Identifying Gaps In Students’ Explanations of
Code Using LLMs

Rabin Banjade[0000_0001_8048_0558], Priti 011[0009—0007—8720—1487]7 Mahmudul
Islam Sajib[0009700007473372166]’ and Vasile Rus[0009700027473970440]

University of Memphis, USA
{rbnjadel,poli,msajib,vrus}@memphis.edu

Abstract. This study investigates methods based on Large Language
Models (LLMs) to identify gaps or missing parts in learners’ self-explanations.
This work is part of our broader effort to automate the evaluation of
students’ freely generated responses, which in this work are learners’
self-explanations of code examples during code comprehension activi-
ties. We experimented with two methods and four distinct LLMs in two
distinct settings. One method prompts LLMs to identify gaps in learn-
ers’ self-explanations, whereas the other method relies on LLMs per-
forming a sentence-level semantic similarity task to identify gaps. We
evaluated these methods in two settings: (i) simulated data generated
using LLMs and (ii) actual student data. Results revealed the semantic
similarity method significantly improves task performance over the zero-
shot prompting for gap identification (the holistic method), i.e., over
the standard method of prompting LLMs to directly address the gap
identification task.

Keywords: Self Explanation - Large Language Models - Automated
Assessment - Scaffolding - Code Comprehension

1 Introduction

This paper explores several methods based on large language models to de-
tect gaps or missing parts in learners’ self-explanations of targeted instructional
content, e.g., explanations of code examples. Self-explanation, i.e., elucidating
learning material to oneself through speech or writing[8], has a positive impact
on learning [1]. Students who self-explain while engaging in various instructional
activities, such as reading code examples or solving problems, tend to learn more
and develop a more profound understanding of the subject matter. However, as
Renkl and colleagues [12] point out, the effectiveness of self-explanation might
not be effective in instances where learners either neglect pertinent explanations
or engage passively with the content. Building upon these insights, Intelligent
Tutoring Systems (ITS) that rely on instructional strategies such as scaffolded
self-explanation have been developed to enhance learning outcomes as demon-
strated by various studies [6].

Scaffolding students’ self-explanation relies on accurately assessing students’
explanations in terms of correctness or completeness. This entails addressing two

2 Banjade et al.

crucial tasks: identifying incorrect student responses and identifying incomplete
responses, the latter being the focus of our study. For instance, in the case of
incorrect responses, the system may correct potential misconceptions articulated
by the student, while for incomplete responses, it may offer appropriate hints to
encourage learners to think about the missing components—such as steps in a
problem solution. In this study, we explore using LLMs to identify missing parts
in student self-explanations of code examples.

LLMs have emerged as state-of-the-art systems that can generate coherent
content in response to input prompts [2], including computer code and accompa-
nying explanations, which is relevant to our work here. Indeed, this generative
feature can be very useful for our target task of assessing student responses
because, for instance, in current state-of-the-art ITSs, this task relies on expert-
authored benchmark explanations that are considered correct and complete (un-
less they are well-known misconceptions). The benchmark explanations play a
crucial role in automated methods that rely on semantic similarity approaches to
evaluate the correctness and completeness of student responses [15,3]. In such
approaches, if a student’s answer is semantically equivalent to a corresponding
benchmark response, the student response is deemed as having the same cor-
rectness and completeness value as the expert-generated benchmark response.
It should be noted that semantic similarity has been the dominant approach to
assessing self-explanations.

Using experts to author the benchmark responses is tedious and expensive.
Therefore, such approaches do not scale well across topics and domains. LLMs
have been shown to help significantly with code explanation generation for typi-
cal code examples used in intro-to-programming courses [14, 7, 10]. Furthermore,
there is evidence that LLMs can competitively address the semantic similarity
task between two texts [4,9].

Therefore, we present in this paper the result of our investigation on the role
of LLMs in addressing two major challenges in the automated assessment of stu-
dents’ self-explanation: (i) the generation of benchmark/reference explanations
and (ii) auto-assessment of student-generated free responses during instructional
tasks. For the latter task, auto-assessment, we explore two approaches: (1) a di-
rect approach in which we prompt LLMs to identify gaps in self-explanations
and (2) a semantic similarity approach in which we prompt LLMs to assess the
similarity of a student self-explanation with respect to a benchmark/reference
explanation.

As research questions, this paper addresses the following key questions.

RQ1: Can LLMs detect gaps in code explanations, indicating incomplete explana-
tions?

RQ2: Can LLMs-generated explanations be used with semantic-similarity approaches
to identify gaps in students’ code explanations?

RQ3: Can LLMs accurately determine the semantic similarity of self-explanations
at the sentence level?

Automated Extraction of Domain Models 3

2 Methodology

To meet our research objectives, we developed a comprehensive methodology.
First, we generate code explanations to be used as benchmark explanations.
Second, we used two approaches to identify missing details in student expla-
nations. The two approaches are (1) a holistic approach in which LLMs are
prompted to identify the missing parts given a student explanation and the cor-
responding code example and (2) a point-wise, semantic similarity approach at
sentence level in which student explanations are broken down into units of anal-
ysis (sentences) and then LLMs are prompted to identify which such sentences
match corresponding sentences in the benchmark explanations (a sentence in
the benchmark/reference explanation is called an expectation). The methodol-
ogy involves a selection of relevant models and prompts and the evaluation of
LLMs in identifying missing expectations in student explanations.

Code Explanation Generation Our first step involved generating code ex-
planations using four different models and different prompts to evaluate different
types of code explanations. We aimed to understand the diversity and quality
of explanations produced by these models. We employed four different LLMs
to generate benchmark code explanations: GPT-4-0613 [11], GPT-3.5 Turbo-
0613, Mixtral-8x7b-Instruct-v0.1 [16], and llama-2-70b-chat [17]. These LLMs
have achieved state-of-the-art results in various tasks while differing in train-
ing data and algorithms, although the model size and training data for OpenAl
models are not disclosed. We queried all the models using the unified interface
provided by LiteLLM*, ChatGPT-4 and ChatGPT-3.5 were queried through
OpenAl API, whereas Mixtral and LLama-2 were prompted via the Together
API?. For all these models, we used a temperature parameter value of 0 for con-
sistency and reproducible results. We generated explanations for 10 Java code
examples, sourced from the DeepCode codeset [13], which were diverse in com-
plexity and concept coverage. These examples were previously used in a human
subject experiment where self-explanations were collected from students.

P1: Provide a line-by-line explanation of the given java code {code}

P2: Explain the code to the student in a way that they understand necessary
concepts. Focus on conceptual understanding of the code.{code}

P3: Summarize the given java code {code}.

P4: In this code example, {code}, we will focus on the concept of loops. We
do that with the help of a program whose goal is to find the smallest divisor
of a positive number. Your task is to read the code shown and understand
what it does. Once you are done reading the code, type your explanation
of what the code does. Try to identify the major blocks of code and their
goals and how those goals are implemented. Please go on and do your best

! https://litellm.ai/
% https://docs.together.ai/docs/quickstart

4 Banjade et al.

to explain your understanding of the code and its output in as much detail
as you can.

The prompts (P1,P2, P3,P4) were chosen to understand how LLMs gener-
ate explanations and which explanation to use as a benchmark explanation for
our task of identifying gaps in student explanations. Prompt P4 is identical to
the prompt given to students when prompted to self-explain the code whereas
prompts P1, P2, and P3 were used to generate different types of code explana-
tions based on previous studies [10]. We evaluated the quality of explanations
generated from each prompt to be used in our main task.

2.1 Data

We evaluated our methods using two data settings: student data and simu-
lated data. From 60 students at a large US public university, we collected self-
explanations prompted by P4. Sampling was based on word length to ensure
detailed explanations, yielding 50 diverse explanations annotated with missing
expectations relative to DeepCode codeset benchmarks [13]. For simulated data,
we derived a dataset from LLM-generated explanations by randomly removing
one expectation/sentence per explanation and repeated three times to create
three samples each with one missing expectation. This simulated gaps in student
explanations, with removed expectations serving as ground truth for evaluating
LLMs’ detection of missing components. Initial observations indicated that sen-
tences from the generated explanations aligned with expectations, representing
comprehension of specific code parts/concepts.

2.2 Prompting To Identify Gaps In Explanations of Code

In order to prompt LLMs to identify gaps or missing expectations in student
or simulated explanations of code, we went through a prompt selection process
that involved several hits and trials. We used two different settings to prompt for
identifying missing parts in code explanations: (1) the holistic approach in which
we prompt to identify what is missing given the student explanation and the
corresponding code, and (2) the pointwise, sentence-level semantic similarity-
based approach. For the holistic approach, we designed two different types of
prompts with providing reference or benchmark explanations (see below prompt
P6) and without (P7 - see below). For consistent evaluation between student
data and simulated missing data, we prompted to generate a single sentence for
each prompt.

P6: Given the following code:{code} and the following reference explana-
tion: {reference explanation}, your task is to identify what is missing in the
following student explanation:{student explanation} of the code. Generate
the missing part as a single sentence.

P7: Given the following code:{code}, your task is to identify what is miss-

Automated Extraction of Domain Models 5

ing in the following student explanation:{student explanation} of the code.
Generate the missing part as a single sentence.

As the holistic prompting didn’t yield very promising results, we have intro-
duced a novel approach to guide LLMs in identifying and generating the absent
expectation: the pointwise, sentence-level semantic similarity approach. Rather
than directly requesting the missing expectation, our method evaluates pairwise
resemblances between the explanations produced by LLMs and those produced
by students. When dealing with the simulated data, the pairwise similarity con-
sistently yields completely accurate outcomes, given that we compare the same
pair of sentences except for the missing one. As a result, we only report results
here for the pairwise similarity technique when applied to the student explana-
tions. The LLM-generated explanations function as expert/benchmark explana-
tions. To identify the missing expectation, in this case, we pinpoint the sentence
within the expert explanation (LLMs’ explanation) that exhibits the lowest pair-
wise semantic similarity with any sentence in the simulated student explanation.
This particular sentence is considered to result in missing expectations.

For implementing the pairwise similarity approach, we adopt the subsequent
prompt format:

P8: Provide a semantic similarity score on a scale of 0 to 1, 0 being least
similar and 1 being most similar, for the following two sentences {reference
sentence} and {student sentence}.

We chose a scale of 0 to 1 for similarity prompting as Gatto et al. [5] showed
that prompting for a similarity value between 0 to 1 has a better performance
compared to using a 1-5 scale. This has been confirmed by our experiments as
well.

Evaluation We evaluated code explanation generation using two metrics: Cor-
rectness and Completeness. Correctness assessed the accuracy of explanations,
while Completeness measured coverage of code concepts. For missing expecta-
tion generation, we focused solely on Correctness, which indicates the proportion
of accurate responses in identifying missing parts.

3 Results and Discussion

We compared the completeness and correctness metric of code explanations
generated from four different LLMs using four prompting strategies, as men-
tioned in the methodology section. We obtained 100% correct explanations for
all the prompts from all the models. However, we obtained 88%, 94%, 71%, and
80% completeness scores for prompts P1, P2, P3, and P4, respectively, aver-
aged across all the models(n=40) for each prompt. This evaluation aimed to
understand which prompt generated the most accurate explanations (correct
and complete), which we can use to generate reference/benchmark explanations

6 Banjade et al.

instead of using experts. Prompt(P2) leads to the best explanations. The other
prompts led to explanations that showed specific characteristics that made them
inconsiderable as reference explanations. For instance, prompting for line-by-line
explanations(P1) generates explanations focusing on code’s syntactic elements,
whereas code summarization (P3) prompts miss out on important details neces-
sary for understanding and learning. Prompt P4 generates explanations mostly
on the block level and misses important syntactic knowledge components. In
sum, explanations generated by P2 are balanced regarding functional and syn-
tactic level explanations. Therefore, we obtained reference explanations using
the prompt(P2). Explanations from all the models for P2 were similar in com-
pleteness and correctness, so we randomly sampled explanations from different
models as benchmark explanations. One observation was that LLAMA?2 expla-
nations consisted of conversation-style filler sentences such as,” Sure, here is an
explanation of the given code,” which we removed. For each explanation, we
sampled a reference explanation for the same code such that the two differed.

3.1 Prompting For Missing Expectations

We prompted LLMs in zero-shot settings to identify missing parts (expected
unit answers where the unit is a sentence) in student explanations. As mentioned
earlier in the Methodology section, we evaluated the performance of LLMs on this
task using two prompt settings, (1) with and (2) without the use of reference
explanations, for two sources of explanations, (1) simulated data and (2) student
data.

Table 1 shows our results for prompting for missing expectations under dif-
ferent settings using simulated and student data. As seen in the table, prompting
to identify (and generate) missing expectations with or without reference expla-
nations does not improve performance in terms of correctness. It also shows that
additional context from reference explanation does not provide an additional
boost in both simulated data and student data. Comparing among models, Mix-
tral and GPT-4 provide better performance in terms of correctness. Also, when
the same prompts were given to student data, the performance of LLMs de-
creased, which can be attributed to the diverse nature of student explanations,
which often adopted conversational styles that deviated from conventional gram-
mar and writing standards in English. One of the observations worth noting is
that generated missing expectations were not specific. For example, even though
the goal was to understand the program that solved a specific task, most of the
generated missing expectations were about complexity analysis; this was mostly
prevalent in code examples such as binary search and insertion sort. One of
the major challenges, as we observed, is to guide LLMs to focus on missing de-
tails compared to reference explanations, which would set the scope of learning.
One could probably achieve this with various advanced prompting techniques,
which can be further explored; we resorted to a prevalent approach, i.e., seman-
tic similarity-based assessment of student answers. Towards this direction, As
discussed in the methodology section, we prompted for pairwise similarity be-
tween sentences as shown in table 1 indicated by P8. Our evaluation is based

Automated Extraction of Domain Models 7

on a single missing expectation; our results indicate that we can vastly increase
the correctness of our generated explanations. Our results also indicate that lan-
guage models can perform well for semantic similarity tasks, as indicated by
other works [5].

Table 1. Correctness comparison (n=50) for results obtained by prompting LLMs for
missing expectation generation in simulated and student data.

Simulated Data Student Data
Model Pé6 P7 Pé6 P7 P8

GPT-3.5 4% 44% 37% 48% 82%
GPT-4 7% 66% 0% 41% 91%
LLAMA2 66% 60% 3% 42% 84%
MIXTRAL 77% 7% 52% 38% 90%

4 Conclusion and Future Work

In summary, we studied if we can identify missing gaps in student explanations
using four state-of-the-art LLMs. Our experiments under different settings us-
ing explanations generated from LLMs as reference explanations showed that
prompting for similarity can yield better results for finding missing expectations
than zero-shot prompting of LLMs. This indicates that LLMs can determine se-
mantic similarity in sentence level for student explanation in code comprehension
tasks. One of the limitations of our work is maintaining temporal validity due to
LLMs’ evolving landscape. LLMs offer new research opportunities in generating
programming exercises, unit tests, code explanations, and providing automated
feedback on student code submissions, but effectively guiding novice program-
mers remains a challenge. Our efforts to utilize LLMs for scaffolding students’
code understanding represent progress in this direction. We plan to explore var-
ious prompting techniques and leverage open-source models like LLAMA2 to
enhance transparency and scalability in education.

ACKNOWLEDGMENTS

This work has been supported by the following grants awarded to Dr. Vasile
Rus: the Learner Data Institute (NSF award 1934745); CSEdPad (NSF award
1822816); iCODE (IES award R305A220385). The opinions, findings, and results
are solely those of the authors and do not reflect those of NSF or IES.

Acknowledgements

This work has been supported by the following awards: NSF #1934745, #1918751,
#1822816, and TES award R305A220385. The opinions, findings, and results are
solely those of the authors and do not reflect those of NSF or IES.

Banjade et al.

References

10.

11.

12.

13.

14.

15.

Aleven, V.A., Koedinger, K.R.: An effective metacognitive strategy: learning by
doing and explaining with a computer-based cognitive tutor. Cognitive Science
2(26), 147-179 (2002)

.y Arcas, B.A.: Do large language models understand us? Daedalus 151(2), 183-197

(2022)

Bexte, M., Horbach, A., Zesch, T.: Similarity-based content scoring - a more
classroom-suitable alternative to instance-based scoring? In: Rogers, A., Boyd-
Graber, J., Okazaki, N. (eds.) Findings of the Association for Computational Lin-
guistics: ACL 2023. pp. 1892-1903. Association for Computational Linguistics,
Toronto, Canada (Jul 2023). https://doi.org/10.18653/v1/2023.findings-acl.119,
https://aclanthology.org/2023.findings-acl.119

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. Advances in neural information processing systems 33, 1877-1901 (2020)
Gatto, J., Sharif, O., Seegmiller, P., Bohlman, P., Preum, S.M.: Text encoders
lack knowledge: Leveraging generative llms for domain-specific semantic textual
similarity. arXiv preprint arXiv:2309.06541 (2023)

Graesser, A.C., McNamara, D.S., VanLehn, K.: Scaffolding deep comprehension
strategies through point&query, autotutor, and istart. Educational psychologist
40(4), 225-234 (2005)

MacNeil, S., Tran, A., Mogil, D., Bernstein, S., Ross, E., Huang, Z.: Generating
diverse code explanations using the gpt-3 large language model. In: Proceedings
of the 2022 ACM Conference on International Computing Education Research-
Volume 2. pp. 37-39 (2022)

McNamara, D.S., Magliano, J.P.: Self-explanation and metacognition: The dynam-
ics of reading. In: Handbook of metacognition in education, pp. 60-81. Routledge
(2009)

Oli, P., Banjade, R., Chapagain, J., Rus, V.: Automated assessment of students’
code comprehension using llms. arXiv preprint arXiv:2401.05399 (2023)

Oli, P., Banjade, R., Chapagain, J., Rus, V.: The behavior of large language models
when prompted to generate code explanations. In: Proceedings of the workshop on
Generative Al for Education (GAIED) at the Thirty-seventh Conference on Neural
Information Processing Systems (NeurIPS 2023). arXiv (2023)

OpenAl R.: Gpt-4 technical report. arxiv 2303.08774. View in Article 2, 13 (2023)
Renkl, A.: Learning mathematics from worked-out examples: Analyzing and foster-
ing self-explanations. European Journal of Psychology of Education 14(4), 477-488
(1999)

Rus, V., Brusilovsky, P., Tamang, L.J., Akhuseyinoglu, K., Fleming, S.: Deepcode:
An annotated set of instructional code examples to foster deep code comprehension
and learning. In: International Conference on Intelligent Tutoring Systems. pp. 36—
50. Springer (2022)

Sarsa, S., Denny, P., Hellas, A., Leinonen, J.: Automatic generation of program-
ming exercises and code explanations using large language models. In: Proceedings
of the 2022 ACM Conference on International Computing Education Research-
Volume 1. pp. 27-43 (2022)

Sung, C., Dhamecha, T., Saha, S., Ma, T., Reddy, V., Arora, R.: Pre-training
bert on domain resources for short answer grading. In: Proceedings of the 2019

16.
17.

Automated Extraction of Domain Models 9

Conference on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
pp. 6071-6075 (2019)

team, M.A.: Mixtral of experts (2022), https://mistral.ai/news/mixtral-of-experts/
Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bash-
lykov, N., Batra, S., Bhargava, P., Bhosale, S., et al.: Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023)

