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Current optical atomic clocks do not utilize their resources optimally. In
particular, an exponential gain in sensitivity could be achieved if multiple
atomic ensembles were to be controlled or read out individually, even
without entanglement. However, controlling optical transitions locally
remains an outstanding challenge for neutral-atom-based clocks and
quantum computing platforms. Here we show arbitrary, single-site
addressing for an optical transition via sub-wavelength controlled

moves of atoms trapped in tweezers. The scheme is highly robust as it
relies only on the relative position changes of tweezers and requires

no additional addressing beams. Using this technique, we implement
single-shot, dual-quadrature readout of Ramsey interferometry using
two atomic ensembles simultaneously, and show an enhancement of the
usable interrogation time at a given phase-slip error probability. Finally,
we program a sequence that performs local dynamical decoupling
during Ramsey evolution to evolve three ensembles with variable phase
sensitivities, a key ingredient of optimal clock interrogation. Our results
demonstrate the potential of fully programmable quantum optical clocks
even without entanglement and could be combined with metrologically
useful entangled states in the future.

Sensors based on quantum probes provide some of the most precise
measurements in science' . For many such systems, fundamental
sensitivity limits can be improved through entanglement®”, but in
the presence of noise, a practical advantage of such schemes is not
guaranteed'®"’. Acomplementary approach studies optimal metrology
with entanglement-free quantum control and readout methods. For
both approaches, animportant figure of meritis not just the sensitiv-
ity to a given observable but also the dynamic range over which that
observable can be unambiguously estimated ™.

In the particular case of optical atomic clocks’, the observable
of interest is the stochastically evolving phase of a laser acting as a
local oscillator, which is mapped into a population imbalance of an
ultranarrow optical transition. The clock stability improves with
the interrogation time, but the phase can only be unambiguously

mapped when it is in the range of [-11/2, t/2]; phases outside this
range lead to phase-slip errors, which limits the attainable inter-
rogation time at a given phase-slip error probability in the case of
local-oscillator-limited clocks. Optimal readout schemes'>">'° could
exponentially improve the attainable interrogation time, but require
local rotational control over sub-ensembles during the sensing pro-
tocol or local mid-circuit readout and reset, both of which have not
been demonstrated to date.

Here we show local control of optical transitions in a
tweezer-array clock’ ™" by using rearrangement techniques® 2
on atoms in superposition states to precisely control the
position-dependent phase imprinted by light-matter interaction.
The scheme?®” is experimentally simple and highly robust asit solely
relies on the relative stability of the tweezer positions and does not
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Fig.1|Single-site addressing with movement-induced phase shifts. a, We
consider two atoms individually trapped in optical tweezers, both initially in the
electronic ground state. Travelling light emitted from a global laser beam applies
at/2rotation to both atoms, and is disabled, but remains phase coherent with
the atomic transition. One of the atoms is then moved by halfthe laser
wavelength (1) fromitsinitial position, rotating the effective local laser frame by
anangle ¢ =m. When the laser drive is restarted to apply another /2 pulse, the
moved atom now rotates back to the ground state, whereas the static atom
rotates to the excited state. b, Control over the atom displacement Ax is
equivalent to arbitrary local rotations of the laser drive by ¢ = kAx about the 7
axis. ¢, Weimplement this protocol with an array of *Sr atoms utilizing the
ultranarrowS, < P, transition with A = 698.4 nm for global driving. d, With an
array of 39 tweezers in one dimension (top), we apply the protocol in b, shifting
every odd site (purple markers) in the array and leaving all the even sites static

Shift distance, Ax (nm) Z(2m)-shift time (ps)

(blue markers) during the dynamics. A sinusoidal oscillation emerges in the
excited state population of the shifted sites (bottom), with a period of 699(1) nm.
e, Focusing on theregion around Ax =1 (grey-shaded regionind), we find that the
shifted atom shows no measurable loss in fidelity compared with the unshifted
atoms. Correcting for the bare fidelity for performing a global X(1r) rotation (red
dashed line; 0.9956(1)), we find that the shift operationis performed witha
fidelity of 0.9984(5). The ratio of the shifted to unshifted fidelities is 0.9998(5),
suggesting that the dominant source of error comes from global laser phase
noise during the finite wait time required to perform the shift, rather than the
movement itself. From the datain d, we find that the crosstalk to the static atoms
is 0.1(2)%, consistent with 0. f, The shift to apply a Z(2m) rotation can be
performed without a noticeable loss of fidelity down to shift times of ~20 ps; the
datain e are taken with a shift time of 32 ps, in addition to an extra wait time of

34 psto account for finite jitter in the control timings.

involve any auxiliary addressing beams. Using this technique, we
demonstrate arbitrary, parallel, single-site-resolved optical qubit
rotations with high fidelity.

We utilize such rotations to double the dynamic range of opti-
cal Ramsey spectroscopy by performing simultaneous evolution on
two separate atomic ensembles within one tweezer array, each of
which measures a different phase quadrature’®; we extend the coher-
entinterrogation time by a factor of 3.43(13) relative to the standard,
single-ensemble sequence. Finally, we realize a proof-of-principle
protocol for programming local dynamical decoupling sequences
during Ramsey interrogation such that different ensembles within a
single atom array have different sensitivities to phase variations, and
discussitsimplementation as part of ageneral protocol forimproving
clock stability™",

Aside from clocks, our technique for implementing local, paral-
lel rotations about arbitrary axes might also find use in neutral-atom
quantum computing platforms utilizing optical transitions***, where
thelocal coherent control of optical qubits has not been demonstrated
before. More generally, our results point to a future of fully program-
mable neutral-atom optical clocks that incorporate features of quan-
tum computers.

The basic principle of our schemeisillustrated in Fig. 1a. We con-
sider two atoms bothinitially in the ground electronic state |0), inter-
acting with a global laser beam characterized by wavevector k= 2m/A
and wavelength A, propagating along the array axis. With the globally
applied laser, we create an equal superposition state of |0) and the
excited state [1); in a Bloch sphere picture, this corresponds to a 1t/2
rotationaround the xaxis (X(17/2)). The laser beamis then extinguished
with anoptical modulator, but remains phase coherent with the atomic
transition. Using atom rearrangement techniques®**, one of the atoms
is shifted from its original position by Ax, applying an effective phase
shift of ¢ = kAx (Methods). In Fig. 1a, we first consider the special case
of Ax=1/2, or equivalently, a Tt rotation around the zaxis (Z(1)) for the
shifted atom (Fig. 1a). Subsequently, we apply a second global X(11/2)

rotation with the same laser as before; the shifted atom now rotates
backto|0)because of the movement-induced phase shift, whereas the
unmoved atom completes its rotationto|1).

The main principle behind this scheme is a locally controlled
change of the relative phase between the atomic dipole oscillation
and the phase of the laser while the atom is in a superposition state;
inessence, our schemerealizes alocally controlled Ramsey sequence
with global driving (Methods). Similar techniques have been used in the
context of ion-trap experiments with two ions, but not in a scalable
fashion, asis possible with tweezer arrays?.

We show an experimental demonstration with our *8Sr optical
tweezer-array experiment”**°, We employ a one-dimensional array
of 39 optical tweezers generated via an acousto-optic deflector (AOD)
driven by an arbitrary waveform generator (AWG). This allows for
precise control over the relative tweezer positions at the nanometre
level, enabling arbitrary Z(¢) rotations (Fig. 1b). Global driving is per-
formed on the ultranarrow 'S, < P, optical clock transition with a
transition wavelength of A = 698.4 nm (Fig. 1c).

Inafirstexperiment, we globally apply an X(11/2) operation to the
entire array, then shift every odd site by the same distance Ax, apply
another global X(11/2) rotation and finally measure the excited state
populationinbothshifted and unshifted sub-arrays. The excited state
population of the shifted atoms P, shows sinusoidal oscillations with
aperiod of 699(1) nm as a function of Ax, consistent with ¢p/21t = Ax/A,
where dis thetransition wavelength. The quoted error on this measure-
mentis purely statistical, and ignores potential systematic error arising
fromtheindependent distance calibration performed with an optical
resolution test target. We note that the present measurement is likely
afar more precise and accurate distance calibration tool, and could
find use as an effective in situ laser-based ruler with applications for
the precision determination of distance-dependentinter-atom effects,
such as Rydberginteractions®.

To quantify the phase-shift fidelity, we focus on a narrow region
around Ax = A, corresponding to a Z(2m)rotation (Fig. 1e). A quadratic
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Fig. 2| Arbitrary, parallel and local rotations. a, We implement site-resolved
phase shifts ¢; during the dark time t of standard Ramsey interrogation by
inserting arbitrary and parallel shifts of various distances to the array of atoms.
b, Results of this operation as a function of Ramsey time (x axis) for different
tweezersin the array (y axis). The corresponding programmed phase-shift
patternis shown on the right of each panel. ¢, By applying multiple global X(11/2)
pulses (grey blocks), in tandem with local movement shifts (same colour scale as

ina), arbitrary local rotations can be performed. We show ademonstration by
rotating an array of six atoms, initially in the |0) = |-Z) state, in parallel to the six
cardinal states (|-2), [+2), |-Y), [+Y), |-X) and |+X)), achieving an average fidelity of
0.984(2) (blue bars) and 0.987(2) after SPAM correction (tan bars), limited by
global X(1t/2) fidelity and decoherence during the time needed for movement
(Methods). d, Bloch sphere visualizations of the states measured with quantum
state tomographyinc.

fit to P,(Ax) shows a maximum value of P, = 0.9940(5) (not corrected
for state preparation and measurement (SPAM) errors), consistent
with the mean excited state population of unshifted atoms,
P,=0.9942(2), in the same range. Correcting for the bare X(m)fidelity
(Fig.1le,red dashed line) of 0.9956(1) shows that the shift operationis
performed with a fidelity of 0.9984(5). We note that applying SPAM
correction on the bare fidelities maintains the shift fidelity largely
unchanged asitis calculated from the ratio of the two. The ratio of the
shifted to unshifted fidelities is 0.9998(5), suggesting that the domi-
nant source of error comes from global laser phase noise during the
finite wait time required to perform the shift, rather than the move-
ment itself. We study the fidelity to perform the Z(2m) rotation as a
function of shift time (Fig. 1f), and find that the fidelity remains con-
stant down to shift times of ¢, =20 ps; data in Fig. 1e were taken with
t,=32 ps, plus an additional 34 ps of wait time to account for jitter in
the subsequent control timings. Importantly, for all shift distances
(Fig.1d), the excited state population of the neighbouring unshifted
atoms is nearly constant, showing crosstalk of only 0.1(2)%
(Methods).

Arbitrary rotation patterns canbe imprinted on the array by shift-
ing all of the atoms by varying distances such that rotations about the
zaxis with tweezer-resolved phase ¢;are applied (Fig. 2a). We show the
results of time-resolved Ramsey spectroscopy for four different choices
of single-site addressing patterns, demonstrating arbitrary,
site-revolved and parallel Z rotations (Fig. 2b). Such addressing pat-
terns could be used to negate variations in the transition frequency
acrossthearray, forinstance due to gradients in magnetic field or from
finite differences in the wavelengths of the tweezers generated by an
AOD". Combining these single-site Z(¢j) rotations with a series of
global X(1t/2) pulses allows for rotations about any axes, not just the z
axis. As ademonstration (Fig. 2c,d), we choose a set of six contiguous
atoms, initially in the ground state (denoted here as [-2)), and rotate
them each in parallel into the six states |-2), [+2), |-Y), [+}), |-X) and
|+X), with an average fidelity of 0.984(2) (0.987(2) SPAM-corrected),
as determined by state tomography (Methods). The dominant

limitations to this value are likely from global drive infidelity and
dephasing during the finite shift times.

We note that while here we have demonstrated our protocolona
one-photon optical transition, it could be used toinduce asimilar effect
for two-photon Raman transitions, for instance between hyperfine
states®, assuming the two beams are counter-propagating. Further, the
movement-induced phase shifts employed here rely solely on a rela-
tive change in tweezer position, in contrast to alternative techniques
that apply additional addressing beams® ¢, where the phase shift is
proportional to alocal addressing beam’s intensity. While the address-
ingbeamintensity and alignment are prone to drifts on experimental
timescales, relative atom movements are ultimately derived from
the radio-frequency electronic output of an AWG, which is precise,
consistent and robust. We emphasize that our results did not utilize
noise-compensating composite pulse sequences and that all data
were taken without any system realignments or recalibrations of the
atom movements.

We now demonstrate that access to such robust, high-fidelity,
single-site operations can enable enhanced sensing protocols for
entanglement-free metrology. In particular, several protocols rely-
ingonlocal control have been proposed forimproving the stability of
phase estimation'>"*'**” by increasing the dynamic range in which the
stochastically evolving laser phase 8 can be estimated.

Here we experimentally show one such proposal', by splitting
the array into two sub-ensembles using local addressing to perform
Ramsey interferometry simultaneously in two orthogonal bases,
XandY,yielding populations P* and P¥. While readout in asingle basis
limits theinvertible phaserangeto 6 € [-11/2, /2], readoutinbothbases
allows this range to be unambiguously extended to [, ] (Fig. 3a).
Consequently, we can afford a longer Ramsey interrogation time
before 0 drifts outside of the invertible range, which would cause a
phase-slip error. Note that while the atom number in each quadrature
has been halved, this typically does not increase the quantum projec-
tion noise (QPN)* from the dual-quadrature measurement compared
to asingle-basis measurement (Methods)'>'.
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Fig.3|Enhanced sensing with dual-quadrature measurement. a, For agiven
phase angle 6, population measurement in only a single basis, for example Y,
canonly be inverted within a dynamic range of -1/2 < 6 < /2. By measuring
both quadratures Xand Y, this dynamic range canbe doubled to-mt <6<,
allowing for interrogating larger spreads in phase, such as when measuring

for longer times. b, We implement the dual-quadrature readout of Ramsey
interrogation by applying local t/2-phase shifts to all the odd sites in the array.
¢, Withsingle-quadrature readout, the interrogation time is limited due to
phaseslips, visible by the separation between a decay envelope reconstructed
from the single-quadrature phase spread (orange dashed line) and the averaged
Ramsey signal (blue and red markers and lines). The equivalent reconstruction
with dual-quadrature readout (green dashed line) is accurate up to longer times.
d, To perform this reconstruction, we measure the time-resolved probability
distributions of the estimated phase relative to the mean from dual-quadrature
measurement. As the standard deviation (o) of the phase distribution grows
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(inset), the estimated phase begins exceeding the —1/2 < 8 < /2 range for normal
spectroscopy (black dashed lines), but is still resolvable via dual-quadrature
measurement. Note that the time-dependent contribution from QPN to the
standard deviation has been subtracted off in the inset (Methods). e, We estimate
the phase-slip probability € for single-quadrature (orange circles) and dual-
quadrature (green circles) measurements by fitting a folded Gaussian to the
time-resolved estimated phasesind. The fit is folded over at the boundaries of
the dynamic range to account for the behaviour of phase slips, as that in a. For
the single-quadrature case, we also directly estimate the probability from the
underlying data (squares), whichis in good agreement with the estimate from
thefit. The solid lines are the predicted phase-slip probabilities from the fit in
theinset of d. This fitis used to estimate the decay envelopesinc.f, Foragiven
allowable phase-slip probability, the enhanced dynamic range of the dual-
quadrature readout improves the maximum possible interrogation time. For our
particular phase-growth profile (inset of d), theimprovement is a factor of ~3.43.

Toimplement this dual-quadrature readout, we perform Ramsey
interferometry with the addition of a Z(1/2) rotation to all odd sitesin
thearray before readout (Fig. 3b). The resultant oscillationsin P* and
PY show att/2-phase shift between the even (X) and odd (V) sites in the
array (Fig.3c). For every repeated measurement (indexed by ) at time
t, we estimate the phase as'

60) = arg (°(0) + iz (0)), @
where 2%(¢) = 2P*?(t) - 1) and arg is the argument function.
We then calculate the difference, 6(t), of 6,(t) from its mean phase
(Methods).

We plot the probability distribution 2(6;(¢)) (Fig. 3d) and observe
acontinuous growth of its standard deviation (s.d.) o (inset). We stress
thatweareinterested in the distribution of the laser phaseitself, which
determinesthe phase-slip error probability. Hence, we have subtracted
the contribution from QPN to our experimental data (Fig. 3d, inset)
(Methods). We find that the laser phase s.d. grows with time as apower
law: o= Bt*, with a = 0.56(2), which we attribute to a power spectral
density composed of 1/fand white frequency noise. If this s.d. of the
laser phase itself becomes too large compared to the dynamic range,
frequent phase-slip errors occur. InFig. 3e, we evaluate the phase-slip
probability (¢) that the phase has exceeded the bounds of [-11/2, T1/2]
(inemulation of atheoretical single-basis measurement; Fig. 3d, black
dashed lines) or [-m, ] (for the dual-quadrature readout); we find that
the error probability for the single-basis case quickly becomes sub-
stantially larger at shorter interrogation times (Methods).

We further characterize the maximum interrogation time T;,,,(€)
for which the phase-slip error probability is still below a threshold €
(Methods). We find that T,,,.(€) is significantly increased for the
dual-quadrature case (Fig. 3f) by a factor of 3.43(13), the exact

numerical value of which is determined by the phase s.d. growth rate
observed experimentally and is related to the laser noise spectrum
(Methods). Such elongation in the attainable interrogation time can
be directly translated to enhanced stability in a metrological setting.
Forexample, in azero dead-time optical clock, the stability is propor-
tional to the square root of T;,,,,(€), such that we can project anincrease
in stability by a factor of v/3.43 ~ 1.8 for our particular noise profile.
This would constitute a practical improvement in phase estimation
without increasing the probability of phase-slip errors, acommon
problem for entanglement-enhanced metrology schemes™*.

Even greater enhancements in dynamic range, and hence clock
stability, could be possible through the use of multiple ensembles with
differentinterrogation times by utilizing fast quantum non-demolition
measurements*®* or by explicitly programming ensembles with dif-
ferent sensitivities to the global laser phase'>". In the latter of these
protocols, the total number of atoms is evenly divided into M ensem-
bles, which are each further subdivided into two sub-ensembles for
dual-quadrature measurement. One ensemble is used for normal phase
measurement, while for the rest the free evolution time is reduced by
factors of 27,..., 2" or equivalently, their effective phase accumula-
tion is reduced by the same amount. If this procedure is performed
correctly, the effective ensemble coherence times will thenbe extended
by factors of2,..., 2", meaning that slower-evolving ensembles can be
used to probe for phase slipsin the fastest ensembles. This then allows
for phase estimation over a wider dynamic range beyond [-T, 1], and
potentially allows for an improved scaling of the clock stability with
atom number at a fixed phase-slip probability (Fig. 4a).

Asanoutlook, we demonstrate a proof of principle of local control
techniques towards such protocols by performing local dynamical
decoupling such that three ensembles experience different effective
Ramsey evolution times of T, 7/2 and T/4. This is accomplished by
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Fig. 4 | Local dynamical decoupling towards optimal metrology. a, We split
the array into three ensembles, and performalocal dynamical decoupling (DD)
sequence such that even though the total Ramsey dark time is T, individual
ensembles experience different effective evolution times of 7/4, T/2and T.

The phase of each ensemble is then measured using dual-quadrature readout.
b, Slower-evolving ensembles (those which experience less evolution time)
canbe used to detect phase slips in faster-evolving ensembles, extending the
effective interrogation time of optical clocks. Following the sequenceina, we
find the three ensembles evolve at relative rates 0f 1.00:1.99(1):4.10(4) with

Total evolution time, T (ms)

respect to the total evolution time 7. The demonstrated schemeinaand bis
effective for the case of slow frequency noise where the corresponding noise
correlation time is longer than the total evolution time. ¢, To handle generic
time-dependent noise with shorter correlation times, we envision breaking

the total evolution time into k kernels of length 7, each of which is composed of
local dynamical decoupling and free evolution. In this way, as long as Tis shorter
than the correlation time of any time-dependent noise affecting the system, the
different Mensembles (indexed by m =0,..., M- 1) canaccumulate phasein a
correlated manner over the interleaved Ramsey interrogation periods.

inserting local X(1) pulses (using techniques shown in Fig. 2c) during
evolution at time T/4 for the second-fastest ensemble and time 37/8
for the slowest ensemble. Each ensemble is then further subdivided
into two sub-ensembles for dual-quadrature readout (Fig. 4b). Result-
ant Ramsey oscillations versus the total evolution time 7 show a fre-
quency ratio 0f1.00:1.99(1):4.10(4), very close to the desired 1:2:4 ratio.

Following this experimental demonstration, we now discuss two
limitations (and possible solutions) of this scheme, specifically related
to the frequency noise profile and the atom number per ensemble.
First, for the simplest case of shot-to-shot noise of laser frequencies
that are otherwise constant during the interrogation, our scheme
would allow the clock stability to be improved exponentially by a
factor of 4/2M-1/M; the factor of \/I/_M stems from increased QPN in
the ensemble used for phase estimation and assumes that the total
number of atoms is uniformly distributed across the M ensembles.
However, for more general time-dependent frequency noise, the situ-
ationis more complex, requiring a higher-order pulse sequence’. We
propose one such pulse sequence in Fig. 4c, by breaking the total

evolution time Tinto multiple kernels of length 7. Within each kernel,
each ensemble experiences a combination of local dynamical decou-
pling and free evolution, such that the net phase evolution time is
T, T/2,..., T/2", This scheme could handle noise profiles where the
local phase accumulation period 7is shorter than the correlation time
of noise. We numerically find that exponential scaling of the maximum
interrogation time is then possible up to a saturation point set by the
effective decoupling bandwidth (Extended Data Fig. 2).

Second, multi-ensemble estimation schemes in general require
sufficient atom number per ensemble to be useful?. When the num-
ber of atoms per ensemble is limited, QPN can negate any advantage,
i.e. when the error probability in estimating a phase slip by using a
slower-evolving ensemble exceeds the actual phase-slip probability
in the fastest-evolving ensemble. For the present experimental dem-
onstration with N= 6 per ensemble, we do not expect a metrological
gain (Extended Data Fig. 2), but we note that a generalization of our
addressing scheme to two-dimensional tweezer clock systems" is
straightforward. For example, we imagine a realistic scenario of a
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10 x 20 atom array with column-by-column control of the tweezer
positions, such that it could be generated with crossed AODs or an
AOD combined with a spatial light modulator. In this case, each pair
of columns could realize one ensemble with dual-quadrature readout.
Finally, we note that such exponential scaling is possible only up to a
timescale where decoherence is dominated by local oscillator noise.
Beyond that, the interrogation time will be limited by atomic coherence
and ultimately by atomic state lifetime*.

In summary, we have demonstrated arbitrary local rotations for
optical transitions through robust phase-sensitive position control
in neutral-atom arrays, with sub-diffraction-limited precision. We
have used such rotations to simultaneously interrogate two atomic
ensembles for dual-quadrature readout of a Ramsey interferometry
signal with demonstrable metrological gain, and have shown a proof
of principle for controlling many ensembles with variable sensitivity
during Ramsey evolution, a key ingredient of proposals for optimal
clocks. Further, these methods could be naturally combined with
metrologically useful entangled states'***** to simultaneously enable
high sensitivity with alarge dynamicrange. More generally, our results
areanimportant step towards a fully programmable quantum optical
clock based onneutralatoms, which would incorporate quantum com-
puting techniques towards metrological gains, similar to work done
with ion-trap devices**** but likely in a more scalable fashion. Such a
universal neutral-atom clock system would ideally combine arbitrary
local rotations, as shown here, with two-qubit entangling operations
for optical transitions*, and mid-circuit readout and reset, which has
notbeen demonstrated so far.

Note added in proof: During the completion of this work, we
became aware of a related work performing local Z rotations and
studying entanglement-enhanced metrology in an optical
tweezer-array clock experiment*e.
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Methods

Light-matter interaction Hamiltonian

After applying the rotating-wave approximation, the light-matter
interaction Hamiltonian considered in this work is given by*’

2|

H= - (10) (1] e + |1) (0] ek, )

where Qis the Rabi frequency, kis the global laser wavevector, xis the
atomic position along the beam propagation axis, |0) is the ground
stateand|1) is the excited state. Atom displacements by Ax correspond
to phase shifts of ¢ = kAx, as described in the main text.

Note that the choice of the phase for the initial X(r/2) rotationisa
local gauge freedom, and thus all atoms in the array can be said to
experience rotation about the same local axis, for example the x axis,
despite the spacing between atoms generically not being perfectly
commensurate with the driving wavelength. When the atomis shifted,
itcanbe thought of as changing X — X cos(¢) + i¥ sin(¢). For the case of
only a single global X rotation after the movement, this is equivalent
toan effective Z(¢) rotation of the quantum state; however, ingeneral,
if multiple global X operations are performed, the equivalence with
an effective Z rotation breaks down.

Data analysis

Discrimination between |0) = ['S,) and [1) = |*P,) is performed by strongly
driving the 'S, < 'P, transition for 10 ps, which heats and ejects all
atomsin'S, (details onthe strontium level structure are provided else-
where?*%). Atoms in P, are then pumped back into 'S,, and imaged
with a lower power on the 'S, < 'P, transition; imaging is performed
within120 ms.

For all the data in the main text, we interleave®® data-taking with
feedbacktotheglobal |0) < |1) drive frequency every ~4 minto coun-
teract slow (~40 min period) oscillations arising from environmental
drifts.1oerror barsin the main text are typically smaller than the marker
sizeinall figures; thisincludes Figs. 1d-f, 3cand 4b.

Operation fidelities

Error modelling suggests that the global X(m) fidelity of 0.9956(1) is
primarily limited by measurementerrors (see below), finite tempera-
ture (the average motional occupation of atoms along the radial axis
is 7 ~ 0.2, leading to an infidelity of 2 x 10~®) and frequency noise on
our laser; the latter of these, we believe, is also the dominant limita-
tion to our Ramsey coherence time (Fig. 3c). The Rabi frequency is
~2.5 kHz for all measurements in this work, which allows for fast
operations compared to the timescale of decay from >P, (~550 ms
(ref.49)). Measurement errors are dominated by the vacuum-limited
atom survival during imaging (0.9995(4)), the imaging fidelity for
detecting the presence of an atom (0.9997(2)) and the likelihood of
ejecting atomsin 'S, from the tweezers to perform state discrimina-
tion (0.9967(5)) before final imaging. We note that not all of these
measurementerrors contribute equally, and their relative importance
generically depends on the amount of excited state populationinthe
measured state.

The wavelength of the oscillation A (Fig. 1d) is found from fitting
the excited state population of the shifted atoms with asinusoid of the
form Asin(2mAx/A,.) + B, fromwhich we determine the quoted value of
Aose = 699(1) nm. Per our independent calibration of distances within
the array, we expect thereis anadditional ~5 nm of systematic uncer-
tainty on this measurement. Further systematic uncertainty could
arise if the beam propagation is not perfectly coaxial with the array.
The crosstalk fidelity of 0.1(2)% is found by fitting the unshifted-atom
excited state populations (Fig. 1d) with asinusoid of the same period
aswas determined for the shifted atoms; the quoted crosstalkis then
the amplitude A of this sinusoid. We note that we have also checked
for any residual linear phase shifts by repeating this experiment with

a global phase shift of /2 on the final Ramsey pulse, which yields
linear sensitivity to small phase shifts. We find the phase of unshifted
atoms to still be consistent with zero over a range of more than one
wavelength.

To determine the fidelity of arbitrary local rotations (Fig. 2c), we
perform quantum state tomography by reading out the produced
statesinthex,yand zbases by rotating the state with a global t/2 pulse
ofagivengloballaser phase as necessary. The fidelity is then estimated
as F = (Prargecl P1Wearger), Where p is the experimental state determined
by quantum tomography. Due to the choice of the six arbitrary rota-
tions, the fidelity estimation coincides with the population of the
excited state or ground state along the corresponding axis. For
instance, the fidelity of [+Y) is determined by the population of the
excited state when the prepared state is rotated and measured in the
y basis. To access the intrinsic infidelity induced by arbitrary local
rotations, we extract SPAM errors and correct them. SPAM sources are
dominated by the same detection infidelities as for the global X(1/2)
fidelity (see above), and the finite SPAM-corrected readout 1t/2 pulse
fidelity of 0.9982(4).

Estimating prior width of the laser phase

Here we detail how we find and isolate the prior width of the laser phase
distribution from the experimentally measured values. We note that
while the phase-slip probability depends only on this prior width, the
measured distribution is further affected by QPN. The QPN itself is a
function of the fraction of excited atoms measured in the Ramsey
sequence. One thus finds that the relative contribution of the QPN term
varies with the central phase of the laser and the prior width of the
phase distribution. Assuming a system of N=20 atoms, we plot the
calculated phase distribution width as a function of central laser phase
6, but with the underlying prior phase distribution having a width of
zero (Extended DataFig. 1a). We repeat this calculation for both single-
and dual-quadrature phase estimation. We note that these estimators
are affected slightly differently by QPN. Specifically, while the optimal
single-quadrature working point in terms of minimal QPN is around a
mean phase of 0 (which corresponds to measurement with an excita-
tion fraction of 0.5), we find that the optimal working point for a
dual-quadrature estimationis around amean phase of t/4 (correspond-
ing to the two quadratures having excitation fractions of 0.85),
although we note that the dual-quadrature value s relatively flat over
the entire bandwidth. For longer interrogation times, the prior width
grows as apower law, which depends on the laser noise spectrum. Thus,
the contribution from projection noise is, in general, time
dependent.

Toisolate this effectand learn the true laser phase distribution as
afunction ofinterrogationtime, we first calculate the total observable
widthincluding QPN, o,,,, for arange of prior widths o;at agiven laser
central phase . This is done by sampling random phases from anormal
distribution, followed by sampling the observed phase fromabinomial
random process representing the projection uncertainty. Repeating
this process over amillion draws, we obtain the observed distribution
asafunction of prior width (Extended Data Fig. 1b). We theninvert the
function to obtain o; (0,,,) and interpolate the latter to find the prior
width at the given measured o,,.

Fitting the phase-slip probability
To find the phase deviation from the mean phase for a given shot, we
fit the Ramsey oscillations (Fig. 3¢) with a decaying sinusoid, and at
each time we define the fitted mean populations as P(x)(t) and P(y)(t).
These populations are inverted via equation (1) into the mean phase
6(¢), and finally we calculate the phase deviation from the mean as
8,(t) = mod(6;(t) — 6(¢), m).

For the phase-slip probability (Fig. 3e), we fit the probability densi-
ties 2(6;(t)) with G(), where Gis a Gaussian distribution folded into the
range [-m, it]. This fit provides an estimation of the true standard

Nature Physics


http://www.nature.com/naturephysics

Article

https://doi.org/10.1038/s41567-023-02323-w

deviation o of the §(¢) distribution. With this in hand, for a given
half-dynamic range B, we then find the phase-slip probability € as

€= Zf G(P)dP = erfc <L> 3)
8 V2o
where erfcis the complementary error function. Note that here B =/2
corresponds to asingle-basis measurement whereas B =t corresponds
to adual-quadrature measurement.

To calculate the maximum interrogation time, we first find the
prior width of the laser phase (as described earlier) and then fit the
time-resolved profile of o(¢), as o(t) = ft*. We find =1 x 0.119(6) and
a=0.56(2). The growth of o over time can then be used to predict the
Ramsey decay envelope C for different choices of B, as C = e=%*/2. In
Fig. 3¢, we show this envelope estimation for the cases of B=T/2 and
B =1 (orange and green dashed lines, respectively).

We then analytically calculate the maximum interrogation time at
afixed phase-slip error probability e from equation (3) as

Ja
Tmax(€) = (B/(\/E,BerfC’l(e)))1 . @)

Limits in multi-ensemble metrology

Tostudy the possible limitations of the multi-ensemble scheme, we sim-
ulate stochastic phase evolution of alocal oscillator with1/ffrequency
noise, whose overall power sets a characteristic single-ensemble 1/e
Ramsey coherence time T,,. We numerically find the maximum inter-
rogation time at a fixed phase-slip probability € (here we use € =5 x 107%)
withincreasing ensemble number Mby iteratively correcting for phase
slips, as described elsewhere>. We repeat this calculation for different
dynamical decoupling blocklengths 7. In Extended DataFig. 2a, we plot
theresults for up to M =9 ensembles, assuming infinite atom number.
We find thatadding more ensemblesindeed enables exponential scal-
ing of theinterrogation time up to asaturation point set by the effective
dynamical decoupling bandwidth (expressed in terms of /T, ).

We further study the effect of QPN on the efficacy of the scheme
inthe case of low atom number per ensemble. For the optimal dynami-
cal decoupling sequence found previously, we vary the number of
atoms per ensemble Nand repeat the calculation, whichis now affected
by QPN. Specifically, the use of slower-evolving ensembles with lim-
ited atom number for the iterative correction of phase slips in the
fastest-evolving ensembles is prone to errors due to the increased
variance in such estimation. For asmallnumber of atoms per ensemble,
this negates any advantage. However, we note that N ~ 20 atoms per
ensemble suffice for efficient operation of the scheme, with the inter-
rogation times and noise strength tested here.

Data availability
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Extended Data Fig.1| Quantum projection noise in a dual-quadrature
measurement. a, Added standard deviation due to quantum projection noise
(QPN) for phase estimation around different average phases 8, plotted for N=20
atoms utilized in a single-quadrature (orange) or dual-quadrature (green, 10
atoms per quadrature) measurement. The added QPN varies with the phase the
measurement is taken at; thus as the prior width of the phase distribution grows
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