
Control-Theoretic Analysis of
Shared Control Systems

Reuben M. Aronson
Department of Computer Science

Tufts University
Medford, Massachusetts, USA

reuben.aronson@tufts.edu

Elaine Schaertl Short
Department of Computer Science

Tufts University
Medford, Massachusetts, USA

elaine.short@tufts.edu

Abstract—Users of shared control systems change their be-
havior in the presence of assistance, which conflicts with as-
sumpts about user behavior that some assistance methods make.
In this paper, we propose an analysis technique to evaluate
the user’s experience with the assistive systems that bypasses
required assumptions: we model the assistance as a dynamical
system that can be analyzed using control theory techniques.
We analyze the shared autonomy assistance algorithm and make
several observations: we identify a problem with runaway goal
confidence and propose a system adjustment to mitigate it, we
demonstrate that the system inherently limits the possible actions
available to the user, and we show that in a simplified setting, the
effect of the assistance is to drive the system to the convex hull of
the goals and, once there, add a layer of indirection between the
user control and the system behavior. We conclude by discussing
the possible uses of this analysis for the field.

I. INTRODUCTION

Recent work [1] shows that users actively explore the be-
havior of assistive systems, reason about how they behave, and
change their own inputs to drive the systems to their desired
goals. The behavior is difficult to reconcile with assistance
methods that require assumptions about user behavior, such
as goal-predictive assistance systems [2]. In fact, we theorize
the problem may be more serious: if users always have the
“last word,” analytical tools that require assumptions about
user behavior or response will encounter recursive issues as
users continually adapt to changes in the system.

In this paper, we propose an alternative analysis technique
based on this insight: rather than model the user directly, we
model the rest of the robot and assistance systems as a dynam-
ical system that the user is controlling. This technique is not a
substitute for other methods of developing assistance. Rather,
it enables examining the user’s experience independently from
whatever assumptions about the user, environment, or task
that the assistance relies on. In this way, all assistance can
be viewed as changes to a dynamical system that the user is
operating, and any adaptation or learning performed by the
system becomes added dynamics for the robot.

To develop this approach, we turn to dynamical systems
and control theory. These fields, which are commonly used
in robotic systems, study how a system behaves over time in
response to its inputs, internal dynamics, and outputs. Control
theory further explores how to design rules for providing

inputs to guarantee certain behaviors of the system while
knowing only the outputs. Our key insight is that when operat-
ing a system with assistance, the user is performing precisely
this control operation however the assistance is designed. The
assistance system defines the system dynamics that the user
controls, and designing assistance behavior is equivalent to
designing the plant. Thus, we can use insights from control
theory about what makes dynamics easy or hard to control and
apply them to evaluating the assistance itself.

In this paper, we develop this control-theoretic analysis of
shared control systems by analyzing of shared autonomy [3],
a popular shared control formulation. We show that the assis-
tance acts as a pure integrator, which has some undesirable
properties, and use controls analogies to propose mitigations.
We next show that the assistance restricts the possible actions
that the system can take no matter the user’s intentions. Finally,
we discuss a simplified setting, free-space navigation, and
show that the dynamics of the system reduce to the user
moving a set point that the system settles at. We conclude
with a discussion of next steps for this analytic approach and
implications for the design of shared control systems.

II. BACKGROUND

A. Shared Control
In a shared control framework, both the user and an assistive

algorithm simultaneously control a robot [4]. The assistance
modifies the robot’s behavior to drive the system in a way that
the user “actually means” — motivations for shared control in-
clude challenges of low-dimensional interfaces [5, 6] or safety-
critical situations [7]. Goal-predictive assistance [2] breaks the
problem down into intent detection, during which the system
estimates the “true” goals of the user using various methods[8–
10], and arbitration, during which the user’s initiative is mixed
with an assistive action generated based on the detected intent.
These systems improve performance in many settings [11–15].
However, they require strong assumptions about user behavior
which do not necessarily hold in practice [1], thus benefiting
from our approach.

Other assistance methods focus directly on the dynamics.
Most directly, virtual fixtures [16] apply artificial forces to
the robot’s input response. More sophisticated approaches
change the behavior of the robot to encourages successful task



performance [17, 18]. Our analysis broadens this assistance
strategy to characterize assistance behavior that is not designed
this way explicitly.

Though shared control research generally focuses on algo-
rithmic advances, several papers consider the human experi-
ence of controlling a robot in a shared control paradigm [1,
19]. This work includes explicitly modeling how the user will
adapt to the system [20, 21], changing the system to make the
user’s behavior more informative [22, 23], and adjusting the
user model based on observed behavior [14, 24, 25].

B. Control Theory
Control theory analyzes how to drive a dynamical system to

a particular desired output. Dynamical systems models consist
of three components: the input D, the state G, and the output H.
Then, control theory answers the following question: Assume
we can provide inputs D to the system and observe output H,
but we do not have direct access to G. How do we select the
input D to drive the system to produce some desired output H⇤?
For this paper, we examine assistance from the perspective of
the user, who can provide input D to the assistance system and
observe output H but does not have direct access to the internal
state G. We then use insights from control theory about what
makes dynamics easy or hard to control and apply them to
designing the assistance itself.

Control theory techniques are common in robotics in gen-
eral. Most low-level motor controllers are PID (proportional-
integral-derivative) systems, while model-predictive control
is used for short-horizon optimization of robot low-level
commands. Here, we consider the inverse problem: how do
we design the dynamics of a system so that it is easy for a
controller to be designed that drives the system to an intended
goal?

III. DYNAMICAL ANALYSIS OF SHARED AUTONOMY

To explore this assistance analysis, we present a worked
example. We analyze the shared autonomy control paradigm
as a dynamical system that the user controls and show that it
acts as an integrator, which is known to cause unbounded lag
when trying to change intended goals. We also show that the
presence of the assistance fundamentally limits the actions that
the user can take regardless of their input. Further, we show
that in an obstacle-free navigation task, the system dynamics
are fully determined by a set point (the expected value of the
goal locations over the goal probabilities): the user adjusts the
set point location by changing the goal probabilities, and the
assistance drives the system to that set point.

A. Background: Shared Autonomy
We begin by briefly summarizing the shared autonomy

algorithm presented in Javdani et al. [26]. The algorithm
expects a pre-specified (finite) list of : goals ⌧ along with op-
timal policies for each goal defined by action-value functions
&6 (G, 0). It receives an input DC from the user at each time
step, uses a Bayesian update framework to estimate the user’s
true goal within ⌧ as a probability distribution, then takes

an action that is optimal in expectation over the probability
of the user’s true goal. This assistive action is then applied
to the system itself. The algorithm is intended to improve
performance of the system for a user who knows their goals
but cannot optimally drive the robot to achieve them; the
robot uses its own (presumably) optimal policy to reach them
instead. This system decreases task completion time and user
effort required for reaching the goal.

At each time step, the system estimates the likelihood of
an observed user action DC given each goal. Several models
for the likelihood are used [9, 10]; here, we will show the
Bolzmann rationality formulation, which sets

?(DC |GC , 6) / exp V&6 (GC , DC ) (1)

with GC the current state, V a “rationality” parameter that varies
from V = 0, indicating random user actions, to V = 1,
indicating perfect user actions. Note that this probability is
conditioned on the stat GC ; this approach treats the user’s input
as informative separately from the actual robot state in which
it was provided. For ease of notation, we drop GC throughout.

Next, this likelihood is used to update the assistance sys-
tem’s estimate of the user’s goal, stored as a probability
distribution ?(6 |D0, · · · , DC ). Via Bayes’ rule, we can set

?(6 |D0, · · · , DC ) =
1
/C

?(DC |6)?(6 |D0, · · · , DC�1), (2)

with /C =
Õ

6 ?(6 |D0, · · · , DC ) a normalization factor.
Finally, this system generates assistance by selecting an

action 0C that has the largest expected increase in value over
the goal distribution, given by

0C = arg max
00

’
6

?(6 |D0, · · · , DC )&6 (GC , DC ). (3)

This equation is derived from applying the QMDP assumption
to solving a POMDP representation of the user’s behavior; see
the paper for further details.

B. Dynamical Systems Representation
We now show how the same assistance system appears to

the user as a dynamical system. To do so, we define the internal
state of the system and its dynamics, how the state changes
based on the input, and how the output of the system is derived
from the state.

First, for convenience, we define Æ
&C (D) =

[&60 (D),&61 (D), · · · ,&6:�1 (D)]T as a vector-valued function
representing the value of taking the same action D in the
state GC with respect to each of the goals in turn. This
transformation turns a possible action D into a vector of
length : that describes how well D aligns with each goal in
turn.

Next, we define the state of the assistance system ✓C as

✓C = [log ?(60 |D0, · · · , DC ), · · · , log ?(6:�1 |D0, · · · , DC )], (4)

the log of the goal probability vector used in each step. By
taking the log of Eqn. 2 and substituting ✓C as appropriate, we
obtain the system dynamics

✓C = ✓C�1 + log ?(DC |6) � log /C . (5)



Note that this is a linear system in ✓, but is nonlinear in the
user input DC . However, the user contribution to the update is in
a single additive term, so we can perform a change in variables
to remove it. We define EC (6) = log ?(DC |6) as contribution of
the user’s input towards the system’s selection of goal 6; using
Eqn 1, we compute

EC (6) = V&6 (DC ) � log
’
D0 2*

exp(V&6 (D0)). (6)

Using this equation, we can express the dynamics in terms of
the input vector ÆEC = [EC (60), EC (61), · · · , EC (6:�1] as

✓C = ✓C�1 + ÆEC � log /C . (7)

Next, we consider the output of the system 0C . Using Eqn. 3
and substituting ✓C , we find

0C = arg max
00

exp ✓C · Æ&(00). (8)

Now, note that the term /C is positive, uniform over 6, and
only used inside the arg max term, so it can be dropped
entirely (though normalization may be required for numerical
stability). Thus, our final system is

✓C = ✓C�1 + ÆEC
0C = arg max

00
exp ✓C · Æ&C (00).

C. Dynamics Analysis
The system dynamics for shared autonomy are relatively

simple. Though (generally) nonlinear functions EC (6) =
E(G, D, 6) are required to process the raw user input DC and
compute the output action 0C , the system dynamics consists
of a single integrator.

This representation gives us several insights into the behav-
ior of the assistance system from the perspective of the user.
Pure integrator systems are known to have infinite DC gain:
if supplied a constant input, the system will increase without
bound. In this case, providing a constant user command will
cause the probabilities assigned to goals other than the most
likely to decrease without bound. If the user has been pursuing
one goal for some time and then switches to a different goal,
the user must drive the system towards the new goal with
an amount of effort proportional to what was spent achieving
the first goal before the system will register a change in their
intention. Though the original formulation of shared autonomy
assumes that users will not change their goals, we can still
analyze the system behavior if they do.

Dynamical systems theory also gives us insight into how
to mitigate this effect. Since we have full control over the
dynamics of the goal update, we can introduce a new term to
Eqn. 2 that adds internal stability to the system:

✓C = :✓C�1 + EC , (9)

where 0  :  1 is a stabilizing term that limits how extreme
the values of ✓C can become. Given a consistent user input,
the probability distribution will eventually reach a steady-state
value (ignoring the effect of renormalization), so the effort to

Fig. 1. While there may be many possible actions that the system can take in
some state G, here plotted with their Q-values corresponding to two different
goals, the assistance system only ever selects actions that lie on the Pareto
frontier, indicated by the blue circles.

change the system to select a different goal remains bounded.
Control theory offers other options as well, such as adding a
term dependent on ÆEC � ÆEC�1 which monitors the change in
user input. The analysis suggests changes in the dynamics of
the system that the user is operating which can be evaluated
in future user studies.

D. Experience of User Control

Now, we turn to a different question: what are the possible
actions that an operator can cause the system to produce?
This question makes no sense in a robot-centric perspective:
the goal-specific policy defines the optimal actions for each
goal, so no additional actions are needed. However, users may
want to drive the system to produce other actions based on
their individual information or preferences, and we can use
similar analysis tools to determine their options. To examine
the possible actions, we consider Eqn. 3. For the system to
select an action 0, the action must be the arg max for some
value of ✓C . Furthermore, since exp ✓C > 0, the term inside the
arg max is a positive combination of Æ

&; by definition, then,
Æ
&C (0) must lie on the Pareto frontier of { Æ&C (0) : 0 2 �}.
Therefore, not all actions � are possible. In fact, the possible
actions are a function only of the state GC . User input can only
select among the Pareto-optimal actions, and other actions are
impossible to achieve no matter the user input (see Fig. 1).

With simplifying assumptions, we can go further. Consider
a free-space navigation system with real states ( = R= and
real unit actions � = {0 2 R= : |0 | = 1} [ {0}; we will denote
these states and action as ÆG and Æ0 for clarity. Further, let each
goal 6 2 ( indicate a target state, which we will denote Æ6; ⌧
represents a matrix [60, 61, · · · , 6:�1] of all goals with each
row corresponding to a goal. We posit a closed-form value
function &6 (ÆG, Æ0) = (Æ6 � ÆG)T Æ0 which computes how well the
proposed action Æ0 aligns with the direction to the goal (Æ6� ÆG);
with this assumption, the system is a discrete-time analogue
of potential function navigation1. Then, Æ

&(0) = &
T Æ0 is in fact

1On the domain |6 � G | > 1, with + (G ) = |6 � G |, A (G ) = (6 � G )T0 �
|6 � G � 0 |, and ) (G, 0) = G + 0, this & satisfies the Bellman equation.



a matrix multiplication with

& =
266664

| | |
Æ60 � ÆG Æ61 � ÆG · · · Æ6:�1 � ÆG

| | |

377775
. (10)

In this scenario, we can solve the arg max term directly:

Æ0⇤ = arg max
Æ0

exp ✓ · Æ&( Æ0)

= arg max
Æ0

(exp ✓)T&T Æ0

=
& exp ✓
|& exp ✓ | .

Thus all assistance actions Æ0 are normalized positive combi-
nations of the columns of &, i.e., within the positive span of
the directions towards each goal.

From this analysis, we can draw several conclusions. First,
the assistance can produce any action in � precisely when the
positive span of & includes the whole space. This scenario
occurs when the origin lies within the convex hull of & or,
equivalently, when the state ÆG is inside the convex hull of the
goals Æ6. Thus, the assistance dynamics have two phases: when
the state is outside the convex hull of the goals, the assistance
will drive the state towards the convex hull no matter the user
input. The user can change the direction of approach among
the available goals but cannot drive the system away from the
convex hull. Once the system is within the convex hull, any
action can be achieved by manipulating the assistance state ✓C

so long as the system state remains within the convex hull; the
user cannot drive the system outside the hull. This hull always
exists because |⌧ | is finite (by assumption), though it can be
degenerate; in this case, the system is driven to and remains
in the hyperplane defined by the goals and by the convex hull
within that hyperplane.

Another result of this analysis is that the system can be
made to stop at any point within the convex hull of the goals.
Formally, for all states ÆG 2 conv(Æ6), there is some vector E

with all nonnegative elements such that & E = 0. Since E is
nonnegative, we can select exp ✓ = E; for this probability state,
the optimal action 0 = norm(& exp ✓) = 0. Conversely, all
goal prediction states have a unique stable point at Æ6 exp ✓ =Õ

: ?(:)6: = G
⇤, the convex combination of the goal locations

with weights equal to the goal probabilities; this fact follows
from solving & exp ✓ = 0 for ÆG.

Putting everything together, shared autonomy imposes a
two-phase system. When the system state is outside the
acceptable region, defined by the (possibly lower-dimensional)
convex hull of the goals, the system will drive it towards the
convex hull independent of user input. Within the convex hull,
though, the system supports any desired action, but through a
layer of indirection. The user input updates the set point G⇤ via
the goal inference step, and then the system drives the state
towards that set point. Within the convex hull, users cannot
control the robot directly; rather, they move this (invisible) set
point, and then system responds. Controlling this system is
like driving a car and controlling its speed only through cruise

control. The layer of indirection may also explain why users
remain unsatisfied with the system despite improvements in
trial metrics [3] and particularly dislike pure assistance without
any arbitration with the user’s raw input [27]. This analysis
also explains the equilibrium that users discovered intuitively
in Aronson and Short [1]: by carefully altering the set point,
users can cause the system to stop at any given location within
the convex hull of the goals.

IV. DISCUSSION AND CONCLUSION

In this paper, we perform a dynamical systems analysis of
the shared autonomy framework. Using this analysis tech-
nique, we identify a limitation of the system when given
a constant input and propose alternate formulations to fix
the behavior. We show that the assistance inherently restricts
the user from achieving all possible actions available to the
system. In a free-space navigation setting, which corresponds
to the scenario in many user studies, we find that the assistance
introduces a level of indirection between the user and controls,
which enables intuitive identification of equilibria but may
decrease user opinion.

The analysis here is an example of what this technique
may provide to the field of shared control, particularly for
goal-predictive assistance. Since the user experiences the robot
with or without assistance as a black-box input-output system,
the dynamical analysis can be applied to many other types
of shared control. In general, this analysis transforms shared
control algorithm design into the inverse of a controls problem:
given that somebody will be controlling over a system, design
the system dynamics that best enables that operator to achieve
their goals. We look forward to expanding this type of analysis
to other shared control algorithms and using it to develop
design principles for general assistive systems.

This analytical technique is not a substitute for other ways
of designing shared control algorithms. Instead, its role is
to enable an analysis of the assistance system outside of its
assumptions. While assumptions about user behavior are the
most clearly affected by user adaptation, this technique enables
examining the user’s experience in the case that the user is
performing a different task than the assistance is modeling or
has a conflicting environment model with the assistance. It
even provides a framework for considering “adversarial” user
behavior from a neutral viewpoint to determine how well the
assistance performs outside its intended user behavior. Future
work involves using this technique to develop general analysis
tools for shared control systems that apply independently of
many assumptions.

This paper presents a method for analyzing shared control
systems and developing design principles for useful assistance.
This user-centered, control-theoretic approach promises to
enable systems that expand people’s capabilities, the true goal
of shared control.
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