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In this paper, we propose a novel interior penalty discontinuous Galerkin projection method for 
the incompressible magneto-hydrodynamic equations. The scheme is employed by an implicit-
explicit treatment of the nonlinear coupling terms and a second-order rotational pressure-
correction scheme for dealing with the Navier-Stokes equations. One noteworthy aspect of 
this scheme is the introduction of an additional stabilization term to Maxwell’s equations, 
which allows for the explicit treatment of the coupled nonlinear terms and the decoupling 
of computations for the magnetic and velocity fields, ultimately leading to the achievement 
of desired linearity, full decoupling, second-order accuracy in time, and unconditional energy 
stability. The obtained scheme is easy to implement because one only needs to solve a few 
decoupled linear equations at each time step. We rigorously prove the unique solvability and 
unconditional energy stability of the developed scheme and present a series of numerical 
examples to demonstrate the accuracy, stability, and efficiency of the proposed scheme.

1. Introduction

The magneto-hydrodynamic (MHD) system, a mathematical model that combines the Navier-Stokes equations, describing fluid 
mechanics, with Maxwell’s equations, which deal with electromagnetism, has emerged as an indispensable tool for investigating 
the complex hydrodynamic behaviors of conducting fluids. Its diverse applications span scientific and engineering fields, including 
but not limited to plasma confinement, liquid-metal cooling of nuclear reactors, and magnetic drug targeting, as demonstrated in 
[19,25,43]. Due to its potential for widespread applications, numerous numerical methods have been developed for solving the MHD 
system and have garnered significant attention from researchers and engineers in recent years, where some notable works on this 
topic can be found in [1,6,11,15,24,31,45], among others cited therein.
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Designing effective numerical algorithms for MHD systems poses a formidable challenge due to the nonlinear coupling between 
the velocity and magnetic fields, which arises from the advection and Lorentz forces. In particular, requirements such as ensuring 
that the proposed scheme is both linear and fully decoupled, while simultaneously preserving the law of energy dissipation in discrete 
systems, can make the development of numerical schemes extremely complex. A “linear” numerical scheme is one in which only a 
few linear subsystems need to be solved at each time step without nonlinear iterations, while a “fully decoupled” approach is one in 
which each unknown variable can be solved independently at least at each time step without being stirred up with other unknowns. 
Being able to achieve both linearity and full decoupling with energy stability is a challenging task, since most existing schemes tend 
to sacrifice one property in favor of the other. Therefore, designing an efficient energy-stable numerical algorithm to satisfy both 
requirements remains an active research area in the numerical computation of MHD systems.

We review much of the current work that has been done, including recent attempts, to create linear and decoupled algorithms for 
simulating the MHD system. The authors in [55] presented a numerical scheme for a two-dimensional MHD system in a decoupled 
manner. However, the scheme exhibits only conditional energy stability, which imposes a constraint on the maximum permissible 
time-step. In [51,58] the authors proposed an unconditional energy stable scheme, however, it is only partially decoupled, and 
cannot achieve complete decoupling. In [3,4], the authors presented a first-order pressure-projection scheme for solving the MHD 
system, however, it should be noted that this scheme maintains coupling between the velocity field and magnetic field. In [38], the 
authors proposed a second-order BDF finite element scheme for the hybrid MHD system, however, the scheme doesn’t ensure any 
discrete energy stability. In [50], the authors developed a Crank-Nicolson type finite element method for the MHD system. However, 
it should be noted that this scheme is only partially decoupled. In [54,56], a linear scheme with unconditional energy stability is 
developed where the full decoupling is achieved by introducing an auxiliary intermediate velocity variable, however, the scheme is 
only first-order accurate in time. A recent work presented in [57] developed the first linear and fully decoupled scheme that achieves 
second-order accuracy and unconditional energy stability, utilizing the “zero-energy-contribution” method. Although the algorithm 
presented in [57] is notably effective, the numerical method developed in this paper surpasses it in three aspects. First, the scheme 
proposed in this paper is more computationally efficient since each equation is solved independently, without the need of doubling 
the computational effort by splitting it into two equations, whereas in [57], each equation needs to be split into two. Second, it 
requires no artificial pressure boundary conditions to decouple the pressure and velocity for solving the Navier-Stokes equations. 
Third, the numerical scheme given in [57] uses the conforming finite element method (FEM) for spatial discretization. In contrast, the 
numerical scheme proposed in this paper uses the discontinuous Galerkin FEM method, which makes use of discontinuous piecewise 
polynomials as trial and test functions. The discontinuous Galerkin (DG) method has several more attractive features, including local 
conservation, high order accuracy, adaptability, and ease of implementation, as evidenced by [12,13,41,46,60,62], when compared 
to the continuous FEM. Moreover, most existing FEM used conforming elements to approximate the MHD system, resulting in a lack 
of local conservation for both magnetic field and velocity field, as highlighted in [45].

It is noteworthy that some previous studies have also utilized DG methods to solve MHD systems. However, these studies usually 
focused on stable MHD equations bypassing the time derivative problem, or on fully coupled and/or nonlinear schemes. For example, 
in [35,45], the authors proposed DG methods for the MHD system, but only steady MHD equations are considered and the obtained 
scheme is fully-coupled. In [53], the DG method was used for the viscous MHD equations, however, the scheme is nonlinear and 
fully coupled. In [39], the authors investigated a locally divergence-free DG scheme for the ideal MHD equations, but the magnetic 
field and velocity field are still coupled together. In [8], the authors proposed a DG method for a reduced resistive MHD system in 
2D, but the scheme is highly nonlinear and coupled too. Hence, as far as the authors are aware, no DG methods for MHD systems 
have been identified to possess the desirable properties of full decoupling, linearity, unconditional energy stability and second-order 
temporal accuracy, which is the goal of this paper.

To achieve the objective of obtaining a numerical scheme with the above-mentioned desirable characteristics for the MHD 
system, we employ several approaches in combination. First, we introduce an artificial stabilization term into Maxwell’s equations to 
decouple the magnetic field from the velocity field and maintain second-order temporal accuracy. This stabilization term addresses 
the stability issue that arises from the explicit treatment of the coupled nonlinear term, and it can also be considered as a second-order 
perturbation to the magnetic equation at the discrete level. Second, we adopt a second-order rotational pressure-correction scheme 
for solving the Navier-Stokes equations, which offers the advantage of decoupling the computations of the pressure and velocity, and 
eliminates the need for artificial pressure boundary conditions. Third, we make use of the DG method to discretize the spatial domain, 
resulting in a fully discrete scheme. The combination of these approaches enables us to obtain an effective and easy-to-implement 
numerical scheme that satisfies all the desired characteristics, namely, full decoupling, linearity, second-order accuracy in time, and 
unconditional energy stability. In addition, we conduct extensive numerical experiments to verify the stability and accuracy of the 
proposed scheme, which included benchmark simulations of the Kelvin-Helmholtz (K-H) instability, MHD rotator, and Taylor-Green 
vortex.

The outline of this paper is as follows. In Section 2, we present the time-dependent MHD system and derive its energy dissipation 
law in terms of the underlying partial differential equations (PDEs). In Section 3, we construct the fully discrete DG scheme for 
solving the MHD system which is a novel linear scheme with second-order time accuracy and fully-decoupled structure, and present 
the scheme’s unique solvability and unconditional energy stability. Section 4 presents the results of numerical simulations that 
demonstrate the accuracy and efficiency of our proposed scheme. Finally, some concluding remarks are presented in Section 5.
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2. The MHD system

We consider numerical approximations of the incompressible MHD system, which is comprised of the Maxwell equations coupled 
with the incompressible Navier-Stokes equations (see [23,54,56]), and reads as:

𝒎𝑡 + 𝜈𝑚∇× (∇ ×𝒎) − ∇ × (𝒖 ×𝒎) = 0, (2.1a)

𝒖𝑡 + 𝒖 ⋅∇𝒖− 𝜈Δ𝒖+∇𝑝+ 𝜅𝒎 ×∇×𝒎 = 0, (2.1b)

∇ ⋅ 𝒖 = 0, (2.1c)

∇ ⋅𝒎 = 0, (2.1d)

where (𝒙, 𝑡) ∈Ω ×[0, 𝑇 ] with Ω ⊂ℝ
𝑑 , 𝑑 = 2, 3. The unknown variables in (2.1) are the magnetic field 𝒎, velocity field 𝒖, and pressure 𝑝. 

Regarding the physical parameters that describe the fluid, 𝑅𝑒 = 𝜈−1 is the Reynolds number, 𝑅𝑚 = 𝜈−1𝑚 denotes the magnetic Reynolds 
number, and 𝜅 stands for the coupling parameter, respectively. We consider the following boundary conditions:

𝒏 ×𝒎 = 0, 𝒖 = 0 on 𝜕Ω, (2.2)

and the following initial conditions:

𝒎(𝒙,0) =𝒎0, 𝒖(𝒙,0) = 𝒖0 in Ω, (2.3)

with ∇ ⋅𝒎0 = 0, ∇ ⋅ 𝒖0 = 0, where 𝒏 denotes the unit outward normal vector on 𝜕Ω.
We first fix some notations here. For 1 ≤ 𝑝 ≤∞, 0 ≤ 𝑠 ≤∞, denoted by 𝐿𝑝(Ω) and 𝑊 𝑠,𝑝(Ω) the usual Lebesgue and Sobolev spaces, 

with the norms ‖ ⋅ ‖𝐿𝑝 and ‖ ⋅ ‖𝑊 𝑠,𝑝 , respectively. The inner product and norm of 𝐿2(Ω) are represented by (⋅, ⋅) and ‖ ⋅ ‖, respectively. 
Additionally, we define several spaces as follows:

𝑿 =𝑯1
0
(Ω) = {𝒗 ∈ [𝐻1(Ω)]𝑑 ∶ 𝒗 = 0 on 𝜕Ω},

𝑯(𝑐𝑢𝑟𝑙,Ω) = {𝒘 ∈ [𝐿2(Ω)]𝑑 ∶ ∇ ×𝒘 ∈ [𝐿2(Ω)]𝑑},

𝑀 =𝐿2
0
(Ω) = {𝑞 ∈𝐿2(Ω) ∶ ∫

Ω

𝑞 𝑑𝑥 = 0},

𝒀 =𝑯0(𝑐𝑢𝑟𝑙;Ω) = {𝒘 ∈𝑯(𝑐𝑢𝑟𝑙,Ω) ∶ 𝒏 ×𝒘 = 0 on 𝜕Ω}.

Using the above notations, the weak formulation of the MHD system (2.1)-(2.3) reads as follows. Find (𝒎, 𝒖, 𝑝) ∈ 𝒀 ×𝑿 ×𝑀 such 
that for all (𝒘, 𝒗, 𝑞) ∈ 𝒀 ×𝑿 ×𝑀 ,

(𝒎𝑡,𝒘) + 𝜈𝑚(∇ ×𝒎,∇×𝒘) + 𝜈𝑚(∇ ⋅𝒎,∇ ⋅𝒘) − (𝒖 ×𝒎,∇×𝒘) = 0, (2.4a)

(𝒖𝑡,𝒗) + 𝜈(∇𝒖,∇𝒗) + 𝑏(𝒖,𝒖,𝒗) − (𝑝,∇ ⋅ 𝒗) + 𝜅(𝒎 ×∇×𝒎,𝒗) = 0, (2.4b)

(∇ ⋅ 𝒖, 𝑞) = 0, (2.4c)

where the trilinear form 𝑏(⋅, ⋅, ⋅) is given by

𝑏(𝒖,𝒗,𝒘) =
1

2 ∫
Ω

(𝒖 ⋅∇)𝒗 ⋅𝒘𝑑𝒙−
1

2 ∫
Ω

(𝒖 ⋅∇)𝒘 ⋅ 𝒗𝑑𝒙, ∀𝒖,𝒗,𝒘 ∈𝑿.

It is easy to verify that the trilinear form 𝑏 satisfies

𝑏(𝒖,𝒗,𝒗) = 0. (2.5)

Remark 2.1. Note that the additional term 𝜈𝑚(∇ ⋅𝒎, ∇ ⋅𝒘) added in (2.4a) was proposed by the work in [5,14,24,31,32,59], which 
can be understood as an exact penalty formulation for explicitly enforcing the divergence-free constraint on the magnetic field. By 
using this approach and dropping the divergence-free condition of 𝒎, the numerical approximation process is simplified, and a one-
graph implementation and arbitrary-order Lagrangian interpolations for the magnetic field are allowed. Additionally, this method 
does not require precise calculations of three-dimensional singular functions in the 3D case.

The energy law can be shown to hold for the system (2.4), as stated in the following lemma.

Lemma 2.2. Assuming that (𝒎, 𝒖, 𝑝) is solution of the weak form of the MHD system (2.4), then the following energy law holds

𝑑

𝑑𝑡
𝔼(𝒎,𝒖) = −𝜈‖∇𝒖‖2 − 𝜅𝜈𝑚‖∇×𝒎‖2 − 𝜅𝜈𝑚‖∇ ⋅𝒎‖2 ≤ 0, (2.6)

where the total energy 𝔼(𝒎, 𝒖) is defined as
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𝔼(𝒎,𝒖) =
𝜅

2
‖𝒎‖2 + 1

2
‖𝒖‖2.

Proof. By taking 𝒘 = 𝜅𝒎 in (2.4a), 𝒗 = 𝒖 in (2.4b) and 𝑞 = 𝑝 in (2.4c), and using (2.5), we get

𝜅(𝒎𝑡,𝒎) + 𝜅𝜈𝑚‖∇×𝒎‖2 + 𝜅𝜈𝑚‖∇ ⋅𝒎‖2 − 𝜅(𝒖 ×𝒎,∇×𝒎) = 0, (2.7)

and

(𝒖𝑡,𝒖) + 𝜈‖∇𝒖‖2 + 𝜅(𝒎 ×∇×𝒎,𝒖) = 0. (2.8)

By taking the summation of (2.7) and (2.8), we obtain

𝜅

2

𝑑

𝑑𝑡
‖𝒎‖2 + 1

2

𝑑

𝑑𝑡
‖𝒖‖2 + 𝜈‖∇𝒖‖2 + 𝜅𝜈𝑚‖∇×𝒎‖2 + 𝜅𝜈𝑚‖∇ ⋅𝒎‖2 = 0, (2.9)

where we use the following identity

(𝒖 ×𝒎,∇×𝒎) = (𝒎 ×∇×𝒎,𝒖). (2.10)

Therefore, the desired result (2.6) follows from (2.9) directly, which indicates that the total free energy decays. □

3. Fully discrete DG scheme

In this section, we will design a novel fully-discrete scheme with unconditional energy stability and second-order temporal accu-
racy for solving the MHD system (2.1)-(2.3), where we achieve space discretization using the DG method, while time discretization 
is accomplished using the backward difference formula of second order (BDF2). Furthermore, we rigorously demonstrate the well-
posedness and energy stability of the proposed method.

3.1. Numerical scheme

Let 𝜏 > 0 be the time step size and set 𝑡𝑘 = 𝑘𝜏 for 0 ≤ 𝑘 ≤𝑁 = [𝑇 ∕𝜏], where 𝑇 > 0 is the final time. For a smooth function 𝒗, the 
approximation of 𝒗 at time 𝑡𝑘 is denoted as 𝒗𝑘 = 𝒗(𝑡𝑘). To simplify the presentation, we introduce the following notations

û
∗ = 2𝒖𝑘 − 𝒖𝑘−1, m̂∗ = 2𝒎𝑘 −𝒎𝑘−1,

for 𝑘 = 1, 2, ⋯ , 𝑁 .
We consider a quasi-uniform partition ℎ of Ω consisting of the elements 𝐸, where 𝐸 denotes a triangle in ℝ2 or tetrahedrons in 

ℝ
3. We define ℎ = 𝐼

ℎ
∪𝐵

ℎ
, denoted by 𝐼

ℎ
the set of all interior faces of ℎ, and by 𝐵ℎ the set of all boundary faces. Let ℎ𝐸 denote 

the diameter of mesh elements 𝐸, and ℎ𝑒 is the diameter of the face 𝑒, denoted by ℎ the maximum element diameter. Let 𝒏𝐸 be the 
unit outward normal vector on 𝜕𝐸, and let 𝑒 = 𝜕𝐸 ∩ 𝜕𝐸′ be an interior face shared by 𝐸 and 𝐸′. Assume that 𝜙 is a generic piecewise 
smooth function (scalar-valued or vector-valued), we define the average of 𝜙 on 𝑒 as { {𝜙} } ∶= 1

2
(𝜙 + 𝜙′), where 𝜙 and 𝜙′ denote the 

trace of 𝜙 from the interior of 𝐸 and 𝐸′. Let 𝑣 be a piecewise smooth function and 𝒗 a piecewise smooth vector-valued field. We also 
define the following jumps on 𝑒 as

[[𝑣]] ∶= 𝑣𝒏𝐸 + 𝑣′𝒏𝐸′ , [[𝒗]] ∶= 𝒗⊗ 𝒏𝐸 + 𝒗′ ⊗ 𝒏𝐸′ ,

[[𝒗]]𝑁 ∶= 𝒗 ⋅ 𝒏𝐸 + 𝒗′ ⋅ 𝒏𝐸′ , [[𝒗]]𝑇 ∶= 𝒗 × 𝒏𝐸 + 𝒗′ × 𝒏𝐸′ .

On a boundary face 𝑒 = 𝜕𝐸 ∩ 𝜕Ω, we set accordingly { {𝜙} } ∶= 𝜙, [ [𝑣] ] ∶= 𝑣𝒏, [ [𝒗] ] ∶= 𝒗⊗ 𝒏, [ [𝒗] ]𝑁 ∶= 𝒗 ⋅ 𝒏 and [ [𝒗] ]𝑇 ∶= 𝒗 × 𝒏.
For any integer 𝑙 ≥ 1, we introduce the following discrete function spaces

𝑿ℎ = {𝒗ℎ ∈ [𝐿2(Ω)]𝑑 ∶ ∀𝐸 ∈ ℎ, 𝒗ℎ|𝐸 ∈ [ℙ𝑙(𝐸)]
𝑑},

𝒀 ℎ = {𝒘ℎ ∈ [𝐿2(Ω)]𝑑 ∶ ∀𝐸 ∈ ℎ, 𝒘ℎ|𝐸 ∈ [ℙ𝑙(𝐸)]
𝑑},

𝑽 ℎ = {𝒗ℎ ∈𝑿ℎ ∶ ∀𝑞ℎ ∈𝑀ℎ, (𝒗ℎ, 𝑞ℎ) = 0},

𝑀ℎ = {𝑞ℎ ∈𝐿
2(Ω) ∶ ∀𝐸 ∈ ℎ, 𝑞ℎ|𝐸 ∈ ℙ𝑙−1(𝐸)},

𝑾 ℎ = 𝒀 ℎ +𝑯0(𝑐𝑢𝑟𝑙;Ω),

where ℙ𝑙(𝐸) is the space of polynomials of degree 𝑙 on the element 𝐸, and the operator  will be defined as below. We make the 
assumption that 𝑿ℎ and 𝑀ℎ meet the requirements of the inf-sup condition (see [46]) in the sense of

inf
𝑞∈𝑀ℎ

sup
𝒗∈𝑿ℎ

(𝒗, 𝑞)
‖𝒗‖𝐷𝐺 ≥ 𝛾‖𝑞‖𝐿2(Ω),

where 𝛾 > 0 is a constant.
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We also define several energy norms based on the above discontinuous Sobolev spaces as

‖𝒗‖2
𝐷𝐺

=
∑
𝐸∈ℎ

‖∇𝒗‖2
𝐿2(𝐸)

+
∑
𝑒∈ℎ

𝜎𝑒

ℎ𝑒
‖[[𝒗]]‖2

𝐿2(𝑒)
, ∀𝒗 ∈𝑿ℎ,

‖𝒘‖2
𝐷
=

∑
𝐸∈ℎ

‖∇×𝒘‖2
𝐿2(𝐸)

+
∑
𝑒∈ℎ

𝜎𝑒

ℎ𝑒
‖[[𝒘]]𝑇 ‖2𝐿2(𝑒)

, ∀𝒘 ∈𝑾 ℎ,

‖𝒘‖2
𝑑𝐺

=
∑
𝐸∈ℎ

‖𝒘‖2
𝐿2(𝐸)

+ ‖𝒘‖2
𝐷
, ∀𝒘 ∈𝑾 ℎ,

‖𝒘‖2
𝐶
=

∑
𝐸∈ℎ

‖∇ ⋅𝒘‖2
𝐿2(𝐸)

+
∑
𝑒∈ℎ

𝜎̄𝑒

ℎ𝑒
‖[[𝒘]]𝑁‖2

𝐿2(𝑒)
, ∀𝒘 ∈𝑾 ℎ,

‖𝑞‖2
𝐸
=

∑
𝐸∈ℎ

‖∇𝑞‖2
𝐿2(𝐸)

+
∑
𝑒∈ℎ

𝜎̃𝑒

ℎ𝑒
‖[[𝑞]]‖2

𝐿2(𝑒)
, ∀𝑞 ∈𝑀ℎ.

For the approximations of the initial values, let 𝒖0
ℎ
, 𝒎0

ℎ
be the 𝐿2 projection of 𝒖0, 𝒎0 onto 𝑿ℎ and 𝒀 ℎ, respectively, namely

∫
𝐸

(𝒖0
ℎ
− 𝒖0) ⋅ 𝒗ℎ = 0, ∀𝒗ℎ ∈ [ℙ𝑙(𝐸)]

𝑑 , ∫
𝐸

(𝒎0
ℎ
−𝒎0) ⋅𝒘ℎ = 0, ∀𝒘ℎ ∈ [ℙ𝑙(𝐸)]

𝑑 .

We start with setting 𝑝0
ℎ
= 𝑧0

ℎ
= 0 and 𝒖̃0

ℎ
= 𝒖0

ℎ
, then the fully discrete DG scheme of (2.1)-(2.3) read as follows.

Step 1: Find 𝒎𝑘+1
ℎ

∈𝑾 ℎ such that for all 𝒘ℎ ∈𝑾 ℎ, there holds

(
3𝒎𝑘+1

ℎ
− 4𝒎𝑘

ℎ
+𝒎𝑘−1

ℎ

2𝜏
,𝒘ℎ) + 𝜈𝑚(𝒎𝑘+1

ℎ
,𝒘ℎ) + 𝜈𝑚(𝒎𝑘+1ℎ

,𝒘ℎ)

+ (𝒖̂∗ℎ, 𝒎̂∗
ℎ,𝒘ℎ) + 𝛽𝜏

2(𝒎𝑘+1
ℎ
,𝒘ℎ) = 0.

(3.1)

Step 2: Find 𝒖̃𝑘+1
ℎ

∈𝑿ℎ such that for all 𝒗ℎ ∈𝑿ℎ, there holds

(
3𝒖̃𝑘+1
ℎ

− 4𝒖𝑘
ℎ
+ 𝒖𝑘−1

ℎ

2𝜏
,𝒗ℎ) + 𝜈(𝒖̃𝑘+1

ℎ
,𝒗ℎ) +(𝒖̂∗ℎ, 𝒖̂

∗
ℎ, 𝒖̃

𝑘+1
ℎ
,𝒗ℎ)

+(𝒗ℎ, 𝑝𝑘ℎ) − 𝜅(𝒗ℎ, 𝒎̂∗
ℎ,𝒎

𝑘+1
ℎ

) = 0.

(3.2)

Step 3: Find 𝑧𝑘+1
ℎ

∈𝑀ℎ such that for all 𝑞ℎ ∈𝑀ℎ, there holds

𝑒(𝑧
𝑘+1
ℎ
, 𝑞ℎ) =

3

2𝜏
(𝒖̃𝑘+1

ℎ
, 𝑞ℎ). (3.3)

Step 4: Find (𝒖𝑘+1
ℎ
, 𝑝𝑘+1
ℎ

) ∈ (𝑽 ℎ, 𝑀ℎ) such that for all (𝒗ℎ, 𝑞ℎ) ∈ (𝑿ℎ, 𝑀ℎ), there holds

(
3𝒖𝑘+1
ℎ

− 3𝒖̃𝑘+1
ℎ

2𝜏
,𝒗ℎ) +(𝒗ℎ, 𝑧𝑘+1ℎ

) = 0, (3.4a)

(𝑝𝑘+1
ℎ
, 𝑞ℎ) = (𝑝𝑘

ℎ
, 𝑞ℎ) + (𝑧𝑘+1

ℎ
, 𝑞ℎ) + 𝜆𝜈(𝒖̃𝑘+1ℎ

, 𝑞ℎ). (3.4b)

Similar to [2], a way to achieve second-order accuracy in the BDF2 scheme (3.1)-(3.4), we set the two initial values as 𝒎−1
ℎ

=𝒎0
ℎ
and 

𝒖−1
ℎ

= 𝒖0
ℎ
. Note that in the DG scheme (3.1)-(3.4), we encapsulate a number of operators, such as , 𝑒, , , , , , , which are 

described below one by one.

∙ The bilinear forms  and 𝑒, which are for the DG discretization of the Laplace operator, and set as the standard interior 
penalty form defined as:

(𝒖,𝒗) =
∑
𝐸∈ℎ

(∇𝒖,∇𝒗)𝐸 −
∑
𝑒∈ℎ

({{∇𝒖}}, [[𝒗]])𝑒

−
∑
𝑒∈ℎ

({{∇𝒗}}, [[𝒖]])𝑒 +
∑
𝑒∈ℎ

𝜎𝑒

ℎ𝑒
([[𝒖]], [[𝒗]])𝑒,∀𝒖,𝒗 ∈𝑿ℎ,

and

𝑒(𝑝, 𝑞) =
∑
𝐸∈ℎ

(∇𝑝,∇𝑞)𝐸 −
∑
𝑒∈ℎ

({{∇𝑝}}, [[𝑞]])𝑒

−
∑
𝑒∈ℎ

({{∇𝑞}}, [[𝑝]])𝑒 +
∑
𝑒∈ℎ

𝜎̃𝑒

ℎ𝑒
([[𝑝]], [[𝑞]])𝑒, ∀𝑝, 𝑞 ∈𝑀ℎ,

where 𝜎𝑒, ̃𝜎𝑒 > 0 are stabilization parameters should be chosen large enough.
∙ The bilinear form ̃ and its extension . In general, for the discretization of the Maxwell operator, the form ̃ is used to 

discrete the curl-curl operator ∇ × (∇ ×𝒎), namely
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̃(𝒎,𝒘) =
∑
𝐸∈ℎ

(∇ ×𝒎,∇×𝒘)𝐸 −
∑
𝑒∈ℎ

({{∇ ×𝒎}}, [[𝒘]]𝑇 )𝑒

−
∑
𝑒∈ℎ

({{∇ ×𝒘}}, [[𝒎]]𝑇 )𝑒 +
∑
𝑒∈ℎ

𝜎𝑒

ℎ𝑒
([[𝒎]]𝑇 , [[𝒘]]𝑇 )𝑒, ∀𝒎,𝒘 ∈ 𝒀 ℎ.

Clearly, the form ̃(⋅, ⋅) is well-defined over 𝒀 ℎ × 𝒀 ℎ. But, to get a better coercivity condition, we extend the form of ̃(⋅, ⋅) onto 
𝑾 ℎ ×𝑾 ℎ, as stated in [28,34,36], defined by

(𝒎,𝒘) =
∑
𝐸∈ℎ

(∇ ×𝒎,∇×𝒘)𝐸 −
∑
𝑒∈ℎ

({{Πℎ(∇ ×𝒎)}}, [[𝒘]]𝑇 )𝑒

−
∑
𝑒∈ℎ

({{Πℎ(∇ ×𝒘)}}, [[𝒎]]𝑇 )𝑒 +
∑
𝑒∈ℎ

𝜎𝑒

ℎ𝑒
([[𝒎]]𝑇 , [[𝒘]]𝑇 )𝑒, ∀𝒎,𝒘 ∈𝑾 ℎ,

where Πℎ denotes the standard 𝐿2-projection onto 𝒀 ℎ. Note that ̃(⋅, ⋅) equals (⋅, ⋅) on 𝒀 ℎ ×𝒀 ℎ and is well-defined on 𝑯0(𝑐𝑢𝑟𝑙; Ω) ×
𝑯0(𝑐𝑢𝑟𝑙; Ω).

∙ The trilinear form , which is the DG form of the coupling term, namely

(𝒖,𝒎,𝒘) = −
∑
𝐸∈ℎ

(𝒖,𝒎 ×∇×𝒘)𝐸 +
∑
𝑒∈ℎ

({{𝒎}} × [[𝒘]]𝑇 ,{{𝒖}})𝑒, ∀𝒖 ∈𝑿ℎ,𝒎,𝒘 ∈𝑾 ℎ.

∙ The advective term , which is given by the usual upwind DG formulation and reads as

(𝒛,𝒖;𝒗,𝝆) =
∑
𝐸∈ℎ

(𝒖 ⋅∇𝒗,𝝆)𝐸 +
1

2

∑
𝐸∈ℎ

(∇ ⋅ 𝒖,𝒗 ⋅ 𝝆)𝐸

−
1

2

∑
𝑒∈ℎ

([[𝒖]],{{𝒗 ⋅ 𝝆}})𝑒 +
∑
𝐸∈ℎ

(|{{𝒖}} ⋅ 𝒏𝐸 |(𝒗𝑖𝑛𝑡 − 𝒗𝑒𝑥𝑡),𝝆𝑖𝑛𝑡)𝜕𝐸𝒛
−
,

for ∀𝒛, 𝒖, 𝒗, 𝝆 ∈𝑿ℎ. Here, we define the inflow boundary of 𝐸 as 𝜕𝐸𝒛
−
= {𝒙 ∈ 𝜕𝐸 ∶ { {𝒛} } ⋅ 𝒏𝐸 < 0}, denote by 𝒗𝑖𝑛𝑡 and 𝒗𝑒𝑥𝑡 the values of 

the trace of function 𝒗 taken from the interior and exterior of 𝐸, respectively. If the edge lies on 𝜕Ω, we have 𝒗𝑖𝑛𝑡 = 𝒗 and 𝒗𝑒𝑥𝑡 = 𝟎.
∙ The penalty operator , which is used to approximate the divergence free condition (see Remark 3.1), and defined as

(𝒎,𝒘) =
∑
𝐸∈ℎ

(∇ ⋅𝒎,∇ ⋅𝒘)𝐸 +
∑
𝑒∈ℎ

𝜎̄𝑒

ℎ𝑒
([[𝒎]]𝑁 , [[𝒘]]𝑁 )𝑒,

where the parameter 𝜎̄𝑒 > 0 must be set sufficiently high.
∙ The stabilization term  (see Remark 3.1), which is defined as

(𝒎,𝒘) =
∑
𝐸∈ℎ

(𝒎̂∗
ℎ ×∇×𝒎, 𝒎̂∗

ℎ ×∇×𝒘)𝐸 +
∑
𝑒∈ℎ

𝜎𝑒

ℎ𝑒
({{𝒎̂∗

ℎ}} × [[𝒎]]𝑇 ,{{𝒎̂
∗
ℎ}} × [[𝒘]]𝑇 )𝑒.

∙ The lift operator 𝐹ℎ. We further introduce the lift operator for DG method analysis in theory. By giving 𝑒 ∈ ℎ, we construct 
the operator 𝐹ℎ ∶𝑿ℎ →𝑀ℎ such that

(𝐹ℎ([[𝒗ℎ]]), 𝑞ℎ) =
∑
𝑒∈ℎ

([[𝒗ℎ]]𝑁 ,{{𝑞ℎ}})𝑒, ∀𝒗ℎ ∈𝑿ℎ, 𝑞ℎ ∈𝑀ℎ. (3.5)

It is easy to check that 𝐹ℎ is a linear operator (see [17,42]). One can also obtain the bound for the lift operator 𝐹ℎ in (3.5) (cf. 
[35,42]), namely,

‖𝐹ℎ([[𝒗ℎ]])‖ ≤ 𝐶̃𝑘(
∑
𝑒∈ℎ

ℎ−1𝑒 ‖[[𝒗ℎ]]‖2𝐿2(𝑒)
)1∕2, ∀𝒗ℎ ∈𝑿ℎ, (3.6)

where 𝐶̃𝑘 > 0 is a constant independent of ℎ and 𝜏 .
∙ The bilinear term , which is related to the discretization of the gradient and divergence operator (e.g. ∇𝑝 and −∇ ⋅ 𝒗), and is 

defined as

(𝒗, 𝑞) = −
∑
𝐸∈ℎ

(∇ ⋅ 𝒗, 𝑞)𝐸 +
∑
𝑒∈ℎ

([[𝒗]]𝑁 ,{{𝑞}})𝑒, ∀𝒗 ∈𝑿ℎ, 𝑞 ∈𝑀ℎ.

Using the lift operator, we have the following equivalent form to (𝒗ℎ, 𝑞ℎ):
(𝒗ℎ, 𝑞ℎ) = − (∇ℎ ⋅ 𝒗ℎ, 𝑞ℎ) + (𝐹ℎ([[𝒗ℎ]]), 𝑞ℎ), (3.7)

for all 𝒗ℎ ∈𝑿ℎ, 𝑞ℎ ∈𝑀ℎ, where ∇ℎ⋅ denotes the broken divergence operator.
The following remark provides a detailed explanation of the construction strategy employed in developing the scheme (3.1)-(3.4).
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Remark 3.1.

• In (3.1), we handle the coupled nonlinear term (in the trilinear form ) by extrapolating the variables 𝒎 and 𝒖. This explicit 
treatment helps us to obtain linear and decoupled computations. In (3.2)-(3.4), we make use of the pressure-correction method 
with second-order time accuracy for solving the Navier-Stokes system. This method enables the computation of the velocity field 
and the pressure to be decoupled. In (3.4b), 𝜆 = 0 yields the standard forms of pressure-correction projection method (cf. [22]), 
whereas 𝜆 = 1 yields the rotational pressure-correction form (cf. [29,30]).

• In (3.1), we incorporate a penalty term 𝜈𝑚(𝒎𝑘+1ℎ
, 𝒘ℎ) to approximate the exact penalty formulation for the magnetic field in 

the spatial discrete case (see also in [5,56]). We also add an additional stabilization term 𝛽𝜏2 artificially, which plays a crucial 
role in balancing the explicit treatment for the nonlinear coupling term ∇ × (𝒖×𝒎) (see term ) in (3.1), and 𝛽 > 0 is an artificial 
parameter. The stabilization term 𝛽𝜏2 can be treated as a second-order perturbation to the equation (2.4a) at the discrete level, 
then it leads to an additional consistency error of second-order (𝜏2) which has the same order as the error introduced by the 
explicit treatment of coupling term. Similar stabilization techniques can be found in [48,49] for the phase-field type equations.

Remark 3.2.

• If we adopt the stabilized Gauge-Uzawa method [44] for solving the MHD system, the Step 3 and Step 4 will become the 
following steps:
Step 3: Find 𝜓𝑘+1

ℎ
∈𝑀ℎ such that for all 𝑞ℎ ∈𝑀ℎ, there holds

𝑒(𝜓
𝑘+1
ℎ

, 𝑞ℎ) =𝑒(𝜓
𝑘
ℎ
, 𝑞ℎ) −(𝒖̃𝑘+1

ℎ
, 𝑞ℎ).

Step 4: Find (𝒖𝑘+1
ℎ
, 𝑧𝑘+1
ℎ

) ∈ (𝑽 ℎ, 𝑀ℎ) such that for all (𝒗ℎ, 𝑞ℎ) ∈ (𝑿ℎ, 𝑀ℎ), there holds

(𝒖𝑘+1
ℎ

− 𝒖̃𝑘+1
ℎ
,𝒗ℎ) −(𝒗ℎ, 𝜓𝑘+1ℎ

−𝜓𝑘
ℎ
) = 0,

(𝑧𝑘+1
ℎ
, 𝑞ℎ) = (𝑧𝑘

ℎ
, 𝑞ℎ) + 𝜆𝜈(𝒖̃𝑘+1ℎ

, 𝑞ℎ).

Step 5: Update 𝑝𝑘+1
ℎ

by

𝑝𝑘+1
ℎ

= −
3𝜓𝑘+1

ℎ

2𝜏
+ 𝜈𝑧𝑘+1

ℎ
.

Note that, the similar stability results can be proved by using the same argument as the proof of rotational pressure-correction 
scheme at a later.

• Compared with the decoupled schemes developed in [40,57], we don’t need to reformulate the MHD system, each equation in the 
original system can be solved independently. More precisely, in [40], the implicit-explicit schemes are constructed based on the 
scalar auxiliary variable approach for the MHD system, its require solving a sequence of linear differential equations with con-
stant coefficients at each time step. In [57], the MHD system is reformulated by the “zero-energy-contribution” characteristics, 
a nonlocal scalar variable and its corresponding ordinary differential equation should be solved at each time step.

• We also remark that, the optimal rate convergence analysis and error estimate of the proposed numerical scheme is not derived 
theoretically here, but it will be considered in our ongoing work. The interested readers can refer to the related works in [44,61,
62], or the numerical analysis for certain coupled physical system, such as a phase-field models for two-phase incompressible 
flows, see the existing works in [9,10,18,20,21,41,52].

3.2. Well-posedness

In the subsequent, we will first review and prove a number of conclusions that are already common knowledge about the DG 
formulations, and demonstrate the well-posedness of our developed scheme.

Lemma 3.3. The bilinear forms , , and 𝑒 satisfy the conditions as follows,

(𝒖,𝒗) ≤ 𝐶1‖𝒖‖𝐷𝐺‖𝒗‖𝐷𝐺 , (𝒗,𝒗) ≥𝐾1‖𝒗‖2𝐷𝐺 , ∀𝒖,𝒗 ∈𝑿ℎ, (3.8)

(𝒎,𝒘) ≤ 𝐶2‖𝒎‖𝐷‖𝒘‖𝐷, (𝒘,𝒘) ≥𝐾2‖𝒘‖2
𝐷
, ∀𝒎,𝒘 ∈𝑾 ℎ, (3.9)

𝑒(𝑝, 𝑞) ≤ 𝐶3‖𝑝‖𝐸‖𝑞‖𝐸 , 𝑒(𝑞, 𝑞) ≥𝐾3‖𝑞‖2𝐸 , ∀𝑝, 𝑞 ∈𝑀ℎ, (3.10)

where 𝐶𝑖, 𝐾𝑖, 𝑖 = 1, 2, 3 are positive constants.

Proof. For a detailed proof, please refer to [26,28,46]. □

Based on the coercivity of , , and 𝑒, it can be inferred that these operators are non-negative. For the sake of convenience, 
the following broken energy norms are also defined:



Journal of Computational Physics 495 (2023) 112562

8

G.-a. Zou, B. Wang and X. Yang

|||𝒗|||2
𝐷𝐺

=(𝒗,𝒗) ≥ 0,

|||𝒘|||2
𝐷
=(𝒘,𝒘) ≥ 0,

|||𝑞|||2
𝐸
=𝑒(𝑞, 𝑞) ≥ 0,

(3.11)

which will be used repeatedly in the subsequent analysis.

Lemma 3.4. There exists a positive constant 𝐶𝑒 such that the form  satisfies
(𝒖,𝒎,𝒘) ≤ 𝐶𝑒‖𝒖‖𝐿2(Ω)‖𝒎 ×∇×𝒘‖, ∀𝒖 ∈𝑿ℎ,𝒎,𝒘 ∈𝑾 ℎ, (3.12)

where the norm ‖ ⋅ ‖ is defined by

‖𝒎 ×∇×𝒘‖ = (
∑
𝐸∈ℎ

‖𝒎 ×∇×𝒘‖2
𝐿2(𝐸)

+
∑
𝑒∈ℎ

𝜎𝑒

ℎ𝑒
‖{{𝒎}} × [[𝒘]]𝑇 ‖2𝐿2(𝑒)

)
1
2 .

.

Proof. From the Cauchy-Schwarz inequality, Hölder inequality and trace inequality (see [46]), we derive

(𝒖,𝒎,𝒘) ≤ (
∑
𝐸∈ℎ

‖𝒖‖2
𝐿2(𝐸)

)
1
2 (

∑
𝐸∈ℎ

‖𝒎 ×∇×𝒘‖2
𝐿2(𝐸)

)
1
2

+ (
∑
𝑒∈ℎ

‖{{𝒎}} × [[𝒘]]𝑇 ‖2𝐿2(𝑒)
)
1
2 (

∑
𝑒∈ℎ

‖{{𝒖}}‖2
𝐿2(𝑒)

)
1
2

≤ (
∑
𝐸∈ℎ

‖𝒖‖2
𝐿2(𝐸)

)
1
2 (

∑
𝐸∈ℎ

‖𝒎 ×∇×𝒘‖2
𝐿2(𝐸)

)
1
2

+
𝐶

𝜎
1∕2
𝑒

(
∑
𝐸∈ℎ

‖𝒖‖2
𝐿2(𝐸)

)
1
2 (

∑
𝑒∈ℎ

𝜎𝑒

ℎ𝑒
‖{{𝒎}} × [[𝒘]]𝑇 ‖2𝐿2(𝑒)

)
1
2 ,

which implies the conclusion. □

Lemma 3.5. The form  satisfies the following continuity result

(𝒛,𝒖;𝒗,𝝆) ≤ 𝐶4‖𝒖‖𝐷𝐺‖𝒗‖𝐷𝐺‖𝝆‖𝐷𝐺 ,
for all 𝒛, 𝒖, 𝒗, 𝝆 ∈𝑿ℎ, where 𝐶4 > 0 is a constant.

Proof. For a detailed proof, please refer to [27,46,61]. □

Lemma 3.6. The form  satisfies the following positivity property

(𝒖,𝒖;𝒗,𝒗) =
1

2

∑
𝐸∈ℎ

‖|{{𝒖}} ⋅ 𝒏𝐸 |1∕2(𝒗𝑖𝑛𝑡 − 𝒗𝑒𝑥𝑡)‖2
𝐿2(𝜕𝐸𝒖

−∖𝜕Ω)
+ ‖|𝒖 ⋅ 𝒏|1∕2𝒗‖2

𝐿2(𝜕Ω𝒗
+)

≥ 0,

for all 𝒖, 𝒗 ∈𝑿ℎ.

Proof. For a detailed proof, please refer to [27,46]. □

Now, the well-posedness of the proposed scheme (3.1)-(3.4) is stated as the following theorem.

Theorem 3.7. The decoupled scheme (3.1)-(3.4) admits a unique solution (𝒎𝑘+1
ℎ
, 𝒖𝑘+1
ℎ
, 𝑝𝑘+1
ℎ

) ∈𝑾 ℎ ×𝑿ℎ ×𝑀ℎ.

Proof. (i) First, we show the well-posedness of (3.1) in step 1. We define a bilinear form 1(⋅, ⋅) ∶𝑾 ℎ ×𝑾 ℎ →ℝ by

1(𝒎,𝒘) =
3

2𝜏
(𝒎,𝒘) + 𝜈𝑚(𝒎,𝒘) + 𝜈𝑚(𝒎,𝒘) + 𝛽𝜏2(𝒎,𝒘),

and a linear form 𝐿1(⋅) ∶𝑾 ℎ →ℝ is given by

𝐿1(𝒘) =
1

2𝜏
(4𝒎𝑘

ℎ
−𝒎𝑘−1

ℎ
,𝒘) − (𝒖̂∗ℎ, 𝒎̂∗

ℎ,𝒘).

Therefore, the first step (3.1) can be expressed as: find 𝒎𝑘+1
ℎ

∈𝑾 ℎ such that for all 𝒘ℎ ∈𝑾 ℎ, there holds

1(𝒎
𝑘+1
ℎ
,𝒘ℎ) =𝐿1(𝒘ℎ).
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By using Lemma 3.3, we can easily check that the form 1(⋅, ⋅) is continues and coercive, namely

1(𝒎,𝒘) ≤ 3

2𝜏
‖𝒎‖‖𝒘‖+𝐶2𝜈𝑚‖𝒎‖𝐷‖𝒘‖𝐷 + 𝜈𝑚‖𝒎‖𝐶‖𝒘‖𝐶 + 𝛽𝜏2‖𝒎̂∗

ℎ‖2𝐿∞(Ω)
‖𝒎‖𝐷‖𝒘‖𝐷

≤ 𝐶5‖𝒎‖𝑑𝐺‖𝒘‖𝑑𝐺 ,
and

1(𝒎,𝒎) ≥ 3

2𝜏
‖𝒎‖2 +𝐾2𝜈𝑚‖𝒎‖2

𝐷
+ 𝜈𝑚‖𝒎‖2

𝐶
+ 𝛽𝜏2‖𝒎̂∗

ℎ ×∇×𝒎‖2 ≥ 𝐶6‖𝒎‖2
𝑑𝐺
,

where 𝐶5 > 0 and 𝐶6 > 0 are two constants. Thus, by using the Lax-Milgram theorem, we can derive that the equation (3.1) has a 
unique solution 𝒎𝑘+1

ℎ
∈𝑾 ℎ.

(ii) We show the well-posedness of (3.2) in step 2. We define a bilinear form 2(⋅, ⋅) ∶𝑿ℎ ×𝑿ℎ →ℝ by

2(𝒖,𝒗) =
3

2𝜏
(𝒖,𝒗) + 𝜈(𝒖,𝒗) +(𝒖̂∗ℎ, 𝒖̂

∗
ℎ,𝒖,𝒗),

and a linear form 𝐿2(⋅) ∶𝑿ℎ →ℝ by

𝐿2(𝒗) =
1

2𝜏
(4𝒖𝑘

ℎ
− 𝒖𝑘−1

ℎ
,𝒗) −(𝒗, 𝑝𝑘

ℎ
) + 𝜅(𝒗, 𝒎̂∗

ℎ,𝒎
𝑘+1
ℎ

).

Then, the second step (3.2) can be rewritten as: Find 𝒖̃𝑘+1
ℎ

∈𝑿ℎ such that for all 𝒗ℎ ∈𝑿ℎ, there holds

2(𝒖̃
𝑘+1
ℎ
,𝒗ℎ) =𝐿2(𝒗ℎ).

Making use of Lemma 3.5, Lemma 3.6 and Lemma 3.3, we can prove that 2(⋅, ⋅) is bounded and coercive, namely

2(𝒖,𝒗) ≤ 3

2𝜏
‖𝒖‖‖𝒗‖+𝐶1𝜈‖𝒖‖𝐷𝐺‖𝒗‖𝐷𝐺 +𝐶4‖𝒖̂∗ℎ‖𝐷𝐺‖𝒖‖𝐷𝐺‖𝒗‖𝐷𝐺 ≤ 𝐶7‖𝒖‖𝐷𝐺‖𝒗‖𝐷𝐺 ,

and

2(𝒖,𝒖) ≥ 3

2𝜏
‖𝒖‖2 +𝐾1𝜈‖𝒖‖2𝐷𝐺 ≥𝐾1𝜈‖𝒖‖2𝐷𝐺 ,

where 𝐶7 > 0 is a constant depends on 𝜏 , 𝜈 and ‖𝒖̂∗ℎ‖𝐷𝐺 . Therefore, we conclude that (3.2) admits a unique solution 𝒖̃𝑘+1ℎ
∈𝑿ℎ from 

the Lax-Milgram theorem.
(iii) The existence and uniqueness of 𝒖𝑘+1

ℎ
∈𝑿ℎ and 𝑝

𝑘+1
ℎ

∈𝑀ℎ can also be demonstrated by following a similar approach to (3.3)
in step 3 and (3.4) in step 4, and as the proof procedure is very similar, we omit it for brevity. □

3.3. Energy stability

Some auxiliary variables are introduced here for the purpose of demonstrating energy stability. Define 𝑆0
ℎ
= 0 and 𝜓0

ℎ
= 0, for any 

1 ≤ 𝑘 ≤𝑁 , the auxiliary functions 𝑆𝑘
ℎ
∈𝑀ℎ and 𝜓𝑘ℎ ∈𝑀ℎ are given by

⎧⎪⎨⎪⎩

𝑆𝑘
ℎ
= 𝜆𝜈

𝑘∑
𝑗=1

(∇ℎ ⋅ 𝒖̃
𝑗

ℎ
− 𝐹ℎ([[𝒖̃

𝑗

ℎ
]])),

𝜓𝑘
ℎ
= 𝑝𝑘

ℎ
+𝑆𝑘

ℎ
.

(3.13)

Furthermore, thanks to (3.7), the equation (3.4b) can be rewritten as

𝑝𝑘+1
ℎ

= 𝑝𝑘
ℎ
+ 𝑧𝑘+1

ℎ
− 𝜆𝜈(∇ℎ ⋅ 𝒖̃

𝑘+1
ℎ

− 𝐹ℎ([[𝒖̃
𝑘+1
ℎ

]])). (3.14)

The following two identities will be used repeatedly

2(𝑎− 𝑏)𝑎 = |𝑎|2 − |𝑏|2 + |𝑎− 𝑏|2, 2(𝑎− 𝑏)𝑏 = |𝑎|2 − |𝑏|2 − |𝑎− 𝑏|2, (3.15)

2(3𝑎− 4𝑏+ 𝑐)𝑎 = |𝑎|2 − |𝑏|2 + |2𝑎− 𝑏|2 − |2𝑏− 𝑐|2 + |𝑎− 2𝑏+ 𝑐|2. (3.16)

Now, we will prove that the decoupled scheme defined in (3.1)-(3.4) possesses the energy stability, which can be demonstrated 
in the following way.

Theorem 3.8. It can be shown that the scheme defined by (3.1)-(3.4) is unconditionally energy stable, in sense that

𝔼
ℎ
𝑡𝑜𝑡(𝒎

𝑘+1
ℎ
,𝒖𝑘+1
ℎ
, 𝜓𝑘+1

ℎ
, 𝑆𝑘+1
ℎ

) ≤ 𝔼
ℎ
𝑡𝑜𝑡(𝒎

𝑘
ℎ
,𝒖𝑘
ℎ
, 𝜓𝑘

ℎ
, 𝑆𝑘
ℎ
), (3.17)

where the discrete energy 𝔼ℎ𝑡𝑜𝑡 is defined as
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𝔼
ℎ
𝑡𝑜𝑡(𝒎

𝑘
ℎ
,𝒖𝑘
ℎ
, 𝜓𝑘

ℎ
, 𝑆𝑘
ℎ
) =

𝜅

2
‖𝒎𝑘

ℎ
‖2 + 𝜅

2
‖2𝒎𝑘

ℎ
−𝒎𝑘−1

ℎ
‖2 + 1

2
‖𝒖𝑘

ℎ
‖2 + 1

2
‖2𝒖𝑘

ℎ
− 𝒖𝑘−1

ℎ
‖2

+
2𝜏2

3
|||𝜓𝑘

ℎ
|||2
𝐸
+
𝜏

𝜆𝜈
‖𝑆𝑘

ℎ
‖2.

Proof. By setting 𝒘ℎ = 2𝜅𝜏𝒎𝑘+1
ℎ

in (3.1), using (3.11) and (3.16), we obtain

𝜅

2
(‖𝒎𝑘+1

ℎ
‖2 − ‖𝒎𝑘

ℎ
‖2) + 𝜅

2
(‖2𝒎𝑘+1

ℎ
−𝒎𝑘

ℎ
‖2 − ‖2𝒎𝑘

ℎ
−𝒎𝑘−1

ℎ
‖2)

+
𝜅

2
‖𝒎𝑘+1

ℎ
− 2𝒎𝑘

ℎ
+𝒎𝑘+1

ℎ
‖2 + 2𝜅𝜈𝑚𝜏|||𝒎𝑘+1ℎ

|||2
𝐷
+ 2𝜅𝜈𝑚𝜏‖𝒎𝑘+1ℎ

‖2
𝐶

+ 2𝛽𝜅𝜏3‖𝒎̂∗
ℎ ×∇×𝒎𝑘+1

ℎ
‖2 + 2𝜅𝜏(𝒖̂∗ℎ, 𝒎̂∗

ℎ,𝒎
𝑘+1
ℎ

) = 0.

(3.18)

By setting 𝒗ℎ = 2𝜏𝒖̃𝑘+1
ℎ

in (3.2), we can obtain

(3𝒖̃𝑘+1
ℎ

− 4𝒖𝑘
ℎ
+ 𝒖𝑘−1

ℎ
, 𝒖̃𝑘+1
ℎ

) + 2𝜈𝜏|||𝒖̃𝑘+1
ℎ

|||2
𝐷𝐺

+ 2𝜏(𝒖̂∗ℎ, 𝒖̂
∗
ℎ, 𝒖̃

𝑘+1
ℎ
, 𝒖̃𝑘+1
ℎ

)

+ 2𝜏(𝒖̃𝑘+1
ℎ
, 𝑝𝑘
ℎ
) − 2𝜅𝜏(𝒖̃𝑘+1

ℎ
, 𝒎̂∗

ℎ,𝒎
𝑘+1
ℎ

) = 0.
(3.19)

By setting 𝒗ℎ = 3𝒖𝑘+1
ℎ

− 4𝒖𝑘
ℎ
+ 𝒖𝑘−1

ℎ
in (3.4a), and using the fact that (𝒖𝑘+1

ℎ
, 𝑞ℎ) = 0 due to 𝒖𝑘+1

ℎ
∈ 𝑽 ℎ, we have

3

2𝜏
(𝒖𝑘+1
ℎ

− 𝒖̃𝑘+1
ℎ
,3𝒖𝑘+1

ℎ
− 4𝒖𝑘

ℎ
+ 𝒖𝑘−1

ℎ
) = −(3𝒖𝑘+1

ℎ
− 4𝒖𝑘

ℎ
+ 𝒖𝑘−1

ℎ
, 𝑧𝑘+1
ℎ

) = 0. (3.20)

Thus, by using (3.15)-(3.16) and (3.20), we obtain

(3𝒖̃𝑘+1
ℎ

− 4𝒖𝑘
ℎ
+ 𝒖𝑘−1

ℎ
, 𝒖̃𝑘+1
ℎ

) = (3𝒖𝑘+1
ℎ

− 4𝒖𝑘
ℎ
+ 𝒖𝑘−1

ℎ
,𝒖𝑘+1
ℎ

)

+ (3𝒖𝑘+1
ℎ

− 4𝒖𝑘
ℎ
+ 𝒖𝑘−1

ℎ
, 𝒖̃𝑘+1
ℎ

− 𝒖𝑘+1
ℎ

) + (3𝒖̃𝑘+1
ℎ

− 3𝒖𝑘+1
ℎ
, 𝒖̃𝑘+1
ℎ

)

=
1

2
(‖𝒖𝑘+1

ℎ
‖2 − ‖𝒖𝑘

ℎ
‖2 + ‖2𝒖𝑘+1

ℎ
− 𝒖𝑘

ℎ
‖2 − ‖2𝒖𝑘

ℎ
− 𝒖𝑘−1

ℎ
‖2 + ‖𝒖𝑘+1

ℎ
− 2𝒖𝑘

ℎ
+ 𝒖𝑘−1

ℎ
‖2)

+
3

2
(‖𝒖̃𝑘+1

ℎ
‖2 − ‖𝒖𝑘+1

ℎ
‖2 + ‖𝒖̃𝑘+1

ℎ
− 𝒖𝑘+1

ℎ
‖2).

(3.21)

From (3.19) and (3.21), we derive

1

2
(‖𝒖𝑘+1

ℎ
‖2 − ‖𝒖𝑘

ℎ
‖2 + ‖2𝒖𝑘+1

ℎ
− 𝒖𝑘

ℎ
‖2 − ‖2𝒖𝑘

ℎ
− 𝒖𝑘−1

ℎ
‖2 + ‖𝒖𝑘+1

ℎ
− 2𝒖𝑘

ℎ
+ 𝒖𝑘−1

ℎ
‖2)

+
3

2
(‖𝒖̃𝑘+1

ℎ
‖2 − ‖𝒖𝑘+1

ℎ
‖2 + ‖𝒖̃𝑘+1

ℎ
− 𝒖𝑘+1

ℎ
‖2) + 2𝜈𝜏|||𝒖̃𝑘+1

ℎ
|||2
𝐷𝐺

+ 2𝜏(𝒖̂∗ℎ, 𝒖̂
∗
ℎ, 𝒖̃

𝑘+1
ℎ
, 𝒖̃𝑘+1
ℎ

) + 2𝜏(𝒖̃𝑘+1
ℎ
, 𝑝𝑘
ℎ
) − 2𝜅𝜏(𝒖̃𝑘+1

ℎ
, 𝒎̂∗

ℎ,𝒎
𝑘+1
ℎ

) = 0.

(3.22)

By setting 𝒗ℎ = 2𝜏𝒖̃𝑘+1
ℎ

in (3.4a) and from (3.15), we get

3

2
(‖𝒖𝑘+1

ℎ
‖2 − ‖𝒖̃𝑘+1

ℎ
‖2 − ‖𝒖𝑘+1

ℎ
− 𝒖̃𝑘+1

ℎ
‖2) + 2𝜏(𝒖̃𝑘+1

ℎ
, 𝑧𝑘+1
ℎ

) = 0. (3.23)

We rewrite (3.4a) as

(𝒖̃𝑘+1
ℎ

− 𝒖̂∗ℎ,𝒗ℎ) − (𝒖𝑘+1
ℎ

− 𝒖̂∗ℎ,𝒗ℎ) =
2𝜏

3
(𝒗ℎ, 𝑧𝑘+1ℎ

). (3.24)

By setting 𝒗ℎ = 𝒖̃𝑘+1
ℎ

− 𝒖̂∗ℎ in (3.24), using the fact that (𝒖̂∗ℎ, 𝑧𝑘+1ℎ
) = 0, we deduce

‖𝒖̃𝑘+1
ℎ

− 𝒖̂∗ℎ‖2 − (𝒖𝑘+1
ℎ

− 𝒖̂∗ℎ, 𝒖̃
𝑘+1
ℎ

− 𝒖̂∗ℎ) =
2𝜏

3
(𝒖̃𝑘+1

ℎ
, 𝑧𝑘+1
ℎ

). (3.25)

By setting 𝑞ℎ =
8𝜏2

9
𝑧𝑘+1
ℎ

in (3.3) and using (3.11), we obtain

8𝜏2

9
|||𝑧𝑘+1

ℎ
|||2
𝐸
=

4𝜏

3
(𝒖̃𝑘+1

ℎ
, 𝑧𝑘+1
ℎ

). (3.26)

To deal with the term (𝒖̃𝑘+1
ℎ
, 𝑝𝑘
ℎ
) in (3.22), using the definition of 𝜓𝑘

ℎ
in (3.13), we have

2𝜏(𝒖̃𝑘+1
ℎ
, 𝑝𝑘
ℎ
) = 2𝜏(𝒖̃𝑘+1

ℎ
, 𝜓𝑘

ℎ
) − 2𝜏(𝒖̃𝑘+1

ℎ
, 𝑆𝑘
ℎ
). (3.27)

Using the definition of 𝑆𝑘
ℎ
in (3.13), we obtain

𝑆𝑘+1
ℎ

−𝑆𝑘
ℎ
= 𝜆𝜈(∇ℎ ⋅ 𝒖̃

𝑘+1
ℎ

− 𝐹ℎ([[𝒖̃
𝑘+1
ℎ

]])). (3.28)

Using (3.14) and (3.28), it is easy to check that

𝜓𝑘+1
ℎ

−𝜓𝑘
ℎ
= (𝑝𝑘+1

ℎ
− 𝑝𝑘

ℎ
) + (𝑆𝑘+1

ℎ
−𝑆𝑘

ℎ
) = 𝑧𝑘+1

ℎ
. (3.29)

By setting 𝑞ℎ = 𝜓𝑘ℎ in (3.3), since 𝑒(⋅, ⋅) is symmetric, and using (3.15) and (3.29), we have
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2𝜏(𝒖̃𝑘+1
ℎ
, 𝜓𝑘

ℎ
) =

4𝜏2

3
𝑒(𝜓

𝑘+1
ℎ

−𝜓𝑘
ℎ
, 𝜓𝑘

ℎ
)

=
2𝜏2

3
(|||𝜓𝑘+1

ℎ
|||2
𝐸
− |||𝜓𝑘

ℎ
|||2
𝐸
− |||𝜓𝑘+1

ℎ
−𝜓𝑘

ℎ
|||2
𝐸
)

=
2𝜏2

3
(|||𝜓𝑘+1

ℎ
|||2
𝐸
− |||𝜓𝑘

ℎ
|||2
𝐸
) −

2𝜏2

3
|||𝑧𝑘+1

ℎ
|||2
𝐸
.

(3.30)

For the second term on the right-hand side of (3.27), by using (3.7), (3.15) and (3.28), we deduce

−2𝜏(𝒖̃𝑘+1
ℎ
, 𝑆𝑘
ℎ
) = 2𝜏(∇ℎ ⋅ 𝒖̃

𝑘+1
ℎ

− 𝐹ℎ([[𝒖̃
𝑘+1
ℎ

]]), 𝑆𝑘
ℎ
)

=
2𝜏

𝜆𝜈
(𝑆𝑘+1
ℎ

−𝑆𝑘
ℎ
, 𝑆𝑘
ℎ
)

=
𝜏

𝜆𝜈
(‖𝑆𝑘+1

ℎ
‖2 − ‖𝑆𝑘

ℎ
‖2 − ‖𝑆𝑘+1

ℎ
−𝑆𝑘

ℎ
‖2).

(3.31)

By substituting (3.30) and (3.31) into (3.27), we obtain

2𝜏(𝒖̃𝑘+1
ℎ
, 𝑝𝑘
ℎ
) =

2𝜏2

3
(|||𝜓𝑘+1

ℎ
|||2
𝐸
− |||𝜓𝑘

ℎ
|||2
𝐸
) −

2𝜏2

3
|||𝑧𝑘+1

ℎ
|||2
𝐸

+
𝜏

𝜆𝜈
(‖𝑆𝑘+1

ℎ
‖2 − ‖𝑆𝑘

ℎ
‖2 − ‖𝑆𝑘+1

ℎ
− 𝑆𝑘

ℎ
‖2).

(3.32)

By combining (3.18), (3.22)-(3.23), (3.25)-(3.26) with (3.32), and using Lemma 3.3 and Lemma 3.6, we arrive at

𝜅

2
(‖𝒎𝑘+1

ℎ
‖2 − ‖𝒎𝑘

ℎ
‖2) + 𝜅

2
(‖2𝒎𝑘+1

ℎ
−𝒎𝑘

ℎ
‖2 − ‖2𝒎𝑘

ℎ
−𝒎𝑘−1

ℎ
‖2)

+
1

2
(‖𝒖𝑘+1

ℎ
‖2 − ‖𝒖𝑘

ℎ
‖2) + 1

2
(‖2𝒖𝑘+1

ℎ
− 𝒖𝑘

ℎ
‖2 − ‖2𝒖𝑘

ℎ
− 𝒖𝑘−1

ℎ
‖2)

+
2𝜏2

3
(|||𝜓𝑘+1

ℎ
|||2
𝐸
− |||𝜓𝑘

ℎ
|||2
𝐸
) +

𝜏

𝜆𝜈
(‖𝑆𝑘+1

ℎ
‖2 − ‖𝑆𝑘

ℎ
‖2)

+
𝜅

2
‖𝒎𝑘+1

ℎ
− 2𝒎𝑘

ℎ
+𝒎𝑘+1

ℎ
‖2 + 1

2
‖𝒖𝑘+1

ℎ
− 2𝒖𝑘

ℎ
+ 𝒖𝑘−1

ℎ
‖2

+ ‖𝒖̃𝑘+1
ℎ

− 2𝒖𝑘
ℎ
+ 𝒖𝑘−1

ℎ
‖2 + 2𝐾1𝜈𝜏‖𝒖̃𝑘+1ℎ

‖2
𝐷𝐺

+ 2𝜅𝜈𝑚𝜏|||𝒎𝑘+1ℎ
|||2
𝐷

+ 2𝜅𝜈𝑚𝜏‖𝒎𝑘+1ℎ
‖2
𝐶
+

2𝜏2

9
|||𝑧𝑘+1

ℎ
|||2
𝐸
+ 2𝛽𝜅𝜏3‖𝒎̂∗

ℎ ×∇×𝒎𝑘+1
ℎ

‖2
≤ (𝒖𝑘+1

ℎ
− 𝒖̂∗ℎ, 𝒖̃

𝑘+1
ℎ

− 𝒖̂∗ℎ) + 2𝜅𝜏(𝒖̃𝑘+1
ℎ

− 𝒖̂∗ℎ, 𝒎̂
𝑘
ℎ,𝒎

𝑘+1
ℎ

) +
𝜏

𝜆𝜈
‖𝑆𝑘+1

ℎ
−𝑆𝑘

ℎ
‖2.

(3.33)

For the first term on the right-hand side of (3.33), by using the Cauchy-Schwarz inequality and the average inequality, we obtain

(𝒖𝑘+1
ℎ

− 𝒖̂∗ℎ, 𝒖̃
𝑘+1
ℎ

− 𝒖̂∗ℎ) ≤ 1

2
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ℎ
− 2𝒖𝑘

ℎ
+ 𝒖𝑘−1
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2
‖𝒖̃𝑘+1

ℎ
− 2𝒖𝑘

ℎ
+ 𝒖𝑘−1

ℎ
‖2. (3.34)

For the second term on the right-hand side of (3.33), by using Lemma 3.4 and average inequality, we obtain

2𝜅𝜏(𝒖̃𝑘+1
ℎ

− 𝒖̂∗ℎ, 𝒎̂
𝑘
ℎ,𝒎

𝑘+1
ℎ

) ≤ 2𝐶𝑒𝜅𝜏‖𝒖̃𝑘+1ℎ
− 𝒖̂∗ℎ‖𝐿2(Ω)‖𝒎̂𝑘ℎ ×∇×𝒎𝑘+1

ℎ
‖

≤ 1

2
‖𝒖̃𝑘+1

ℎ
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𝑒 𝜅
2𝜏2‖𝒎̂𝑘ℎ ×∇×𝒎𝑘+1

ℎ
‖2.

(3.35)

For the third term on the right-hand side of (3.33), by using (3.28) and (3.6) and setting 𝜎𝑒 ≥ 𝐶̃2
𝑘
, we get

𝜏

𝜆𝜈
‖𝑆𝑘+1

ℎ
−𝑆𝑘

ℎ
‖2 ≤ 2𝜆𝜈𝜏(‖∇ℎ ⋅ 𝒖̃𝑘+1ℎ
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)
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ℎ

‖2
𝐷𝐺
.

(3.36)

By using (3.34)-(3.36) and without loss of generality, setting 𝜆 =𝐾1 and choosing the artificial parameter 𝛽 such that 𝜅 = 𝛽𝜏∕𝐶2
𝑒 , 

the expression (3.33) becomes

1
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which implies (3.17). The proof is complete. □
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Fig. 4.1. The 𝐿2 errors for the magnetic field 𝒎, velocity field 𝒖, and pressure 𝑝 at time 𝑡 = 1, where (a) convergence order in space, and (b) convergence order in 
time.

4. Numerical simulations

This section presents a series of numerical experiments aimed at assessing the effectiveness of the proposed scheme in accuracy 
and stability. Specifically, we employ the inf-sup stable 𝑃2-𝑃1 element for the velocity field 𝒖 and pressure 𝑝, and the 𝑃2 element for 
the magnetic field 𝒎.

4.1. Accuracy and stability tests

The first numerical example is to verify the convergence rates of the proposed scheme in time and space, where the domain is set 
as Ω = [0, 1] × [0, 1]. We choose the boundary conditions such that the exact solution satisfies

⎧⎪⎨⎪⎩

𝒎 = (−𝑡4 sin(2𝜋𝑦) cos(2𝜋𝑥), 𝑡4 sin(2𝜋𝑥) cos(2𝜋𝑦)),

𝒖 = (𝑡4 sin2(𝜋𝑥) sin(2𝜋𝑦),−𝑡4 sin(2𝜋𝑥) sin2(𝜋𝑦)),

𝑝 = 𝑡4 sin(2𝜋𝑥) sin(2𝜋𝑦).

We set the model parameters as 𝜈 = 𝜈𝑚 = 𝜅 = 1 and 𝜆 = 1, and compute the numerical errors between the numerical solution and the 
exact solution at 𝑡 = 1.

To confirm the convergence rates in space, we set the artificial parameter 𝛽 = 1, fix the time step size 𝜏 = 0.01, and choose 
decreasing spatial mesh sizes ℎ = 0.1∕2𝑖, 𝑖 = 0, 1, 2, 3, 4. Fig. 4.1(a) displays the 𝐿2-errors of the magnetic field 𝒎, velocity field 𝒖, and 
pressure 𝑝, demonstrating that the proposed scheme achieves second-order convergence in the spatial direction. To test the temporal 
convergence rates, we set 𝛽 = 0.1 and fix the mesh size ℎ = 1∕100. Fig. 4.1(b) illustrates the convergence rates in time for all variables 
obtained by reducing temporal mesh sizes 𝜏 = 0.5∕2𝑖, 𝑖 = 0, 1, 2, 3, 4. The results indicate that the magnetic field 𝒎 and velocity field 𝒖
achieve a convergence rate of second-order, while the time accuracy of pressure 𝑝 is also nearly second-order.

We further verify the energy stability of the proposed scheme through another numerical test. We set the computational domain 
as Ω = [0, 1] × [0, 1], the initial conditions for 𝒎, 𝒖 and 𝑝 are given by:

⎧
⎪⎨⎪⎩

𝒎0 = (sin2(𝜋𝑥) sin(2𝜋𝑦),−sin(2𝜋𝑥) sin2(𝜋𝑦)),

𝒖0 = (−sin(2𝜋𝑦) cos(2𝜋𝑥), sin(2𝜋𝑥) cos(2𝜋𝑦)),

𝑝0 = sin(2𝜋𝑥) sin(2𝜋𝑦).

We consider the parameters 𝜈 = 𝜈𝑚 = 𝜅 = 0.1, 𝜆 = 0.5, and 𝛽 = 𝜅∕𝜏 , and a fixed spatial mesh size of ℎ = 1∕50. We plot the energy 
evolution curves in Fig. 4.2, computed using different time steps 𝜏 = 0.5, 0.1, 0.05, 0.01, up to the final time 𝑇 = 2.5. These obtained 
energy curves indicate that the proposed scheme is unconditionally energy stable, as all energy curves decay monotonically for all 
tested time steps.

4.2. 2D Kelvin-Helmholtz instability

The K-H instability is a well-known hydrodynamic instability that arises when two fluid streams with different velocities flow 
parallel to each other, resulting in a velocity difference across the interface. In the context of MHD system, the K-H instability can 
occur when a sheared plasma flow is present in the presence of a magnetic field. The presence of a magnetic field can provide 
some stabilization to the flow, but the velocity shear across the interface can still induce instability in the flow. This instability can 
result in the generation of turbulence and mixing within the plasma, which can have significant consequences for astrophysical and 
geophysical phenomena, such as solar flares, accretion disks, and atmospheric dynamics, see [7,15,47].
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Fig. 4.2. Time evolution of the total energy functional 𝔼ℎtot computed using various time steps.

Fig. 4.3. Surface plots of |𝒎| are taken at 𝑡 = 0.05, 0.1, 0.5, 0.8, 1.2, 1.5 from (a) to (f).

In this example, we investigate the occurrence of K-H instability in a configuration of a single shear flow regime with a uniform 
magnetic field aligned with the flow direction. The computational domain is set as Ω = [0, 2] ×[0, 1], and the model parameter is set as 
𝜈 = 𝜈𝑚 = 0.01, 𝜅 = 0.2, 𝛽 = 10, 𝜆 = 0.5, 𝜏 = 0.01, ℎ = 0.01. The initial velocity field is 𝒖0 = (1.5, 0) in the top half domain, and 𝒖0 = (−1.5, 0)
in the lower half domain, respectively. The initial magnetic field with shear is 𝒎0 = (tanh(𝑦∕𝜖), 0) where 𝜖 = 0.07957747154595. The 
magnetic field 𝒎, velocity field 𝒖, and pressure 𝑝 all have periodic type boundary conditions on the left and right boundaries. The 
boundary conditions for 𝒎 are set as 𝒎× 𝒏 =𝒎0 × 𝒏 on the top and 𝒎× 𝒏 = −𝒎0 × 𝒏 on the bottom, the second component of 𝒖 = (𝑢, 𝑣)
on both the top and bottom boundaries is set as 𝑣 = 0.

Figs. 4.3 and 4.4 show surface plots of the simulation results for the magnitude of the magnetic field |𝒎| and velocity field |𝒖| at 
times 𝑡 = 0.05, 0.1, 0.5, 0.8, 1.2, 1.5, respectively. In Fig. 4.5, snapshots of the magnetic field 𝒎 (Fig. 4.5(a1)-(c1)) and velocity field 𝒖
(Fig. 4.5(a2)-(c2)) at 𝑡 = 0.05, 0.8, 1.5 are displayed. Around time 𝑡 = 0.5, vortexes start to form in the simulation, and by 𝑡 = 0.8, the 
magnetic and velocity fields exhibit the characteristic structure of K-H instability with clearly visible vortex profiles. These images 
illustrate the interaction between the sheared velocity field and the magnetic field, producing a central vortex and bending the 
magnetic field due to the K-H instability.

4.3. 2D MHD rotor

The interaction between a magnetic field and a liquid metal like mercury can lead to a phenomenon known as the MHD effect. 
This intriguing phenomenon is observed when a liquid mercury rotator is exposed to a magnetic field, causing the mercury to form 
vortices or eddies that are perpendicular to the rotation axis and magnetic field lines. These fascinating patterns are created by the 
interaction between the magnetic field and the current induced by the rotating mercury and can be influenced by factors such as 
speed of rotation, the temperature of the mercury, and strength and direction of the magnetic field. Moreover, experiments involving 
the MHD rotor can provide valuable insights into the properties of liquid metals and the behavior of plasmas, which are ionized gases 
commonly studied in fusion research. In this study, we carry out numerical simulations of the MHD rotor as described in [23,33].
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Fig. 4.4. Surface plots of |𝒖| are taken at 𝑡 = 0.05, 0.1, 0.5, 0.8, 1.2, 1.5 from (a) to (f).

Fig. 4.5. Snapshots of the magnetic field 𝒎 (left) and velocity field 𝒖 (right) at 𝑡 = 0.05, 0.8, and 1.5.

We set the computational domain as Ω = {(𝑥, 𝑦) ∶ (𝑥 − 0.5)2 + (𝑦 − 0.5)2 = 1} and the initial conditions as follows:

𝒎0 = (
5

4
√
𝜋
,0), 𝒖0 = 𝜙(𝑟)(5 − 10𝑦,10𝑥− 5),

where 𝑟 =
√
(𝑥− 0.5)2 + (𝑦− 0.5)2 and

𝜙(𝑟) =

⎧
⎪⎪⎨⎪⎪⎩

1, if 𝑟 ≤ 0.1

(23 − 200𝑟)∕3, if 0.1 < 𝑟 < 0.115,

0, if 𝑟 ≥ 0.115.
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Fig. 4.6. Surface plot of the simulation result |𝒎| at times 𝑡 = 0.03, 0.1, 0.3, 0.5, 0.8, and 1.2 from (a) to (f).

Fig. 4.7. Surface plot of the simulation result |𝒖| at times 𝑡 = 0.03, 0.1, 0.3, 0.5, 0.8, and 1.2 from (a) to (f).

The model parameters are set as 𝜈 = 𝜈𝑚 = 0.01, 𝜅 = 0.2, 𝛽 = 10, 𝜆 = 0.5, 𝜏 = 0.01, ℎ = 1∕100. The boundary conditions on the top and 
bottom boundaries are set as 𝒎 ⋅ 𝒏 = 𝒖 ⋅ 𝒏 = 0, while periodic type boundary conditions of 𝒎 and 𝒖 are used on the left and right 
boundaries.

In Fig. 4.6 and Fig. 4.7, surface plots of the magnetic field magnitude |𝒎| and velocity field magnitude |𝒖| are presented at selected 
times 𝑡 = 0.03, 0.1, 0.3, 0.5, 0.8, and 1.2. Fig. 4.8 depicts the experimental setup of a magnetohydrodynamic rotor where liquid mercury 
is subjected to a magnetic field, alongside the corresponding magnetic and velocity fields obtained from our numerical simulations 
for comparison. The direction of the applied magnetic field in Fig. 4.8(b) is opposite to that in Fig. 4.8(a), enabling observation of 
the flow field in the exact opposite direction. This comparison highlights the sensitivity of the system to changes in the magnetic 
field direction, suggesting that our computational simulations are qualitatively consistent with the physical experiments.

4.4. 3D Taylor-Green vortex

The 3D Taylor-Green vortex is a flow field that serves as a popular benchmark problem for testing numerical simulations of MHD. 
It arises when a magnetic field is applied to a fluid, causing the formation of vortices that interact with the magnetic field. The 
resulting flow is characterized by strong vortices and complex interaction between the fluid and magnetic fields. As a widely used 
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Fig. 4.8. Comparison of an experimental photograph of a liquid mercury rotator (https://www .youtube .com /watch ?v =bSIzyk5Mjko) with the computed velocity 
field 𝒖 and magnetic field 𝒎.

Fig. 4.9. Snapshots of the velocity field 𝒖 at 𝑡 = 2.5 with 𝜈𝑚 = 1.

benchmark problem in MHD, the 3D Taylor-Green vortex is employed to assess the accuracy and effectiveness of MHD simulation 
methods.

In this example, we carry out the 3D MHD turbulence simulation with a Taylor-Green flow, see also in [16,37]. We set the 
computed domain as Ω = [0, 1] × [0, 1] × [0, 1] and the model parameters as 𝜈 = 1, 𝜅 = 1.0, 𝛽 = 1, 𝜆 = 0.5, 𝜏 = 0.1, ℎ = 1∕10. The parameter 
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Fig. 4.10. Snapshots of the velocity field 𝒖 at 𝑡 = 2.5 with 𝜈𝑚 = 0.01.

Fig. 4.11. Snapshots of the velocity field |𝒖| at 𝑡 = 2.5 with 𝜈𝑚 = 1 and 𝜈𝑚 = 0.01.

𝜈𝑚 will be varied thereafter so that we can investigate the effects of the magnetic Reynolds number. The initial velocity field is the 
Taylor-Green vortex (see [16]), which is defined as

𝒖0 = (sin𝑥 cos𝑦 cos𝑧,−cos𝑥 sin𝑦 cos𝑧,0),

and the initial magnetic field is given by

𝒎0 = (cos𝑥 sin𝑦 sin𝑧, sin𝑥 cos𝑦 sin𝑧,−2sin𝑥 sin𝑦 cos𝑧).

The no-slip boundary conditions are imposed on the velocity field 𝒖, and the magnetic field 𝒎 satisfies the condition 𝒎× 𝒏 = 0 on the 
walls.

In Fig. 4.9-4.10, we show the computed simulation results of the velocity field 𝒖 with two magnetic Reynolds numbers, 𝜈𝑚 = 1

and 0.01, at a different angle, respectively. The magnitude of |𝒖| at time 𝑡 = 2.5 in these two cases is shown in Fig. 4.11. It can be 
seen that the flow is disordered with dominant warm vortices, which is typical of developed turbulence. Furthermore, the structure 
of the vortices is influenced by the magnetic Reynolds number.

5. Conclusion

This study proposes a novel approach to the problem by offering a second-order accurate, unconditionally energy-stable, and 
linear discontinuous Galerkin scheme for solving the nonlinearly coupled MHD system. The proposed scheme is achieved by intro-
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ducing an additional stabilization term in the Maxwell equations, and by utilizing implicit-explicit treatments for dealing with the 
nonlinear and coupling terms, while a second-order pressure-correction scheme is used for solving the Navier-Stokes equations. The 
proposed numerical scheme requires solving only a few linear, fully decoupling equations at each time step. Unconditional energy 
stability in the discrete level is derived, and the unique solvability of the fully discrete scheme is strictly proved. Numerous numerical 
experiments, including the K-H instability, MHD rotator, and 3D Taylor-Green vortex, are conducted to evaluate the accuracy and 
stability of the proposed scheme. The numerical results demonstrate that the scheme performs robustly and accurately, achieving 
high levels of accuracy and stability across a variety of test cases.
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