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A UNIFIED FRAMEWORK OF THE SAV-ZEC METHOD FOR A

MASS-CONSERVED ALLEN–CAHN TYPE TWO-PHASE

FERROFLUID FLOW MODEL∗

GUO-DONG ZHANG†, XIAOMING HE‡, AND XIAOFENG YANG§

Abstract. This article presents a mass-conserved Allen–Cahn type two-phase ferrofluid flow
model and establishes its corresponding energy law. The model is a highly coupled, nonlinear saddle
point system consisting of the mass-conserved Allen–Cahn equation, the Navier–Stokes equation,
the magnetostatic equation, and the magnetization equation. We develop a unified framework of
the scalar auxiliary variable (SAV) method and the zero energy contribution (ZEC) approach, which
constructs a mass-conserved, fully decoupled, second-order accurate in time, and unconditionally
energy-stable linear scheme. We incorporate several distinct numerical techniques, including refor-
mulations of the equations to remove the linear couplings and implicit nonlocal integration, the
projection method to decouple the velocity and pressure, a symmetric implicit-explicit format for
symmetric positive definite nonlinearity, and the continuous finite element method discretization.
We also analyze the mass-conserved property, unconditional energy stability, and well-posedness of
the scheme. To demonstrate the effectiveness, stability, and accuracy of the developed model and
numerical algorithm, we implemented several numerical examples, involving a ferrofluid hedgehog in
2D and a ferromagnetic droplet in 3D. It is worth mentioning that the proposed unified framework
of the SAV-ZEC method is also applicable to designing efficient schemes for other coupled-type fluid
flow phase-field systems.

Key words. ferrofluid, two-phase, mass-conserved Allen–Cahn, energy stability, decoupling,
magnetic field
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1. Introduction. When magnetized nanoparticles are dispersed in a nonmag-
netic liquid carrier (such as an organic solvent or water), a ferromagnetic fluid,
also known as a ferrofluid, is created. This one-of-a-kind substance acts like a col-
loidal solution on the outside, but when an external magnetic field is applied, its
macroscopic behavior shows a clear difference from other ferromagnets, with a very
unique high magnetic polarization saturation, while the remanent magnetization in-
side the substance immediately becomes zero when an external magnetic field is with-
drawn. Due to such remarkable characteristics, ferrofluids have been increasingly
utilized in industrial technology, and biological and medical clinical fields, e.g., in the
treatment of microplastics in sewage, cardiovascular diseases, and even cancer (cf.
[6, 8, 17, 18, 24, 25, 26, 30, 31, 33, 35, 50]). However, there are still many issues that
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need to be studied in depth in regard to the mathematical modeling and numerical
simulation of ferrofluids, and one of the core problems is the multiphase flow interface
effect of ferromagnetic fluids, which will be considered in this paper.

The current theoretical framework of the monophase ferromagnetic fluid hydrody-
namic model, known as the ferrohydrodynamics (FHD), is relatively complete and con-
tains two main generally accepted hydrodynamic models, that of Rosensweig [35, 36]
and that of Shliomis [47, 48]. For detailed discussions of the well-posedness, regularity,
and long-term behavior of the two models, we refer the reader to [2, 3, 4, 29, 39, 49, 51]
and the references therein. The extension of the monophase FHD model to the
two-phase or multiphase case, utilizing the phase-field approach, is more advanta-
geous and is one of the most widely discussed or applied multiphase FHD models
[5, 19, 27, 28, 60], because the phase-field approach provides a simple modeling tool
that can track complex changes at the free interface through an energetic variational
approach without imposing complicated interface jump conditions or using the compli-
cated interface tracking methods. Another advantage of using the phase-field method
to construct a multiphase flow model is that the resulting model can satisfy the en-
ergy dissipation law, on the basis of which some theoretical validation, such as the
well-posedness, can be carried out. This feature, therefore, gives rise to a natural re-
quirement on the designed numerical scheme, which is to establish a numerical scheme
that satisfies the energy dissipation law at the discrete level. This not only allows for
a flexible treatment in dealing with the stiffness problem embedded in the phase-
field model, but it also ensures the reliability of the obtained numerical algorithm.
Therefore, the crucial question of how to build a numerical scheme with appropriate
temporal and spatial accuracy and easy implementation in practice should be carefully
answered.

The goal of this paper is two-fold. First, in the existing two-phase phase-field FHD
model, it is noted that the governing equation used to trace the free-motion interface
is the Cahn–Hilliard type equation, which formally refers to the spatial fourth-order
diffusion equation. The fourth-order Cahn–Hilliard equation is relatively more diffi-
cult to solve compared to the other signature equation of the phase-field model, the
spatial second-order Allen–Cahn equation. Although the Allen–Cahn equation lacks
the volume conservation property that the Cahn–Hilliard equation has, one actually
has a considerable number of volume conservation methods that can make it possess
this property; see [9, 11, 20, 23, 38]. Therefore, in this paper, one of these known con-
servation techniques, namely the conserved Allen–Cahn equation developed in [38],
which not only has volume-conservation property but also follows the energy law, is
utilized instead of the Cahn–Hilliard equation to build a new phase-field FHD model,
thereby reducing the difficulty of solving the fourth-order interface governing equa-
tions. However, the conservative Allen–Cahn equation also introduces an additional
numerical difficulty, as it uses a volume-preserving approach by including an extra
nonlocal term in the equation, which requires special treatment to avoid solving the
nonlocal type equation at each time step when designing numerical schemes.

Second, it is worth noting that despite the use of the conservative Allen–Cahn
equation, the resulting two-phase FHD model remains a highly nonlinear and cou-
pled complex system. Hence, the development of numerical algorithms for this model
remains challenging, particularly when our goal is to construct an efficient numeri-
cal algorithm that not only has the ability to maintain the discrete energy law but
also possesses properties that are easy to implement in practice. To this end, it
is advantageous to recall some of the existing numerical approaches used to solve
the two-phase phase-field FHD model. The pioneering work in [28] employed the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
3
/3

1
/2

4
 t

o
 1

2
9
.2

5
2
.3

3
.2

0
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



SAV-ZEC METHOD FOR CAC-FHD MODEL B79

Cahn–Hilliard phase-field method to model the two-phase ferrofluid and also came up
with an energy-stable numerical scheme which is nonlinear, coupled, and first-order
in time. The first linearized type numerical scheme for the two-phase FHD model was
obtained in [60], where some auxiliary intermediate variables are introduced and com-
bined with the stabilized technique. However, the resulting scheme is still partially
coupled and first-order accurate in time. Hence, the remaining key challenge is how
to construct a fully decoupled second-order time-accurate energy-stable scheme, while
maintaining a linear and easy-to-implement structure. Moreover, it is worth noting
that the numerical simulations in [28] and [60] are both limited to 2D. Therefore, the
second main goal of this paper is to design a fully discrete numerical scheme with
second-order time accuracy, linearity, mass conservation, unconditional energy stabil-
ity, and fully decoupled structure based on the continuous finite element method and
use it to carry out 3D simulations. However, achieving this goal entails addressing
several challenges, including the linear/nonlinear couplings, nonlinearities, nonlocal
integration, and ensuring mass conservation and unconditional energy stability.

To obtain the desired numerical scheme, it is crucial to effectively deal with the
nonlinear terms, which can be classified into three types. The first type has a sym-
metric positive definite structure, leading to positive diffusion in the energy law, and
thus can be linearized and decoupled using a symmetric implicit-explicit format, while
preserving unconditional stability. The second type is the nonlinear potential in the
phase-field equation, contributing to the system energy. The third type of nonlinear
terms, on the other hand, does not contribute any energy in the energy law. Re-
cently, the energy quadratization SAV method [41, 42, 43] was proposed in designing
linear and energy stable schemes for the phase-field problem, and the ZEC decoupling
approach [52, 53, 54, 55, 57, 58] was invented to handle the zero-energy-contribution
nonlinear terms to achieve linear and stable algorithms. By directly combining the
SAV method for the second type of nonlinearity with the ZEC method for the third
type of nonlinearity, the desired scheme may be obtained. However, the introduc-
tion of two scalar variables via two ordinary differential equations (ODEs)—one for
SAV and one for ZEC—and coupling them with the original system can indeed add
complexity to the PDE system. Moreover, to incorporate the two scalar variables in-
troduced by the SAV and ZEC methods, the unknowns need to be split twice, which
further increases the complexity of decoupled implementation; cf. [54, 55] for other
relatively simple two-phase flow models.

Therefore, in this paper, we propose a unified framework that incorporates the
SAV and ZEC methods together to handle both the second and the third kinds of
nonlinear terms simultaneously, representing another main contribution of our work.
The key to unifying the SAV and ZEC ideas is to incorporate the second and third
kinds of nonlinearities together into a special designed ODE for a nonlocal scalar aux-
iliary variable. With this unified framework, only one scalar variable and one ODE are
introduced, so the unknowns only need to be decomposed once in the algorithm im-
plementation. This unified SAV-ZEC combined method framework is also applicable
to other two-phase fluid flow systems in designing stable and efficient schemes.

We reformulate the Allen–Cahn equation and magnetic potential equation to
eliminate the undesired linear couplings, adopt the second-order pressure correction
method [16, 34, 40], and transform the saddle point system into elliptic equations.
Furthermore, we use a special test function in the chemical potential equation to
transform the implicit nonlocal integration into an explicit computation. By ap-
plying implicit treatments to the nonlocal integration and linear terms and, most
importantly, with the aid of the newly introduced scalar variable, we obtain the mass
conservation and unconditional energy stability.
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The aforementioned numerical techniques, in combination with the finite element
method for spatial discretization, allow us to obtain an efficient fully discrete numer-
ical scheme that possesses the properties of full decoupling, second-order accuracy in
time, unconditional energy stability, mass conservation, and linearity. It is important
to highlight that all the reformulations of the original model, introduction of the new
auxiliary variable, and construction of the corresponding ODE are aimed towards
the ultimate goal of developing such a numerical scheme. We also demonstrate the
well-posedness of the proposed scheme and rigorously prove its unconditional energy
stability and mass conservation. The scheme is highly efficient, as it splits the non-
linear coupled saddle point system into a series of independent elliptic problems, and
has been verified through various numerical examples, including accuracy tests, energy
stability verification, and some 2D/3D benchmark simulations, exhibiting signature
“ferrofluid hedgehog” phenomena of two-phase ferrofluid drops.

The rest is organized as follows. In section 2, we develop a two-phase phase-
field FHD model using the nonlocal conserved Allen–Cahn dynamics and derive its
energy dissipation law. In section 3, we introduce the unified framework of SAV
and ZEC approaches to construct a fully discrete finite element numerical scheme
and rigorously prove its unconditional energy stability. The section also provides a
detailed explanation of the decoupled type of implementation for each step. Section 4
presents various numerical experiments in 2D and 3D to demonstrate the accuracy
and efficiency of the proposed numerical scheme. Finally, section 5 offers concluding
remarks.

2. Conserved Allen–Cahn type FHD model. We consider a fluid flow sys-
tem confined in a bounded convex polygon/polyhedron domain Ω ⊂ R

d with d = 2
or 3. The well-established monophase Shliomis model for a viscous, homogeneous
ferrofluid flow system reads as [47, 48]







































ut − ν∆u+ (u · ∇)u+∇p= µ(m · ∇)h+
µ

2
∇× (m×h),

∇ ·u= 0,

mt + (u · ∇)m− 1

2
∇×u×m=−1

τ
(m− χ0h)− βm× (m×h),

−∆ϕ=∇ · (m−ha),

u|∂Ω = 0, ∂nϕ|∂Ω = (ha −m) ·n
∂Ω
, u(0,x) =u0, m(0,x) =m0,

(2.1)

in which the unknown physical variables are the velocity field u, pressure p, magneti-
zation field m, effective magnetic field h(:=∇ϕ), and magnetic potential ϕ. Besides,
ha is an applied smooth harmonic magnetic field (∇×ha = 0,∇ · ha = 0), ν is the
kinematic fluid viscosity, χ0 is magnetic susceptibility, µ is permeability of free space,
τ is relaxation time constant, β = 1

6νϑ , ϑ is volume fraction of dispersed solid phase,
n

∂Ω
is the outward normal on the boundary ∂Ω, and the term (m · ∇)h is the so-

called Kelvin force. Note that the no flow boundary condition of the fluid prevents
the necessity of using boundary conditions for the magnetization equations; see [32]
and the references therein.

To extend the monophase model (2.1) to the two-phase case of an immiscible mix-
ture consisting of the ferrofluid and non-ferromagnetic viscous medium, the framework
of the phase-field approach requires a labeling variable Φ, which is defined as

Φ(t,x) =

{

1 ferrofluid phase,

0 non-ferromagnetic viscous fluid,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
3
/3

1
/2

4
 t

o
 1

2
9
.2

5
2
.3

3
.2

0
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



SAV-ZEC METHOD FOR CAC-FHD MODEL B81

with a thin smooth transition layer of width O(ε) connecting the two fluid components.
Thus, the interface of the mixture can be traced by the level set Γ = {x : Φ(t,x) = 1/2}.

Using the conserved Allen–Cahn dynamics [38], the evolution of the phase-field
variable follows the following governing equation:















Φt +∇ · (uΦ)+M
(

W − 1
|Ω|

∫

Ω
Wdx

)

= 0,

W =−λε∆Φ+ λf(Φ),

Φ(0,x) = Φ0, ∂nΦ|∂Ω = 0,

(2.2)

whereM > 0 is the mobility parameter,W is the chemical potential, λ accounts as the
surface tension parameter, and f(Φ) = F ′(Φ), F (Φ) = 1

4εΦ
2(Φ− 1)2 is the Ginzburg–

Landau double-well potential. The nonlocal term in (2.2) is used to eliminate the
total variance of mass (or volume).

By coupling the monophase Shiliomis model (2.1) with the conserved Allen–Cahn
system (2.2), and assuming that the fluid is incompressible and follows the generalized
Fick’s law, that is, the mass flux is proportional to the gradient of the chemical
potential, we obtain the two-phase FHD model that reads as

Φt +∇ · (uΦ)+M

(

W − 1

|Ω|

∫

Ω

Wdx

)

= 0,(2.3)

W =−λε∆Φ+ λf(Φ),(2.4)

ut −∇ · ν(Φ)D(u) + (u · ∇)u+∇p+Φ∇W = µ(m · ∇)h+
µ

2
∇× (m×h),(2.5)

∇ ·u= 0,(2.6)

mt + (u · ∇)m− 1

2
∇×u×m+ βm× (m×h) =−1

τ
(m− χ(Φ)h) ,(2.7)

−∆ϕ=∇ · (m−ha),(2.8)

∂nΦ|∂Ω = 0, u|∂Ω = 0, ∂nϕ|∂Ω = (ha −m) ·nΩ ,(2.9)

Φ(0,x) = Φ0, u(0,x) =u0, m(0,x) =m0.(2.10)

Here ν(Φ) = νw + (νf − νw)
1

1+e−(2Φ−1)/ε , νf and νw are viscosities for the ferrofluid

flow and non-ferromagnetic viscous medium, respectively, χ(Φ) = χ0
1

1+e−(2Φ−1)/ε (one

can also use χ(Φ) =Φ2χ0 for simplicity), D(u) = 1
2 (∇u+(∇u)

′

), and the term Φ∇W
is the induced elastic stress by the mixing energy [28, 44, 45, 46, 56].

We introduce some function spaces. For two vector functions v,w, we denote
the L2 inner product as (v,w) =

∫

Ω
v ·wdx and L2 norm ‖w‖2 = (w,w). We use

H1(Ω) to denote the usual Sobolev space and define H1
0 (Ω) =

{

φ∈H1(Ω) : φ|∂Ω = 0
}

,
L2
0(Ω) =

{

φ∈L2(Ω) :
∫

Ω
φdx= 0

}

, H1(Ω) =H1(Ω)d, and H1
0(Ω) =H1

0 (Ω)
d, d= 2 or

3. Define

E(Φ,u,h,m) =
λε

2
‖∇Φ‖2 + λ(F (Φ),1) +

1

2
‖u‖2 + µ

2
‖h‖2 + µ

2χ0
‖m‖2,

D(W,u,h,m) =M

∥

∥

∥

∥

W − 1

|Ω|

∫

Ω

Wdx

∥

∥

∥

∥

2

+ ‖
√

ν(Φ)D(u)‖2 + µ

2τ
‖h‖2 + µβ‖m×h‖2

+
3µ

4χ0τ
‖m‖2.

Then the system (2.3)–(2.10) admits the following energy dissipation law and has the
mass (volume) conservation property as follows.
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B82 GUO-DONG ZHANG, XIAOMING HE, AND XIAOFENG YANG

Theorem 2.1. The system (2.3)–(2.10) possesses the following energy estimate:

d

dt
E(Φ,u,h,m) +D(W,u,h,m)≤ µ

τ
‖ha‖2 + τµ‖hb‖2,(2.11)

where hb = (ha)t. If the applied magnetic field ha = 0, there holds the energy dissipa-

tive law

d

dt
E(Φ,u,h,m) +D(W,u,h,m)≤ 0.(2.12)

Moreover, the mass conservation property holds as
∫

Ω
Φ(t)dx =

∫

Ω
Φ0dx for t ∈

(0, T ].

Proof. Taking the L2 inner product of (2.3) with W , (2.4) with Φt, (2.5) with u,
(2.7) with µh, (2.8) with µ

τ
ϕ, respectively, and applying integration by parts, noticing

h=∇ϕ, we have

(Φt,W )− (uΦ,∇W ) +M

∥

∥

∥

∥

W − 1

|Ω|

∫

Ω

Wdx

∥

∥

∥

∥

2

= 0,(2.13)

(W,Φt) =
λε

2

d

dt
‖∇Φ‖2 + λ

d

dt
(F (Φ),1),(2.14)

1

2

d

dt
‖u‖2+‖

√

ν(Φ)D(u)‖2+(Φ∇W,u)=µ((m · ∇)h,u)+
µ

2
(m×h,∇×u),(2.15)

µ

τ
‖
√

χ(Φ)h‖2 + µβ‖m×h‖2 − µ(mt,h)−
µ

τ
(m,h)

= µ((u · ∇)m,h)− µ

2
(∇×u×m,h),(2.16)

µ

τ
‖h‖2 + µ

τ
(m,h) =

µ

τ
(ha,h).(2.17)

Taking temporal derivative of (2.8) and taking the L2 inner product of it with µϕ, we
get

d

dt

(µ

2
‖h‖2

)

+ µ(mt,h) = µ(hb,h).(2.18)

Furthermore, taking the L2 inner product of (2.7) with µ
χ0

m, and applying the iden-
tities

(∇×u×m,m) = 0, (m× (m×h),m) = 0, ((u · ∇)m,m) = 0,

we obtain

d

dt

(

µ

2χ0
‖m‖2

)

+
µ

τχ0
‖m‖2 = µ

τχ0
(χ(Φ)h,m).(2.19)

By using ∇×h= 0 and integration by parts, we derive

((m · ∇)h,u) + ((u · ∇)m,h) = ((u · ∇)h,m) + ((u · ∇)m,h) = 0.(2.20)

Then, by combining (2.13)–(2.19), and using (2.20), we derive

λε

2

d

dt
‖∇Φ‖2 + λ

d

dt
(F (Φ),1) +M‖W − 1

|Ω|

∫

Ω

Wdx‖2 + 1

2

d

dt
‖u‖2 + ‖

√

ν(Φ)D(u)‖2

+
µ

2

d

dt
‖h‖2 + µ

τ
‖h‖2 + µ

τ
‖
√

χ(Φ)h‖2 + µβ‖m×h‖2 + µ

2χ0

d

dt
‖m‖2

+
µ

τχ0
‖m‖2 = µ

τ
(ha,h) + µ(hb,h) +

µ

τχ0
(χ(Φ)h,m).

(2.21)
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SAV-ZEC METHOD FOR CAC-FHD MODEL B83

We estimate the terms on the right-hand side by

µ

τχ0
(χ(Φ)h,m)≤ µ

τχ0
‖
√

χ(Φ)h‖‖
√

χ(Φ)m‖ ≤ µ

τ
‖
√

χ(Φ)h‖2 + µ

4τχ2
0

‖
√

χ(Φ)m‖2

≤ µ

τ
‖
√

χ(Φ)h‖2 + µ

4τχ2
0

χ0‖m‖2,

(2.22)

µ

τ
(ha,h) + µ(hb,h)≤

µ

τ
‖ha‖‖h‖+ µ‖hb‖‖h‖

≤ µ

4τ
‖h‖2 + µ

τ
‖ha‖2 +

µ

4τ
‖h‖2 + τµ‖hb‖2.(2.23)

Finally, by combining (2.21) with (2.22)–(2.23), we obtain

λε

2

d

dt
‖∇Φ‖2 + λ

d

dt
(F (Φ),1) +

1

2

d

dt
‖u‖2 + µ

2

d

dt
‖h‖2 + µ

2χ0

d

dt
‖m‖2

+M‖W − 1

|Ω|

∫

Ω

Wdx‖2 + ‖
√

ν(Φ)D(u)‖2 + µ

2τ
‖h‖2 + µβ‖m×h‖2

+
3µ

4χ0τ
‖m‖2 ≤ µ

τ
‖ha‖2 + τµ‖hb‖2,

which completes the proof of estimate (2.11) and also implies the energy dissipative
law (2.12) when assuming ha = 0. By taking the L2 inner product of (2.3) with 1, we
obtain d

dt

∫

Ω
Φdx= 0, which implies the mass conservation property.

3. Numerical scheme. In this section, we aim to construct the linear, uncon-
ditionally energy-stable, second-order accurate in time, mass conserved, and fully
decoupled type numerical algorithms for the system (2.3)–(2.10). In general, there
are four difficulties to be overcome in establishing such a numerical format, including
(i) how to linearize the nonlinear terms; (ii) how to decouple the couplings among
Φ,W,u, p,ϕ,m; (iii) how to discretize the nonlocal term in (2.3); and (iv) how to pre-
serve the mass conservation and energy stability unconditionally at the discrete level.

3.1. Equivalent reformulation. This subsection is the preparation phase.
Namely, before we proceed to establish the numerical scheme, we will convert the sys-
tem (2.3)–(2.10) into an equivalent form in several steps using equation deformation,
auxiliary variables, or other means to facilitate the design of numerical algorithms.
Considering the complexity of the original system, this effort is worthwhile to obtain
the desired type numerical scheme.

3.1.1. Magnetostatic equation. The magnetostatic equation (2.8) poses two
difficulties in designing numerical methods. One is that the linear coupling relation
between the magnetic field ϕ and the magnetization field m needs to be implicitly
discretized at the same time for the energy stability. This makes it very difficult to
reach full decoupling. The other difficulty is that the energy estimation of h or (∇ϕ)
needs a hybrid test, which complicates the design of the discrete space. One way to
reformulate (2.8) to tackle these two numerical issues was proposed in [62] and will
be briefly recalled as follows.

For any ψ ∈H1(Ω)∩L2
0(Ω), by testing 1

τ
ψ on (2.8), we obtain

1

τ
(∇ϕ,∇ψ) + 1

τ
(m,∇ψ) = 1

τ
(ha,∇ψ).(3.1)
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We further take the time derivative of (2.8) and formulate the obtained equation in
the weak form to get

(∇ϕt,∇ψ) + (mt,∇ψ) = (hb,∇ψ).(3.2)

By taking the L2 inner product of the magnetization equation (2.7) with ∇ψ, we
derive

1

τ
(χ(Φ)∇ϕ,∇ψ)− ((u · ∇)m,∇ψ) + 1

2
(∇×u×m,∇ψ) + β(m×∇ϕ,m×∇ψ)

(3.3)

= (mt,∇ψ) +
1

τ
(m,∇ψ).

By summing up (3.1)–(3.3), we arrive at a weak formulation of the magnetostatic
equation, which reads as

(∇ϕt,∇ψ) +
1

τ
(∇ϕ,∇ψ) + 1

τ
(χ(Φ)∇ϕ,∇ψ) + β(m×∇ϕ,m×∇ψ)− ((u · ∇)m,∇ψ)

(3.4)

+
1

2
(∇×u×m,∇ψ) = 1

τ
(ha,∇ψ) + (hb,∇ψ).

We replace (2.8) with (3.4) and note that the linear coupling of ϕ and m in (3.4) does
disappear, and the energy estimate of h (:=∇ϕ) could be naturally derived in (3.4),
thus avoiding the two numerical difficulties described above. See more explanations
in the following remark.

Remark 3.1. If the linear coupling of ϕ and m in (2.8) is explicitly decoupled,
it would cause numerical instability since the explicit treatment of ∇ ·m could not
be balanced by any other term when the energy stability is derived for the discrete
scheme. And the implicit treatment of ∇·m will present a coupled type scheme which
is not the aim of this paper. On the other hand, in (3.4), the linear coupling of ϕ and
m disappears, thus providing an opportunity to construct decoupled algorithms.

Besides, to obtain the energy estimate, one needs to take the test function h(:=
∇ϕ) in the magnetization equation (2.7); see the proof of Theorem 2.1. This will
require the match of the discrete spaces of m and ϕ in the schemes. For instance,
∇Ψh ⊂ Nh; here Ψh and Nh are discrete spaces for ϕ and m. This will increase
the complexity in the spatial discretizations of the algorithm design. On the other
hand, in (3.4), the energy estimate can be obtained by taking ψ=ϕ; see the proof in
Theorem 3.1.

3.1.2. Kelvin force. The Kelvin force term (m · ∇)h in (2.5) also needs some
special treatment. When we consider the weak form of (2.5) and take the L2 inner
product of (2.5) with a test function v ∈H1

0(Ω), the weak form of the Kelvin force term
becomes µ((m ·∇)h,v). Since h=∇ϕ, this term involves the second-order derivative
of ϕ, which is not feasible for the continuous finite element method; cf. [28].

We overcome this issue by rewriting the Kelvin force as

µ((m · ∇)h,v) = µ((v · ∇)h,m) =−µ((v · ∇)m,h)− µ((∇ · v)m,h)

=−µ((v · ∇)m,∇ϕ)− µ((∇ · v)m,∇ϕ),(3.5)

where we use the fact that ∇×h = 0 and integration by parts; cf. [62]. In (3.5), we
note that there are only first-order spatial derivatives. Then the weak form of (2.5)
reads as
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(ut,v) + (ν(Φ)D(u),D(v)) + ((u · ∇)u,v)− (p,∇ · v) + (Φ∇W,v)(3.6)

=−µ((v · ∇)m,∇ϕ)− µ((∇ · v)m,∇ϕ) + µ

2
(m×∇ϕ,∇×v).

3.1.3. Nonlinear couplings. Based on the energy law in (2.11), the regularity
of the Allen–Cahn system [13], and the monophase Shliomis model [2], we assume

Φ∈L∞(0, T,H1(Ω)), W ∈L2(0, T,H1(Ω)), u∈L∞(0, T,L2(Ω))∩L2(0, T,H1
0(Ω)),

p∈L2(0, T,L2
0(Ω)), ϕ∈L∞(0, T,H1(Ω)∩L2

0(Ω)), m∈L∞(0, T,H1(Ω)),

(3.7)

provided smooth initial data and a finite time T . With the aid of (3.4) (to replace
(2.8)) and (3.6) (to replace the weak form of (2.5)), the weak form of the system (2.3)–
(2.10) is to find (Φ,W,u, p,ϕ,m) satisfying (3.7), such that for all (X,Y,v, q,ψ,n) ∈
H1(Ω)×H1(Ω)×H1

0(Ω)×L2
0(Ω)×H1(Ω)∩L2

0(Ω)×H1(Ω), there hold

(Φt,X)− (uΦ,∇X) +M(W,X)−M
( 1

|Ω|

∫

Ω

Wdx,X
)

= 0,(3.8)

(W,Y ) = λε(∇Φ,∇Y ) + λ(f(Φ), Y ),(3.9)

(ut,v) + (ν(Φ)D(u),D(v)) + ((u · ∇)u,v)− (p,∇ · v) + (Φ∇W,v)(3.10)

=−µ((v · ∇)m,∇ϕ)− µ((∇ · v)m,∇ϕ) + µ

2
(m×∇ϕ,∇×v),

(∇ ·u, q) = 0,(3.11)

(∇ϕt,∇ψ) +
1

τ
(∇ϕ,∇ψ) + 1

τ
(χ(Φ)∇ϕ,∇ψ) + β(m×∇ϕ,m×∇ψ)(3.12)

− ((u · ∇)m,∇ψ) + 1

2
(∇×u×m,∇ψ) = 1

τ
(ha,∇ψ) + (hb,∇ψ),

(mt,n) + ((u · ∇)m,n)− 1

2
(∇×u×m,n)− β(m×∇ϕ,m×n)(3.13)

+
1

τ
(m,n) =

1

τ
(χ(Φ)∇ϕ,n).

We now study the large number of coupled nonlinear terms present in the system
(3.8)–(3.13), which pose significant difficulties in designing the desired type numerical
scheme. We can see that there are three types of nonlinear terms as follows.

• The first kind is the symmetric term β(m × ∇ϕ,m × ∇ψ) in (3.12) that
builds into the positive diffusion in the energy law, which can be discretized
by the symmetric implicit-explicit combination method.

• The second kind is the nonlinear potential f(Φ) in (3.9) that builds into the
system energy in the energy law, which can be discretized by the linear energy
quadratization type approaches, e.g., the so-called SAV method [41, 42, 43].

• The third kind is the remaining 11 nonlinear terms, and we find that these
nonlinear terms contribute zero energy; namely, when treated separately or
partially combined, they satisfy the following property:







































((u · ∇)u,u) = 0,

− (uΦ,∇W ) + (Φ∇W,u) = 0,

µ((u · ∇)m,∇ϕ) + µ((∇ ·u)m,∇ϕ)− µ((u · ∇)m,∇ϕ) = 0,

− µ

2
(m×∇ϕ,∇×u) +

µ

2
(∇×u×m,∇ϕ) = 0,

µ

χ0
((u · ∇)m,m)− µ

2χ0
(∇×u×m,m)− µβ

χ0
(m×∇ϕ,m×m) = 0.

(3.14)
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These equalities are obtained in the derivation process of the energy stability
if we set X = W , v = u, ψ = µϕ, and n = µ

χ0
m in (3.8), (3.10), (3.12),

and (3.13), respectively. Thanks to the ZEC approach for the other coupled
phase-field type models (see [52, 53, 54, 55, 61]), these equations imply that
we can extend the ZEC decoupling method to treat these terms.

Instead of the direct way of using the SAV method for the second kind of nonlinear
terms and the ZEC approach for the third kind of nonlinear terms, respectively, in
this paper, we develop a unified framework for the SAV method and ZEC approach
to process the two kinds of nonlinear terms together. The motivation for this idea is
to facilitate the design of the scheme and improve computational efficiency. Our key
strategy to unify the SAV method and ZEC approach is to incorporate the two kinds
of nonlinear terms in an appropriate manner to define a special ODE for a nonlocal
scalar auxiliary variable, which will be presented as follows.

We denote S(t) :=
√

∫

Ω
F (Φ)dx+B, where B is a shifting constant such that the

radicand is positive, and define a scalar variable r(t) through the following ODE:



















































































rt =
1

2S (f(Φ),Φt) +
1

2λS ((u · ∇)u,u)− 1

2λS (uΦ,∇W ) +
1

2λS (Φ∇W,u)

+
1

2λS µ((u · ∇)m,∇ϕ) + 1

2λS µ((∇ ·u)m,∇ϕ)− 1

2λS µ((u · ∇)m,∇ϕ)

− 1

2λS
µ

2
(m×∇ϕ,∇×u) +

1

2λS
µ

2
(∇×u×m,∇ϕ)

+
1

2λS
µ

χ0
((u · ∇)m,m)− 1

2λS
µ

2χ0
(∇×u×m,m)

− 1

2λS
µβ

χ0
(m×∇ϕ,m×m),

r(0) =

√

∫

Ω

F (Φ0)dx+B.

(3.15)

We notice the weighed parameter 1
2λS multiplying the third kind of nonlinear terms is

essential to derive the energy law. From (3.14), it can be seen that the above equation
is equivalent to



















rt =
1

2S (f(Φ),Φt),

r(0) =

√

∫

Ω

F (Φ0)dx+B.
(3.16)

It is easy to derive that r(t) =
√

∫

Ω
F (Φ)dx+B = S(t) after integrating the first

equation in (3.16) and applying the initial condition of r(0).
Using the scalar variable r and its ODE, we continue to transform the system

(3.8)–(3.13) into another equivalent form: given the initial data (2.10) and r(0), find
(Φ,W,u, p,ϕ,m) satisfying the regularity requirements in (3.7) and r ∈ R, such that
for all (X,Y,v, q,ψ,n)∈H1(Ω)×H1(Ω)×H1

0(Ω)×L2
0(Ω)×H1(Ω)∩L2

0(Ω)×H1(Ω),
there hold
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(Φt,X)− r

S (uΦ,∇X) +M(W,X)−M

(

1

|Ω|

∫

Ω

Wdx,X

)

= 0,(3.17)

(W,Y ) = λε(∇Φ,∇Y ) +
r

S λ(f(Φ), Y ),(3.18)

(ut,v) + (ν(Φ)D(u),D(v)) +
r

S ((u · ∇)u,v)− (p,∇ · v) + r

S (Φ∇W,v)(3.19)

=− r

S µ((v · ∇)m,∇ϕ)− r

S µ((∇ · v)m,∇ϕ) + r

S
µ

2
(m×∇ϕ,∇×v),

(∇ ·u, q) = 0,(3.20)

(∇ϕt,∇ψ) +
1

τ
(∇ϕ,∇ψ) + 1

τ
(χ(Φ)∇ϕ,∇ψ) + β(m×∇ϕ,m×∇ψ)(3.21)

− r

S ((u · ∇)m,∇ψ) + r

S
1

2
(∇×u×m,∇ψ) = 1

τ
(ha,∇ψ) + (hb,∇ψ),

(mt,n) +
r

S ((u · ∇)m,n)− r

S
1

2
(∇×u×m,n)− r

S β(m×∇ϕ,m×n)(3.22)

+
1

τ
(m,n) =

1

τ
(χ(Φ)∇ϕ,n),

rt =
1

2S (f(Φ),Φt) +
1

2λS ((u · ∇)u,u)− 1

2λS (uΦ,∇W ) +
1

2λS (Φ∇W,u)(3.23)

+
1

2λS µ((u · ∇)m,∇ϕ) + 1

2λS µ((∇ ·u)m,∇ϕ)− 1

2λS µ((u · ∇)m,∇ϕ)

− 1

2λS
µ

2
(m×∇ϕ,∇×u) +

1

2λS
µ

2
(∇×u×m,∇ϕ)

+
1

2λS
µ

χ0
((u · ∇)m,m)− 1

2λS
µ

2χ0
(∇×u×m,m)

− 1

2λS
µβ

χ0
(m×∇ϕ,m×m).

Note that in (3.17)–(3.22), we multiply the second and third kinds of nonlinear
terms by r

S . It is important to emphasize that this modification does not change
the system from a PDE point of view, as r = S. Therefore, the system (3.17)–(3.23)
is equivalent to the system (3.8)–(3.13). Meanwhile, since the system (3.17)–(3.23)
is the equivalent weak form of the original PDE system, it is clear that it complies
with the energy dissipation law. As a result, we do not provide a separate proof of
the energy dissipation law for this new system, as it is similar to that of the energy
stability of the numerical scheme (see Theorem 3.1).

Remark 3.2. If one utilizes the SAV method for the second kind of nonlinearity
and extends the ZEC approach to the third kind of nonlinearities, respectively, two
scalar variables and two ODEs will be introduced. The weak form (3.8)–(3.13) cou-
pled with the scalar variables and ODEs would result in a more complicated system.
Moreover, in the decoupled implementation, as described in section 3.3, the unknowns
need to be split twice in terms of the two introduced scalar variables, which also leads
to more problems to solve, thereby reducing computational efficiency to some extent;
cf. [54, 55] for simpler two-phase fluid flows. On the other hand, in our unified frame-
work of the SAV method and ZEC approach, only one scalar variable and one ODE
are introduced, and the unknowns need to be split only once in decoupled implemen-
tation, which not only alleviates the complexity of the PDE system but also reduces
computational costs.

Remark 3.3. Although the system (3.17)–(3.23) is equivalent to the original system
(2.3)–(2.10) in the weak form, formally, it seems to be more complex. However, it is
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B88 GUO-DONG ZHANG, XIAOMING HE, AND XIAOFENG YANG

worth noting that the format of (3.17)–(3.23) is more “algorithm-friendly” than the
original system. This formulation allows us to discretize coupled nonlinear terms in
a simpler way (to be given in the next subsection), i.e., with a decoupled structure
while guaranteeing unconditional energy stability.

3.2. Construction of numerical scheme. In this subsection, we construct
the numerical scheme for solving the equivalent system (3.17)–(3.23). Letting N > 0
denote the total number of time steps, we define the uniform time step size as δt= [ T

N
]

and set tn = nδt. We introduce several conforming finite element spaces for spatial
discretization as follows:

Yh ⊂H1(Ω),V h ⊂H1
0(Ω),Qh ⊂L2

0(Ω),Ψh ⊂H1(Ω)∩L2
0(Ω),Nh ⊂H1(Ω).(3.24)

The pair of spaces (V h,Qh) needs to satisfy the inf-sup condition [14]: β0‖q‖ ≤
supv∈V h

(∇·v,q)
‖∇v‖ for all q ∈Qh, where the constant β0 only depends on Ω. Some well-

known inf-sup stable pairs (V h,Qh) are discussed in [14]. For simplicity, we denote

Dtw
n+1 = 3wn+1−4wn+wn−1

2δt , dtw
n+1 = wn+1−wn

δt
, D̃tu

n+1 = 3ũn+1−4un+u
n−1

2δt , w? =

2wn −wn−1, h? =∇ϕ?, hn+1 =∇ϕn+1 and S? :=
√

∫

Ω
F (Φ?)dx+B.

The numerical scheme of system (3.17)–(3.23) reads as follows: find (Φn+1,Wn+1,
ũn+1, pn+1, ϕn+1, mn+1, rn+1) ∈ Yh × Yh × V h ×Qh ×Ψh ×Nh × R, such that for
all (X,Y,v, q,ψ,n)∈ Yh × Yh ×V h ×Qh ×Ψh ×Nh, there hold

(DtΦ
n+1,X)− rn+1

S?
(u?Φ?,∇X) +M(Wn+1,X)(3.25)

−M

(

1

|Ω|

∫

Ω

Wn+1dx,X

)

= 0,

(Wn+1, Y ) = λε(∇Φn+1,∇Y ) +
rn+1

S?
λ(f(Φ?), Y ),(3.26)

(D̃tu
n+1,v) + (ν(Φ?)D(ũn+1),D(v)) +

rn+1

S?
((u? · ∇)u?,v) + (∇pn,v)(3.27)

+
rn+1

S?
(Φ?∇W ?,v) =−r

n+1

S?
µ((v · ∇)m?,∇ϕ?)

− rn+1

S?
µ((∇ · v)m?,∇ϕ?) +

rn+1

S?

µ

2
(m? ×∇ϕ?,∇×v),

(∇pn+1,∇q) =− 3

2δt
(∇ · ũn+1, q) + (∇pn,∇q),(3.28)

un+1 = ũn+1 − 2δt

3
∇pn+1 +

2δt

3
∇pn,(3.29)

(∇Dtϕ
n+1,∇ψ) + 1

τ
(∇ϕn+1,∇ψ) + 1

τ
(χ(Φ?)∇ϕn+1,∇ψ)(3.30)

+ β(m? ×∇ϕn+1,m? ×∇ψ)− rn+1

S?
((u? · ∇)m?,∇ψ)

+
rn+1

S?

1

2
(∇×u? ×m?,∇ψ) = 1

τ
(hn+1

a ,∇ψ) + (hn+1
b ,∇ψ),

(Dtm
n+1,n) +

rn+1

S?
((u? · ∇)m?,n)− rn+1

S?

1

2
(∇×u? ×m?,n)(3.31)

− rn+1

S?
β(m? ×∇ϕ?,m? ×n) +

1

τ
(mn+1,n) =

1

τ
(χ(Φ?)∇ϕn+1,n),
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Dtr
n+1 =

1

2

1

S?
(f(Φ?),DtΦ

n+1) +
1

2λS?
((u? · ∇)u?, ũn+1)(3.32)

− 1

2λS?
(u?Φ?,∇Wn+1) +

1

2λS?
(Φ?∇W ?, ũn+1)

+
1

2λS?
µ((ũn+1 · ∇)m?,∇ϕ?) +

1

2λS?
µ((∇ · ũn+1)m?,∇ϕ?)

− 1

2λS?
µ((u? · ∇)m?,∇ϕn+1)− 1

2λS?

µ

2
(m? ×∇ϕ?,∇× ũn+1)

+
1

2λS?

µ

2
(∇×u? ×m?,∇ϕn+1) +

1

2λS?

µ

χ0
((u? · ∇)m?,mn+1)

− 1

2λS?

µ

2χ0
(∇×u? ×m?,mn+1)

− 1

2λS?

µβ

χ0
(m? ×∇ϕ?,m? ×mn+1).

Some remarks are in order.

Remark 3.4. We explain the strategy behind developing the above scheme. We
discretize the time derivatives by the two-step BDF2 format. The second-order pres-
sure projection method [16, 40] is used to decouple the linear coupling of the velocity
field u and the pressure p in the fluid momentum equation. The nonlinear coupling
term β(m×∇ϕ,m×∇ψ) with the symmetric positive definite structure is discretized
by a symmetric implicit-explicit format in (3.30), while all other nonlinear terms mul-
tiplied by r are treated in explicit extrapolation, and r is discretized implicitly. These
particular discretizations are due to the fact that our goal is to construct a linear,
decoupled, and energy-stable scheme. The nonlocal term in (3.25) is discretized in
an implicit manner to ensure mass conservation. For ODE (3.23), some subtle com-
binations of implicit and explicit discretization are applied to achieve unconditional
energy stability in order to maintain correlation with the nonlinear coupling term
discretized to form the decoupling structure (as shown in subsection 3.3).

The scheme (3.25)–(3.32) may appear to be a coupled version, but in fact, due
to the explicit approach used, all direct coupling between variables is eliminated, and
instead, all variables are coupled to r. Therefore, with a method that can decou-
ple the r-coupling, the decoupled structure is achieved. In addition, computing the
implicit nonlocal integral

∫

Ω
Wn+1dx needs considerable computational cost. In sub-

section 3.3, we will propose an effective implementation to address these two issues.

Remark 3.5. It can be verified that the final velocity field un+1 in above scheme
(3.25)–(3.32) satisfies the following weakly discrete divergence-free condition:

(un+1,∇q) = 0 ∀q ∈Qh.(3.33)

For simplicity, we denote Wn+1 = 1
|Ω|

∫

Ω
Wn+1dx. The scheme (3.25)–(3.32)

holds the energy law unconditionally and the mass conservation property, shown as
follows.

Theorem 3.1. The scheme (3.25)–(3.32) is unconditionally energy stable in the

sense that

dtE
n+1
h +Dn+1

h ≤ µ

τ
‖hn+1

a ‖2 + τµ‖hn+1
b ‖2;(3.34)

if the imposed magnetic field ha = 0, there holds the energy dissipative law uncondi-

tionally,
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En+1
h + δtDn+1

h ≤En
h ,(3.35)

where

En+1
h =

λε

4
(‖∇Φn+1‖2 + ‖2∇Φn+1 −∇Φn‖2) + λ

2
(|rn+1|2 + |2rn+1 − rn|2)

+
1

4
(‖un+1‖2 + ‖2un+1 −un‖2)

+
µ

4
(‖hn+1‖2 + ‖2hn+1 −hn‖2) + µ

4χ0
(‖mn+1‖2 + ‖2mn+1 −mn‖2)

+
δt2

3
‖∇pn+1‖2,

Dn+1
h =M‖Wn+1 −Wn+1‖2 + ‖

√

ν(Φ?)D(ũn+1)‖2 + µβ‖m? ×hn+1‖2

+
µ

2τ
‖hn+1‖2 + 3µ

4τχ0
‖mn+1‖2.

Moreover, the mass conservation property holds as
∫

Ω
Φn+1dx=

∫

Ω
Φ0dx.

Proof. By taking X =Wn+1 in (3.25), Y =DtΦ
n+1 in (3.26), v= ũn+1 in (3.27),

respectively, we have

(DtΦ
n+1,Wn+1)− rn+1

S?
(u?Φ?,∇Wn+1) +M

∥

∥

∥

∥

Wn+1 − 1

|Ω|

∫

Ω

Wn+1dx

∥

∥

∥

∥

2

= 0,

(3.36)

(Wn+1,DtΦ
n+1) =

λε

4δt
(‖∇Φn+1‖2 − ‖∇Φn‖2 + ‖2∇Φn+1

(3.37)

−∇Φn‖2 − ‖2∇Φn −∇Φn−1‖2) + λε

4δt
‖∇Φn+1 −∇Φ?‖2

+
rn+1

S?
λ(f(Φ?),DtΦ

n+1),

(D̃tu
n+1, ũn+1) + ‖

√

ν(Φ?)D(ũn+1)‖2 + rn+1

S?
((u? · ∇)u?, ũn+1)

(3.38)

+ (∇pn, ũn+1) +
rn+1

S?
(Φ?∇W ?, ũn+1)+

rn+1

S?
µ((ũn+1 · ∇)m?,∇ϕ?)

+
rn+1

S?
µ((∇ · ũn+1)m?,∇ϕ?)− rn+1

S?

µ

2
(m? ×∇ϕ?,∇× ũn+1) = 0.

From (3.29), we derive the orthogonal identity: for v∈{v∈L2(Ω)d : (v,∇q)=0
∀q ∈Qh},

(un+1 − ũn+1,v) =−2

3
δt(∇pn+1 −∇pn,v) = 0.(3.39)

Using (3.39) and (3.33), we derive

(3ũn+1 − 4un +un−1, ũn+1)

= (3un+1 − 4un +un−1, ũn+1) + (3ũn+1 − 3un+1, ũn+1)

= (3un+1 − 4un +un−1,un+1) + (3ũn+1 − 3un+1, ũn+1 −un+1)

=
1

2
(‖un+1‖2 − ‖un‖2 + ‖2un+1 −un‖2 − ‖2un −un−1‖2+‖un+1 −u?‖2)

+ 3‖ũn+1 −un+1‖2

(3.40)
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and

‖ũn+1‖2 − ‖un+1‖2 = (ũn+1 −un+1, ũn+1 +un+1) = (ũn+1 −un+1, ũn+1 −un+1)

= ‖ũn+1 −un+1‖2.

(3.41)

We rewrite (3.29) as

un+1 +
2

3
δt∇pn+1 = ũn+1 +

2

3
δt∇pn.(3.42)

By taking the L2 inner product of the above equation with itself, using (3.33) and
(3.41), we derive

(ũn+1,∇pn) = 3

4δt
‖un+1‖2 − 3

4δt
‖ũn+1‖2 + δt

3
‖∇pn+1‖2 − δt

3
‖∇pn‖2

=− 3

4δt
‖ũn+1 −un+1‖2 + δt

3
‖∇pn+1‖2 − δt

3
‖∇pn‖2.

(3.43)

The combination of (3.40) and (3.43) gives

1

2δt
(3ũn+1 − 4un +un−1, ũn+1) + (ũn+1,∇pn)

=
1

4δt
(‖un+1‖2−‖un‖2+‖2un+1−un‖2−‖2un−un−1‖2+‖un+1−u∗‖2)

+
3

4δt
‖un+1 − ũn+1‖2 + δt

3
‖∇pn+1‖2 − δt

3
‖∇pn‖2.

(3.44)

By combining (3.38) with (3.44), we deduce

1

4δt
(‖un+1‖2 − ‖un‖2 + ‖2un+1 −un‖2 − ‖2un −un−1‖2 + ‖un+1 −u∗‖2)

(3.45)

+
3

4δt
‖un+1 − ũn+1‖2 + δt

3
‖∇pn+1‖2 − δt

3
‖∇pn‖2 + ‖

√

ν(Φ?)D(ũn+1)‖2

+
rn+1

S?
((u? · ∇)u?, ũn+1) +

rn+1

S?
(Φ?∇W ?, ũn+1)+

rn+1

S?
µ((ũn+1 · ∇)m?,∇ϕ?)

+
rn+1

S?
µ((∇ · ũn+1)m?,∇ϕ?)− rn+1

S?

µ

2
(m? ×∇ϕ?,∇× ũn+1) = 0.

By taking ψ= µϕn+1 in (3.30), we derive

µ

4δt
(‖∇ϕn+1‖2 − ‖∇ϕn‖2 + ‖2∇ϕn+1 −∇ϕn‖2 − ‖2∇ϕn −∇ϕn−1‖2

(3.46)

+ ‖∇ϕn+1−∇ϕ?‖2)+µ

τ
‖∇ϕn+1‖2+µ

τ
‖
√

χ(Φ?)∇ϕn+1‖2 + µβ‖m? ×∇ϕn+1‖2

− rn+1

S?
µ((u? · ∇)m?,∇ϕn+1) +

rn+1

S?

µ

2
(∇×u? ×m?,∇ϕn+1)

=
µ

τ
(hn+1

a ,∇ϕn+1) + µ(hn+1
b ,∇ϕn+1).
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B92 GUO-DONG ZHANG, XIAOMING HE, AND XIAOFENG YANG

By taking n= µ
χ0

mn+1 in (3.31), we get

µ

χ0

1

4δt
(‖mn+1‖2 − ‖mn‖2 + ‖2mn+1 −mn‖2 − ‖2mn −mn−1‖2 + ‖mn+1 −m?‖2)

(3.47)

+
rn+1

S?

µ

χ0
((u? · ∇)m?,mn+1)− rn+1

S?

µ

2χ0
(∇×u? ×m?,mn+1)

− rn+1

S?

βµ

χ0
(m? ×∇ϕ?,m? ×mn+1) +

µ

τχ0
‖mn+1‖2 = µ

τχ0
(χ(Φ?)∇ϕn+1,mn+1).

By multiplying 2λrn+1 with (3.32), we obtain

λ

2δt
(|rn+1|2 − |rn|2 + |2rn+1 − rn|2 − |2rn − rn−1|2 + |rn+1 − r?|2)

(3.48)

= λ
rn+1

S?
(f(Φ?),DtΦ

n+1) +
rn+1

S?
((u? · ∇)u?, ũn+1)− rn+1

S?
(u?Φ?,∇Wn+1)

+
rn+1

S?
(Φ?∇W ?, ũn+1)+

rn+1

S?
µ((ũn+1 ·∇)m?,∇ϕ?)

+
rn+1

S?
µ((∇·ũn+1)m?,∇ϕ?)− rn+1

S?
µ((u? · ∇)m?,∇ϕn+1)

− rn+1

S?

µ

2
(m? ×∇ϕ?,∇× ũn+1) +

rn+1

S?

µ

2
(∇×u? ×m?,∇ϕn+1)

+
rn+1

S?

µ

χ0
((u? · ∇)m?,mn+1)− rn+1

S?

µ

2χ0
(∇×u? ×m?,mn+1)

−r
n+1

S?

µβ

χ0
(m? ×∇ϕ?,m? ×mn+1).

Summing up (3.36), (3.37), (3.45)–(3.48), and noticing ∇ϕn+1 =hn+1, we derive

λε

4δt
(‖∇Φn+1‖2 − ‖∇Φn‖2 + ‖2∇Φn+1 −∇Φn‖2 − ‖2∇Φn −∇Φn−1‖2

(3.49)

+ ‖∇Φn+1 −∇Φ?‖2) + λ

2δt
(|rn+1|2 − |rn|2 + |2rn+1 − rn|2

− |2rn − rn−1|2 + |rn+1 − r?|2) + 1

4δt
(‖un+1‖2 − ‖un‖2 + ‖2un+1 −un‖2

− ‖2un −un−1‖2 + ‖un+1 −u?‖2) + µ

4δt
(‖hn+1‖2 − ‖hn‖2 + ‖2hn+1 −hn‖2

− ‖2hn −hn−1‖2 + ‖hn+1 −h?‖2) + µ

χ0

1

4δt
(‖mn+1‖2 − ‖mn‖2

+ ‖2mn+1 −mn‖2 − ‖2mn −mn−1‖2 + ‖mn+1 −m?‖2) + δt

3
‖∇pn+1‖2

− δt

3
‖∇pn‖2 +M‖Wn+1 −Wn+1‖2 + 3

4δt
‖un+1 − ũn+1‖2

+ ‖
√

ν(Φ?)D(ũn+1)‖2 + µ

τ
‖hn+1‖2 + µ

τ
‖
√

χ(Φ?)hn+1‖2 + µβ‖m? ×hn+1‖2

+
µ

τχ0
‖mn+1‖2 = µ

τ
(hn+1

a ,hn+1) + µ(hn+1
b ,hn+1) +

µ

τχ0
(χ(Φ?)hn+1,mn+1).

From the Cauchy–Schwarz inequality, we derive

µ

τχ0
(χ(Φ∗)hn+1,mn+1)≤ µ

τ
‖
√

χ(Φ∗)hn+1‖2 + µ

4τχ0
‖mn+1‖2(3.50)
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and

µ

τ
(hn+1

a ,hn+1) + µ(hn+1
b ,hn+1)≤ µ

2τ
‖hn+1‖2 + µ

τ
‖hn+1

a ‖2 + τµ‖hn+1
b ‖2.(3.51)

Thus, by combining (3.49), (3.50), and (3.51), we obtain

λε

4δt
(‖∇Φn+1‖2 − ‖∇Φn‖2 + ‖2∇Φn+1 −∇Φn‖2 − ‖2∇Φn −∇Φn−1‖2

(3.52)

+ ‖∇Φn+1 −∇Φ?‖2) + λ

2δt
(|rn+1|2 − |rn|2 + |2rn+1 − rn|2 − |2rn − rn−1|2

+ |rn+1 − r?|2) + 1

4δt
(‖un+1‖2 − ‖un‖2 + ‖2un+1 −un‖2 − ‖2un −un−1‖2

+ ‖un+1 −u?‖2) + µ

4δt
(‖hn+1‖2 − ‖hn‖2 + ‖2hn+1 −hn‖2 − ‖2hn −hn−1‖2

+ ‖hn+1 −h?‖2) + µ

χ0

1

4δt
(‖mn+1‖2 − ‖mn‖2 + ‖2mn+1 −mn‖2

− ‖2mn −mn−1‖2 + ‖mn+1 −m?‖2) + δt

3
‖∇pn+1‖2 − δt

3
‖∇pn‖2

+M‖Wn+1 −Wn+1‖2 + ‖
√

ν(Φ?)D(ũn+1)‖2 + µβ‖m? ×hn+1‖2 + µ

2τ
‖hn+1‖2

+
3µ

4τχ0
‖mn+1‖2 ≤ µ

τ
‖hn+1

a ‖2 + τµ‖hn+1
b ‖2.

After dropping several unnecessary positive terms on the left-hand side of (3.52), we
derive (3.34). Meanwhile, (3.35) can be derived by simply setting ha = 0 in (3.34).

For the mass conservation property, since it is a cumulative process, we must
prove that the first step to calculate Φ1 is also mass-conserved, which is very easy to
show since the first-order version of (3.25) is simply to use the backward Euler dtΦ

1

to replace DtΦ
1 for the time marching, and u? =u0,Φ∗ =Φ0, namely,

(dtΦ
1,X)− r1

S0
(u0Φ0,∇X) +M(W 1,X)−M

(

1

|Ω|

∫

Ω

W 1dx,X

)

= 0.

By setting X = 1, we get
∫

Ω
Φ1dx =

∫

Ω
Φ0dx. Then, by taking X = 1 in (3.25), we

have (DtΦ
n+1,1) = 0, which yields 3

∫

Ω
Φn+1dx = 4

∫

Ω
Φndx −

∫

Ω
Φn−1dx for n =

1,2, . . . ,N −1. Therefore, we derive
∫

Ω
Φn+1dx=

∫

Ω
Φndx for n= 0,1, . . . ,N −1. The

proof is completed.

3.3. Decoupled implementation. In this subsection, we present an efficient
implementation method of the proposed scheme (3.25)–(3.32).

3.3.1. The nonlocal term. We expect to avoid any type of iterations involving
nonlocal terms. Hence, we first deal with the nonlocal term

∫

Ω
Wn+1dx in (3.25).

Note that if we take Y = 1 in (3.26), we get

M
1

|Ω|

∫

Ω

Wn+1dx=Mλ
rn+1

S?

1

|Ω|

∫

Ω

f(Φ?)dx.(3.53)

Then, by taking Y =X in (3.26), we also get

M(Wn+1,X) =Mλε(∇Φn+1,∇X) +Mλ
rn+1

S?
(f(Φ?),X).(3.54)
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Then, by applying (3.53) and (3.54), we can transform (3.25) into the following form:
solve Φn+1 ∈ Yh such that for all X ∈ Yh, there holds

(DtΦ
n+1,X) +Mλε(∇Φn+1,∇X)

=
rn+1

S?
(u?Φ?,∇X)

− rn+1

S?
Mλ(f(Φ?),X) +

rn+1

S?
Mλ

(

1

|Ω|

∫

Ω

f(Φ?)dx,X

)

.

(3.55)

It can be seen that the nonlocal and nonlinear terms in (3.55) are explicitly discretized
and they involve only previous time steps, so in fact (3.55) is an elliptic equation with
constant coefficients.

3.3.2. The splitting technique. Then, to obtain the fully decoupled type cal-
culation, we split the unknown variables using the nonlocal variable r as follows:

Φn+1 =Φn+1
a + rn+1Φn+1

b , Wn+1 =Wn+1
a + rn+1Wn+1

b , ũn+1 = ũn+1
a + rn+1ũn+1

b ,

ϕn+1 =ϕn+1
a + rn+1ϕn+1

b , mn+1 =mn+1
a + rn+1mn+1

b ,

(3.56)

where Φn+1
k ∈ Yh, Wn+1

k ∈ Yh, ũn+1
k ∈ V h, ϕ

n+1
k ∈ Ψh, m

n+1
k ∈Nh, for k = a, b are

the unknown variables for the split.
Using the split form in (3.56) to replace variables in (3.55), and according to rn+1,

we can decompose the resulting form into two substeps as follows.
• Step 1: find Φn+1

a ∈ Yh such that for all X ∈ Yh, there holds

3

2δt
(Φn+1

a ,X) +Mλε(∇Φn+1
a ,∇X) =

1

2δt
(4Φn −Φn−1,X).(3.57)

• Step 2: find Φn+1
b ∈ Yh such that for all X ∈ Yh, there holds

3

2δt
(Φn+1

b ,X) +Mλε(∇Φn+1
b ,∇X)(3.58)

=
1

S?
(u?Φ?,∇X) +Mλ

1

S?

(

1

|Ω|

∫

Ω

f(Φ?)dx,X

)

−Mλ
1

S?
(f(Φ?),X).

Using the split form in (3.56) to replace variables in (3.26), and according to rn+1,
we can decompose the resulting form into two substeps as follows.

• Step 3: find Wn+1
a ∈ Yh such that for all Y ∈ Yh, there holds

(Wn+1
a , Y ) = λε(∇Φn+1

a ,∇Y ).(3.59)

• Step 4: find Wn+1
b ∈ Yh such that for all Y ∈ Yh, there holds

(Wn+1
b , Y ) = λε(∇Φn+1

b ,∇Y ) +
λ

S?
(f(Φ?), Y ).(3.60)

Using the split form in (3.56) to replace variables in (3.27), and according to rn+1,
we can decompose the resulting form into two substeps as follows.

• Step 5: find ũn+1
a ∈V h such that for all v ∈V h, there holds

3

2δt
(ũn+1

a ,v) + (ν(Φ?)D(ũn+1
a ),D(v)) =

1

2δt
(4un −un−1,v)− (∇pn,v).

(3.61)
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SAV-ZEC METHOD FOR CAC-FHD MODEL B95

• Step 6: find ũn+1
b ∈V h such that for all v ∈V h, there holds

3

2δt
(ũn+1

b ,v) + (ν(Φ?)D(ũn+1
b ),D(v))

(3.62)

=− 1

S?
((u? · ∇)u?,v)− 1

S?
(Φ?∇W ?,v)

− 1

S?
µ((v · ∇)m?,∇ϕ?)− 1

S?
µ((∇ · v)m?,∇ϕ?) +

1

S?

µ

2
(m? ×∇ϕ?,∇× v).

Using the split form in (3.56) to replace variables in (3.30), and according to rn+1,
we can decompose the resulting form into two substeps as follows.

• Step 7: find ϕn+1
a ∈Ψh such that for all ψ ∈Ψh, there holds

3

2δt
(∇ϕn+1

a ,∇ψ) + 1

τ
(∇ϕn+1

a ,∇ψ) + 1

τ
(χ(Φ?)∇ϕn+1

a ,∇ψ)(3.63)

+ β(m? ×∇ϕn+1
a ,m? ×∇ψ) = 1

2δt
(4∇ϕn −∇ϕn−1,∇ψ)

+
1

τ
(hn+1

a ,∇ψ) + (hn+1
b ,∇ψ).

• Step 8: find ϕn+1
b ∈Ψh such that for all ψ ∈Ψh, there holds

3

2δt
(∇ϕn+1

b ,∇ψ) + 1

τ
(∇ϕn+1

b ,∇ψ) + 1

τ
(χ(Φ?)∇ϕn+1

b ,∇ψ)(3.64)

+ β(m? ×∇ϕn+1
b ,m? ×∇ψ) = 1

S?
((u? · ∇)m?,∇ψ)

− 1

S?

1

2
(∇×u? ×m?,∇ψ).

Using the split form in (3.56) to replace variables in (3.31), and according to rn+1,
we can decompose the resulting form into two substeps as follows.

• Step 9: find mn+1
a ∈Nh such that for all n∈Nh, there holds

3

2δt
(mn+1

a ,n) +
1

τ
(mn+1

a ,n)(3.65)

=
1

τ
(χ(Φ?)∇ϕn+1

a ,n) +
1

2δt
(4mn −mn−1,n).

• Step 10: find mn+1
b ∈Nh such that for all n∈Nh, there holds

3

2δt
(mn+1

b ,n) +
1

τ
(mn+1

b ,n)(3.66)

=− 1

S?
((u? · ∇)m?,n) +

1

S?

1

2
(∇×u? ×m?,n)

+
1

S?
β(m? ×∇ϕ?,m? ×n) +

1

τ
(χ(Φ?)∇ϕn+1

b ,n).

Using the split form in (3.56) to replace variables in (3.32), we can get a linear
algebraic equation for rn+1 that reads as follows.

• Step 11: find rn+1 by

(3− ηb)r
n+1 = ηa −

1

2S?
(f(Φ?),4Φn −Φn−1)(3.67)

+ 4rn − rn−1,where for k=a, b,
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B96 GUO-DONG ZHANG, XIAOMING HE, AND XIAOFENG YANG

ηk =
3

2S?
(f(Φ?),Φn+1

k ) +
δt

λS?
((u? · ∇)u?, ũn+1

k ) +
δt

λS?
(Φ?∇W ?, ũn+1

k )

− δt

λS?
(u?Φ?,∇Wn+1

k )

+
δt

λS?
µ((ũn+1

k · ∇)m?,∇ϕ?) +
δt

λS?
µ((∇ · ũn+1

k )m?,∇ϕ?)

− δt

λS?
µ((u? · ∇)m?,∇ϕn+1

k )

+
δt

λS?

µ

2
(∇×u? ×m?,∇ϕn+1

k )− δt

λS?

µ

2
(m? ×∇ϕ?,∇× ũn+1

k )

+
δt

λS?

µ

χ0
((u? · ∇)m?,mn+1

k )− δt

λS?

µ

2χ0
(∇×u? ×m?,mn+1

k )

− δt

λS?

µβ

χ0
(m? ×∇ϕ?,m? ×mn+1

k ).

With Steps 1–10 above, we get all variables with subscripts a, b, and also rn+1

from (3.67). Hence, by using the split form given in (3.56), we get the unknown
variables Φn+1, Wn+1, ũn+1, ϕn+1, and mn+1. The final unknown variables pn+1

and un+1 are obtained from Step 12 as follows.
• Step 12: we update pn+1 from (3.28) and un+1 from (3.29).
As can be seen from Steps 1–12, the implementation of the scheme (3.25)–(3.32)

is completely decoupled. In addition, Steps 1–12 require solving only a few linearly
independent elliptic problems.

So far, we have proposed a linear, fully decoupled, second-order in time, mass-
conserved, and unconditionally energy-stable scheme. The final issue is to determine
the unique solvability of the equations in (3.57)–(3.67), shown as follows.

Theorem 3.2. Equations (3.57)–(3.67) in Steps 1–11 are well-posed.

Proof. The well-posedness of problems (3.57)–(3.66) in Steps 1–10 can be proved
by the Lax–Milgram theorem [7], where some of them also use inverse inequality and
Korn’s inequality [7]. We omit the details here.

We show the unique solvability (3.67) as follows. By taking X =Wn+1
b in (3.58)

and Y =MWn+1
b in (3.60), we get

3

2δt
(Φn+1

b ,Wn+1
b ) +Mλε(∇Φn+1

b ,∇Wn+1
b ) =

1

S?
(u?Φ?,∇Wn+1

b )(3.68)

+
1

S?
Mλ

(

1

|Ω|

∫

Ω

f(Φ?)dx,Wn+1
b

)

− 1

S?
Mλ(f(Φ?),Wn+1

b ),

M(Wn+1
b ,Wn+1

b ) =Mλε(∇Φn+1
b ,∇Wn+1

b ) +M
λ

S?
(f(Φ?),Wn+1

b ).(3.69)

By combining (3.68) with (3.69), we deduce

3

2δt
(Φn+1

b ,Wn+1
b ) +M(Wn+1

b ,Wn+1
b ) =

1

S?
(u?Φ?,∇Wn+1

b )(3.70)

+
Mλ

S?

(

1

|Ω|

∫

Ω

f(Φ?)dx,Wn+1
b

)

.

By taking Y = 1 in (3.60), we get
∫

Ω
Wn+1

b dx= λ
S?

∫

Ω
f(Φ?)dx, which enables (3.70)

to become
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SAV-ZEC METHOD FOR CAC-FHD MODEL B97

3

2δt
(Φn+1

b ,Wn+1
b ) +M(Wn+1

b ,Wn+1
b ) =

1

S?
(u?Φ?,∇Wn+1

b )

+M

(

1

|Ω|

∫

Ω

Wn+1
b dx,Wn+1

b

)

,

which is equivalent to

3

2λ
(Φn+1

b ,Wn+1
b ) +

Mδt

λ

∥

∥

∥

∥

∥

Wn+1
b − 1

|Ω|

∫

Ω

Wn+1
b dx

∥

∥

∥

∥

∥

2

=
δt

λS?
(u?Φ?,∇Wn+1

b ).(3.71)

By taking Y = 3
2λΦ

n+1
b in (3.60), we get

3

2λ
(Wn+1

b ,Φn+1
b ) =

3ε

2
‖∇Φn+1

b ‖2 + 3

2S?
(f(Φ?),Φn+1

b ).(3.72)

Then, by combining (3.71) with (3.72), we get

A1 :=
δt

λS?
(u?Φ?,∇Wn+1

b )− 3

2S?
(f(Φ?),Φn+1

b )

=
3ε

2
‖∇Φn+1

b ‖2 + Mδt

λ
‖Wn+1

b − 1

|Ω|

∫

Ω

Wn+1
b dx‖2.

(3.73)

By taking v = δt
λ
ũn+1
b in (3.62), ψ = δtµ

λ
ϕn+1
b in (3.64), and n = δt

λ
µ
χ0

mn+1
b in

(3.66), respectively, we get

A2 :=
δt

λ

1

S?

µ

2
(m? ×∇ϕ?,∇× ũn+1

b )(3.74)

− δt

λ

1

S?
((u? · ∇)u?, ũn+1

b )− δt

λ

1

S?
(Φ?∇W ?, ũn+1

b )

− δt

λ

1

S?
µ((ũn+1

b · ∇)m?,∇ϕ?)− δt

λ

1

S?
µ((∇ · ũn+1

b )m?,∇ϕ?)

=
3

2λ
‖ũn+1

b ‖2 + δt

λ
‖
√

ν(Φ?)D(ũn+1
b )‖2,

A3 :=
δtµ

λS?
((u? · ∇)m?,∇ϕn+1

b )− δtµ

2λS?
(∇×u? ×m?,∇ϕn+1

b )

(3.75)

=
3µ

2λ
‖∇ϕn+1

b ‖2+ δtµ

λτ
‖∇ϕn+1

b ‖2+ δtµ

λτ
‖
√

χ(Φ?)∇ϕn+1
b ‖2+ δtµβ

λ
‖m?×∇ϕn+1

b ‖2,

A4 :=
δtµ

2λS?χ0
(∇×u? ×m?,mn+1

b )+
δtµβ

λS?χ0
(m? ×∇ϕ?,m? ×mn+1

b )(3.76)

− δtµ

λS?χ0
((u? · ∇)m?,mn+1

b )

=
3µ

2λχ0
‖mn+1

b ‖2 + δtµ

λτχ0
‖mn+1

b ‖2 − δtµ

λτχ0
(χ(Φ?)∇ϕn+1

b ,mn+1
b ).

The combination of (3.73)–(3.76) gives
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B98 GUO-DONG ZHANG, XIAOMING HE, AND XIAOFENG YANG

−ηb =A1 +A2 +A3 +A4

=
3ε

2
‖∇Φn+1

b ‖2 + δtM

λ
‖Wn+1

b −Wn+1
b ‖2 + 3

2λ
‖ũn+1

b ‖2 + δt

λ
‖
√

ν(Φ?)D(ũn+1
b )‖2

+
3µ

2λ
‖∇ϕn+1

b ‖2+ δtµ

λτ
‖∇ϕn+1

b ‖2+ δtµ

λτ
‖
√

χ(Φ?)∇ϕn+1
b ‖2

+
δtµβ

λ
‖m?×∇ϕn+1

b ‖2 + 3µ

2λχ0
‖mn+1

b ‖2 + δtµ

λχ0τ
‖mn+1

b ‖2

− δtµ

λτχ0
(χ(Φ?)∇ϕn+1

b ,mn+1
b ).

By using the Cauchy–Schwarz inequality, we estimate the last term above as

δtµ

λτχ0
|(χ(Φ?)∇ϕn+1

b ,mn+1
b )| ≤ δtµ

λτχ0
‖
√

χ(Φ?)∇ϕn+1
b ‖‖

√

χ(Φ?)mn+1
b ‖

≤ δtµ

λτ
‖
√

χ(Φ?)∇ϕn+1
b ‖2 + δtµ

4λτχ2
0

‖
√

χ(Φ?)mn+1
b ‖2

≤ δtµ

λτ
‖
√

χ(Φ?)∇ϕn+1
b ‖2 + δtµ

4λτχ0
‖mn+1

b ‖2.

Therefore, we obtain

−ηb ≥
3ε

2
‖∇Φn+1

b ‖2 + δtM

λ
‖Wn+1

b −Wn+1
b ‖2 + 3

2λ
‖ũn+1

b ‖2 + δt

λ
‖
√

ν(Φ?)D(ũn+1
b )‖2

+
3µ

2λ
‖∇ϕn+1

b ‖2 + δtµ

λτ
‖∇ϕn+1

b ‖2 + δtµβ

λ
‖m? ×∇ϕn+1

b ‖2

+
3µ

2λχ0
‖mn+1

b ‖2 + 3δtµ

4λτχ0
‖mn+1

b ‖2 ≥ 0.

Thus, we have 3 − ηb 6= 0, which implies the well-posedness of the linear algebraic
equation (3.67).

4. Numerical simulations. In this section, we implement a series of numerical
simulations to verify the accuracy and stability of our scheme and show some bench-
mark simulations of ferrofluids. For spatial discretizations, the first-order (linear)
polynomials are used for Yh, Qh, and Nh, and second-order (quadratic) polynomials
are applied for V h and Ψh.

We denote ew =w(tn,x)−wn as the approximation error at the recorded moment
tn and “.” the relation of a≤Cb for some constant C. From the chosen finite element
spaces, the optimal error orders of the scheme (3.25)–(3.32) satisfy

‖eΦ‖L2 + ‖eh‖L2 + ‖em‖L2 . δt2 + h2, ‖eu‖L2 . δt2 + h3, ‖eΦ‖H1 . δt2 + h.

(4.1)

Note that the L2 error of p and H1 error of u are not full second-order accuracy using
the pressure projection method due to the artificial Neumann boundary condition
∂np

n+1|∂Ω = ∂np
n|∂Ω; see the details in [40].

4.1. Accuracy tests. In this subsection, we perform accuracy tests by assuming
the exact solution of the system (2.3)–(2.10) as











u1 = sin(t) sin(πx) sin(π(y+ 0.5)), u2 = sin(t) cos(πx) cos(π(y+ 0.5)),

Φ= 0.5 sin(t) cos(πx) cos(πy) + 0.5, ϕ= (x− 0.5)y sin(t),h=∇ϕ,
p= sin(t)(2x− 1)(2y− 1),m1 = sin(t+ y),m2 = sin(t+ x).

(4.2)
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SAV-ZEC METHOD FOR CAC-FHD MODEL B99

The source terms, initial and boundary conditions, are imposed according to the given
exact solution. The computational domain is set as [0,1]2, and the model parameters
are set as

ε= 0.05,M = 1, νf = 2, νw = 1, µ= 1, τ = 0.1, β = 1, χ0 = 1, λ= 1,B = 1.

To observe the convergence orders, we set δt= 1
2h, and from the expected optimal

error estimates (4.1), there hold

‖eΦ‖L2 + ‖eh‖L2 + ‖em‖L2 . δt2 + h2 . h2,‖eu‖L2 . δt2 + h3 . h2,(4.3)

‖eΦ‖H1 . δt2 + h. h.

We show the accuracy tests at t= 0.5 and t= 1.0 in Figure 4.1, where the L2 errors
of Φ, u, h, and m all display second-order accuracy, the H1 error of Φ has first-order
accuracy, and the L2 error of p and the H1 error of u do not present second-order
accuracy, but slightly higher than first order. These convergence results are consistent
with the theoretical expectations given in (4.3).

4.2. Energy stability. In this test, we carry out a benchmark coarsening effects
simulation (cf. [10, 59]) to verify the energy stability of the scheme (3.25)–(3.32). The
computational domain is set as Ω= [0,2π]2, and the initial conditions are set as















Φ|t=0 = 1.0− 0.5 tanh(

√
(x−x1)2+(y−y1)2−r1

1.2ε )− 0.5 tanh(

√
(x−x2)2+(y−y2)2−r2

1.2ε ),

u|t=0 = 0.001
(

x2(x− 2π)2y(y− 2π)(2y− 2π),−y2(y− 2π)2x(x− 2π)(2x− 2π)
)

,

m|t=0 = 0.1 (cos(y), cos(x)) ,

(4.4)

where (x1, y1) = (π − 0.8, π), r1 = 1.4, (x2, y2) = (π + 1.7, π), r2 = 0.5. Both the
boundary conditions and the applied magnetic field ha are set to zero. The model
parameters are set as

ε= 0.02,M = 20, νf = 0.01, νw = 0.005, µ= 100, τ = 0.1, β = 10, χ0 = 1, λ= 1,

B = 1.0e−6, h=
1

256
.

We set the time step δt = 1
1000 and plot the profiles of Φ at various times in Fig-

ure 4.2(a). It can be seen that the coarsening effect makes the small circle absorbed
by the large circle. At around t= 0.5, the small circle disappears completely.
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Fig. 4.1. Errors and convergence orders with δt= 1

2
h at t= 0.5 (left), and t= 1.0 (right).
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We also verify the energy stability of our developed scheme. To get a more
intuitive impression of the stability, we compare our scheme with a second-order
accurate implicit-explicit scheme, where all nonlinear terms are treated explicitly ex-
cept for β(m? ×∇ϕn+1,m? ×∇ψ), and all linear terms are treated implicitly. The
implicit-explicit type scheme does not guarantee any energy stability; however, it
has been widely used for other types of phase-field models due to its ease of imple-
mentation (see [21]). Using the implicit-explicit scheme, we plot the total free energy
E(Φn+1,un+1,hn+1,mn+1), defined in Theorem 2.1, in Figure 4.2(b). It can be seen,
only when δt ≤ 1

2000 , that the implicit-explicit scheme presents the energy stability,
while the energy blows up when δt ≥ 1

1000 . For comparison, using our developed
scheme, we plot the discrete energy En+1

h , defined in Theorem 3.1, in Figure 4.2(b)
by varying time steps δt = 1

2i , i = 2, . . . , 10, where the energy curve indicated by
the dashed line is the total energy calculated from the implicit-explicit scheme with
δt = 1

2000 that is used as the reference solution. It can be seen that the energy pro-
file calculated using our scheme is stable over all tested time steps and approaches
the reference energy as the time step is refined. These numerical results confirm the
energy stability of our scheme stated in Theorem 3.1.

The thickness of the diffusive interface is proportional to the parameter ε, and
we also study the interplay between the parameter ε and mesh size h. We choose
ε = 0.015, M = 10, νf = 0.1, νw = 0.05, µ = 10, τ = 0.1, β = 10, χ0 = 1, λ = 1,
and δt = 1

2000 , and we load the initial value in (4.4) but with u0 = 0, m0 = 0. The
profiles of Φ, computed by h = 1

64 ,
1

128 , and
1

256 , at various moments are illustrated
in Figure 4.3, which shows that for a fixed ε, the finer grid could produce a more
accurate result.

4.3. 2D ferrofluid hedgehog. When a pool of ferrofluid is subjected to grav-
ity and an external magnetic field ha pointing upward, experiments show that the
fluid interface becomes unstable and a regular pattern of peaks and troughs emerges.
This phenomenon results from the competition between three forces: gravity, surface
tension, and the magnetic field, where gravity and surface tension try to return the

(a)

(b)

Fig. 4.2. The coarsening effects example with the initial conditions given in (4.4).
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(a) h = 1

64
, Φ at t = 0, 0.3, 0.7, 1.1, 1.3.

(b)h = 1

128
, Φ at t = 0, 0.3, 0.7, 1.1, 1.3.

(c) h = 1

256
, Φ at t = 0, 0.3, 0.7, 1.1, 1.3.

Fig. 4.3. The coarsening effects with ε= 0.015 and different mesh sizes.

surface to a flat state, but the strength of the magnetic field tends to create a vertical
surface. In this subsection, we aim to simulate this phenomenon of the two-phase
fluid system, i.e., a mixture of a ferrofluid and a nonferromagnetic ambient viscous
fluid with different viscosities and almost matching densities, under a nonuniform ap-
plied magnetic field; see also [15, 27, 28]. In [12, 28], some analytical results of the
interpeak distance based on linear stability analysis with small magnetic susceptibility

χ0 are provided, which is lp = 2π
√

σ
∆ρg

, where lp denotes the distance between peaks,

σ is the surface tension coefficient, g = |g| is the magnitude of gravity, and ∆ρ is the
jump of the density across the interface.

We add the gravity force fg in the fluid momentum equation (2.5) by using the
Boussinesq approximation, i.e., fg = (1 +

rg

1+e
1−2Φ

ε

)g, where rg is a positive constant

that depends on the fluid density, and |g| stands for the magnitude of gravity. The
computational domain is set as Ω= [0,1]× [0,0.2]. The initial shape of the ferromag-
netic fluid as a semicircular droplet located in the bottom plane of the computed do-

main reads as Φ|t=0 = 0.5−0.5 tanh(

√
(x−x1)2+(y−y1)2−r1

1.2ε ), where x1 = 0.5, y1 =−0.01,
r1 = 0.2. All other variables are set as zero, u|t=0 = 0, p|t=0 = 0,m|t=0 = 0. The
applied magnetic field ha is generated by a linear combination of dipoles as follows:

ha =
∑

s

αs∇φs(x), φs(x) =
d · (xs −x)

|xs −x|2 ,(4.5)

where |d|= 1 indicates the direction of the dipole, and xs is the dipole’s position. It
is easy to calculate that ha is a harmonic field (i.e., ∇×ha = 0, ∇ · ha = 0); cf. [28].
To generate a nonuniform applied magnetic field, we set ha =

∑5
s=1αs∇φs(x) by

placing five dipoles below the container Ω at close range. The positions xs of dipoles
are (0.4,−1), (0.45,−1), (0.5,−1), (0.55,−1), and (0.6,−1), and the directions d of
the five dipoles are all (0,1). The intensities αs(t) =

80
1.6 t for s= 1, . . . ,5. The model

parameters are set as ε= 0.0075,M = 1, νf = 2, νw = µ= β = 1, τ = 1
1000 , χ0 = 0.5, λ=

1
4 , rg = 0.1,B = 1, δt= 1

40000 , h=
1

200 .
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Fig. 4.4. Snapshots of Φ at t= 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1 with g= (0,−30000).

Fig. 4.5. Snapshots of Φ at t= 0,0.2,0.3,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.5 with g= (0,−60000).

In the next few simulations, we study the effect of the gravity magnitude on the
number of peaks from a qualitative point of view. First, by setting g= (0,−30000), we
plot the obtained profiles of the phase-field variable Φ at various times in Figure 4.4.
It can be seen that the droplet slowly becomes flat (from t = 0 to t = 0.4). Starting
from t = 0.5, instability begins to appear on the droplet surface as the gradually
increasing applied magnetic field exceeds gravity. After t= 0.8, a stable and regular
hedgehog pattern containing five peaks is formed. Second, by increasing the gravity
magnitude to g= (0,−60000), the computed profiles of Φ at various times are shown
in Figure 4.5. It starts with three peaks (t = 0.7), which soon increase to five peaks
(t = 0.8), and finally form seven peaks (t = 1). Third, we continue to increase the
gravity to g= (0,−90000) and snapshots of Φ at various times are shown in Figure 4.6.
Four peaks initially appear (t= 0.8), which quickly become six peaks at t= 0.9s and
form the hedgehog pattern of eight peaks after t = 1.3. We further plot the velocity
field u, pressure p, magnetization field m, and effective magnetic field h for the third
simulation at t= 1.5 in Figure 4.7.

From the above numerical simulations of the benchmark problem of “ferrofluid
hedgehog,” we conclude that the stronger the magnitude of gravity, the more peaks
appear at the ferrofluid interface, which is qualitatively consistent with the theoretical
formula given in [12, 28].

4.4. 3D ferromagnetic droplet. In this example, we simulate the deformation
of a 3D ferrofluid droplet suspended in a viscous medium under a uniformly applied
magnetic field; cf. [1, 5, 19, 22, 37]. Due to the competition between surface tension,
which favors a spherical shape, and the magnetic interfacial force, which creates a
shape parallel to the field, the droplet undergoes deformation.

We set the computed domain as Ω= [0.3,0.7]×[0.3,0.7]×[0,1]. A uniform applied
magnetic field ha is generated by (4.5) by placing 25 dipoles far below the domain, with
ha =

∑25
s=1αs∇φs(x), where the directions d of all dipoles are (0,0,1), the positions

xs of dipoles are (−0.5+0.5i,−0.5,−15), (−0.5+0.5i,0,−15), (−0.5+0.5i,0.5,−15),
(−0.5 + 0.5i,1,−15), and (−0.5 + 0.5i,1.5,−15) for i = 0,1,2,3,4. The intensity is
fixed as αs = 1000 for all dipoles. The initial conditions of Φ are set as

Φ|t=0 = 0.5− 0.5 tanh

(

√

(x− x1)2 + (y− y1)2 + (z − z1)2 − r1
1.2ε

)

,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 4.6. Snapshots of Φ at t= 0,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,1.5 with g= (0,−90000).

u

(a) The velocity field u (streamline).

p

(b) The pressurep.

h

(c) The magnetization fieldm.

h

(d) The effective magnetic field h.

Fig. 4.7. Snapshots of u, p,m,h at t= 1.5 for the simulation with g= (0,−90000).

(a)

u

(b)

u

(c)

Fig. 4.8. (a) Snapshots of the phase-field variable Φ at t= 0,0.01,0.015,0.02,0.025,0.03; (b)–(c)
the velocity field u and the magnetization field m at t= 0.03, respectively.

where (x1, y1, z1) = (0.5,0.5,0.5), r1 = 0.1, and all other variables are set to zero
initially. The model parameters are set as ε= 0.0075,M = 1, νf = 2, νw = 1, µ= 1, τ =

1
1000 , β = 1, χ0 = 0.5, λ= 1

4 ,B = 1, δt= 1
40000 , h=

1
95 . We plot the profiles of the phase-

field variable Φ at various times in Figure 4.8. As the magnetic force governs the
surface tension, the droplet is elongated in the direction of the applied magnetic field.
The simulation is consistent with the results presented in [1, 5, 19, 22, 37]. We further
plot the velocity field u and the magnetization field m at t= 0.03 in Figures 4.8(b)–
(c), which shows the formation of two toroidal vortices as well as the magnetization
field appearing only in the ferrofluid region.

5. Concluding remarks. In this article, we present a mass-conserved Allen–
Cahn type phase-field model of the two-phase ferrofluid flow and construct an effi-
cient numerical algorithm for solving the model. By developing a unified framework
of the SAV method and ZEC approach to discretize the nonlinear couplings for lin-
earization and decoupling, and by eliminating linear couplings through the combina-
tions of equations and the projection method, we have constructed a very efficient
numerical scheme for the resulting system. The scheme is linear, second-order ac-
curate in time, fully decoupled, mass-conserved, and unconditionally energy stable.
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Its implementation is also efficient and requires solving several independent elliptic
problems per time step. We prove the scheme’s mass conservation, unconditional en-
ergy stability, and well-posedness and carry out a number of numerical simulations
to verify the effectiveness of the developed model and the scheme’s effectiveness and
robustness. Furthermore, it is important to note that the proposed unified framework
for the SAV-ZEC method is not restricted to the two-phase ferrofluid flow model stud-
ied in this article but can also be extended to other coupled-type phase-field models
involving fluid flow or other applied fields.
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