

dπ

(
1

c(π)

)
=

1

d3

∑
µ,ν∈[n]

yµyν vec(Hµ)
⊤G(π)ΠG(π) vec(Hν) (65)

= q⊤(π)Πq(π). (66)

Thus, by (60),

d

dπ

(
1

c(π)

)∣∣∣∣
π=0

=
1

d

(
vec(Γ∗)

)⊤
Πvec(Γ∗) (67)

=
1

d

(
vec(Γ∗)

)⊤
(Id ⊗B) vec(Γ∗). (68)

Applying the identity in (17) to the right-hand side of the above equation, we reach (63).

Remark 3. To lighten the notation, we will often write Ge(π) [resp. G(π)] as Ge [resp. G], leaving
their dependence on the parameter π implicit.

Remark 4. In light of (62) and (63), we will always choose

Π = Id ⊗Btest, (69)

where Btest is the matrix defined in (42).
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SI-12 An Asymptotic Equivalent of the Extended Resolvent Matrix

In this section, we derive an asymptotic equivalent of the extended resolvent Ge defined in (56).
From this equivalent version, we can then obtain the asymptotic limits of the right-hand sides of (61)
and (63). Our analysis relies on non-rigorous but technically sound heuristic arguments from random
matrix theory. Therefore, we refer to our theoretical predictions as results rather than propositions.

Recall that there are k unique task vectors {wi}i∈[k] in the training set. Let

btr :=
1

k

∑
i∈[k]

wi and Rtr :=
1

k

∑
i∈[k]

wiw
⊤
i (70)

denote the empirical mean and correlation matrix of these k regression vectors, respectively. Define

Atr :=
[
Rtr (1 + ρ)btr

]
. (71)

and

Etr :=

[
(1+ρ)

α Id +Rtr (1 + ρ)btr
(1 + ρ)b⊤tr (1 + ρ)2

]
. (72)

Definition 1. Consider the extended resolvent Ge(π) in (56), with Πe chosen in the forms of (55)
and (69). Let G̃e be another matrix of the same size as Ge(π). We say that G̃e and Ge(π) are
asymptotically equivalent, if the following conditions hold.

(1) For any two deterministic and unit-norm vectors u, v ∈ Rd2+d+1,

u⊤Ge(π)v ≃ u⊤G̃ev, (73)

where ≃ is the asymptotic equivalent notation defined in (19).

(2) Let Atr =
[
Rtr (1 + ρ)btr

]
. For any deterministic, unit-norm vector v ∈ Rd2+d+1,

1√
d

[
0 vec(Atr)

⊤]Ge(π)v ≃ 1√
d

[
0 vec(Atr)

⊤] G̃ev. (74)

(3) Recall the notation introduced in (18). We have

1

d2
tr
([

Ge(π)
]
\0 · [I ⊗ Etr]

)
=

1

d2
tr

([
G̃e

]
\0

· [I ⊗ Etr]

)
+O≺(d

−1/2), (75)

where
[
Ge(π)

]
\0 and

[
Ge(π)

]
\0 denote the principal minors of Ge(π) and Ge(π), respec-

tively.
Result 3. Let χπ denote the unique positive solution to the equation

χπ =
1

d
tr

[( τ

1 + χπ
Etr + πBtest + λτId

)−1

Etr

]
, (76)

where Btest is the positive-semidefinite matrix in (42), with btest, Rtest chosen according to (35). The
extended resolvent Ge(π) in (56) is asymptotically equivalent to

Ge(π) :=

 τ

1 + χπ

 1 + ρ 1√
d
vec
([

Rtr (1 + ρ)btr
])⊤

1√
d
vec
([

Rtr (1 + ρ)btr
])

Id ⊗ Etr

+ πΠe + τλI


−1

,

(77)
in the sense of Definition 1. In the above expression, Πe is the matrix in (55) with Π = Id ⊗Btest.

In what follows, we present the steps in reaching the asymptotic equivalent Ge(π) given in (77). To
start, let G[µ]

e to denote a “leave-one-out” version of Ge, defined as

G[µ]
e =

1∑
ν ̸=µ zνz

⊤
ν + πΠe + τλI

. (78)
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By (56), we have
Ge

(∑
µ∈[n] zµz

⊤
µ + πΠe + τλI

)
= I. (79)

Applying the Woodbury matrix identity then gives us∑
µ∈[n]

1

1 + z⊤µ G
[µ]
e zµ

G[µ]
e zµz

⊤
µ +Ge(πΠe + τλI) = I. (80)

To proceed, we study the quadratic form z⊤µ G
[µ]
e zµ. Let wµ denotes the task vector associated with

zµ. Conditioned on wµ and Gµ
e , the quadratic form z⊤µ G

[µ]
e zµ concentrates around its conditional

expectation with respect to the remaining randomness in zµ. Specifically,

z⊤µ G[µ]
e zµ = χµ(wµ) +O≺(d

−1/2), (81)
where

χµ(wµ) :=
1

d2
tr
(
[Gµ

e ]\0 ·
[
I ⊗ E(wµ)

])
, (82)

and

E(w) :=

[
1+ρ
α Id + ww⊤ (1 + ρ)w
(1 + ρ)w⊤ (1 + ρ)2

]
. (83)

Substituting z⊤µ G
[µ]
e zµ in (80) by χµ(wµ), we get∑

µ∈[n]

1

1 + χµ(wµ)
G[µ]

e zµz
⊤
µ +Ge(πΠe + τλI) = I +∆1, (84)

where

∆1 :=
∑
µ∈[n]

z⊤µ G
[µ]
e zµ − χµ(wµ)

(1 + χµ(wµ))(1 + z⊤µ G
[µ]
e zµ)

G[µ]
e zµz

⊤
µ (85)

is a matrix that captures the approximation error of the above substitution.

Next, we replace zµz
⊤
µ on the left-hand side of (84) by its conditional expectation Ewµ

[
zµz

⊤
µ

]
,

conditioned on the task vector wµ. This allows us to rewrite (84) as∑
µ∈[n]

1

1 + χµ(wµ)
G[µ]

e Ewµ

[
zµz

⊤
µ

]
+Ge(πΠe + τλI) = I +∆1 +∆2, (86)

where

∆2 :=
∑
µ∈[n]

1

1 + χµ(wµ)
G[µ]

e

(
Ewµ

[
zµz

⊤
µ

]
− zµz

⊤
µ

)
(87)

captures the corresponding approximation error. Recall the definition of zµ in (54). Using the moment
estimates in Lemma 1, we have

Ewµ

[
zµz

⊤
µ

]
=

1

d2

 1 + ρ 1√
d
w⊤

µ ⊗
[
w⊤

µ 1 + ρ
]

1√
d
wµ ⊗

[
wµ

1 + ρ

]
Id ⊗ E(wµ)

+
1

d2

[
0

Id ⊗ Eµ

]
, (88)

where E(wµ) is the matrix defined in (83) and

Eµ =
1

ℓ

[
wµw

⊤
µ 2(1 + ρ)wµ

2(1 + ρ)w⊤
µ 2(1 + ρ)2

]
. (89)

Replacing the conditional expectation Ewµ

[
zµz

⊤
µ

]
in (86) by the main (i.e. the first) term on the

right-hand side of (88), we can transform (86) to

τ

n

∑
µ∈[n]

1

1 + χµ(wµ)
G[µ]

e

 1 + ρ 1√
d
w⊤

µ ⊗
[
w⊤

µ 1 + ρ
]

1√
d
wµ ⊗

[
wµ

1 + ρ

]
Id ⊗ E(wµ)

+Ge(πΠe+τλI) = I+∆1+∆2+∆3,

(90)
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where we recall τ = n/d2, and we use ∆3 to capture the approximation error associated with Eµ.

Next, we replace the “leave-one-out” terms Gµ
e and χµ(wµ) in (90) by their “full” versions. Specifi-

cally, we replace Gµ
e by Ge, and χµ(wµ) by

χ(wµ) :=
1

d2
tr
(
[Ge]\0 ·

[
I ⊗ E(wµ)

])
. (91)

It is important to note the difference between (82) and (91): the former uses Gµ
e and the latter Ge.

After these replacements and using ∆4 to capture the approximation errors, we have

Ge

 τ

n

∑
µ∈[n]

1

1 + χ(wµ)

 1 + ρ 1√
d
w⊤

µ ⊗
[
w⊤

µ 1 + ρ
]

1√
d
wµ ⊗

[
wµ

1 + ρ

]
Id ⊗ E(wµ)

+ πΠe + τλI

 = I+
∑
j≤4

∆j .

(92)

Recall that there are k unique task vectors {wi}1≤i≤k in the training set consisting of n input samples.
Each sample is associated with one of these task vectors, sampled uniformly from the set {wi}1≤i≤k.
In our analysis, we shall assume that k divides n and that each unique task vector is associated with
exactly n/k input samples. (We note that this assumption merely serves to simplify the notation. The
asymptotic characterization of the random matrix Ge remains the same even without this assumption.)
Observe that there are only k unique terms in the sum on the left-hand side of (92). Thus,

Ge

τ

k

∑
i∈[k]

1

1 + χ(wi)

 1 + ρ 1√
d
w⊤

i ⊗
[
w⊤

i 1 + ρ
]

1√
d
wi ⊗

[
wi

1 + ρ

]
Id ⊗ E(wi)

+ πΠe + τλI

 = I+
∑
j≤4

∆j .

(93)

So far, we have been treating the k task vectors {wi}i∈[k] as fixed vectors, only using the random-
ness in the input samples that are associated with the data vectors

{
xµ
i

}
. To further simplify our

asymptotic characterization, we take advantage of the fact that {wi}i∈[k] are independently sampled

from Unif(Sd−1(
√
d)). To that end, we can first show that χ(wi) in (91) concentrates around its

expectation. Specifically,

χ(wi) = E
[
1

d2
tr
(
[Ge]\0 ·

[
I ⊗ E(wi)

])]
+O≺(d

−1/2). (94)

By symmetry, we must have

E
[
1

d2
tr
(
[Ge]\0 ·

[
I ⊗ E(wi)

])]
= E

[
1

d2
tr
(
[Ge]\0 ·

[
I ⊗ E(wj)

])]
(95)

for any 1 ≤ i < j ≤ k. It follows that
∣∣χ(wi)− χ(wj)

∣∣ = O≺(d
−1/2), and thus, by a union bound,

max
i∈[k]

∣∣χ(wk1)− χ̂ave

∣∣ = O≺(d
−1/2), (96)

where

χ̂ave :=
1

k

∑
i∈[k]

χ(wi). (97)

Upon substituting (91) into (97), it is straightforward to verify the following characterization of χ̂ave:

χ̂ave =
1

d2
tr
(
[Ge]\0 · [I ⊗ Etr]

)
. (98)

The estimate in (96) prompts us to replace the terms χ(wi) in the right-hand side of (93) by the
common value χ̂ave. As before, we introduce a matrix ∆5 to capture the approximation error
associated with this step. Using the newly introduced notation Etr, btr and Rtr in (72) and (70), we
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can then simplify (93) as

Ge

 τ

1 + χ̂ave

 1 + ρ 1√
d
vec
([

Rtr (1 + ρ)btr
])⊤

1√
d
vec
([

Rtr (1 + ρ)btr
])

Id ⊗ Etr

+ πΠe + τλI


= I +

∑
1≤j≤5

∆j .

(99)
Define

Ĝe(π) :=

 τ

1 + χ̂ave

 1 + ρ 1√
d
vec
([

Rtr (1 + ρ)btr
])⊤

1√
d
vec
([

Rtr (1 + ρ)btr
])

Id ⊗ Etr

+ πΠe + τλI


−1

.

(100)
Then

Ge = Ĝe(π) + Ĝe(π) (∆1 +∆2 +∆3 +∆4 +∆5)︸ ︷︷ ︸
approximation errors

. (101)

Remark 5. We claim that Ĝe is asymptotically equivalent to Ge, in the sense of Definition 1. Given
(101), proving this claim requires showing that, for j = 1, 2, . . . , 5,

u⊤
(
Ĝe(π)∆j

)
v ≃ 0, (102a)

1√
d

[
0 vec(Atr)

⊤] (Ĝe(π)∆j

)
v ≃ 0, (102b)

and
1

d2
tr

([
Ĝe(π)∆j

]
\0

· [I ⊗ Etr]

)
≃ 0, (102c)

for any deterministic and unit-norm vectors u, v and for Atr =
[
Rtr (1 + ρ)btr

]
.

We note the equivalent matrix Ĝe(π) still involves one scalar χ̂ave that depends on the original
resolvent Ge(π). Next, we show that χ̂ave can be replaced by χπ, the unique positive solution to
(76). To that end, we recall the characterization in (98). Using the claim that Ge(π) and Ĝe(π) are
asymptotically equivalent (in particular, in the sense of (75)), we have

χ̂ave ≃
1

d2
tr

([
Ĝe(π)

]
\0

· [I ⊗ Etr]

)
. (103)

To compute the first term on the right-hand side of the above estimate, we directly invert the block
matrix Ĝe(π) in (100). Recall that Πe is chosen in the forms of (55) and (62). It is then straightforward
to verify that

Ĝe =

[
c̄ −c̄ q̄⊤

−c̄ q̄ I ⊗ FE(χ̂ave) + c̄ q̄q̄⊤

]
, (104)

where FE(χ) is a matrix valued function such that

FE(χ) =
( τ

1 + χ
Etr + πB + λτId+1

)−1

, (105)

q̄ =
τ

(1 + χ̂ave)
√
d
vec
([

Rtr (1 + ρ)btr
]
FE(χ̂ave)

)
, (106)

and

1/c̄ =
τ(1 + ρ)

1 + χ̂ave
+ λτ − τ2

(1 + χ̂ave)2d
tr
([

Rtr (1 + ρ)btr
]
FE(χ̂ave)

[
Rtr (1 + ρ)btr

]⊤)
.

(107)
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Using (104), we can now write the equation (103) as

χ̂ave ≃
1

d
tr
(
FE(χ̂ave)Etr

)
+

c̄ τ2

(1 + χ̂ave)2d3
tr
([

Rtr (1 + ρ)btr
]
FE(χ̂ave)EtrFE(χ̂ave)

[
Rtr (1 + ρ)btr

]⊤)
.

(108)
The second term on the right-hand side of (108) is negligible. Indeed,

tr
([

Rtr (1 + ρ)btr
]
FE(χ̂ave)EtrFE(χ̂ave)

[
Rtr (1 + ρ)btr

]⊤)
≤
∥∥FE(χ̂ave)EtrFE(χ̂ave)

∥∥
op
(∥Rtr∥2F + (1 + ρ)2∥btr∥2).

(109)

By construction,
∥∥FE(χ̂ave)

∥∥
op

≤ (λτ)−1. Moreover, since the task vectors {wi}i∈[k] are indepen-

dent vectors sampled from Unif(Sd−1(
√
d)), it is easy to verify that

∥Etr∥op = O≺(1), ∥Rtr∥F = O≺(
√
d) and ∥btr∥2 = O≺(1). (110)

Finally, since c̄ is an element of Ĝe, we must have|c̄| ≤
∥∥∥Ĝe

∥∥∥
op

≤ (τλ)−1. Combining these estimates

gives us

c̄ τ2

(1 + χ̂ave)2d3
tr
([

Rtr (1 + ρ)btr
]
FE(χ̂ave)EtrFE(χ̂ave)

[
Rtr (1 + ρ)btr

]⊤)
= O≺(d

−2),

(111)
and thus we can simplify (108) as

χ̂ave ≃
1

d
tr

[( τ

1 + χ̂ave
Etr + πB + λτId

)−1

Etr

]
. (112)

Observe that (112) is a small perturbation of the self-consistent equation in (76). By the stability of
the equation (76), we then have

χ̂ave ≃ χπ, (113)
where χπ is the unique positive solution to (76).

Recall the definitions of Ge(π) and Ĝe(π) in (100) and (77), respectively. By the standard resolvent
identity,

Ĝe(π)− Ge(π)

=
τ [χ̂ave − χπ]

[1 + χπ][1 + χ̂ave]
Ĝe(π)

 1 + ρ 1√
d
vec
([

Rtr (1 + ρ)btr
])⊤

1√
d
vec
([

Rtr (1 + ρ)btr
])

Id ⊗ Etr

Ge(π).

(114)
By construction,

∥∥∥Ĝe(π)
∥∥∥
op

≤ 1/(τλ) and
∥∥Ge(π)

∥∥
op

≤ 1/(τλ). Moreover,∥Etr∥op ≺ 1 and∥∥∥∥ 1√
d
vec
([

Rtr (1 + ρ)btr
])∥∥∥∥ ≺ 1. (115)

It then follows from (113) and (114) that∥∥∥Ĝe(π)− Ge(π)
∥∥∥
op

≃ 0. (116)

If Ĝe(π) satisfies the equivalent conditions (73), (74) and (75) (as claimed in our analysis above),
then the estimate in (116) allows us to easily check that Ge(π) also satisfies (73), (74) and (75). Thus,
we claim that Ge(π) is asymptotically equivalent to the extended resolvent matrix Ge(π) in the sense
of Definition 1.

SI-13 Asymptotic Limits of the Generalization Errors

In this section, we use the characterization in Result 3 to derive the asymptotic limits of the general-
ization errors of associated with the set of parameters Γ∗ learned from ridge regression.
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SI-13.1 Asymptotic Limits of the Linear and Quadratic Terms

From Corollary 1 and the discussions in Remark 2, characterizing the test error e(Γ∗) boils down to
computing the linear term 1

d tr
(
Γ∗A⊤

test

)
and the quadratic term 1

d tr
(
Γ∗Btest(Γ

∗)⊤
)
, where Atest

and Btest are the matrices defined in (41) and (42), respectively.

We consider test data distributions Ptest as follows. From (35), the ICL task test setting we consider
corresponds to choosing

(ICL) : Atest =
[
Id 0

]
and Btest =

[
( 1+ρ

α + 1)Id
(1 + ρ)2

]
. (117)

.

Result 4. Let Γ∗ be the set of parameters learned from the ridge regression problem in (7). Let
Atest ∈ Rd×(d+1) and Btest ∈ R(d+1)×(d+1) be two matrices constructed as in (117). We have

1

d
tr(Γ∗A⊤

test) ≃
1

d
tr
(
Γ∗
eqA

⊤
test

)
, (118)

and

1

d
tr(Γ∗Btest(Γ

∗)⊤) ≃ 1

d
tr(Γ∗

eqBtest(Γ
∗
eq)

T )− ce
d
tr

(
Btest

[
(Etr + ξI)−1 − ξ(Etr + ξI)−2

])
.

(119)
In the above displays, Γ∗

eq is an asymptotic equivalent of Γ∗, defined as

Γ∗
eq :=

[
Rtr (1 + ρ)btr

]
(Etr + ξI)−1, (120)

where ξ is the unique positive solution to the self-consistent equation

ξMκ

(
1 + ρ

α
+ ξ

)
− τλ

ξ
= 1− τ, (121)

and Mκ(·) is the function defined in (177). Moreover, the scalar ce in (119) is defined as

ce =
ρ+ ν − ν2Mκ(ν)− ξ

[
1− 2νMκ(ν)− ν2M′

κ(ν)
]

1− 2ξMκ(ν)− ξ2M′
κ(ν)− τ

, (122)

where

ν :=
1 + ρ

α
+ ξ. (123)

To derive the asymptotic characterizations (118) and (119) in Result 4, we first use block-matrix
inversion to rewrite Ge(π) in (77) as

Ge(π) =

[
c∗(π) −c∗(π) (q∗(π))⊤

−c∗(π) q∗(π) I ⊗ FE(χπ) + c∗(π)q∗(π)(q∗(π))⊤

]
, (124)

where FE(·) is the matrix-valued function defined in (105), i.e.,

FE(χπ) =
( τ

1 + χπ
Etr + πBtest + λτId+1

)−1

. (125)

Moreover,

q∗(π) =
τ

(1 + χπ)
√
d
vec
([

Rtr (1 + ρ)btr
]
FE(χπ)

)
, (126)

and

1

c∗(π)
=

τ(1 + ρ)

1 + χπ
+ λτ − τ2

(1 + χπ)2d
tr
([

Rtr (1 + ρ)btr
]
FE(χπ)

[
Rtr (1 + ρ)btr

]⊤)
.

(127)
Observe that there is a one-to-one correspondence between the terms in (124) and those in (57).

20



To derive the asymptotic characterization given in (118), we note that

1

d
tr(Γ∗A⊤

test) ≃
−1

c(0)
√
d

[
0 vec(Atest)

T
]
Ge(0)e1 (128)

=
c∗(0)

c(0)
· 1
d
tr
([

Rtr (1 + ρ)btr
]
(Etr + λ(1 + χ0)I)

−1A⊤
test

)
(129)

≃ 1

d
tr
([

Rtr (1 + ρ)btr
]
(Etr + λ(1 + χ0)I)

−1A⊤
test

)
. (130)

In the above display, (128) follows from (61) and the asymptotic equivalence between Ge(0) and
Ge(0). The equality in (129) is due to (124) and (126). To reach (130), we note that c(0) =
e⊤1 Ge(0)e1 and c∗(0) = e⊤1 Ge(0)e1. Thus, c(0) ≃ c∗(0) due to the asymptotic equivalence between
Ge(0) and Ge(0). It can be shown that

λ(1 + χ0) ≃ ξ, (131)

where ξ is the scalar defined in (121). The asymptotic characterization given in (118) then follows
from (130) and from the definition of Γ∗

eq given in (120).

Next, we use (63) to derive the asymptotic characterization of the quadratic term in (119). Taking the
derivative of (127) gives us

d

dπ

(
1

c∗(π)

)∣∣∣∣
π=0

=
1

d
tr(Γ∗

eqBtest(Γ
∗
eq)

⊤)

− τχ′
0

(1 + χ0)2

(
1 + ρ− 2

d
tr(Atr(Etr + ξI)−1AT

tr) +
1

d
tr(Atr(Etr + ξI)−1Etr(Etr + ξI)−1AT

tr)

)
(132)

=
1

d
tr(Γ∗

eqBtest(Γ
∗
eq)

⊤)− τχ′
0

(1 + χ0)2

(
1 + ρ− 1

d
tr(Γ∗

eqA
T
tr)−

ξ

d
tr(Γ∗

eq(Γ
∗
eq)

⊤)

)
, (133)

where Atr is the matrix defined in (71). In reaching the above expression, we have also used the
estimate in (131).

To further simplify our formula, we note that

Atr = S

(
Etr + ξId+1 −

(1 + ρ

α
+ ξ
)
Id+1

)
, (134)

where S is a d× (d+ 1) matrix obtained by removing the last row of Id+1. Using this identity, we
can rewrite the matrix Γ∗

eq in (120) as

Γ∗
eq = S

(
I −

(1 + ρ

α
+ ξ
)
(Etr + ξI)−1

)
(135)

=
[
I − νFR(ν)− a∗(1 + ρ)2νFR(ν)btrb

⊤
trFR(ν) a∗(1 + ρ)νFR(ν)btr

]
, (136)

where FR(·) is the function defined in (175), and ν is the parameter given in (123). The second
equality (136) is obtained from the explicit formula for (Etr + ξI)−1 in (179).

From (134) and (135), it is straightforward to check that

1

d
tr(Γ∗

eqA
T
tr) = 1− ν + ν2

1

d
tr(S(Etr + ξI)−1S⊤), (137)

and
ξ

d
tr(Γ∗

eq(Γ
∗
eq)

⊤) = ξ

[
1− 2ν

1

d
tr(S(Etr + ξI)−1S⊤) + ν2

1

d
tr(S(Etr + ξI)−2S⊤

]
. (138)

By using the asymptotic characterizations given in (182) and (183), we then have

1

d
tr(Γ∗

eqA
T
tr) ≃ 1− ν + ν2Mκ(ν), (139)

and
ξ

d
tr(Γ∗

eq(Γ
∗
eq)

⊤) ≃ ξ
[
1− 2νMκ(ν)− ν2M′

κ(ν)
]
. (140)
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Substituting (139), (140), and (184) into (133) yields

d

dπ

(
1

c∗(π)

)∣∣∣∣
π=0

≃ 1

d
tr(Γ∗

eqBtest(Γ
∗
eq)

T )− ce
d
tr

(
Btest

[
(Etr + ξI)−1 − ξ(Etr + ξI)−2

])
,

(141)
where ce is the scalar defined in (122). The asymptotic characterization of the quadratic term in (119)
then follows from (63) and the claim that

d

dπ

(
1

c(π)

)∣∣∣∣
π=0

≃ d

dπ

(
1

c∗(π)

)∣∣∣∣
π=0

. (142)

SI-13.2 The Generalization Error of In-Context Learning

Result 5. Consider the test distribution Ptest associated with the ICL task. We have

e(Γ∗) ≃ eICL(τ, α, κ, ρ, λ), (143)

where

eICL(τ, α, κ, ρ, λ) :=

(
1 + ρ

α
+ 1

)(
1− 2νMκ(ν)− ν2M′

κ(ν)− ce
[
Mκ(ν) + ξM′

κ(ν)
])

− 2
[
1− νMκ(ν)

]
+ 1 + ρ,

(144)
and ce is the constant given in (122).
Remark 6. Recall the definition of the asymptotic equivalence notation “≃” introduced in Section SI-
9. The characterization given in (143) implies that, as d → ∞, the generalization error e(Γ∗)
converges almost surely to the deterministic quantity eICL(τ, α, κ, ρ, λ).

To derive (143), our starting point is the estimate

e(Γ∗) ≃ 1

d
tr
(
Γ∗Btest(Γ

∗)⊤
)
− 2

d
tr
(
Γ∗A⊤

test

)
+ 1 + ρ, (145)

which follows from Corollary 1 and the discussions in Remark 2. We consider the ICL task here, and
thus Atest and Btest are given in (117). The asymptotic limits of the first two terms on the right-hand
side of the above equation can be obtained by the characterizations given in Result 4.

Using (118) and the expressions in (136) and (117), we have
1

d
tr(Γ∗A⊤

test) ≃
1

d
tr
(
Γ∗
eqA

⊤
test

)
(146)

= 1− ν

d
trFR(ν)− a∗(1 + ρ)2ν

∥∥FR(ν)btr
∥∥2

d
(147)

≃ 1− νMκ(ν), (148)

where ν is the constant defined in (123). To reach the last step, we have used the estimate given in
(182).

Next, we use (119) to characterize the first term on the right-hand side of (145). From the formulas
in (136) and (117), we can check that

1

d
tr
(
Γ∗
eqBtest(Γ

∗
eq)

⊤
)
≃
(
1 + ρ

α
+ 1

)
1

d
tr
(
I − νF (ν)

)2
(149)

≃
(
1 + ρ

α
+ 1

)(
1− 2νMκ(ν)− ν2M′

κ(ν)
)
, (150)

where the second step follows from (182) and (183). From (179),

1

d
tr(Btest(Etr + ξI)−1) ≃

(
1 + ρ

α
+ 1

)
1

d
trFR(ν) ≃

(
1 + ρ

α
+ 1

)
Mκ(ν). (151)

Similarly, we can check that

1

d
tr(Btest(Etr + ξI)−2) ≃

(
1 + ρ

α
+ 1

)
1

d
trF 2

R(ν) ≃ −
(
1 + ρ

α
+ 1

)
M′

κ(ν). (152)
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Substituting (150), (151), and (152) into (119) gives us

1

d
tr(Γ∗B(Γ∗)⊤) ≃

(
1 + ρ

α
+ 1

)(
1− 2νMκ(ν)− ν2M′

κ(ν)− ce
[
Mκ(ν) + ξM′

κ(ν)
])

,

(153)
where ce is the constant given in (122). Combining (148), (153), and (145), we are done.

In what follows, we further simplify the characterizations in Result 5 by considering the ridgeless
limit, i.e., when λ → 0+.

Result 6. Let

q∗ :=
1 + ρ

α
, m∗ := Mκ (q

∗) , and µ∗ := q∗Mκ/τ (q
∗), (154)

where Mκ(x) is the function defined in (177). Then

eICL
ridgeless := lim

λ→0+
eICL(τ, α, κ, ρ, λ)

=


τ(1+q∗)

1−τ

[
1− τ(1− µ∗)2 + µ∗(ρ/q∗ − 1)

]
−2τ(1− µ∗) + (1 + ρ) τ < 1

(q∗ + 1)
(
1− 2q∗m∗ − (q∗)2M′

κ(q
∗) + (ρ+q∗−(q∗)2m∗)m∗

τ−1

)
− 2(1− q∗m∗) + (1 + ρ) τ > 1

,

(155)
where M′

κ(·) denotes the derivative of Mκ(x) with respect to x.

We start with the case of τ < 1. Examining the self-consistent equation in (121), we can see that
the parameter ξ tends to a nonzero constant, denoted by ξ∗, as λ → 0+. It follows that the original
equation in (121) reduces to

ξ∗Mκ

(
1 + ρ

α
+ ξ∗

)
= 1− τ. (156)

Introduce a change of variables

µ∗ :=
(1− τ)(1 + ρ)

ατξ∗
. (157)

By combining (156) and the characterization in (178), we can directly solve for µ and get µ∗ =
q∗Mκ/τ (q

∗) as given in (154). The characterization in (155) (for the case of τ < 1) then directly
follows from (148), (153), and (4) after some lengthy calculations.

Next, we consider the case of τ > 1. It is straightforward to verify from (121) that

ξ =
τ

τ − 1
λ+O(λ2). (158)

Thus, when τ > 1, ξ → 0 as λ → 0+. It follows that

lim
λ→0+

ν = lim
λ→0+

(
1 + ρ

α
+ ξ

)
= q∗ and lim

λ→0+
Mκ(ν) = m∗. (159)

Substituting these estimates into (148), (153), and (4), we then reach the characterizations in (155)
for the case of τ > 1.

SI-13.3 The Generalization Error of In-Distribution Generalization

In what follows, we derive the asymptotic limit of the generalization error for the IDG task.

Result 7. Consider the test distribution Ptest associated with the IDG task. We have

e(Γ∗) ≃ eIDG(τ, α, κ, ρ, λ) := τ
ρ+ ν − ν2Mκ(ν)− ξ

[
1− 2νMκ(ν)− ν2M′

κ(ν)
]

τ −
[
1− 2ξMκ(ν)− ξ2M′

κ(ν)
] , (160)

where ξ the unique positive solution to the self-consistent equation (121) and ν is the constant given
in (123).
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Similar to our derivation of Result 5, we only need to use (118) and (119) to characterize the
asymptotic limits of the first and second terms on the right-hand side of (145). Note that, for the IDG
task, Atest = Atr. It follows from (118) and (139) that

1

d
tr(Γ∗A⊤

test) ≃ 1− ν + ν2Mκ(ν). (161)

Similarly, since Btest = Etr, we can verify from (120) that

1

d
tr
(
Γ∗
eqBtest(Γ

∗
eq)

⊤
)
=

1

d
tr(Γ∗

eqA
⊤
tr)−

ξ

d
tr(Γ∗

eq(Γ
∗
eq)

⊤) (162)

≃ 1− ν + ν2Mκ(ν)− ξ
[
1− 2νMκ(ν)− ν2M′

κ(ν)
]
, (163)

where the second step follows from (139) and (140). Moreover,

1

d
tr

(
Btest

[
(Etr + ξI)−1 − ξ(Etr + ξI)−2

])
= 1− 2ξMκ(ν)− ξ2M′

κ(ν). (164)

Substituting (162) and (164) into (119), we have

1

d
tr(Γ∗B(Γ∗)⊤)

≃ τ
ρ+ ν − ν2Mκ(ν)− ξ

[
1− 2νMκ(ν)− ν2M′

κ(ν)
]

τ −
[
1− 2ξMκ(ν)− ξ2M′

κ(ν)
] + 2(1− ν + ν2Mκ(ν))− (1 + ρ).

(165)
The final result in (160) then follows from combining the above expression with (161) and (145).

Finally, we derive the ridgeless limit of the characterization given in Result 7.
Result 8. Let q∗, m∗, and µ∗ be the scalars defined in (154). We have

eIDG
ridgeless := lim

λ→0+
eIDG(τ, α, κ, ρ, λ) (166)

=

 τ
1−τ

(
ρ+q∗−2q∗(1−τ)(q∗/ξ∗+1)

1−p∗(1−τ) + τµ∗(q∗+ξ∗)2

q∗

)
τ < 1

τ
τ−1 [ρ+ q∗(1− q∗m∗)] τ > 1

, (167)

where ξ∗ = (1−τ)q∗

τµ∗ and p∗ =
(
1− κ

(
κξ∗

1−τ + 1
)−2)−1

.

The derivation of this result closely follows that of Result 6. We analyze the cases of τ < 1 and
τ > 1 separately. For τ < 1, the equation in (121) simplifies to (156) as λ → 0+. For τ > 1, ξ
approaches zero as λ → 0+. Substituting these estimates into (160) then yields (167) after some
detailed calculations.

SI-14 Asymptotics of dMMSE Estimator

To study the slowness of the dMMSE estimator more explicitly, consider the α → ∞ limit. We
present an initial sketch for the rate at which gtask → 0 in this limit, by considering large k for d fixed.

The exponential weight terms in the estimator in this limit behave as

e−
1
2ρ

∑ℓ
i=1(yi−w⊤

j xi)
2

→ e−
ℓ
2ρ (

1
d∥w

∗−wj∥2+ρ) ,

and these weightings exponentially favor choosing ωj that minimises ∥w∗ − wj∥2 over the set of
k training tasks wj . It’s immediately clear that edMMSE

IDG = ρ in this limit as the minimal value of
∥w∗ − wj∥2 when w∗ ∈ {w1, · · · , wk} is 0. Taking

west(w
∗, wi) = argmini∈[k]∥w∗ − wi∥2

we have

gdMMSE
task = edMMSE

ICL − ρ =
1

d
Ew∗∼Ptest

Ewi∼Ptrain

[
min
i∈[k]

∥w∗ − wi∥2
] (168)
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We exploit spherical symmetry in both w∗ and wi to simplify

∥w∗ − wi∥2 = 4d− 4dbi for bi ∼ Beta
(
d− 1

2
,
d− 1

2

)
.

A rate of convergence can then be derived by studying the asymptotic behaviour of the expected max-
imum of the Beta distribution. This is an ongoing computation, with results suggesting exponentially-
cursed decay in dimension. Specifically, heuristic arguments integrating over the PDF of maxi bi
suggests O(κ−2/d) decay.

A Auxiliary Results

Lemma 3. Let w be a given task vector with∥w∥ =
√
d. Meanwhile, let a ∼ N (0, 1), s ∼ N (0, 1),

ϵ ∼ N (0, ρ) be three scalar normal random variables, and q ∼ N (0, Iℓ−1), g ∼ N (0, Id−1),
u ∼ N (0, Id−1), and vϵ ∼ N (0, ρIℓ) be isotropic normal random vectors. Moreover, w and all of
the above random variables are mutually independent. We have the following equivalent statistical
representation of the pair (HZ , yℓ+1):

HZ
(d)
= (d/ℓ)Mw

[
s
u

] [
h⊤Mw, (a/

√
d+ θϵ)

2/
√
d+ θ2q/

√
d
]
, (169)

and
yℓ+1

(d)
= s+ ϵ. (170)

In the above displays, Mw denotes a symmetric and orthonormal matrix such that

(Mw)e1 =
w

∥w∥
, (171)

where e1 denotes the first natural basis vector in Rd; h ∈ Rd is a vector defined as

h :=

 θϵa√
d
+ a2

d + θ2q[
(θϵ + a/

√
d)2 + θ2q

]1/2
g/

√
d

 ; (172)

and θϵ, θq are scalars such that

θϵ =∥vϵ∥/
√
d and θq =∥q∥ /

√
d. (173)

We will also find it useful to note

X⊤w = Mvϵ

[
a
q

]
, (174)

Define the following resolvent
FR(ν) := (Rtr + νId)

−1, (175)
where Rtr is the sample covariance matrix of the task vectors as defined in (70) and ν is a positive
scalar.

Note that the distribution of Rtr is asymptotically equivalent to that of a Wishart ensemble. By
standard random matrix results on the Stieltjes transforms of Wishart ensembles (see, e.g., [29]), we
have

1

d
trFR(ν) ≃ Mκ(ν) (176)

as d, k → ∞ with k/d = κ. Here,

Mκ(ν) :=
2

ν + 1− 1/κ+
[
(ν + 1− 1/κ)2 + 4ν/κ

]1/2 . (177)

is the solution to the self-consistent equation

1

Mκ(ν)
=

1

1 +Mκ(ν)/κ
+ ν. (178)
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(Etr+λ(1+χ0)Id+1)
−1 =

[
FR(ν0) + a∗(1 + ρ)2FR(ν0)btrb

⊤
trFR(ν0) −a∗(1 + ρ)FR(ν0)btr

−a∗(1 + ρ)b⊤trFR(ν0) a∗

]
,

(179)
where FR(·) is the function defined in (175),

ν0 =
1 + ρ

α
+ λ(1 + χ0) (180)

and
1

a∗
= (1 + ρ)2 + λ(1 + χ0)− (1 + ρ)2b⊤trFR(ν0)btr. (181)

1

d
tr(Etr+ ξI)−1 ≃ 1

d
trS(Etr+ ξI)−1S⊤ ≃ 1

d
trF

(
1 + ρ

α
+ ξ

)
≃ Mκ

(
1 + ρ

α
+ ξ

)
, (182)

and

1

d
tr(Etr + ξI)−2 ≃ 1

d
trS(Etr + ξI)−2S⊤ ≃ 1

d
trF 2

(
1 + ρ

α
+ ξ

)
≃ −M′

κ

(
1 + ρ

α
+ ξ

)
,

(183)
where S is a d× (d+1) matrix obtained by removing the last row of Id+1, and Mκ(·) is the function
defined in (177). Upon substitution have

τχ′
0

(1 + χ0)2
≃

1
d tr

(
Btest[(Etr + ξI)−1 − ξ(Etr + ξI)−2]

)
1− 2ξMκ

(
1+ρ
α + ξ

)
− ξ2M′

κ

(
1+ρ
α + ξ

)
− τ

. (184)
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