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Abstract—Serial production lines with conveyor buffers are
commonly seen in production practice, where the work-in-
process parts are initially positioned on the conveyor belt and
then transported to the downstream machine to be processed.
The time taken for this transfer, referred to as transportation
time, is a significant factor in the overall efficiency of the
production line and cannot be overlooked. In this paper, an
analytical approach is developed, providing exact solutions to
transient and steady-state performance metrics evaluation in
two-machine Bernoulli lines with conveyor buffers. Numerical
experiments demonstrate the precision and efficiency of the
proposed approach. A sensitivity test highlights the significant
impact of conveyor speeds on productivity optimization.

I. INTRODUCTION

Performance evaluation of production lines stands as a
critical area of study in the domain of production sys-
tems engineering and operations research and has attracted
significant attention from researchers (see [1]–[4]). Among
various mathematical models for production line analysis,
Bernoulli serial lines represent a significant archetype due
to their convenient application in the manufacturing process
such as automotive assembly and electronics manufacturing
discussed in [5]. As the simplest layout for a mass production
system, the serial production line serves as the fundamental
building block for both practical implementation and the-
oretical analysis of complex production systems. A serial
production line is a highly structured manufacturing process
in which work-in-process items are produced sequentially,
moving from one machine (or workstation) to the next in a
fixed, linear order. An intermediate buffer is typically present
between two consecutive machines, serving as a temporary
storage area to accommodate work-in-process jobs. These
buffers play a crucial role in maintaining the smooth op-
eration of the production line by mitigating the effects of
variability in processing times and machine downtimes (see
[6], [7]). For the sake of simplicity, most research models
an intermediate buffer as a static storage area with a fixed
capacity. This capacity is defined as the maximum number of
parts that the buffer can accommodate at any given time. The
buffer inventory level, which represents the current number
of parts within the buffer, is used to denote the buffer state.
Performance evaluation for such systems in both transient
and steady-state have been extensively studied [8]–[11].
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In addition, the latest research explores several advanced
topics including identifying real-time bottleneck operations
to achieve productivity optimization [12], developing control
policies to minimize energy consumption [13], [14], inves-
tigating optimal buffer storage strategies such as echelon
buffer policy [15], leveraging machine learning techniques
to perform preventive maintenance [16], etc.

Despite this exciting progress, the studies mentioned above
predominantly focused on Bernoulli lines with static buffers
(i.e., with no transportation time in the buffer between
consecutive operations), while those with conveyor buffers
receive limited attention in the literature. One of the dis-
tinctive features of conveyor buffers, as opposed to static
buffers, is the introduction of non-negligible delivery time for
work-in-process parts. This distinction becomes increasingly
relevant with the rise in manufacturing complexity, where
static buffer models fall short in capturing the dynamics of
real-world production systems, as conveyor buffer systems
more accurately reflect the continuous movement of work-
in-process items through production lines. However, the
dynamic nature of conveyors requires a more sophisticated
approach to modeling and analysis by considering factors
such as conveyor speed, buffer capacity, and the position
of each work-in-process part. Two studies presented in [5]
and [17] describe an approximation method that converts
a conveyor buffer into a static buffer with a calculated
capacity based on conveyor length and travel speed. This
approximation technique allows for a simplified steady-state
analysis with fair accuracy in most cases. However, it tends
to yield large approximation errors particularly when the two
consecutive machines are unbalanced or the transportation
time is large (see Section IV for more details). Also, the
approximation error may accumulate and propagate when
extending to longer production lines.

To the best of our knowledge, no exact analytical model is
available to accurately model conveyor buffers and then carry
out performance metrics calculation in production systems
with conveyor buffers. Addressing the complexities associ-
ated with transportation times and conveyor dynamics will
provide a more comprehensive understanding of production
systems and enhance the applicability of research findings
to real-world manufacturing scenarios. Thus, this study is
devoted to achieving this for the case of Bernoulli serial lines
with two machines and one conveyor buffer. Extension to
longer lines will be carried out in future work. In addition, it
is important to distinguish between the conveyor loop system



with loading and unloading stations in Flexible Manufactur-
ing Systems (FMS), as introduced in [18], and the conveyor
buffer concept discussed in this study. In an FMS, multiple
loading and unloading stations are connected as a closed loop
through a conveyor belt. Each loading station independently
inputs jobs under a certain rate onto the conveyor loop,
where jobs travel until reaching the next available unloading
station and exit the loop, thereby, the loading and unloading
stations operate without a predetermined sequence. In this
paper, the conveyor buffer serves as the immediate storage
area between two predetermined consecutive machines in a
serial production line.

The remainder of this paper is structured as follows:
Section II describes the model assumptions and performance
metrics of interest. Section III derives the mathematical
model and formulas for transient and steady-state perfor-
mance evaluation. Section IV presents the experiment setup
and the results of our analysis. Finally, Section V concludes
the paper with a summary of our findings and suggestions
for future research directions.

II. SYSTEM MODEL ASSUMPTIONS AND PERFORMANCE
METRICS

A. Model assumptions

The system considered in this paper, as illustrated in Fig.
1, is defined by the following assumptions:
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Fig. 1. System diagram

(i) The system consists of two machines, m1 and m2,
connected by a conveyor buffer b.

(ii) The cycle times of the machines are identical and equal
to ω seconds.

(iii) The time axis is discrete with each time slot having a
duration equal to ω seconds.

(iv) The machines follow the Bernoulli reliability model,
i.e., during each time slot, machine mi is up with
probability pi and down with probability 1→pi, i = 1, 2.
Parameter pi is referred to as the efficiency of machine
mi. The status of the machines (up or down) is deter-
mined at the beginning of each time slot.

(v) Each part occupies a linear space of s ft when it is on
the conveyor (including the dimension of the part itself
and necessary spacing before and after the part).

(vi) The conveyor has a total length of L ft which is
a multiple of s. In other words, the conveyor can
accommodate a total of K = L/s parts at maximum.
K is also referred to as the capacity of the conveyor in
subsequent discussions.

(vii) The conveyor does not experience breakdowns and
moves continuously at a constant speed of V ft/second.
Taking the part space s and the cycle time ω into

account, we further define the normalized travel speed

of the conveyor as v = V ω
s part-space per cycle time.

(viii) When a part reaches the end of the conveyor, it remains
there until being picked up by m2, while other parts
continue moving towards the end, maintaining the space
requirement s for each part.

(ix) If machine m2 is up during a time slot and a part is
present at the end of the conveyor, the machine picks up
the part, processes it during the time slot, and releases it
from the production system at the end of this time slot.
Otherwise, no production activity on m2 takes place
during this time slot.

(x) If machine m1 is up during a time slot and a space of
at least s ft is available at the input of the conveyor,
then the machine picks up one raw part, processes it
during the time slot, and places it on to the conveyor
at the end of the time slot. Otherwise, no production
activity on m1 takes place during this time slot.

Remark 1: Without loss of generality, assume that the
moving velocity of the conveyor is at least s

ω ft/sec. In
other words, if not full, the conveyor can create a space to
accommodate at least one new part in one cycle time and,
thus, does not slow down production.

Remark 2: It follows from assumptions (vi) and (vii),
it takes at least (K→1)s

V seconds for a part released by m1

to reach the other end of the conveyor. However, since the
machines start operation at discrete time instants with interval
ω seconds, it would take at least T = ↑K→1

v ↓ time slots (cycle
times) for a part to reach m2.

B. Performance metrics

Under the assumptions defined in Subsection II-A, the
performance metrics of the production system in transient
and steady states can be defined as follows:

Production Rate, PR(t) = the expected number of fin-
ished parts produced by m2 during the time slot t;

Work-In-Process, WIP (t) = the expected number of parts
on the conveyor buffer b by the beginning of time slot t;

Machine Starvation, ST (t) = the probability that m2 is
starved by buffer b at the beginning of time slot t;

Machine Blockage, BL(t) = the probability that m1 is
blocked by buffer b at the beginning of time slot t;

The steady-state performance measures represent the long-
term behavior of production lines and, thus, the transient
performance measures will converge to steady-state measures
when t ↔ ↗.

PRss = PR(t),WIPss = WIP (t),

STss = ST (t), BLss = BL(t), t ↔ ↗ (1)

In this paper, we will develop analytical methods to
calculate the system state evolution and the transient and
steady-state performance metrics.

III. MATHEMATICAL MODEL

Under assumptions discussed in Section II-A, a Bernoulli
serial line with a conveyor buffer is characterized by an
ergodic Markov chain with the states defined by both the



number of parts in the buffer and the position of each
part on the conveyor. In this section, we formulate the
mathematical representation of the system states, derive an
algorithm to identify all feasible states, develop a procedure
to calculate state transition probabilities and provide formulas
for performance metrics calculation.

A. System state representation

For the system considered in the paper, let h denote the
number of parts in the buffer (i.e., on the conveyor) at the
beginning of a time slot. Apparently, h ↘ {0, 1, 2, ..,K}. For
all h parts on the conveyor, assign index i, i ↘ {0, 1, . . . , h}
to each one from the input end of the conveyor to the output
end of the conveyor. Then, let ni denote the position of part i
on the conveyor, measured from the input end of the conveyor
to the farthest side of the part in the unit of part-space (see
Fig. 2 for illustration).

Fig. 2. Illustration of system state

Under this formulation, a part that is just finished by
m1 and placed on the conveyor shall have index i = 1
and position n1 = 1; similarly, the part at the output end
of the conveyor waiting to be processed by m2 shall have
index h and position nh = K. Clearly, ni is a real number
within the range [1,K] for all i ↘ {1, 2, . . . , h}. Based on
this formulation, we define the state of a system defined by
assumptions (i)-(x) as a 1-by-K row vector s with the first
h element being n1, n2, . . . , nh, and the rest are 0’s; for the
case of h = 0, i.e., when the conveyor is empty, all elements
of the vector is 0; for the case of h = K, i.e., when the
conveyor is full, the parts are position one next to the other
and the corresponding state vector is s = [1, 2, . . . K]. This
leads to

s =






[0, 0, . . . , 0] for h = 0
[n1, n2, . . . nh, 0, . . . , 0], for h → {1, . . . ,K ↑ 1}
[1, 2, . . . ,K] for h = K

(2)

It should be noted when the conveyor is neither empty nor
full, i.e., when h ↘ {1, . . . ,K → 1}, different positioning of
the parts on the conveyor may be possible, thus leading to
different state vectors corresponding to the same h. Moreover,
as parts travel downstream on the conveyor, accumulation
may occur at the output end when m2 is down. As a result,
the accumulated parts at the end of the conveyor may be still
or move at a speed slower than v. Based on the above formu-
lation and taking into account the accumulation phenomenon,
the part positions ni’s must satisfy the following constraints:

min{ni → ni→1} = 1, i = 2, . . . , h, (3)
ni ↘ {x|x = 1 + vt, t = 0, 1, . . . , T} ≃ {K → (h→ i)},

i = 1, 2, . . . , h. (4)

We refer to the state vector s that satisfies the above
constraints as feasible system states as only those can appear
in the system considered in this paper. Let Sh denote the set
of all feasible system states under buffer occupancy h and
let Nh denote the number of state vectors in S

h. Clearly,
S

0 = [0, 0, ..., 0] and S
K = [1, 2, . . . ,K] when h = 0 and

K, respectively, and N0 = NK = 1. An example of all
feasible system states is shown in Table I for a system with
v = 1.2 part-space per cycle time and K = 5 to illustrate
the possible states of such a system.

TABLE I
EXAMPLE OF SYSTEM STATES IN A TWO-MACHINE BERNOULLI LINE

WITH A CONVEYOR BUFFER

h Sh

0 [0, 0, 0, 0, 0]

1
[1, 0, 0, 0, 0] [2.2, 0, 0, 0, 0] [3.4, 0, 0, 0, 0]
[4.6, 0, 0, 0, 0] [5, 0, 0, 0, 0]

2

[1, 2.2, 0, 0, 0] [1, 3.4, 0, 0, 0] [1, 4.6, 0, 0, 0]
[1, 5, 0, 0, 0] [2.2, 3.4, 0, 0, 0] [2.2, 4.6, 0, 0, 0]
[2.2, 5, 0, 0, 0] [3.4, 4.6, 0, 0, 0] [3.4, 5, 0, 0, 0]
[4, 5, 0, 0, 0]

3

[1, 2.2, 3.4, 0, 0] [1, 2.2, 4.6, 0, 0] [1, 2.2, 5, 0, 0]
[1, 3.4, 4.6, 0, 0] [1, 3.4, 5, 0, 0] [1, 4, 5, 0, 0]
[2.2, 3.4, 4.6, 0, 0] [2.2, 3.4, 5, 0, 0] [2.2, 4, 5, 0, 0]

[3, 4, 5, 0, 0]

4
[1, 2.2, 3.4, 4.6, 0] [1, 2.2, 3.4, 5, 0] [1, 2.2, 4, 5, 0]

[1, 3, 4, 5, 0] [2, 3, 4, 5, 0]
5 [1, 2, 3, 4, 5]

To identify all feasible system states for any given v and
K, an algorithm is developed based on definition (2) and
constraints (3) and (4). The pseudo-code of the algorithm is
presented in Algorithm 1. The algorithm first generates all
feasible state vectors with h = 1, i.e., the possible positions
of the part when there is only one part on the conveyor, and
stores them into S

1. Then, for each state vector obtained,
the algorithm proceeds to explore all possible ways to insert
an additional part between the current part, specified in the
state vector with h = 1, and the output end of the conveyor.
This will generate all feasible states with h = 2. Next, this
process is repeated to generate the feasible states for h =
3, 4, . . . ,K→1, iteratively. Lastly, the state vectors for h = 0
and h = K, i.e., S0 and S

K , are added to the set of the state
vectors obtained. When Algorithm 1 completes all its steps,
it will output a matrix Statesall with K columns and with
each row representing one feasible state vector of the system.

B. State transition probability

To derive the transition probability of this Markov chain,
we first arrange the system states sequentially. In this paper,
this is accomplished using the same order that each state
vector is stored in matrix Statesall after the completion
of Algorithm 1. For the same example in Table I (i.e., for
v = 1.2 and K = 5), the corresponding system state number
assignment is shown in Table II.

Let N denote the total number of feasible system states.
Then, for each state i = 1, 2, . . . , N , we can develop an
algorithm to deduce its next possible states and the corre-
sponding probabilities. It is noted that the number of next
possible states of each current state can be different. For



Algorithm 1: Buffer State Derivation
1 Initialization: Set S and Statesall as two matrices with K

columns and an undecided number of rows, and s = [0, ..., 0].
2 for t = 1 : T + 1 do
3 n1 = min(1 + v(t↑ 1),K);
4 s(1) = n1;
5 S(t, :) = s;
6 Reset s = [0, ..., 0].
7 end
8 S1 ↓ S;
9 Reset S and append S1 into Statesall;

10 for h = 2 : K ↑ 1 do
11 Nh→1 ↓ Number of rows of Sh→1 ;
12 for j = 1 : Nh→1 do
13 t = 1;
14 s = Sh→1(j, :);
15 nh ↓ min(s(h↑ 1) + vt, K);
16 while nh < K do
17 s(h) = nh;
18 Append s to S;
19 t = t+ 1;
20 nh ↓ min(s(h↑ 1) + vt, K);
21 end
22 s(h) = nh;
23 for k = h : ↑1 : 2 do
24 if s(k)↑ s(k ↑ 1) < 1 then
25 s(k ↑ 1) = s(k)↑ 1;
26 else
27 break;
28 end
29 end
30 Append s to S;
31 end
32 Eliminate repeated states in S;
33 Sh ↓ S;
34 Reset S and append Sh to Statesall;
35 end
36 Set the first row of Statesall = S0 = [0, 0, . . . , 0];
37 Set the last row of Statesall = SK = [1, 2, . . . ,K].

TABLE II
SYSTEM STATES RANK

State no. j sj
1 [0, 0, 0, 0, 0]

2, 3, 4 [1, 0, 0, 0, 0] [2.2, 0, 0, 0, 0] [3.4, 0, 0, 0, 0]
5, 6 [4.6, 0, 0, 0, 0] [5, 0, 0, 0, 0]

7, 8, 9 [1, 2.2, 0, 0, 0] [1, 3.4, 0, 0, 0] [1, 4.6, 0, 0, 0]
10, 11, 12 [1, 5, 0, 0, 0] [2.2, 3.4, 0, 0, 0] [2.2, 4.6, 0, 0, 0]
13, 14, 15 [2.2, 5, 0, 0, 0] [3.4, 4.6, 0, 0, 0] [3.4, 5, 0, 0, 0]

16 [4, 5, 0, 0, 0]
17, 18, 19 [1, 2.2, 3.4, 0, 0] [1, 2.2, 4.6, 0, 0] [1, 2.2, 5, 0, 0]
20, 21, 22 [1, 3.4, 4.6, 0, 0] [1, 3.4, 5, 0, 0] [1, 4, 5, 0, 0]
23, 24, 25 [2.2, 3.4, 4.6, 0, 0] [2.2, 3.4, 5, 0, 0] [2.2, 4, 5, 0, 0]

26 [3, 4, 5, 0, 0]
27, 28, 29 [1, 2.2, 3.4, 4.6, 0] [1, 2.2, 3.4, 5, 0] [1, 2.2, 4, 5, 0]
30, 31 [1, 3, 4, 5, 0] [2, 3, 4, 5, 0]
32 [1, 2, 3, 4, 5]

example, consider state s1 shown in Table II being the current
state. From this state, there are only two potential next states:
state s1 with a probability of 1 → p1, and state s2 with a
probability of p1. This is due to the potential starvation of
m2 by buffer b causing m2 to be incapable of processing
a part regardless of its up or down, while state s15 will
have four potential next states as illustrated in Figure 3. By
performing this process for each state, we can derive the
system state transition probability matrix P to represent the
system dynamics.

Introduce xi(t), i = 1, 2, . . . , N as the probability of the
Markov chain is in state i at the beginning of time slot t,

Fig. 3. An example of transition between states

and the state vector x(t) = [x1(t), x2(t), . . . , xN (t)]T as the
state vector of the system. Then, the evolution of the state
vector x(t) can be described as,

x(t+ 1) = Px(t), t = 1, 2, . . . .,→ (5)

It should be noted that
∑i=N

i=1 xi(t) = 1 for all values of t.

C. Performance metrics calculation

To calculate the performance metrics of a production line
with a total number of N states, we first introduce a set
denoted as Z1, comprising all state indices j for which the
final element of the corresponding state vector sj is equal to
K, i.e., a part is at the output end of the conveyor. Then, the
performance metrics can be calculated as

PR(t) = p2c1x(t)

WIP (t) = Hx(t)

ST (t) = p2c2x(t) (6)
BL(t) = p1(1↑ p2)c3x(t)

where c1, c2, and c3 are three binary row vectors with

c1(j) =

{
1, if j ↓ Z1,
0, otherwise, (7)

c2(j) =

{
0, if j ↓ Z1,
1, otherwise, (8)

c3 = [0 0 . . . 0 1], (9)

and H vector is defined as

H = [0 1N1 2 · 1N2 . . . (K ↑ 1) · 1NK→1 K] (10)

with 1D indicates a D-dimensional row vector of 1’s
Similarly, when the steady-state probability distribution εx

of the Markov chain is obtained (e.g., from the probability
transition matrix P ), and the steady-state performance met-
rics are evaluated as below:

PRss = p2c1εx,

WIPss = Hεx,

STss = p2c2εx, (11)
BLss = p1(1→ p2)c3εx.



IV. NUMERICAL EXPERIMENTS

A. Transient and steady-state performance metrics

Using the mathematical model derived in Section III, we
can use equations (6) and (11) to conduct an exact analysis
of performance metrics for the production lines considered in
this paper in both transient and steady-state operations. This
precise analytical approach eliminates the need to rely on
simulation for validating the proposed method. Alternatively,
as mentioned in Section I, there exists an approach, presented
in [5] and [17], is available to approximate the system
performance metrics by converting the conveyor buffer to
a static buffer with capacity N0 = K → T . Then the
performance metrics for such equivalent systems can be
evaluated through the existing methods (such as [10] and
[5] for transient and steady-state performance of Bernoulli
serial lines). To illustrate this, an example Bernoulli line
with parameters p1 = 0.7667, p2 = 0.8611, v = 1.34,
and K = 5 is considered. Its transient and steady-state
performance measures under both approaches are presented
in Figure 4, with an initially empty buffer. As one can see
from the figure, it is evident that the approximation method
fails to capture the transportation delay time of the conveyor
buffer. Notably, the approximation system starts to produce
at t = 2, in contrast to the original system initiates at t = 5
due to a transportation time T = 3. Correspondingly, the
approximation system experiences blockage earlier and has
a larger probability of being blocked because of its less
buffer capacity. In addition, as demonstrated in the figure,
both systems reach steady-state operations quickly and the
approximation method shows good accuracy in steady-state
system performance estimation.

To further understand the approximation accuracy of the
approximation approach in [5] and [17], 1,000 two-machine
Bernoulli lines with randomly selected parameters from

pi ↘ [0.75, 0.95], v ↘ [1, 4], K ↘ [3, 10], i = 1, 2 (12)

are analyzed. The approximation errors can be evaluated
based on

ωPRss =
|PRa

ss ↑ PRapprox
ss |

PRa
ss

↔ 100%

ωWIPss =
|WIP a

ss ↑WIP approx
ss |

K
↔ 100%

ωSTss = |ST a
ss ↑ ST approx

ss |
ωBLss = |BLa

ss ↑BLapprox
ss | (13)

where the subscripts a and approx indicate the analytical
and approximation methods, respectively. The results are
documented in Table III and Figure 5. As one can see,
the approximation method has higher accurate approximating
PR on average, but ϑWIP has fewer and lower outliers
compared to ϑPR. After a detailed investigation, it is observed
that the approximation approach tends to have larger ϑPR if
the original system has longer transportation time T , while
the ϑWIP is larger when the efficiency of m1 is significantly
greater than m2. It should be noted that, although the
approximation approach may get good results under certain
conditions, it is not robust and the error may accumulate and

Fig. 4. An example of transient and steady-state performance measures of
a two-machine Bernoulli line under both approaches

propagate when extending to longer lines as reported in [17].

TABLE III
AVERAGE ACCURACY OF THE APPROXIMATION METHOD IN [5] AND [17]

ωPR ωWIP ωST ωBL

0.83% 1.79% 0.0064 0.0064

Fig. 5. Boxplot of ωPR and ωWIP of the approximation approach

B. Effects of conveyor speed on PR and WIP

In this section, we investigate the relationship between
the conveyor speed and system performance metrics PR
and WIP . Intuitively, a higher conveyor speed will lead to
a smaller transportation time T , resulting in shorter delay,
larger production rate, and lower WIP . To demonstrate this,
we experiment on a Bernoulli line with identical machine
efficiency p1 = p2 = 0.9, conveyor buffer capacity K = 5,
and velocity v ↘ {1, 1.1, 1.2, . . . ,K}. The transportation
time can be calculated within the range T ↘ {4, 3, 2, 1}. The
results of PR and WIP as functions of v are presented in
Figure 6. As one can see, there exists a step-wise, increasing
relationship between PR and v, with the jumps coinciding
with the jumps in T as a function of v. Specifically, the initial



rise of PR occurs as the conveyor velocity v increases from
1 to about 1.35, at which the T reduces from 4 to 3, then
PR remains constant. Subsequently, the second increase is
observed at v = 2, coinciding with a decrease in T to 2,
and once again, PR remains constant until v increases to 4.
Beyond this point, further increments in v up to 5 do not
influence the PR as T = 1 (i.e., no transportation delay
for the work-in-process part). WIP demonstrates a similar
relationship with v but in a decreasing manner.

Fig. 6. The PR and WIP values under different conveyor speed v

From these observations, it is evident that changes in PR
are intrinsically correlated with discrete shifts in T , suggest-
ing a threshold effect where PR only increases when T falls,
particularly noticeable when there is an initial decrease in
T as v is raised from a lower starting point. Between two
jumps on PR, increases in v do not appear to influence
PR, implying PR is optimized or constrained regardless
of further enhancements in conveyor velocity. For instance,
given that v values of 2 and 3 yield an identical PR and
WIP , it implies that there is no advantage to operating
the conveyor at the higher speed of 3, as doing so could
potentially increase the risk of conveyor malfunction and
lead to unnecessary energy consumption. We believe the pro-
posed analytical approach holds the potential to significantly
enhance the understanding and implementation of conveyor
buffer systems in industrial settings. However, due to the page
limitation, we are unable to add a case study that is dedicated
to exploring the optimal conveyor speed and analyzing its
impact on operational efficiency and productivity, and this
will be included in one of our future research suggestions.

V. CONCLUSION AND FUTURE WORK

This paper presents an analytical approach to model two-
machine Bernoulli serial production lines with conveyor
buffers, deriving formulas for performance metrics in both

transient and steady states. Numerical experiments highlight
the limitations of the existing approximation method and
reveal interesting behaviors of system performance metrics
concerning conveyor speed. Future research includes extend-
ing the model to multiple-machine lines, investigating opti-
mal conveyor speeds through case studies, and generalizing
the approach to production systems with different machine
reliability models.
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