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Multi-ensemble metrology by programming 
local rotations with atom movements

Adam L. Shaw    1,4, Ran Finkelstein    1,4, Richard Bing-Shiun Tsai    1, 
Pascal Scholl1, Tai Hyun Yoon    1,3, Joonhee Choi    1,2 & Manuel Endres    1 

Current optical atomic clocks do not utilize their resources optimally. In 
particular, an exponential gain in sensitivity could be achieved if multiple 
atomic ensembles were to be controlled or read out individually, even 
without entanglement. However, controlling optical transitions locally 
remains an outstanding challenge for neutral-atom-based clocks and 
quantum computing platforms. Here we show arbitrary, single-site 
addressing for an optical transition via sub-wavelength controlled 
moves of atoms trapped in tweezers. The scheme is highly robust as it 
relies only on the relative position changes of tweezers and requires 
no additional addressing beams. Using this technique, we implement 
single-shot, dual-quadrature readout of Ramsey interferometry using 
two atomic ensembles simultaneously, and show an enhancement of the 
usable interrogation time at a given phase-slip error probability. Finally, 
we program a sequence that performs local dynamical decoupling 
during Ramsey evolution to evolve three ensembles with variable phase 
sensitivities, a key ingredient of optimal clock interrogation. Our results 
demonstrate the potential of fully programmable quantum optical clocks 
even without entanglement and could be combined with metrologically 
useful entangled states in the future.

Sensors based on quantum probes provide some of the most precise 
measurements in science1–5. For many such systems, fundamental 
sensitivity limits can be improved through entanglement6–9, but in 
the presence of noise, a practical advantage of such schemes is not 
guaranteed10,11. A complementary approach studies optimal metrology 
with entanglement-free quantum control and readout methods. For 
both approaches, an important figure of merit is not just the sensitiv-
ity to a given observable but also the dynamic range over which that 
observable can be unambiguously estimated12–15.

In the particular case of optical atomic clocks1, the observable 
of interest is the stochastically evolving phase of a laser acting as a 
local oscillator, which is mapped into a population imbalance of an 
ultranarrow optical transition. The clock stability improves with 
the interrogation time, but the phase can only be unambiguously 

mapped when it is in the range of [−π/2, π/2]; phases outside this 
range lead to phase-slip errors, which limits the attainable inter-
rogation time at a given phase-slip error probability in the case of 
local-oscillator-limited clocks. Optimal readout schemes12,13,16 could 
exponentially improve the attainable interrogation time, but require 
local rotational control over sub-ensembles during the sensing pro-
tocol or local mid-circuit readout and reset, both of which have not 
been demonstrated to date.

Here we show local control of optical transitions in a 
tweezer-array clock17–19 by using rearrangement techniques20–25 
on atoms in superposition states to precisely control the 
position-dependent phase imprinted by light–matter interaction. 
The scheme26,27 is experimentally simple and highly robust as it solely 
relies on the relative stability of the tweezer positions and does not 
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rotation with the same laser as before; the shifted atom now rotates 
back to |0〉 because of the movement-induced phase shift, whereas the 
unmoved atom completes its rotation to |1〉.

The main principle behind this scheme is a locally controlled 
change of the relative phase between the atomic dipole oscillation 
and the phase of the laser while the atom is in a superposition state; 
in essence, our scheme realizes a locally controlled Ramsey sequence 
with global driving (Methods). Similar techniques have been used in the 
context of ion-trap experiments with two ions26, but not in a scalable 
fashion, as is possible with tweezer arrays27.

We show an experimental demonstration with our 88Sr optical 
tweezer-array experiment17,29,30. We employ a one-dimensional array 
of 39 optical tweezers generated via an acousto-optic deflector (AOD) 
driven by an arbitrary waveform generator (AWG). This allows for 
precise control over the relative tweezer positions at the nanometre 
level, enabling arbitrary ̂Z(ϕ) rotations (Fig. 1b). Global driving is per-
formed on the ultranarrow 1S0 ↔ 3P0 optical clock transition with a 
transition wavelength of λ = 698.4 nm (Fig. 1c).

In a first experiment, we globally apply an ̂X(π/2) operation to the 
entire array, then shift every odd site by the same distance Δx, apply 
another global ̂X(π/2) rotation and finally measure the excited state 
population in both shifted and unshifted sub-arrays. The excited state 
population of the shifted atoms Ps shows sinusoidal oscillations with 
a period of 699(1) nm as a function of Δx, consistent with ϕ/2π = Δx/λ, 
where λ is the transition wavelength. The quoted error on this measure-
ment is purely statistical, and ignores potential systematic error arising 
from the independent distance calibration performed with an optical 
resolution test target. We note that the present measurement is likely 
a far more precise and accurate distance calibration tool, and could 
find use as an effective in situ laser-based ruler with applications for 
the precision determination of distance-dependent inter-atom effects, 
such as Rydberg interactions31.

To quantify the phase-shift fidelity, we focus on a narrow region 
around Δx = λ, corresponding to a ̂Z(2π) rotation (Fig. 1e). A quadratic 

involve any auxiliary addressing beams. Using this technique, we 
demonstrate arbitrary, parallel, single-site-resolved optical qubit 
rotations with high fidelity.

We utilize such rotations to double the dynamic range of opti-
cal Ramsey spectroscopy by performing simultaneous evolution on 
two separate atomic ensembles within one tweezer array, each of 
which measures a different phase quadrature16; we extend the coher-
ent interrogation time by a factor of 3.43(13) relative to the standard, 
single-ensemble sequence. Finally, we realize a proof-of-principle 
protocol for programming local dynamical decoupling sequences 
during Ramsey interrogation such that different ensembles within a 
single atom array have different sensitivities to phase variations, and 
discuss its implementation as part of a general protocol for improving 
clock stability12,13.

Aside from clocks, our technique for implementing local, paral-
lel rotations about arbitrary axes might also find use in neutral-atom 
quantum computing platforms utilizing optical transitions27,28, where 
the local coherent control of optical qubits has not been demonstrated 
before. More generally, our results point to a future of fully program-
mable neutral-atom optical clocks that incorporate features of quan-
tum computers.

The basic principle of our scheme is illustrated in Fig. 1a. We con-
sider two atoms both initially in the ground electronic state |0〉, inter-
acting with a global laser beam characterized by wavevector k = 2π/λ 
and wavelength λ, propagating along the array axis. With the globally 
applied laser, we create an equal superposition state of |0〉 and the 
excited state |1〉; in a Bloch sphere picture, this corresponds to a π/2 
rotation around the x axis ( ̂X(π/2)). The laser beam is then extinguished 
with an optical modulator, but remains phase coherent with the atomic 
transition. Using atom rearrangement techniques20–25, one of the atoms 
is shifted from its original position by Δx, applying an effective phase 
shift of ϕ = kΔx (Methods). In Fig. 1a, we first consider the special case 
of Δx = λ/2, or equivalently, a π rotation around the z axis ( ̂Z(π)) for the 
shifted atom (Fig. 1a). Subsequently, we apply a second global ̂X(π/2) 
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Fig. 1 | Single-site addressing with movement-induced phase shifts. a, We 
consider two atoms individually trapped in optical tweezers, both initially in the 
electronic ground state. Travelling light emitted from a global laser beam applies 
a π/2 rotation to both atoms, and is disabled, but remains phase coherent with 
the atomic transition. One of the atoms is then moved by half the laser 
wavelength (λ) from its initial position, rotating the effective local laser frame by 
an angle ϕ = π. When the laser drive is restarted to apply another π/2 pulse, the 
moved atom now rotates back to the ground state, whereas the static atom 
rotates to the excited state. b, Control over the atom displacement Δx is 
equivalent to arbitrary local rotations of the laser drive by ϕ = kΔx about the ̂Z  
axis. c, We implement this protocol with an array of 88Sr atoms utilizing the 
ultranarrow 1S0 ↔ 3P0 transition with λ = 698.4 nm for global driving. d, With an 
array of 39 tweezers in one dimension (top), we apply the protocol in b, shifting 
every odd site (purple markers) in the array and leaving all the even sites static 

(blue markers) during the dynamics. A sinusoidal oscillation emerges in the 
excited state population of the shifted sites (bottom), with a period of 699(1) nm. 
e, Focusing on the region around Δx = λ (grey-shaded region in d), we find that the 
shifted atom shows no measurable loss in fidelity compared with the unshifted 
atoms. Correcting for the bare fidelity for performing a global ̂X(π) rotation (red 
dashed line; 0.9956(1)), we find that the shift operation is performed with a 
fidelity of 0.9984(5). The ratio of the shifted to unshifted fidelities is 0.9998(5), 
suggesting that the dominant source of error comes from global laser phase 
noise during the finite wait time required to perform the shift, rather than the 
movement itself. From the data in d, we find that the crosstalk to the static atoms 
is 0.1(2)%, consistent with 0. f, The shift to apply a ̂Z(2π) rotation can be 
performed without a noticeable loss of fidelity down to shift times of ∼20 μs; the 
data in e are taken with a shift time of 32 μs, in addition to an extra wait time of 
34 μs to account for finite jitter in the control timings.
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fit to Ps(Δx) shows a maximum value of Ps = 0.9940(5) (not corrected 
for state preparation and measurement (SPAM) errors), consistent 
with the mean excited state population of unshifted atoms, 
Pu = 0.9942(2), in the same range. Correcting for the bare ̂X(π) fidelity 
(Fig. 1e, red dashed line) of 0.9956(1) shows that the shift operation is 
performed with a fidelity of 0.9984(5). We note that applying SPAM 
correction on the bare fidelities maintains the shift fidelity largely 
unchanged as it is calculated from the ratio of the two. The ratio of the 
shifted to unshifted fidelities is 0.9998(5), suggesting that the domi-
nant source of error comes from global laser phase noise during the 
finite wait time required to perform the shift, rather than the move-
ment itself. We study the fidelity to perform the ̂Z(2π) rotation as a 
function of shift time (Fig. 1f), and find that the fidelity remains con-
stant down to shift times of ts = 20 μs; data in Fig. 1e were taken with 
ts = 32 μs, plus an additional 34 μs of wait time to account for jitter in 
the subsequent control timings. Importantly, for all shift distances 
(Fig. 1d), the excited state population of the neighbouring unshifted 
atoms is nearly constant, showing crosstalk of only 0.1(2)% 
(Methods).

Arbitrary rotation patterns can be imprinted on the array by shift-
ing all of the atoms by varying distances such that rotations about the 
z axis with tweezer-resolved phase ϕj are applied (Fig. 2a). We show the 
results of time-resolved Ramsey spectroscopy for four different choices 
of single-site addressing patterns, demonstrating arbitrary, 
site-revolved and parallel ̂Z  rotations (Fig. 2b). Such addressing pat-
terns could be used to negate variations in the transition frequency 
across the array, for instance due to gradients in magnetic field or from 
finite differences in the wavelengths of the tweezers generated by an 
AOD17. Combining these single-site ̂Z(ϕj) rotations with a series of 
global ̂X(π/2) pulses allows for rotations about any axes, not just the z 
axis. As a demonstration (Fig. 2c,d), we choose a set of six contiguous 
atoms, initially in the ground state (denoted here as |–Z〉), and rotate 
them each in parallel into the six states |–Z〉, |+Z〉, |–Y〉, |+Y〉, |–X〉 and 
|+X〉, with an average fidelity of 0.984(2) (0.987(2) SPAM-corrected), 
as determined by state tomography (Methods). The dominant 

limitations to this value are likely from global drive infidelity and 
dephasing during the finite shift times.

We note that while here we have demonstrated our protocol on a 
one-photon optical transition, it could be used to induce a similar effect 
for two-photon Raman transitions, for instance between hyperfine 
states32, assuming the two beams are counter-propagating. Further, the 
movement-induced phase shifts employed here rely solely on a rela-
tive change in tweezer position, in contrast to alternative techniques 
that apply additional addressing beams33–36, where the phase shift is 
proportional to a local addressing beam’s intensity. While the address-
ing beam intensity and alignment are prone to drifts on experimental 
timescales, relative atom movements are ultimately derived from 
the radio-frequency electronic output of an AWG, which is precise, 
consistent and robust. We emphasize that our results did not utilize 
noise-compensating composite pulse sequences and that all data 
were taken without any system realignments or recalibrations of the 
atom movements.

We now demonstrate that access to such robust, high-fidelity, 
single-site operations can enable enhanced sensing protocols for 
entanglement-free metrology. In particular, several protocols rely-
ing on local control have been proposed for improving the stability of 
phase estimation12,13,16,37 by increasing the dynamic range in which the 
stochastically evolving laser phase θ can be estimated.

Here we experimentally show one such proposal16, by splitting 
the array into two sub-ensembles using local addressing to perform 
Ramsey interferometry simultaneously in two orthogonal bases,  
X and Y, yielding populations P(x) and P(y). While readout in a single basis 
limits the invertible phase range to θ ∈ [−π/2, π/2], readout in both bases 
allows this range to be unambiguously extended to [−π, π] (Fig. 3a).  
Consequently, we can afford a longer Ramsey interrogation time 
before θ drifts outside of the invertible range, which would cause a 
phase-slip error. Note that while the atom number in each quadrature 
has been halved, this typically does not increase the quantum projec-
tion noise (QPN)38 from the dual-quadrature measurement compared 
to a single-basis measurement (Methods)12,16.
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Fig. 2 | Arbitrary, parallel and local rotations. a, We implement site-resolved 
phase shifts ϕj during the dark time t of standard Ramsey interrogation by 
inserting arbitrary and parallel shifts of various distances to the array of atoms.  
b, Results of this operation as a function of Ramsey time (x axis) for different 
tweezers in the array (y axis). The corresponding programmed phase-shift 
pattern is shown on the right of each panel. c, By applying multiple global ̂X(π/2) 
pulses (grey blocks), in tandem with local movement shifts (same colour scale as 

in a), arbitrary local rotations can be performed. We show a demonstration by 
rotating an array of six atoms, initially in the |0〉 = |–Z〉 state, in parallel to the six 
cardinal states (|–Z〉, |+Z〉, |–Y〉, |+Y〉, |–X〉 and |+X〉), achieving an average fidelity of 
0.984(2) (blue bars) and 0.987(2) after SPAM correction (tan bars), limited by 
global ̂X(π/2) fidelity and decoherence during the time needed for movement 
(Methods). d, Bloch sphere visualizations of the states measured with quantum 
state tomography in c.
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To implement this dual-quadrature readout, we perform Ramsey 
interferometry with the addition of a ̂Z(π/2) rotation to all odd sites in 
the array before readout (Fig. 3b). The resultant oscillations in P(x) and 
P(y) show a π/2-phase shift between the even (X) and odd (Y) sites in the 
array (Fig. 3c). For every repeated measurement (indexed by j) at time 
t, we estimate the phase as12

θj(t) = arg (z(x)j (t) + iz( y)j (t)) , (1)

where z(x,y)j (t) = (2P(x,y)j (t) − 1)  and arg is the argument function.  
We then calculate the difference, δj(t), of θj(t) from its mean phase 
(Methods).

We plot the probability distribution 𝒫𝒫(δj(t)) (Fig. 3d) and observe 
a continuous growth of its standard deviation (s.d.) σ (inset). We stress 
that we are interested in the distribution of the laser phase itself, which 
determines the phase-slip error probability. Hence, we have subtracted 
the contribution from QPN to our experimental data (Fig. 3d, inset) 
(Methods). We find that the laser phase s.d. grows with time as a power 
law: σ = βtα, with α = 0.56(2), which we attribute to a power spectral 
density composed of 1/f and white frequency noise. If this s.d. of the 
laser phase itself becomes too large compared to the dynamic range, 
frequent phase-slip errors occur. In Fig. 3e, we evaluate the phase-slip 
probability (ϵ) that the phase has exceeded the bounds of [−π/2, π/2] 
(in emulation of a theoretical single-basis measurement; Fig. 3d, black 
dashed lines) or [−π, π] (for the dual-quadrature readout); we find that 
the error probability for the single-basis case quickly becomes sub-
stantially larger at shorter interrogation times (Methods).

We further characterize the maximum interrogation time Tmax(ϵ) 
for which the phase-slip error probability is still below a threshold ϵ 
(Methods). We find that Tmax(ϵ) is significantly increased for the 
dual-quadrature case (Fig. 3f ) by a factor of 3.43(13), the exact 

numerical value of which is determined by the phase s.d. growth rate 
observed experimentally and is related to the laser noise spectrum 
(Methods). Such elongation in the attainable interrogation time can 
be directly translated to enhanced stability in a metrological setting. 
For example, in a zero dead-time optical clock, the stability is propor-
tional to the square root of Tmax(ϵ), such that we can project an increase 
in stability by a factor of √3.43 ≈ 1.8 for our particular noise profile. 
This would constitute a practical improvement in phase estimation 
without increasing the probability of phase-slip errors, a common 
problem for entanglement-enhanced metrology schemes11,39.

Even greater enhancements in dynamic range, and hence clock 
stability, could be possible through the use of multiple ensembles with 
different interrogation times by utilizing fast quantum non-demolition 
measurements40,41 or by explicitly programming ensembles with dif-
ferent sensitivities to the global laser phase12,13. In the latter of these 
protocols, the total number of atoms is evenly divided into M ensem-
bles, which are each further subdivided into two sub-ensembles for 
dual-quadrature measurement. One ensemble is used for normal phase 
measurement, while for the rest the free evolution time is reduced by 
factors of 2−1,…, 21−M, or equivalently, their effective phase accumula-
tion is reduced by the same amount. If this procedure is performed 
correctly, the effective ensemble coherence times will then be extended 
by factors of 2,…, 2M−1, meaning that slower-evolving ensembles can be 
used to probe for phase slips in the fastest ensembles. This then allows 
for phase estimation over a wider dynamic range beyond [−π, π], and 
potentially allows for an improved scaling of the clock stability with 
atom number12 at a fixed phase-slip probability (Fig. 4a).

As an outlook, we demonstrate a proof of principle of local control 
techniques towards such protocols by performing local dynamical 
decoupling such that three ensembles experience different effective 
Ramsey evolution times of T, T/2 and T/4. This is accomplished by 
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Fig. 3 | Enhanced sensing with dual-quadrature measurement. a, For a given 
phase angle θ, population measurement in only a single basis, for example Y, 
can only be inverted within a dynamic range of −π/2 < θ < π/2. By measuring 
both quadratures X and Y, this dynamic range can be doubled to −π < θ < π, 
allowing for interrogating larger spreads in phase, such as when measuring 
for longer times. b, We implement the dual-quadrature readout of Ramsey 
interrogation by applying local π/2-phase shifts to all the odd sites in the array. 
c, With single-quadrature readout, the interrogation time is limited due to 
phase slips, visible by the separation between a decay envelope reconstructed 
from the single-quadrature phase spread (orange dashed line) and the averaged 
Ramsey signal (blue and red markers and lines). The equivalent reconstruction 
with dual-quadrature readout (green dashed line) is accurate up to longer times. 
d, To perform this reconstruction, we measure the time-resolved probability 
distributions of the estimated phase relative to the mean from dual-quadrature 
measurement. As the standard deviation (σ) of the phase distribution grows 

(inset), the estimated phase begins exceeding the −π/2 < θ < π/2 range for normal 
spectroscopy (black dashed lines), but is still resolvable via dual-quadrature 
measurement. Note that the time-dependent contribution from QPN to the 
standard deviation has been subtracted off in the inset (Methods). e, We estimate 
the phase-slip probability ϵ for single-quadrature (orange circles) and dual-
quadrature (green circles) measurements by fitting a folded Gaussian to the 
time-resolved estimated phases in d. The fit is folded over at the boundaries of 
the dynamic range to account for the behaviour of phase slips, as that in a. For 
the single-quadrature case, we also directly estimate the probability from the 
underlying data (squares), which is in good agreement with the estimate from 
the fit. The solid lines are the predicted phase-slip probabilities from the fit in 
the inset of d. This fit is used to estimate the decay envelopes in c. f, For a given 
allowable phase-slip probability, the enhanced dynamic range of the dual-
quadrature readout improves the maximum possible interrogation time. For our 
particular phase-growth profile (inset of d), the improvement is a factor of ∼3.43.
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inserting local ̂X(π) pulses (using techniques shown in Fig. 2c) during 
evolution at time T/4 for the second-fastest ensemble and time 3T/8 
for the slowest ensemble. Each ensemble is then further subdivided 
into two sub-ensembles for dual-quadrature readout (Fig. 4b). Result-
ant Ramsey oscillations versus the total evolution time T show a fre-
quency ratio of 1.00:1.99(1):4.10(4), very close to the desired 1:2:4 ratio.

Following this experimental demonstration, we now discuss two 
limitations (and possible solutions) of this scheme, specifically related 
to the frequency noise profile and the atom number per ensemble. 
First, for the simplest case of shot-to-shot noise of laser frequencies 
that are otherwise constant during the interrogation, our scheme 
would allow the clock stability to be improved exponentially12 by a 
factor of √2M−1/M ; the factor of √1/M  stems from increased QPN in 
the ensemble used for phase estimation and assumes that the total 
number of atoms is uniformly distributed across the M ensembles. 
However, for more general time-dependent frequency noise, the situ-
ation is more complex, requiring a higher-order pulse sequence12. We 
propose one such pulse sequence in Fig. 4c, by breaking the total 

evolution time T into multiple kernels of length τ. Within each kernel, 
each ensemble experiences a combination of local dynamical decou-
pling and free evolution, such that the net phase evolution time is 
T, T/2,…, T/2M−1. This scheme could handle noise profiles where the 
local phase accumulation period τ is shorter than the correlation time 
of noise. We numerically find that exponential scaling of the maximum 
interrogation time is then possible up to a saturation point set by the 
effective decoupling bandwidth (Extended Data Fig. 2).

Second, multi-ensemble estimation schemes in general require 
sufficient atom number per ensemble to be useful12. When the num-
ber of atoms per ensemble is limited, QPN can negate any advantage, 
i.e. when the error probability in estimating a phase slip by using a 
slower-evolving ensemble exceeds the actual phase-slip probability 
in the fastest-evolving ensemble. For the present experimental dem-
onstration with N ≈ 6 per ensemble, we do not expect a metrological 
gain (Extended Data Fig. 2), but we note that a generalization of our 
addressing scheme to two-dimensional tweezer clock systems19 is 
straightforward. For example, we imagine a realistic scenario of a 
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Fig. 4 | Local dynamical decoupling towards optimal metrology. a, We split 
the array into three ensembles, and perform a local dynamical decoupling (DD) 
sequence such that even though the total Ramsey dark time is T, individual 
ensembles experience different effective evolution times of T/4, T/2 and T.  
The phase of each ensemble is then measured using dual-quadrature readout.  
b, Slower-evolving ensembles (those which experience less evolution time) 
can be used to detect phase slips in faster-evolving ensembles, extending the 
effective interrogation time of optical clocks. Following the sequence in a, we 
find the three ensembles evolve at relative rates of 1.00:1.99(1):4.10(4) with 

respect to the total evolution time T. The demonstrated scheme in a and b is 
effective for the case of slow frequency noise where the corresponding noise 
correlation time is longer than the total evolution time. c, To handle generic 
time-dependent noise with shorter correlation times, we envision breaking 
the total evolution time into k kernels of length τ, each of which is composed of 
local dynamical decoupling and free evolution. In this way, as long as τ is shorter 
than the correlation time of any time-dependent noise affecting the system, the 
different M ensembles (indexed by m = 0,…, M − 1) can accumulate phase in a 
correlated manner over the interleaved Ramsey interrogation periods.
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10 × 20 atom array with column-by-column control of the tweezer 
positions, such that it could be generated with crossed AODs or an 
AOD combined with a spatial light modulator. In this case, each pair 
of columns could realize one ensemble with dual-quadrature readout. 
Finally, we note that such exponential scaling is possible only up to a 
timescale where decoherence is dominated by local oscillator noise. 
Beyond that, the interrogation time will be limited by atomic coherence 
and ultimately by atomic state lifetime42.

In summary, we have demonstrated arbitrary local rotations for 
optical transitions through robust phase-sensitive position control 
in neutral-atom arrays, with sub-diffraction-limited precision. We 
have used such rotations to simultaneously interrogate two atomic 
ensembles for dual-quadrature readout of a Ramsey interferometry 
signal with demonstrable metrological gain, and have shown a proof 
of principle for controlling many ensembles with variable sensitivity 
during Ramsey evolution, a key ingredient of proposals for optimal 
clocks. Further, these methods could be naturally combined with 
metrologically useful entangled states16,39,43 to simultaneously enable 
high sensitivity with a large dynamic range. More generally, our results 
are an important step towards a fully programmable quantum optical 
clock based on neutral atoms, which would incorporate quantum com-
puting techniques towards metrological gains, similar to work done 
with ion-trap devices43,44 but likely in a more scalable fashion. Such a 
universal neutral-atom clock system would ideally combine arbitrary 
local rotations, as shown here, with two-qubit entangling operations 
for optical transitions45, and mid-circuit readout and reset, which has 
not been demonstrated so far.

Note added in proof: During the completion of this work, we 
became aware of a related work performing local ̂Z  rotations and 
studying entanglement-enhanced metrology in an optical 
tweezer-array clock experiment46.
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Methods
Light–matter interaction Hamiltonian
After applying the rotating-wave approximation, the light–matter 
interaction Hamiltonian considered in this work is given by47

̂H = ℏ|Ω|
2 (|0⟩ ⟨1| eikx + |1⟩ ⟨0| e−ikx) , (2)

where Ω is the Rabi frequency, k is the global laser wavevector, x is the 
atomic position along the beam propagation axis, |0〉 is the ground 
state and |1〉 is the excited state. Atom displacements by Δx correspond 
to phase shifts of ϕ = kΔx, as described in the main text.

Note that the choice of the phase for the initial ̂X(π/2) rotation is a 
local gauge freedom, and thus all atoms in the array can be said to 
experience rotation about the same local axis, for example the x axis, 
despite the spacing between atoms generically not being perfectly 
commensurate with the driving wavelength. When the atom is shifted, 
it can be thought of as changing ̂X → ̂X cos(ϕ) + i ̂Y sin(ϕ). For the case of 
only a single global ̂X  rotation after the movement, this is equivalent 
to an effective ̂Z(ϕ) rotation of the quantum state; however, in general, 
if multiple global ̂X  operations are performed, the equivalence with 
an effective ̂Z  rotation breaks down.

Data analysis
Discrimination between |0〉 = |1S0〉 and |1〉 = |3P0〉 is performed by strongly 
driving the 1S0 ↔ 1P1 transition for 10 μs, which heats and ejects all 
atoms in 1S0 (details on the strontium level structure are provided else-
where29,48). Atoms in 3P0 are then pumped back into 1S0, and imaged 
with a lower power on the 1S0 ↔ 1P1 transition; imaging is performed 
within 120 ms.

For all the data in the main text, we interleave30 data-taking with 
feedback to the global |0〉 ↔ |1〉 drive frequency every ∼4 min to coun-
teract slow (∼40 min period) oscillations arising from environmental 
drifts. 1σ error bars in the main text are typically smaller than the marker 
size in all figures; this includes Figs. 1d–f, 3c and 4b.

Operation fidelities
Error modelling suggests that the global X(π) fidelity of 0.9956(1) is 
primarily limited by measurement errors (see below), finite tempera-
ture (the average motional occupation of atoms along the radial axis 
is n̄ ≈ 0.2, leading to an infidelity of 2 × 10−3) and frequency noise on 
our laser; the latter of these, we believe, is also the dominant limita-
tion to our Ramsey coherence time (Fig. 3c). The Rabi frequency is 
∼2.5 kHz for all measurements in this work, which allows for fast 
operations compared to the timescale of decay from 3P0 (∼550 ms 
(ref. 49)). Measurement errors are dominated by the vacuum-limited 
atom survival during imaging (0.9995(4)), the imaging fidelity for 
detecting the presence of an atom (0.9997(2)) and the likelihood of 
ejecting atoms in 1S0 from the tweezers to perform state discrimina-
tion (0.9967(5)) before final imaging. We note that not all of these 
measurement errors contribute equally, and their relative importance 
generically depends on the amount of excited state population in the 
measured state.

The wavelength of the oscillation λosc (Fig. 1d) is found from fitting 
the excited state population of the shifted atoms with a sinusoid of the 
form Asin(2πΔx/λosc) + B, from which we determine the quoted value of 
λosc = 699(1) nm. Per our independent calibration of distances within 
the array, we expect there is an additional ∼5 nm of systematic uncer-
tainty on this measurement. Further systematic uncertainty could 
arise if the beam propagation is not perfectly coaxial with the array. 
The crosstalk fidelity of 0.1(2)% is found by fitting the unshifted-atom 
excited state populations (Fig. 1d) with a sinusoid of the same period 
as was determined for the shifted atoms; the quoted crosstalk is then 
the amplitude A of this sinusoid. We note that we have also checked 
for any residual linear phase shifts by repeating this experiment with 

a global phase shift of π/2 on the final Ramsey pulse, which yields 
linear sensitivity to small phase shifts. We find the phase of unshifted 
atoms to still be consistent with zero over a range of more than one 
wavelength.

To determine the fidelity of arbitrary local rotations (Fig. 2c), we 
perform quantum state tomography by reading out the produced 
states in the x, y and z bases by rotating the state with a global π/2 pulse 
of a given global laser phase as necessary. The fidelity is then estimated 
as F = 〈ψtarget|ρ|ψtarget〉, where ρ is the experimental state determined 
by quantum tomography. Due to the choice of the six arbitrary rota-
tions, the fidelity estimation coincides with the population of the 
excited state or ground state along the corresponding axis. For 
instance, the fidelity of |+Y〉 is determined by the population of the 
excited state when the prepared state is rotated and measured in the 
y basis. To access the intrinsic infidelity induced by arbitrary local 
rotations, we extract SPAM errors and correct them. SPAM sources are 
dominated by the same detection infidelities as for the global ̂X(π/2) 
fidelity (see above), and the finite SPAM-corrected readout π/2 pulse 
fidelity of 0.9982(4).

Estimating prior width of the laser phase
Here we detail how we find and isolate the prior width of the laser phase 
distribution from the experimentally measured values. We note that 
while the phase-slip probability depends only on this prior width, the 
measured distribution is further affected by QPN. The QPN itself is a 
function of the fraction of excited atoms measured in the Ramsey 
sequence. One thus finds that the relative contribution of the QPN term 
varies with the central phase of the laser and the prior width of the 
phase distribution. Assuming a system of N = 20 atoms, we plot the 
calculated phase distribution width as a function of central laser phase 
̄θ, but with the underlying prior phase distribution having a width of 

zero (Extended Data Fig. 1a). We repeat this calculation for both single- 
and dual-quadrature phase estimation. We note that these estimators 
are affected slightly differently by QPN. Specifically, while the optimal 
single-quadrature working point in terms of minimal QPN is around a 
mean phase of 0 (which corresponds to measurement with an excita-
tion fraction of 0.5), we find that the optimal working point for a 
dual-quadrature estimation is around a mean phase of π/4 (correspond-
ing to the two quadratures having excitation fractions of 0.85), 
although we note that the dual-quadrature value is relatively flat over 
the entire bandwidth. For longer interrogation times, the prior width 
grows as a power law, which depends on the laser noise spectrum. Thus, 
the contribution from projection noise is, in general, time 
dependent.

To isolate this effect and learn the true laser phase distribution as 
a function of interrogation time, we first calculate the total observable 
width including QPN, σtot, for a range of prior widths σδ at a given laser 
central phase ̄θ. This is done by sampling random phases from a normal 
distribution, followed by sampling the observed phase from a binomial 
random process representing the projection uncertainty. Repeating 
this process over a million draws, we obtain the observed distribution 
as a function of prior width (Extended Data Fig. 1b). We then invert the 
function to obtain σδ (σtot) and interpolate the latter to find the prior 
width at the given measured σtot.

Fitting the phase-slip probability
To find the phase deviation from the mean phase for a given shot, we 
fit the Ramsey oscillations (Fig. 3c) with a decaying sinusoid, and at 
each time we define the fitted mean populations as ̄P(x)(t) and ̄P( y)(t). 
These populations are inverted via equation (1) into the mean phase 
̄θ(t), and finally we calculate the phase deviation from the mean as 

δj(t) = mod(θj(t) − ̄θ(t),π).
For the phase-slip probability (Fig. 3e), we fit the probability densi-

ties 𝒫𝒫(δj(t)) with G(𝒫𝒫), where G is a Gaussian distribution folded into the 
range [−π, π]. This fit provides an estimation of the true standard 
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deviation σ of the δj(t) distribution. With this in hand, for a given 
half-dynamic range B, we then find the phase-slip probability ϵ as

ϵ = 2∫
∞

B
G(𝒫𝒫)d𝒫𝒫 𝒫 erfc ( B

√2σ
) , (3)

where erfc is the complementary error function. Note that here B = π/2 
corresponds to a single-basis measurement whereas B = π corresponds 
to a dual-quadrature measurement.

To calculate the maximum interrogation time, we first find the 
prior width of the laser phase (as described earlier) and then fit the 
time-resolved profile of σ(t), as σ(t) = βtα. We find β = π × 0.119(6) and 
α = 0.56(2). The growth of σ over time can then be used to predict the 
Ramsey decay envelope C for different choices of B, as C = e−σ2/2. In  
Fig. 3c, we show this envelope estimation for the cases of B = π/2 and 
B = π (orange and green dashed lines, respectively).

We then analytically calculate the maximum interrogation time at 
a fixed phase-slip error probability ϵ from equation (3) as

Tmax(ϵ) = (B/(√2βerfc−1(ϵ)))
1/α
. (4)

Limits in multi-ensemble metrology
To study the possible limitations of the multi-ensemble scheme, we sim-
ulate stochastic phase evolution of a local oscillator with 1/f frequency 
noise, whose overall power sets a characteristic single-ensemble 1/e 
Ramsey coherence time TLO. We numerically find the maximum inter-
rogation time at a fixed phase-slip probability ϵ (here we use ϵ = 5 × 10−3) 
with increasing ensemble number M by iteratively correcting for phase 
slips, as described elsewhere12. We repeat this calculation for different 
dynamical decoupling block lengths τ. In Extended Data Fig. 2a, we plot 
the results for up to M = 9 ensembles, assuming infinite atom number. 
We find that adding more ensembles indeed enables exponential scal-
ing of the interrogation time up to a saturation point set by the effective 
dynamical decoupling bandwidth (expressed in terms of τ/TLO).

We further study the effect of QPN on the efficacy of the scheme 
in the case of low atom number per ensemble. For the optimal dynami-
cal decoupling sequence found previously, we vary the number of 
atoms per ensemble N and repeat the calculation, which is now affected 
by QPN. Specifically, the use of slower-evolving ensembles with lim-
ited atom number for the iterative correction of phase slips in the 
fastest-evolving ensembles is prone to errors due to the increased 
variance in such estimation. For a small number of atoms per ensemble, 
this negates any advantage. However, we note that N ≃ 20 atoms per 
ensemble suffice for efficient operation of the scheme, with the inter-
rogation times and noise strength tested here.
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Extended Data Fig. 1 | Quantum projection noise in a dual-quadrature 
measurement. a, Added standard deviation due to quantum projection noise 
(QPN) for phase estimation around different average phases ̄θ, plotted for N = 20 
atoms utilized in a single-quadrature (orange) or dual-quadrature (green, 10 
atoms per quadrature) measurement. The added QPN varies with the phase the 
measurement is taken at; thus as the prior width of the phase distribution grows 
over time, and a broader range of phases is sampled, the QPN will vary. b, To learn 

the prior width from the measured width we sample random phases from a 
normal distribution, followed by sampling the observed phase from a binomial 
random process representing the projection uncertainty (inset). We use the 
sampled distributions for the dual-quadrature estimator to calculate the width 
including QPN for a range of prior laser widths. We then invert this function and 
interpolate if needed, to find the prior width for any measured width.
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Extended Data Fig. 2 | Limits in multi-ensemble metrology. a, Asymptotic 
scaling of the extended interrogation time factor as a function of the number of 
ensembles M employed. We numerically calculate the maximal interrogation 
time at a fixed phase slip probability for different dynamical decoupling block 
lengths τ, in terms of the local-oscillator coherence time TLO, assuming 1/f 
frequency noise and infinite atom number. The addition of more ensembles 
enables exponential scaling of the maximal interrogation time (solid line 
marks 2M−1) up to a saturation point set by the effective decoupling bandwidth. 

The latter can be extended by reducing the block length while maintaining a 
sufficiently high Rabi frequency with respect to the fast noise frequency. b, For 
the optimal decoupling sequence found in a, we plot the extended interrogation 
time as a function of the number of atoms per ensemble N. For a small number 
of atoms per ensemble, quantum projection noise results in an enhanced rate 
of false positive indication of a phase slip, negating any advantage. We find that 
N ≃ 20 atoms per ensemble suffice for efficient operation.
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