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Abstract

Assessing students’ answers and in particular natural language answers is a crucial challenge
in the field of education. Advances in transformer-based models such as Large Language Models
(LLMs), have led to significant progress in various natural language tasks. Nevertheless, amidst the
growing trend of evaluating LLMs across diverse tasks, evaluating LLMs in the realm of automated
answer assessment has not received much attention. To address this gap, we explore the potential
of using LL.Ms for automated assessment of student’s short and open-ended answers in program
comprehension tasks. Particularly, we use LLMs to compare students’ explanations with expert
explanations in the context of line-by-line explanations of computer programs. For comparison
purposes, we assess both decoder-only Large Language Models (LLMs) and encoder-based Semantic
Textual Similarity (STS) models in the context of assessing the correctness of students’ explanation
of computer code. Our findings indicate that decoder-only LL.Ms, when prompted in few-shot
and chain-of-thought setting perform comparable to fine-tuned encoder-based models in evaluating
students’ short answers in the programming domain.
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1. Introduction

Large Language Models (LLMs), such as ChatGPT, have garnered significant attention for their
remarkable ability to generate responses to user prompts. These models have been explored for their
potential (and risks) for education, particularly in the realm of computer science (CS) education (Oli
et al., 2023a), which is our focus. For CS education, use of LLMs in creating programming
exercises (Sarsa et al., 2022), and generating code explanations (MacNeil et al., 2023) among other
educational applications have been studied. While numerous studies have highlighted ChatGPT’s
generative capabilities of educational resources and assistance, there is a notable gap in exploring
ChatGPT’s assessment capabilities within educational contexts. In this work, we evaluate the
effectiveness of LLMs to automatically assess students’ self-explanations of code. Such explanations
are generated, for instance, while students engage in code comprehension activities with a computer
tutor, which needs to automatically assess the correctness of students’ explanations of code to
provide feedback. It should be noted that self-explanation, i.e., explaining learning material to
oneself through speaking or writing (McNamara and Magliano, 2009), has been shown to improve
comprehension and learning of programming concepts in introductory computer science courses
(Tamang et al., 2021; Oli et al., 2023b). Additionally, prior studies have shown that the scaffolding
of students’ self-explanation is more effective than free self-explanation at improving novices’ code
comprehension (Oli et al., 2023b).

Scaffolding students’ self-explanation relies on accurate assessment of students’ explanations
in terms of correctness and completeness. Manually assessing students’ self-explanations and,
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consequently, their comprehension of the code is a challenging task for instructors, especially when
dealing with large student cohorts. A simple and scalable approach to assessing student explanations
is semantic similarity, i.e. measuring the similarity of such natural language explanations to an
appropriate reference/correct answer, e.g., provided by an expert, through an automated short answer
grading system (Mohler and Mihalcea, 2009). If the student’s self-explanation is semantically similar
to the reference answer the student’s self-explanation is deemed to be correct.

Semantic similarity measures the degree to which two fragments of text have similar meanings
by producing a similarity score, ranging from O to 1 (normalized score), O meaning no similarity
at all, whereas 1 meaning semantically equivalent (Cer et al., 2017). Although there have been
numerous studies (Cer et al., 2017) measuring semantic similarity between texts, limited research has
been conducted in the area of computer programming and source code comprehension. In our study,
we employ decoder-only Large Language Models to automatically evaluate students’ line-by-line
explanations of code and compare them with encoder-based models. We evaluate the proposed
LLM-based approach using a set of student self-explanations produced in the context of an online
learning environment that asks students to freely explain Java code examples line-by-line.

This work is part of a larger project whose primary objective is to create an educational technology
that can scaffold students’ understanding of code by providing tailored feedback to students while
prompting students to explain their understanding of the code line-by-line. A key component of this
system is assessing students’ self-explanation of lines of code which we propose to do by computing
the semantic similarity between each line of code and the corresponding student explanation.

2. Related Work

Automated Short Answer Grading (ASAG): Prior work on ASAG has been based on deter-
mining the semantic similarity between learner answers and reference answers in various domains
such as Physics, Biology, Geometry etc. (Mohler and Mihalcea, 2009). The advances in neural
networks led to the introduction of numerous deep learning-based Automated Short Answer Grading
systems (Pontes et al., 2018) . Previous studies investigating pre-trained transformers in Natural
Language Processing(NLP) tasks have observed significant performance improvements in auto-
mated short answer grading (Camus and Filighera, 2020) through fine-tuning on datasets such as
MNLI (Williams et al., 2017) and SemEval-2013 (Segura-Bedmar et al., 2013). Sung et al. (2019)
fine-tuned BERT on domain specific data such as textbooks and reported that fine-tuning a pre-trained
model for task-specific purpose demonstrates superior performance in short answer grading. Along
those lines, in our study, we fine-tune pre-trained models for assessing short answer in program
comprehension, an area which has not been previously investigated.

Evaluating LLMs on Semantic Similarity Task: In their study, Zhong et al. (2023) report
that ChatGPT surpasses all BERT models with a substantial margin in an inference task and attains
comparable performance to BERT in sentiment analysis and question-answering tasks. However, their
study indicates that ChatGPT has limited ability in paraphrase and semantic similarity tasks. However,
Gatto et al. (2023) demonstrate that the Semantic Textual Similarity (STS) task can be effectively
framed as a text generation problem, achieving robust performance with LLM outperforming encoder-
based STS models across various STS benchmarks.Given that LLMs benefit significantly from
training on code and its corresponding summaries, in this study we investigate the applicability of
LLMs to automatically assess students’ line-by-line explanations of code.
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3. Dataset

In our work, we use the SelfCode (Chapagain et al., 2023) for our analysis which consists of pairs of
code snippets accompanied by expert explanations and explanations given by students/non-experts for
ten different code examples. To collect the student’s explanations, Amazon Mechanical Turk (MTurk)
was used with the MTurk HIT (Human Intelligence Task) being available only to workers from the
United States and Canada who had to qualify for the task by correctly answering 2 out of 3 multiple
choice basic program construction tasks. Expert explanations were acquired from a curated collection
of annotated examples within a comprehensive repository of interactive learning content (Hicks
et al., 2020). These expert explanations serve as reference explanations when assessing learners’
self-explanations.

In addition to expert explanations, human judgments of the semantic similarity between the
expert and students’ code explanations were obtained. Six graduate students in Computer Science
annotated on a scale of 1-5 about 1,770 pairs of expert and student’s explanations which are used in
our study presented here. Before beginning the annotations, the graduate students received training
on the annotation guidelines. The annotation occurred in multiple stages: the first 100 data instances
were used to establish a consistent understanding of the annotation process. In the subsequent steps
annotators involved a disagreement mitigation step aiming to minimize score differences to within 1
point among annotators and the inter-annotator agreement (Fleiss, 1971) was computed to be 0.99
indicating high agreement among annotators.

In the data set, 18% of the sentence pairs scored 4 or 5 (high semantic similarity), while 59%
were labeled incorrect (score 1) or exhibited low concept coverage (score 2). About 23% of the
sentence pairs received a score of 3. Given the opaque nature of ChatGPT’s training data, we validate
our findings against memorization by exclusively working with publicly released datasets after May
2023.

4. Methodology

As already noted, we employ semantic similarity to evaluate students’ natural language responses,
with the primary focus on assessing decoder-only LLMs’ capability in measuring semantic similarity;
however, for comparison purposes, we offer results with several other approaches, as described next.

4.1. Assessment Using Encoder Models

First, we calculate the similarity based on BERTScore (Zhang et al., 2019) and Universal Sentence
Encoder (USE; (Cer et al., 2018)). Second, we employ Sentence transformer models (Reimers and
Gurevych, 2019b), which we fine-tune on our dataset. The three pretrained sentence transformer
models that we further fine-tune with our dataset include: i) SROBERTa fine-tuned on NLI, ii)
CodeBERT, and iii) all-mpnet-base-v2'. We experimented with CodeBERT (Feng et al., 2020) as an
encoder to assess whether it offers advantages in capturing the similarity of sentences related to code
segments. Additionally, sentence transformer models demonstrate improved performance in tasks
related to Natural Language Inference (NLI) when fine-tuned on models previously trained with NLI
data (Reimers and Gurevych, 2019a). Hence, we fine-tuned models that were initially trained in NLI
using our dataset for enhanced performance.

1. https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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For each of the mentioned encoders, we compute the similarity between expert and student
explanations by calculating the cosine similarity between their embeddings. There is an exception to
this similarity computation when calculating BERTScore. In this case, the similarity of two sentences
is computed as the sum of cosine similarities between their tokens’ embeddings.

We split our data-set into 80% training data and 20% test data and fine-tuned SBERT with
contrastive loss objective function for one epoch in our training dataset. We used a batch size of
16, Adam optimizer with a learning rate 2¢~* and a linear learning rate warm-up over 10% of the
training data. Our pooling strategy is MEAN. This comprehensive assessment framework allows
us to thoroughly evaluate the effectiveness of different language models and baselines in capturing
semantic similarity in the context of answer assessment.

4.2. Assessment by Prompting LL.Ms:

We explore various prompting strategies for four different large language models: OpenAI’s ChatGPT-
3.5-turbo-0613 and ChatGPT-4-0613 (OpenAl, 2023), gpt-4-1106-preview(GPT-4 Turbo) (OpenAl,
2023) and Meta’s open source model LLMa?2-chat? (Touvron et al., 2023)).

First, for predictive prompting of semantic similarity, we used simple prompts to instruct the
LLM to predict the similarity score on a scale of 1-5, similar to human judgments (with 1 indicating
no semantic similarity and 5 indicating semantically equivalence between the pair of sentences).
Based on the findings by Gatto et al. (2023), who suggest framing STS tasks to predict a similar-
ity percentage (leveraging large language models’ strong textual reasoning and their exposure to
percentage-related language during pre-training), we further used the same prompt to generate the
semantic similarity in the scale of 0-1. In addition, we also explore advanced prompting strategies.
These include the conventional few-shot prompting, also known as in-context learning, where the
LLM is tasked to infer from the provided examples or task descriptions (Brown et al., 2020), as well
as few-shot chain-of-thought (CoT) prompting (Wei et al., 2022) where the LLM is guided to think
step by step. In the case of few-shot learning, we employed a stratified sampling approach to select
six expert explanations along with corresponding student explanations and benchmark similarity
scores. These were provided as examples to the Large Language Models (LLMs), with the caveat
that the examples were excluded from the dataset used for subsequent analysis.

For few-shot Chain-of-Thought prompting, we manually crafted a step-by-step breakdown of
the reasoning behind assigning semantic similarity scores when evaluating two texts, selecting
three examples with varying benchmark similarity scores. The prompts utilized in our analysis are
detailed in Appendix B. In the CoT Prompting approach, which elicited textual responses along with
reasoning, we extracted numerical values within specified delimiters to obtain the semantic similarity
score. In our experimental setup, we opted for deterministic results by setting the temperature
parameter to 0. We set a maximum token length of 1200 to limit the scope of generated sequences.

5. Results and Discussion
5.1. Assessment using Encoder-based Models

As we can see from results in Table 1, for encoder based models, models such as BERTScore
and Universal Sentence Encoder show below par results based on Pearson and Spearman rank
correlation. The results indicate that fine-tuned sentence transformer models capture the assessment

2. https://huggingface.co/meta-llama/L.lama-2-7b-chat-hf



AUTOMATED ASSESSMENT OF STUDENTS’ CODE COMPREHENSION USING LLMS

Model Pearson | Spearman

BERTScore 0.573 0.553

USE 0.61 0.61

Sentence Transformer RoBERTa-base’ 0.800 0.78
CodeBERT-base' 0.797 0.761
all-mpnet’ 0.81 0.811

GPT-3.5 baseline-prompt[1-5] 0.58 0.59
baseline-prompt[0-1] 0.60 0.61
fewshot-prompt[0-1] 0.64 0.64

CoT-prompt[0-1] 0.69 0.70

GPT-4 baseline-prompt[1-5] 0.69 0.70
baseline-prompt[0-1] 0.72 0.737
fewshot-prompt[0-1] 0.78 0.79

CoT-prompt[0-1] 0.81 0.82

GPT-4-turbo baseline-prompt[1-5] 0.70 0.70
baseline-prompt[0-1] 0.72 0.75
fewshot-prompt[0-1] 0.67 0.71

CoT-prompt[0-1] 0.79 0.80

LLAMA-2 baseline-prompt[1-5] 0.29 0.31
baseline-prompt[0-1] 0.38 0.39
few-shot-prompt[0-1] 0.42 0.44

CoT-prompt[0-1] 0.26 0.27

Table 1: Pearson and Spearman correlations by comparing human-annotated semantic similarity
scores with automated similarity scores for student and expert explanations across different
model classes. { indicate fine-tuned model

score better. The encoder models pre-trained on code such as CodeBERT do not show better
performance compared to ROBERTa. The best performing model for student answer explanation is
all-mpnet. One of the reasons for this might be the large amount of data it is fine-tuned on. Also,
there is no remarkable difference between ROBERTa and all-mpnet indicating sentence transformer
models can be used effectively for student answer assessment by comparing expert explanations with
student explanations.

5.2. Assessment by Prompting Decoder-only LL.Ms

In Table 1, we present results of prompting decoder-only Large Language Models (LLM) to assess
semantic similarity. The outcomes for various versions of ChatGPT indicate a notable trend: prompt-
ing the LLMs to predict semantic similarity on a scale of 0-1 yields superior performance compared
to prompting it to predict similarity on other arbitrary scales (1-5).

The advance strategies consistently boost ChatGPT’s performance, with manual chain-of-thought
(CoT) providing the most significant benefits. Notably, the standard few-shot CoT enhances Chat-
GPT’s overall performance (on average 15% better than baseline prompting for ChatGPT-based
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model) with GPT-4 providing the best performance for our task. Table 1 shows that GPT4 performs
similarly to fine-tuned encoder-based models when using chain-of-thought prompting. The results
also indicate that GPT-4 consistently outperforms GPT-3.5 across various prompting techniques
and scales. Our experimentation with GPT-4-turbo yielded results comparable to those of other
LLMs, offering no discernible advantage except processing speed. ChatGPT-4 demonstrates superior
reasoning in CoT-prompting and also closely aligns with human-annotated benchmark similarity (see
Appendix C.1 for examples). In the case of LLama-2, the semantic similarity scores were skewed
towards higher values, particularly with scores of 0.8-1.0 in the scale of 0-1. Moreover, we observed
that LLama-2 generates verbose results, including reasoning about the semantic similarity score
often deviating from instruction prompt provided.

5.3. Error Analysis

When prompting LLMs, we found in-context learning to be sensitive to the provided examples, which
is consistent with the findings from previous studies (Agrawal et al., 2022; Zhong et al., 2023). This
sensitivity may arise from limited generalization or overfitting to few-shot examples used, suggesting
a potential correlation between provided examples and test data. To address this potential bias in the
few-shot setting, we conducted the analysis three times with different instances of example provided
each time and present the results as the average of these runs. One of the cases where the LLMs fail
is for instances involving numerical reasoning. LLLMs assign a high semantic equivalence score to
instances, which although linguistically similar, involve different numerical values.

6. Conclusion

This work investigated the ability of LLMs to automatically assess students’ code comprehension.
Our results indicate that Large Language Models (LLMs) perform comparably well, in particular
GPT models, to fine-tuned encoder-based models but there is room for improvement which we plan
to explore in the future.
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Appendix A. Dataset Distribution

Similarity Score (1-5) | No. of Sentence Pair
1 529 (29.88%)
507 (28.62%)
419 (23.65%)
253 (14.45%)
62 (3.50%)

[ I S OS \S)

Table 2: Distribution of Data

Appendix B. Prompts

~

Baseline Prompt [1-5]: Analyze if the two sentences are similar and provide a score between
1 to 5, with 1 indicating minimal similarity and 5 representing maximal similarity. Provide
semantic similarity score for <user explanation> and <expert explanation> between 1 to 5.
Only provide the score without any other text.

Baseline Prompt [0-1]: Assess the similarity of the two sentences and assign a similar-
ity score on a scale from O to 1, with O indicating minimal similarity and 1 representing
maximal similarity. Provide semantic similarity score for <user explanation> and <expert
explanation> between 0 to 1. Only provide the score without any other text.

Few Shot Prompt [0-1]: Assess the similarity of the two sentences and assign a similarity
score on a scale from O to 1, with 0 indicating minimal similarity and 1 representing maximal
similarity. Provide a semantic similarity score for ‘Declares the array we want to use for our
assignment’ and ‘We initialize the array of type int to hold the specified numbers.” between 0
and 1. Only provide the score without any other text. Similarity Score: 0.87

Assess the similarity of the two sentences and assign a similarity score on a scale from 0 to 1,
with 0 indicating minimal similarity and 1 representing maximal similarity. Provide semantic
similarity score for ‘run a while-loop as long as the remainder of num/divisor is not equal to
0’ and ‘“We could check whether the divisor is not a factor of the number by computing the
remainder of the division of the number by the divisor.” between 0 and 1. Only provide the
score without any other text. Similarity Score: 0.75

Assess the similarity of the two sentences and assign a similarity score on a scale from 0
to 1, with O indicating minimal similarity and 1 representing maximal similarity. Provide
semantic similarity score for <user explanation> and <expert explanation> between 0 to 1.
Only provide the score without any other text. Similarity Score:
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Chain-of-Thought (CoT) Prompt [0-1]: Discuss how these two texts are similar and
different, then assign a semantic similarity score between [0.0-1.0] which describes their
semantic similarity: ‘Declares the array we want to use for our assignment, and ‘We initialize
the array of type int to hold the specified numbers. Similarity: Lets think step by step. Both
the text is about declaration or initialization of array. The slight difference between the two
texts is the second text provides additional information about the type of the declared array.
Thus, these sentences have a [semantic similarity = 0.87]

Discuss how these two texts are similar and different, then assign a semantic similarity score
between [0.0-1.0] which describes their semantic similarity: ‘We could check whether the
divisor is not a factor of the number by computing the remainder of the division of the number
by the divisor.” and ‘run a while-loop as long as the remainder of num/divisor is not equal to
0’ Similarity: Lets think step by step. Both the text is about computing the checking whether
divisor is a factor of number or not. However, the first text is more specific about using a
while-loop and the condition for the loop to continue, while the second text is more focused
on the purpose of the operation, which is to check if the divisor is a factor of the number.
Thus, these sentences have a [semantic similarity = 0.75]

Discuss how these two texts are similar and different, then assign a semantic similarity score
between [0.0-1.0] which describes their semantic similarity: ‘Loop start’ and ‘We need to
increment the divisor repeatedly as long as the divisor is not a factor of the number.Similarity:
Lets think step by step. Both texts are discussing loop. The first text is simply stating the start
of a loop, while the second text is explaining a specific condition within a loop. Thus, these
sentences have a [semantic similarity = 0.2]

Discuss how these two texts are similar and different, then assign a semantic similarity score
between [0.0-1.0] which describes their semantic similarity: <user explanation> and <expert
explanation> Similarity: Lets think step by step

Appendix C. Chain-of-Though-Prompting Example

C.1. LLM response with semantic similarity and reasoning for CoT Prompting

Code statement: System.out.println("The integer is positive.");

Expert explanation: Print that the integer is positive if it is greater than 0.

Student explanation: This statement prints that the integer is positive.

Benchmark Similarity: 1

LLM: GPT-4

Both texts are discussing the same action of printing a statement that an integer is positive.
The first text, however, provides a condition for this action (if the integer is greater than 0),
while the second text does not specify any condition. Thus, these sentences have a [semantic
similarity = 0.8]

10
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Code statement: int divisor = 2;

Expert explanation: We define variable divisor to store the smallest divisor of the number.
Student explanation: we initialize another variable named divisor with the value 2.
Benchmark Similarity: 0.33

LLM: GPT-4

Both texts discuss initializing a variable named ’divisor’, but they differ in the context and
purpose of this variable. The first text simply states that the variable is initialized with the
value 2, while the second text explains that the variable is used to store the smallest divisor of
a number. Thus, these sentences have a [semantic similarity = 0.6]

C.2. Fail case: LLM fails in numerical reasoning

Code statement: int num = 15;

Expert explanation: In this program, we initialize variable num to 15.

Student explanation: creates variable integer entitled "num" with initial value 5
Benchmark Similarity: 0.466666667

LLM: GPT-4

LLM response to Chain-of-thought Prompting: Both texts are discussing the initialization
of a variable named "num", but the initial values they assign to "num" are different. The first
text assigns a value of 5, while the second assigns a value of 15. Thus, these sentences have a
[semantic similarity = 0.8]

Comment: LLM assigns high semantic equivalence score to the two text, which although
linguistically similar involve different numerical value. In such situations where there is
a numerical disparity between a student’s explanation and an expert’s explanation, current
Language Models (LLMs) do not account for this difference when automatically evaluating
the similarity between the two texts.
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