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Abstract
Foundation models are a promising path toward general-purpose and user-friendly robots.
The prevalent approach involves training a “generalist policy” that, like a reinforcement
learning policy, uses observations to output actions. Although this approach has seen much
success, several concerns arise when considering deployment and end-user interaction with
these systems. In particular, the lack of modularity between tasks means that when model
weights are updated (e.g., when a user provides feedback), the behavior in other, unrelated
tasks may be affected. This can negatively impact the system’s interpretability and usabil-
ity. We present an alternative approach to the design of robot foundation models, Diffusion
for Policy Parameters (DPP), which generates stand-alone, task-specific policies. Since
these policies are detached from the foundation model, they are updated only when a user
wants, either through feedback or personalization, allowing them to gain a high degree of
familiarity with that policy. We demonstrate a proof-of-concept of DPP in simulation then
discuss its limitations and the future of interpretable foundation models.

1 Introduction
Current efforts in creating task-generalizable, novice-friendly robots are largely focused on foundational
models of robot behavior. The goal of such a model is to have a user ask the robot to do an arbitrary task
via verbal or non-verbal communication, then have the robot perform the task with little to no further human
supervision or intervention. The relatively few robot foundation models that exist can all be categorized as
“generalist robot policies.” In particular, the input is an observation of the robot’s state combined with a
language or goal embedding that specifies the task, and the output is a robot action, such as end-effector
displacement. This is the same input-output relationship as a typical task-specific Reinforcement Learning
(RL) policy.

However, these generalist policies have limitations that may pose serious problems when actually deployed
for users. In deployment, a foundation model should be able to learn from data in many different environments
and tasks and personalize to individual users in response to training. However, generalist policies are not
localized with respect to task: new feedback for one task could change model behavior in a completely
unrelated task. This property limits the ability of users to personalize the system or learn what to expect of
its behavior for a given task. In this work, we propose an alternative approach where the foundation model
is a policy generator, which outputs standalone, task-specific policies. We discuss potential benefits of this
approach to robot foundation models as well as potential challenges with generalist policies as a sole solution.

We present Diffusion for Policy Parameters (DPP), a method for generating standalone task policies condi-
tioned on a task specification. We present a proof-of-concept implementation for smaller grid-world tasks.
We show, to the best of our knowledge, for the first time that one can learn representations to generate policies
directly in parameter space, without the need for policy search. Finally, we discuss limitations of the DPP
approach and how to both potentially resolve them and other alternative methods towards generating task-
specific policies. Our results show that DPP is a promising approach to robot behavior foundation models
and warrants further investigation.
2 Related Work
Recent technological advancements in Generative AI (Gen-AI) including the transformer architecture
(Vaswani et al., 2023), and diffusion models (Ho et al., 2020), that are both high performing and scale to
large amounts of data, have allowed for the development of larger and more general purpose task models. In
the case, of language prediction, Large Language Models (LLMs) such as GPT-4 (OpenAI et al., 2024) and
LLaMa (Touvron et al., 2023), have enabled a single large-scale model to perform a variety of linguistic tasks
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Figure 1: The DPP foundation model of robot behavior design approach

(Zhao et al., 2023). Similarly, multi-model models such as CLIP (Radford et al., 2021) and Latent Diffusion
Models (LDMs) (Rombach et al., 2022), have allowed for similar generalizability in image-language embed-
ding and language-conditioned image generation respectively. These technologies are starting to be applied
for general robotic manipulation. Most notable are the large robot behavior policies RT-1/2-X (Collaboration
et al., 2024; Brohan et al., 2023) and Octo (Ghosh et al.), and diffusion architectures for fast imitation learn-
ing across a variety of tasks (Chi et al., 2024; Ze et al., 2024). These models are policies which transform
observations to actions, and, while these models are promising and are beginning to see impressive success
across many tasks, there is little modularity between learning and executing across different tasks.

RL has previously had success for both robot manipulation (Ibarz et al., 2021; Nguyen & La, 2019) and being
applied to human-robot-interaction (HRI) scenarios (Reddy et al., 2018; Akalin & Loutfi, 2021; Park et al.,
2019). When a user interacts with a consistent and self-contained policy, they can better predict its behavior
(Cruz et al., 2023; Horter et al., 2023), customize and personalize its behavior through feedback (Bobu et al.,
2021; Arzate Cruz & Igarashi, 2020; Brawer et al., 2023; Sheidlower et al., 2024) and learn to leverage its
dynamics to accomplish novel tasks (Aronson & Short, 2024; Gopinath et al., 2017). This work on how users
interact with RL systems highlight the value of explainable and modular policies for positive outcomes.

3 Potential Challenges with Robot Foundation Models as Generalist Policies
Robots should be able to learn from feedback and have real-time behavior personalization for any given task.
If the policy the user is interacting with is a generalist robot policy, two problems may limit a user’s ability
to do this. The first is that when a user teaches the robot a new task or personalizes the behavior for a certain
task, the behavior in separate and unrelated tasks may be affected. This may jeopardize the interpretability
and legibility of the system (Bobu et al., 2024). Another is that updates to the base of the model from the
organization which developed the model may have downstream affects on specific tasks/robot behavior that
may be unnexpected or undesired by a user. This is already the case with consumer-available LLMs such
as ChatGPT, however, in the case of robotics, the consistency of the robot’s behavior is a crucial component
to the user’s ability to teach and interact with the robot. In fact, robots spontaneously acting in unexpected
ways around users may cause physical safety concerns beyond those posed by systems operating solely on
language. Thus, making sure that a robot’s task behavior is changed when and how a user wants is crucial.

4 Diffusion for Policy Parameters (DPP)
We present Diffusion for Policy Parameters (DPP), a novel approach for learning how to generate standalone
policies for individual tasks. DPP alleviates some of the concerns mentioned in the prior section. We then
present a proof-of-concept evaluation in a grid-world simulation. This is, to the best of our knowledge, the
first generative approach for creating policies in parameter space. While policy search (Plappert et al., 2018;
Taylor et al., 2007; Levine & Koltun, 2013; Kalyanakrishnan & Stone, 2009) and exploration over policy
parameters (Fontaine & Nikolaidis, 2021; Mouret & Clune, 2015; Tjanaka et al., 2021) have been explored,
generative AI techniques have not been used directly in parameter space.

The DPP method (Figure 1.) learns a conditional diffusion model for generating policies in in policy pa-
rameter space. The steps for DPP are: collect a dataset of language/goal conditioned tasks and a dataset of
demonstrations over those task; train a large set of policies on either the demonstrations or tasks themselves;
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DPP Model Architecture
Language Embedding bge-small-en-v1.5 (size: 384) (Xiao et al., 2023)
Noise Schedule Cosine, 1000 steps (Nichol & Dhariwal, 2021)
Noise Type Gaussian (Ho et al., 2020)
Model Architecture Transformer (Vaswani et al., 2017), 48 heads, 12 depth, 768 width
Batch Size 128
Input/Output Dimensions 32x82; 32 for MLP policy hidden layer, 82 = 75 (observation size) + 7 (action size)

Table 1: DPP model architecture used in experiments
Diffusion
Sample
Policy

Random Policy
Training
Parameters
(TP) Mean

TP Median TP Mode
Mixture of
Samples
(MoS), m=4

(MoS),
m=8

(MoS),
m=16

Avg. Return 0.766±0.16 0.198±0.14 0.189±0.14 0.205±0.12 0.125±0.16 0.816±0.19 0.878±0.15 0.886±0.16

Table 2: Results from experiments
then train a diffusion model conditioned on the task description and takes the parameters of the policies as
input. The result is a model that leads to an interaction similar to a generalist robot policy: a user asks for or
demonstrates a task, and then the robot autonomously executes that task, with the option of further human-
in-the-loop fine-tuning if necessary. The key difference being in DPP, a policy independent of the foundation
model is generated to execute the task. To study whether DPP is a viable approach for learning to generate
policies, we must show it can lead to a model which conditionally generates “good” policies.

4.1, Environment and Data Collection We ran experiments in the Minigrid environment (Chevalier-Boisvert
et al., 2023) for its suite of language-conditioned tasks on which we can train many agents on in a relatively
small amount of time and with limited hardware. All tasks have a similar reward structure: sparse reward
with a time-step penalty, resulting in a cumulative reward between 0 and 1. To generate a large number of
tasks, we took three language-conditioned tasks and made each goal specification within that task its own
task. In particular, we took the environments Fetch, Go to Door, and Go to Object, and for each possible
object configuration, made that a task (e.g. Go to Door contains both the “go to red key” and “go to blue
box” task specification, and we treat each as a task to train an agent on). We chose the 5x5 versions of each
task for computational efficiency and quicker training. We then collected many seeds for each task to ensure
random goal positions and obstacles, resulting in 84 unique tasks. While these tasks are significantly simpler
than in-the-wild robot tasks, they provide a wide range of separate policies to train on.

To collect policy data on these tasks, we trained 84 RL agents using PPO (Schulman et al., 2017) to optimality
(achieving a mean reward > .98). We then trained behavior cloning (BC) agents on trajectories collected from
the RL agents until they received a near-optimal average reward of > .85. We chose BC as opposed to RL
for every agent because it was more timely to train and collect the policies. We trained approximately 1000
agents for each of these tasks, discarding tasks where BC did not achieve high reward given the allotted
trajectories. This resulted in BC agents for 64 of the 84 tasks and resulted in 74,000 trained policies.

4.2, Model Design Given the dataset of policies, we trained a conditional diffusion model which takes as
input a language description of the task and outputs an end-to-end policy network for that task. The model
architecture and description can be found in Table 1. The architecture was largely decided on based on trial
and error. However, two key decisions were necessary to effectively learn in parameter space. The first was to
use an entirely transformer-based architecture, as opposed to, e.g., a U-Net architecture (Ronneberger et al.,
2015; Ho et al., 2020). The other was to use the hybrid loss as proposed in (Nichol & Dhariwal, 2021). We
also experimented with various loss functions based on evaluation of the generated policies, but they did not
lead to high performance.

4.3, Evaluation and Results The evaluation results of the final trained model can be found in Table 2. The
evaluation aims to show the model generates meaningful policies in parameter space. For each baseline, we
took average performance across all 64 tasks, with 10 runs each on random seeds. “Diffusion Sample Policy”
refers to a single sample from the diffusion model conditioned on the task description. We primarily compare
to baselines as a means to ensure the model is not learning trivial local minima. If it is not, then we expect a
single sampled policy to significantly outperform the baselines. "Random Policy" refers to an agent that takes
a random action in each state. The "Mean," "Median," and "Mode" baselines refer to taking those operations
on all of the parameters in the dataset for the specified task. The sample policy significantly outperforms
all baselines indicating that the model is learning to generate meaningful and performant polices. A single
sample, however, achieves slightly lower returns than the agents in the training set. To achieve a similar
performance, we take a simple mixture approach where we sample n policies, and for each observation, take
the most common output action. This is referred to as Mixture of Samples (MoS) in Table 2.
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4.4, Limitations Despite promising early results, there are key limitations with the evaluation regarding
extrapolating the results to real-world robots. Though diffusion models and transformers have been shown to
scale well with large amounts of robot data, we have not shown this scalability with policy parameter space
learning. Similarly, we emphasize that the training data needed for DPP is different than for a generalist
policies: DPP requires a dataset of trained policies (which could be gathered through simulation or a cross
organization effort similar to the Droid dataset (Khazatsky et al., 2024)), rather than a demonstration dataset.
However, for DPP to scale and generalize across tasks, it will likely need both a policy and a demonstration
dataset. We have also only demonstrated results in an environment with a discrete action space. Although
some generalist policies, such as (Ghosh et al.), have had issues with discrete action spaces, we believe a
robot foundation model should be able to handle both discrete and continuous actions. These limitations
warrant further investigation and to be addressed in future work.

5 Discussion
While generalist robot policies as robot behavior foundation models show clear successes, they do not main-
tain properties of locality and explainability that would be desired for a deployed system. To limit these
concerns, we presented DPP, an alternative which may alleviate some of the outlined concerns. DPP gener-
ates smaller, standalone policies for each task; this approach means that those policies are not affected by a
user teaching the robot other tasks or by unwanted updates to the general foundation model.

Enabling policies to be stable and therefore more predictable is a key feature for human-usable robots.
Human-robot interaction research has consistently shown that robot models need to be not just performant,
but also predictable Lichtenthäler & Kirsch (2016). A predictable robot system not only improves its inter-
pretability, but also allows a user to gain a high degree of familiarity with those policies, and in turn use them
to accomplish novel tasks. In this work, we embed this predictability and usability directly into the structure
of the model without compromising its flexibility to learn from new data. With foundation models in their
infancy, it is an ideal time to explore how these powerful generalized models can be made more usable.

Future work could explore other methods to make foundation models more stable and usable, especially by
allowing the user to choose when and how a task policy should be updated. For example, a robot might come
deployed with a suite of policies for very common tasks, with the capacity to learn new tasks from the user
through human-in-the-loop learning (Ravichandar et al., 2020; Liu et al., 2023). Another approach is to use
sim-to-real RL to train new policies when needed by the user. For example, Eureka (Ma et al., 2024) uses
LLMs and an iterative training procedure to design reward functions for arbitrary tasks. This approach has
similar benefits as DPP, but depends on having an accurate simulator and may not be responsive enough for
users, as the robot needs to learn tasks from scratch when the user requests it. An advantage, however, is that
since it uses a task-specific reward function, it may be more explainable.

We primarily focused on improving interpretability and modularity relative to generalist policies, but there
are also other exciting directions for future research towards usable generalist policies. For example, work
is needed on how to explain the behavior of a generalist robot policy. Explainable AI techniques for large
models are constantly improving, but more work is needed to understand how techniques for explaining
robot behavior apply to generalist robot policies: much prior work in explainable robotics and AI either
assumes the robot was trained with RL (see (Milani et al., 2024) for a taxonomy of explainable RL) or
requires semantic knowledge of its past interactions (Setchi et al., 2020). Some approaches, such as directly
generating explanations for non-interpretable policies are easily applicable to generalist robot policies, while
others, such as generating intrinsically interpretable policies, may not be.

6 Conclusion
In this work, we discussed key areas for improving the paradigm of generalist robot policies as robot behav-
ior foundation models. To better empower end-users, these models need better modularity and independence
between tasks, to support a user’s ability to understand and leverage the system’s dynamics, independent of
weight changes in the foundation model. Towards this goal, we presented the Diffusion for Policy Param-
eters (DPP) approach to a robot behavior foundation. Our preliminary results show that this is a promising
method for generating task-specific, standalone policies conditioned on a task specification. As the research
community explores methods such as DPP, we can ensure the future of foundational robot-behavior models
empower end-users with a high degree of understanding and control over the robot.
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