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Abstract. Common knowledge (CK) is a phenomenon where a group of indi-
viduals each knows some collection of information, and, in essence, everyone
knows that everyone knows the information. There are many applications involv-
ing CK, including business decision making, protests and rebellions, and online
advertising. CK can lead to contagion and collective action but in ways that are
fundamentally different from classic (e.g., Granovetter) threshold models used in
the social sciences. Researchers developed CK models to enable the computation
of contagion in networked populations. But these models have largely not been
investigated using experiments with human subjects. In this work, we conduct
a successive analysis of online CK experiments. We devise a flexible and inter-
pretable statistical method to investigate the effects of significant factors, such as
network structure and communication type. Among our findings, we demonstrate
a phase change in group payout in the games that is caused by prohibiting player
communication.
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1 INTRODUCTION

1.1 Background and Motivation

Social contagions are information, actions, emotions, etc., that are transmitted among
people in a population [3]. Contagion is often studied (e.g., [3,7]) by representing a
population as a network G(V, E), where V is the set of individuals v; € V (with n = |V|)
and E is the undirected edge set of pair-wise interactions among v;, i € {1,2,...,n},
e.g., {vi,vj} € E. Two models are presented here; each uses a different mechanism to
propagate contagion.

Under the Granovetter model [7], early adopters initiate some action. Then, a
neighboring node v; contracts a contagion when the number (or fraction) of v;’s distance-
1 neighbors in G that have previously acted is at least a threshold 6; [7, 15]. When



a node contracts a contagion, it is participating. This is a sequential or incremental
process. Another important characteristic is that an individual unilaterally makes her
decision to act.

Common knowledge is a more recently studied mechanism for collective action. It
may induce significantly different contagion dynamics compared to those of the Gra-
novetter model [5]. CK considers a set of information I such that each member v; of
a group M C V knows I, each v; knows that every other member v; (i # j) knows I,
each v; knows that every other member v; (i # j) knows that v; knows I, and so on, ad
infinitum [1,4,5,11-13].

Under CK, which can be represented as a coordination game [5, 11], individuals
of M may cooperatively and simultaneously participate, even when no members have
yet acquired the contagion. This is because CK enables individuals to anticipate what
others will do. To acquire a contagion, individuals in M must (a) generate CK of I
at time ¢, (b) generate CK for reasoning about the action each person will take in the
future, i.e., at time (¢ + Ar), and (c¢) act simultaneously at (z + Ar).

Figure 1 provides an example of CK, based on the Chwe model [5], in a network
structure (NS) that is a star graph, i.e., NS=star. Node (i.e., player) thresholds are given,
and taking 0 = 3 to be a large threshold, the number of high thresholds (NTH) is 2.
Assume each node only has local network knowledge (NK), i.e., NK=local: a node
only knows about the existence of itself and its distance-1 neighbors in G. (NK=global,
means that each node knows the entire network structure.) Furthermore in this example,
communication type, CT, is specified as CT=none, i.e., nodes do not communicate their
intentions to participate or not. (In experiments where CT is bilateral communication,
each pair of nodes forming an edge can send messages to each other. A node selects
one of two messages: “I will participate.” or “I will NOT participate.”) Each leaf node
knows only about the hub node v{, and so there are four distinct CK sets, each of size
two, containing one leaf node and v;; see middle graphic, Figure 1. The information /;
that each node v; contributes to I of one CK set is I; = (v;, 6;,s;), where s; is the state
of v;, with s; = 0 meaning that the node is not participating and s; = 1 meaning that
the node is participating. In contrast, nodes v, and v3 cannot share CK because they do
not share an edge and thus do not know each other’s threshold and state. In fact, for
NK-=local, v, and v3 do not even know that the other exists.
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Fig. 1: Effect of CK in a game using a star graph. All nodes are in non-participating
state O (red) at time ¢, with the given threshold assignments. There are four CK sets of
size two according to the Chwe model [5]: the hub node with each of the leaf nodes.
Nodes vy, v4, and v transition to state 1 (green), i.e., participate. See text for details.



Consider the CK set M = {v|,v4}. Each of these nodes’ thresholds’ is 6 = 1, so
each needs one other node besides itself to participate in order for it to participate. And
it has this “other node” in the node with which it forms the edge. Here, [ =1, U4 =
(v1,01,51) U (v4,04,s4). Now, v4 knows (i) I and (ii) that v4 and v; can participate; v
knows that v; knows (i) and (ii); v4 knows that v; knows that v4 knows (i) and (ii);
etc. The same is true for v; with respect to v4, and therefore the two nodes share CK of
information and decisions and consequently, simultaneously participate. By symmetry,
the CK set M = {v,vs} behaves in the same way as set {v1,v4}: both nodes participate.
If even one node of the two in these two CK sets has 6 = 2 instead of 6 = 1, then the
nodes in that particular M would not participate because |M| < 3; the low threshold of 1
is critical in this example for generating CK.

Figure 2 is a schematic of the online game screen (in a web browser) displayed for
player v of Figure 1. (Owing to space limitations, we omit game introductions given to
each player, including instructions and example game plays.) The player is labeled with
v1 and her threshold is shown. v;’s local network (i.e., distance-1 neighborhood) is pro-
vided with neighbor IDs and their thresholds. (All nodes are initially non-participating.)
If an experiment incorporates messaging, v can select a neighbor, select a message, and
send it. A message can be sent to each neighbor, at v;’s discretion. At this time, vy, if
she chooses, engages in reasoning similar to that provided in describing Figure 1, as it
pertains to the sets M in which she is a member. When v is done messaging and rea-
soning, she clicks the gray button and then chooses whether to participate or not. This
is one game for a single node, and is a one-shot game; a human subject plays 15 games
in one seating.
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Fig.2: Stylized illustration of the online game. View of player v;’s computer screen,
which is consistent with Figure 1.

At issue is how players act under different conditions—NS, NK, CT, and NTH—in
the games and although there are many different aspects, this is the overarching issue of
the study. In this work, we consider three NS: star, circle, and clique. We study predomi-
nantly team or group payoffs, that is, the sum of the earnings of five players in a scenario
(this is defined more concretely in Section 3). In each scenario, a player earns 100 units
if she chooses to participate and her threshold is met by other participating players;
a player receives 0 units if she chooses to participate but her threshold is not met; a
player receives 50 units if she does not participate, regardless of other considerations.



If players v, and v3 of Figure 1 choose to “not participate” and the other players choose
“participate,” then the group payoff for this game is 400 units (= 3(100) + 2(50)).

Finally, we note that CT and messages are not part of v;’s information I; = (v;, 6;,s;)
that contributes to I. That is, message communication is not required for players to
recognize and exploit CK.

1.2 Contributions

There are several contributions on both methodology and application in analyzing CK
experiments. Our first contribution, called conditional treatment effect (CTE), enables
successively quantifying the effects of factors on response variables when conditioned
on other factors. It introduces a more flexible and interpretable statistic that allows the
specification of a linear combination of levels for a factor of interest. Estimates of CTE
and the corresponding hypothesis testing are established. Our second contribution is
the application of these methods to CK human subjects experimental data of the kind
given in the example in Section 1.1. The analyses demonstrate that main effects CT,
NS, and NTH are all significant for group payout. Subsequent analyses reveal that the
effect of NS on group payout varies by NTH and CT. Moreover, our analyses reveal a
phase change in group payout as a function of NTH that only occurs for NS=clique and
CT=none. Explanation of this phase change is provided in terms of user choices in the
games.

2 RELATED WORK

Conceptual and theoretical works on CK are [1, 2, 11, 12]. There are few formal net-
work models of CK. A model where CK is formed in clique substructures, where all
members are in direct communication with each other, is described in [5]. That model
is the inspiration for the experiments reported on here. A game-theoretic CK model for
Facebook, where an individual’s timeline or wall provides a mechanism for establishing
CK, is provided in [11].

In another study [10] using similar game data to those in this work, it was found that
participation rates increased with NK=global, compared to NK=local. Also, CT=bilateral
resulted in player participation choices that were more in agreement with the CK model,
compared to the CT=none case. Participants in games with NK=local and CT=none
chose participation at a high rate. Our analyses have a different focus and neither set of
results (ours or those in [10]) can be derived or inferred from the other.

There are many contexts in which CK operates, including driving behaviors, so-
cial gatherings, and advertising on television, e.g., [4, 6]. Group decision-making in
business is also studied in the context of CK [9]. Several stylized social situations are
summarized in [6], where peoples’ actions are strongly affected by whether or not CK
is present among those involved. They also evaluated various scenarios with private,
shared, and common knowledge [14].

There are two major statistical areas related to the conditional treatment effects
used in this work. In the area of experimental design, the conditional main effect is
introduced in [16]. In the area of causal inference, the average treatment effect (ATE) is



widely used for assessing the impact of treatment factors [8]. Inspired by these concepts,
we devise the conditional treatment effect (CTE) as a more flexible and interpretable
measure of the effects and patterns of factors conditioning on other factors.

3 EXPERIMENTS

The experiments are designed to test the effects of the four factors in Table 1 on earnings
of human subjects; see the example in Section 1 for a review of these factors. The only
factor not detailed above is NS. The three types of NS used in the games are provided
in Figure 3.

Table 1: Factors of interest and their levels with notations.

Factor | Factor Notation Levels Level Notation
NK x(1) global, local 1V
NS x@ circle, clique, star 152),l£2),l§2)
CT xG) none, bilateral 153) , l§3)
NTH x@ 0,2,3,4,5 [1959 119 9 9

The actual games are played with one difference from the game description in the
example. That is, to control a human subject’s environment and to make data analysis
less complicated, only one of the nodes in a game network is a human. The other players
are bots (the human was not told this) and the bots’ actions are dictated by the Chwe
model [5], which is demonstrated in the example. Since each of the three NS has five
nodes, for each set of game conditions, the game is played five times, where a human
occupies each of the five positions in a network (not the same human). The group
payoff is the sum of the five human payoffs across the five games, under the same game
conditions. In total, 270 human subjects participated in 4050 games.

The experiment is designed under a nested structure, and it may be decomposed into
three layers, namely session, participants group, and individual participants, which are
experiment units for CT and NK, NS, and NTH, respectively.

Layer 1: Session The data contain 18 sessions, where each session is assigned to a
combination of levels of CT x NK. Since there are two levels for each of NK and
CT, this results in four combinations in total. The combinations of (bilateral, global)
and (none, global) are replicated five times and (bilateral, local) and (none, local) are
replicated four times.

Layer 2: Participant groups Within each session, participants are arranged in groups
of five to play 15 total rounds of games: each human plays five rounds in each of the
three networks of Figure 3.

Layer 3: Individual participants The five rounds, for each NS in Layer 2 and each
group of five human players, are used for different threshold assignments to players.
These are given in Table 2. NTH is the number of 6 = 3 players.

There are 4050 observations of players’ responses (to participate or not). With five

responses per group payoff, there are 810 group payout values across the factors in
Table 1.
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Fig. 3: Tllustration of three types of NS. From left to right, the NS type is clique, star,
and circle, respectively.

Table 2: Design for Layer 3 to study threshold. H represents a high threshold (6 = 3)
for a player and L represents a low threshold (6 = 1). The player numbers are mapped
to Figure 3 and so in each game instance, four of these players are bots.

Round | Player 1 Player 2 Player 3 Player 4 Player 5
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4 ANALYSIS AND RESULTS

4.1 Analysis Method

Conventional ANOVA analysis is generally insufficient to ascertain effects masked by
confounding factors for the unbalanced and nested design structure described in Sec-
tion 3, especially if we want to quantify the patterns under distinct factor levels. There-
fore, we propose a successive analytical approach that begins with an examination of the
main effects and sequentially focuses in on conditional interaction effects to thoroughly
analyze such complex designs.

We define conditional treatment effect (CTE) to quantify the conditional effect of
factors as:

CTE(X Z O4E[y =1, e))

where X is a factor in Table 1; n; is the number of levels for factor X(i); ay, is the
k™ linear combination coefficient of @ = (@1, &, ..., 0;,); and y(-) is the response (i.e.,
group payoff here) over all X() = l,E’), with k € {1,2,...,n;}.

CTE in Equation (1) can be extended by conditioning on other factors. Without loss
of generality, we define:

CTE(X", a|xV) = Z O4E|y =1 x0 =7, )

which considers group payoff over all X @ conditioning on X U =1 }(lj ). The notation in
Equation (2) can be generalized by conditioning on multiple factors (e.g., CTE (X @),



olX W) = l}(/ ) X0 = l§m>) is well defined). Depending on specific relations of interest,
the values of ; may be customized for hypothesis tests. The procedures of the proposed
successive analysis method can be described as follows.

Step 1. Test the main effect of the factors. For example, to test whether two levels
of the factor X(1 (i.e., NK) have significant differences in the response, the hypothesis
can be considered:

Ho: CTE(XW,aV) = cTEXD,a®@), 3)

where a(!) = (1,0) and a(® = (0, 1).
Step 2. Test the conditional effects. Perform pairwise tests when conditioning on
other factors by the following hypothesis,

Hy: CTE(X", alx) =1) = cTE(X", a|x) = 1{/)), (4)

where [ fj ) and lgj ) can be any distinct levels of X (),

Step 3. Based on findings from Step 2, one can further zoom in to study effects
of target factor X¥) conditioning on multiple factors (i.e., Hy : CTE(X"), et|X\) =
19 xm — "y — cTE(X D, 0t x D) = 1§ x(m) = 1{")y).

To establish the test statistics, denote the estimates for CTE (X)), et(!)) and
CTE(X" a|x\) = lgj)) in Equations (3) and (4) as CTE,: and CTE(X(",a®) and
CTEX"D, @|x) = 1\))) as CTEg (i.e., the left-hand-side and right-hand-side of the
equations). The test statistic can be written:

t = (CTEL — CTER)/(sp\/1/m + 1/my), )

where s, is the pooled standard deviation [16]. Here n; and n; represent the number of

observations in C/TE and C/TE\R. Under the normal assumption of response y, the test
in (5) can be conducted using two-sample t-tests.

The proposed procedure is not limited to test factors with two levels or pairwise
tests. Hypotheses involving multiple levels of factors, which test whether there is a
statistically significant difference among three or more groups of observations, are also
well-defined. The following hypotheses can be constructed.

Hy:CTE(XY aV)=...=CcTE(XY), a™)), (6)
Ho: CTE(XY,a|xV) = 1Y) = ... = cTE(X",a|x') = 17)), %)
where al/) = 0,...,1,...,0) =¢;j (ie., al) represents a vector with j' element equal

to 1, and O otherwise). The & in Equation (7) is a user-defined vector depending on the
interest of testing. Correspondingly, the hypotheses tests in Equations (6) and (7) can
be conducted using F-test statistics [16].

4.2 Results

Figure 4 displays the plots of the main effects for CT, NK, NS and NTH. Only the factor
of NK has a relatively flat line as a main effect. For the factors that are significant, there



is a greater group payoff for bilateral communication compared to no communication.
Also, groups with clique structures have greater payoffs compared to those with circle
or star structures. Finally, groups with greater NTH are expected to have lower payoff
(because greater thresholds present greater barriers to participating), but there is an in-
flection point at NTH= 4. To perform hypothesis tests regarding main effects, we adopt
the F-test specified in Equation (6). The F-values and associated p-values support these
observations. However, the visualizations and tests of the main effects may obfuscate
interactions among input variables; this is explored next.
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Fig. 4: Main effects on group payoff. F-values and p-values are given in each plot for
the specified factor (variable).

Figure 5a decomposes the effect of NS, showing that payouts are different for dif-
ferent NTH levels. There is a phase change induced by NTH for the clique NS, because
the payout decreases as NTH goes from O to 4, but increases for NTH of 5. (The effect
of NTH is monotonic for the other two NS.) Figure 5b and Figure 5c further decom-
pose these differences for each NS to show the effect of CT. Figure 5b and Figure 5c
illustrate that the phase change is caused by a lack of communication (i.e., CT=none).
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Fig. 5: Figure 5a shows the two-way interaction of NS x NTH. Figure 5b and Figure 5c
show the two-way interaction of NS x NTH for group payoff conditional on CT values.

Since the phase change is primarily observed when NS=clique, we conduct hy-
pothesis tests of the form in Equation (4) to validate our observation in Figure Sa.
Specifically, we first perform sequential pairwise two-sample tests: Hy : CTE (X @ a=
(0,1,0)x = 1) = CTE(X®), & = (0,1,0)|X® = 1Y) for different pairs of (i, /)
levels of NTH, with j =i+ 1 (here the first, second, and third elements in @ corre-



spond to NS=circle, clique, and star, respectively). Then, similar tests are performed
by sub-setting (i.e., conditioning) on CT levels to validate our observation in Figure 5b
and Figure 5c. The resulting test statistics are shown in Table 3, where the test statistic
turns negative when NTH changes from 4 to 5 as shown in Figure 5a and Figure 5b.
The pairwise tests when CT=bilateral reveal insignificant results, so the phase change
pattern observed from Figure 5a for clique is indeed caused by the CT condition of no
communication.

Table 3: Pairwise tests for Figure 5a, Figure 5b, and Figure 5¢ for NS=clique, confirm-
ing that the phase change in group payout is caused by CT=none.

CT combined CT = none CT = bilateral
t-val | p-val t-val | p-val t-val | p-val

0Ovs?2 3.78 | 0.0004 ||| 3.32 | 0.0021 2.13 | 0.0431
2vs3 2.99 | 0.0040 ||| 3.63 | 0.0011 ||| -0.23 | 0.8221
3vs4 2.70 | 0.0083 ||| 3.46 | 0.0011 0.61 | 0.5474
4vs5 -2.39 | 0.0187 ||| -3.25 | 0.0021 0.10 | 0.9219
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Fig. 6: Decomposition of group payoff to player level.

Figure 6 shows a further decomposition of the group payoffs at each level for com-
binations of factors NS, NTH, and CT, i.e., how many players choose to participate and
make the correct (green bars) and wrong (red bars) decisions, and how many choose
not to participate (blue bars). We observe that when there is no communication (or even
lack of communication due to network structure), players choose to not participate in
significant numbers when NTH exceeds 2. We previously observed in Figure 5b that
NTH = 4 and NTH = 3 may have lesser payoff than NTH = 5 for NS=clique. This is
explained by Figure 6 in that comparing NTH = 4 and 5 (i.e., CT=none, NS=clique,
and NTH = 4 and 5), more players choose to not participate when NTH = 4 and also



more players make the wrong decision when they choose to participate. However, the
decomposition for NTH = 3 and NTH =5 are very similar, which is why the results for
NTH = 3 and 5 are essentially the same for NS=clique in Figures 5a and 5b (and also,
in Figure 5c).

S SUMMARY AND FUTURE WORK

In this work, we analyze human subjects common knowledge experiments using a new
conditional treatment effect approach. We demonstrate a phase change in group payout
under certain conditions. Our contributions are provided in Section 1.2. With respect
to future work, we will provide further analyses of the type shown in Figure 6 for
explaining the phase change. There is a number of interesting phenomena analogous to
those in Figure 5a, to be elaborated upon as was done in Figures 5b and Sc.
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