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Abstract. Federated Learning (FL) is becoming a popular paradigm for
leveraging distributed data and preserving data privacy. However, due to
the distributed characteristic, FL systems are vulnerable to Byzantine
attacks that compromised clients attack the global model by upload-
ing malicious model updates. With the development of layer-level and
parameter-level fine-grained attacks, the attacks’ stealthiness and effec-
tiveness have been significantly improved. The existing defense mecha-
nisms solely analyze the model-level statistics of individual model up-
dates uploaded by clients to mitigate Byzantine attacks, which are inef-
fective against fine-grained attacks due to unawareness or overreaction.
To address this problem, we propose SKYMASK, a new attack-agnostic
robust FL system that firstly leverages fine-grained learnable masks to
identify malicious model updates at the parameter level. Specifically, the
FL server freezes and multiplies the model updates uploaded by clients
with the parameter-level masks, and trains the masks over a small clean
dataset (i.e., root dataset) to learn the subtle difference between be-
nign and malicious model updates in a high-dimension space. Our exten-
sive experiments involve different models on three public datasets under
state-of-the-art (SOTA) attacks, where the results show that SKYMAsk
achieves up to 14% higher testing accuracy compared with SOTA de-
fense strategies under the same attacks and successfully defends against
attacks with malicious clients of a high fraction up to 80%. Code is avail-
able at https://github.com/KoalaYan/SkyMask.

1 Introduction

Federated learning (FL) [22] is a distributed machine learning paradigm that
addresses the conflicts between ML training and data privacy. Instead of cen-
tralizing training data, FL distributes a global model to clients, trains the model


https://github.com/KoalaYan/SkyMask

2 P. Yan et al.

locally, and aggregates the local models into a new global model without leak-
ing any clients’ local data, which has been applied in many computer vision
applications, including large-scale visual classification |1 7 object detection ,

medical imaging . . and many others [17] . ., .

However, due to FL’s distributed design, attackers can easily attack the FL
system by compromising client participants and smuggling malicious model up-
dates, known as Byzantine attacks . To tackle Byzantine
attacks, researchers have explored various defense strategies, most of which lever-
age coarse-grained model-level statistics to detect outlier model updates

or greedily filter out outlier parameters .

Unfortunately, fine-grained attacking method-
ologies utilize their precise balancing between at-
tacking stealthiness and effectiveness to circum- z'z y
vent existing defense mechanisms, e.g., Fang at- Ois [ |
tack and AGR-agnostic attack leverage Model-level Defense Ours
the varying sensitivities of different neural net- (a) The testing accuracy under
work layers and parameters to craft adaptive the fine-grained attack

and stealthy attacks. Existing model-level defense

0.8 FedAvg under no attacks

strategies either fail to prevent such fine-grained . i )
attacks or spill over the benign clients, which ex- ’ T
tensively sacrifices training efficiency and model © R el

quality. We conduct a real-world experiment to
show the poor performance of the model-level de- .
fense [30] under a fine-grained attack (de- 2

tailed settings provided in supplementary §A.5). (b) The PCA of model update
Existing defense method exhibits 18% testing ac-
curacy degradation. We visualize model updates
of all clients in a single iteration by the principal
component analysis (PCA) as [30]. As depicted
in Fig. the fine-grained attack camouflages
the malicious updates within benign ones, under-
scoring the insufficiency of analyzing local model c2

updates solely at the model level. (¢) The PCA of masks

To explore whether binary masks cal  pig 1: Visualizing model up-
effectively detect malicious clients, we simultane- jates and masks with PCA.

ously train the binary masks for each model up-

date on the server in the aforementioned toy experiment. Fig. illustrates
the visualization of trained masks using PCA, where masks applied to malicious
model updates distinctly stand out among all masks. This highlights the capa-
bility of learnable masks to differentiate between benign and malicious model
updates, and this method improves the testing accuracy by 18%.

2]

. +  Benign
Malicious

Cl1

Based on this observation, we propose SKYMASK, a new Byzantine-robust FL
system that defends against agnostic attacks with fine-grained learnable masks
at the parameter level. Specifically, after collecting local models from participant
clients, the FL server freezes and multiplies each of the local model parameters
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with a learnable mask variable. Then, all masked local models are trained on a
small and clean dataset (i.e., the root dataset |5]) together. During the training
process on the root dataset, the mask variables, which are applied to the frozen
local model parameters, learn to improve the model accuracy. Particularly, the
masks applied to malicious models are trained to correct their potential misbe-
haviors at the parameter level. Since utilizing fine-grained learnable masks does
not enforce customization for specific attacks or refactoring the FL training ob-
jective functions, SKYMASK gains three superior capabilities beyond existing
defense strategies: 1) effective and efficient detection of fine-grained stealthy at-
tacks, 2) attack-agnostic defense against a wide spectrum of attack methods,
and 3) strong compatibility and complementarity with existing FL and defense
methodology. To sum up, our main contributions are as follows:

— We propose fine-grained learnable masks that can capture models’ intrinsic
characteristics at the parameter level in a uniform high-dimension space.

— We design SKYMASK, a new attack-agnostic Byzantine-robust FL system,
which applies fine-grained learnable masks to detect malicious clients and
defend against Byzantine attacks.

— We empirically evaluate our SKYMASK on various benchmarks under seven
SOTA attacking methods and compare them with existing defense methods,
where experimental results show that SKYMASK achieves up to 14% higher
testing accuracy compared with existing defenses.

2 Preliminaries & Related Work

2.1 Federated Learning

A typical FL system includes n clients and a server. Each client ¢ has a local
dataset D;, i = 1,...,n. In each communication round ¢, the server selects a sub-
set of the clients N; to execute the following steps: 1) Model distribution: The
server distributes the global model W to the selected clients. 2) Local training:
The clients receive global model W; as the initial model W} 1 for local training,

[

and repeat W, , = W/, — BV f(W{,1; D;) for I local iterations, where f(-;)
is the empirical loss function and 8 denotes the local learning rate. The corre-
sponding local model update is AW/, | = W, =W}/ ,. 3) Model aggregation: After
the training, each client ¢ uploads its model weights W¢, ; to the server for ag-
gregation. FedAvg |22 performs weighted model averaging to update the global

model: Wiiq = ZiENt > e

thiﬂa where we set |[NV;| = n for simplicity.
ieN; IHi

2.2 Threat Model & Byzantine Attacks on FL

Malicious clients compromised by the attacker participate in the FL process
and have access to the knowledge of neural network models, learning rates, and
objective functions. Besides, the attacker can fully control these clients’ activi-
ties (e.g., modifying the model updates) and has complete access to their local
datasets |5} |7}, |28].
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Existing Byzantine attacks on FL can be categorized into untargeted and tar-
geted based on the adversary’s goal: 1) Untargeted attacks seek to corrupt the
global model and minimize its accuracy on any test input |2} |7, |28 [30]. Specifi-
cally, fine-grained attacks, represented by Fang attack 7] and AGR-agnostic at-
tack |28|, adaptively trade off the attacking stealthiness and effectiveness at a fine
granularity as an optimization problem, which preserves the effects of poisoning
with as few model-level outliers as possible. 2) Targeted attacks aim to reduce the
utility of the global model on attacker-specified tasks |1} 3, |15} [21} 25| |29} [32} |34].

2.3 Byzantine-robust FL Algorithms

We classify existing representative Byzantine robust algorithms into two cate-
gories based on their strategies:

Model-level defense strategies. Some defense methods take model-level dis-
tance as a basis for determining whether a client is malicious, e.g., Euclidean
distance in Krum [4], or cosine distance in DeepSight [27] and FLAME [24].
FLTrust [5] trains a root model with a small root dataset, and takes the cosine
similarity between a local model and the root model as the weight in aggrega-
tion. Tolpegin defense [30] identifies malicious model updates by employing PCA
dimension reduction and clustering. FLDetector [36] predicts a client’s model
update based on historical data and compares it with the received update. It
employs consistency analysis on model updates to identify malicious clients.
Greedy parameter-level filtering strategies. Trimmed-Mean (Trim) [33] is
a coordinate-wise aggregation rule assuming the number of malicious clients n,,
is known, removes the parameters of the smallest and largest n,, values, and
averages the remaining.

However, existing robust FL strategies can hardly defend against those fine-
grained attacks without sacrificing training efficiency and model quality by utiliz-
ing coarse-grained detection or greedy parameter-wise filtering, which motivates
us to explore malicious client detection with fine-grained learnable masks.

2.4 Root Dataset

Considering that the server has no root of trust to decide whether a model
update is malicious or not, FLTrust [5] is the first to introduce the concept of
root dataset. It can take advantage of the root dataset even if the distribution
diverges from the overall data distribution or the size is less than one hundred,
which is easy for the server and FL manager to manually collect or generate a
small root dataset. The rationale for utilizing root datasets has been validated
in numerous other studies [9, |16} [23, |31]. We evaluate the impact of the root
dataset’s data distribution in supplementary §C.1.

3 Methodology

We aim to design a server-based robust FL system. The server has a small rep-
resentative root dataset following previous work [5]. Moreover, this root dataset
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can be imbalanced. For the proposed Byzantine-robust FL system, it should
promise the following three features: (1) Robustness. The system should pre-
serve the global model accuracy under attacks. In particular, we should maintain
a high malicious client detection accuracy and a low misidentification rate of be-
nign ones to eliminate the impact of attacks. (2) Generality. The system should
also stay effective on different datasets and model structures under different at-
tacks. (3) Efficiency. The defense system is designed on the server instead of
resource-constrained client. Besides, when performing malicious client detection
and defense on the server, we allow reasonable additional computation costs and
extra storage space.

Fig. 2: SKkyMask’s workflow.

3.1 Overview

When initializing the FL process, the server creates an initial global model and
builds a root dataset as . Fig. |2| presents SKYMASK’s workflow, where each
communication round has six steps: Step 1, the server distributes the global
model parameters to each client; Step 2, the clients load the parameters, train
the local models, and send back these model updates; Step 3, the server freezes
and multiplies each local model parameter with a learnable mask variable; Step
4, all the masked local models are trained together on the root dataset to con-
verge; Step 5, the server detects and removes the malicious clients by clustering
all trained masks; Step 6, the server aggregates the remaining model updates
into a new global model.

The key component of SKYMASK is the learnable mask-driven detection.
Specifically, SKYMASK constructs a same-size fine-grained mask for each local
model update and trains these masks by optimizing the aggregation result of
masked local models until they converge. Byzantine attacks take impairing global
model performance as an optimization objective, so the poisoned model updates
tend to make the global model far from normal behavior. Therefore, to correct
potential misbehaviors of malicious models, the masks applied to the malicious
models learn to mitigate the side effects of poisoned parameters through training
on the root dataset. In this way, the learnable masks form a high-dimensional



6 P. Yan et al.

representation space to capture the characteristics of both malicious and benign
model updates. Then, the clusters formed by masks are the basis for determining
whether a client is malicious. After removing all the detected malicious model
updates, SKYMASK calculates the average of remaining model updates and uses
it to update the global model.

3.2 SkKYMASK Algorithm

Most existing defense strategies are based on the local model updates’ coarse-
grained statistics or greedily filtering out outlier parameters. However, fine-
grained attacks corrupt a small set of particular layers or parameters to work
around existing defense strategies easily. Thus, we apply fine-grained learnable
masks and clustering analysis to detect and defend against malicious clients.
Our defense strategy has two stages: 1) mask initialization and training stage;
2) mask clustering and classification stage.

Mask initialization and training. In the first stage, the server freezes all the
model updates and assigns a learnable mask m; of the same size as the model for
each client ¢ and initializes them all with 1s. The model aggregated from masked
local models Wy (called aggregated masked model) is computed by averaging
the masked local models m; ® W +1- Then, the masks start training on the root
dataset with frozen local models. At the beginning of iteration ¢ 4+ 1, Wiy is
calculated as:

- "1 ;
Wt+1 = Z ﬁml ®© Wt+1' (1)
i=1

We train the aggregated masked model Wt+1 on the root dataset. Then, the
update process back-propagates gradients with the help of Wt+1 to masks and
applies a gradient descent algorithm to the masks.

If there is no constraint on the value range of mask variables during the
mask training, some masks can have very large values, while others can be so
small for the same dimension when these masks converge. Huge differences in
magnitude between masks can affect the detection of malicious clients. Therefore,
we redesign the masks to show the contribution of each local model update in
the optimized model.

We use binary masks to extract the parameter-level characteristics of local
models because binary can directly determine whether a parameter of model up-
date participates in the global model. Since binary parameters are not derivable,
we approximate the binary masks in training by setting the mask with real values
and applying a sigmoid function o(-) instead of a hard threshold to reduce the
enormous gradient variance [14]. Furthermore, it is easy for the gradient to be
back-propagated to the real-value masks. The approximation of a binary mask
is calculated as m; = o(m;), which is ranged (0, 1).
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Since the mask’s limitation is changed, the original Equation [1]is unsuitable.
To adapt for the approximated binary masks, Wy is re-written as:

Doy i © Wiy
E?:1 m; .

It can be formulated as an element-wise weighted averaging algorithm. If the
parameters of a poisoned local model are toxic to the aggregated masked model
Wt+17 the mask tends to reduce the involvement of these parameters to Wt+1 in
the optimization phase. Thus, the 0-1 pattern in the mask can represent whether
the corresponding local model is malicious.

The mask training task is not different from the main task in FL except for
the variables. The objective function is:

Wis1 = (2)

f(Wt-‘rla DT) = Z L(Output(l‘v Wt-‘rl)a y) (3)
(z,9y)€D,

The masks are updated in each mask training iteration as follows:
mi = m; — 7 - Vin, f(Wig1, Dy), (4)

where v represents the mask learning rate. This process will not stop until these
masks converge. After the real-value masks converge, the final results of binary
mask m; are computed as:

A= {2 g

where m;[k] represents the parameter located in kth dimension of binary mask
m; of client 7 and 7 is a threshold.

Mask clustering and classification. These binary masks can sense potential
attacks at a fine granularity and represent the parameter-level characteristics
of each client’s model update. Then, we apply the Gaussian mixture model for
clustering and classification. If there are no attacks, the clustering result is only
one cluster, and the server aggregates all the benign local models.

To determine which cluster is benign, SKYMASK introduces a trusted root
model W/, ,, initialized by W; and “locally” trained [ iterations on the root
dataset as other clients:

Wi =W, — BV f(Wt, Dy.). (6)

The server lets it join in the model set before the mask training stage, assigns
one mask for it and trains this mask together with other masks. When all the
masks converge, the clients represented by the masks in the same cluster as the
mask corresponding to the trusted root model are considered benign. In this
way, SKYMASK can handle various malicious fractions from zero to very high.
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In order not to interfere with the global model convergence, we should emphasize
that the trusted root model is only used for malicious model detection and is
not included in the benign model aggregation phase.

SKYMASK plays R rounds for server-clients communication, and each round
contains six steps, as describes. The critical point of SKYMASK is our fine-
grained malicious client detection strategy mentioned above, which can provide
the remaining benign client set U, for aggregating a new global model. Given
the aggregation algorithm specified as FedAvg, the global model for the next
communication round Wy, is calculated as:

| D]
Wi =Wy —a- - 1n
DI e

where « denotes the global learning rate. If it completes the malicious detection
task, removing only the malicious model updates and leaving the benign model
updates untamed, its convergence will be consistent with the original aggrega-
tion algorithm. SKYMASK serves as an efficient method for identifying malicious
clients within an FL framework. Its modular design allows for integration as an
adjunct component into diverse aggregation algorithms, ensuring compatibility
across a spectrum of existing aggregation techniques.

A t+1» (7)
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As shown in Fig. during the process of masks applied to malicious and
mask training process, the binary benign models.
parameters in the “convl.weight”,

“conv2.weight”, and “fcl.weight” parts of malicious model updates are set to
zeros, which are more often than those of benign updates. It is related to the
fact that the attack prefers to poison the parameters in specific parts.

The masks gradually reduce the poisoning effect of the toxic parameters
during the training so that we can classify malicious clients with the help of the
masks. Therefore, SKYMASK can perceive the poisoning attacks at the parameter
level in the model updates without knowing the details of the attack, which
makes it attack-agnostic.
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3.4 SkKYMAskK’s Complexity

Let O(T) denote the computational complexity of one local training iteration,
and the model parameters’ dimensionality is V.

The computational complexities of existing defense methods are as follows:
O(nV) for FLTrust, O(nV logn) for Trim, O(n?V) for Krum, O(T + nV) for
DeepSight, and O(nV) for FLAME. For SKYMASK, to update the masks once,
the server computes the gradient of each mask from the gradient of the ag-
gregated masked model Wt+1 by backpropagation, with a computational com-
plexity of O(nV). Hence, the total computational complexity of SKYMASK is
O(T + nV)ty) + O(nV) = O(Tty, + nVty,), where t,, is the number of mask
training convergence iterations. Since there is no data dependency between any
mask parameters, we can use parallel training [6] to accelerate the mask op-
timization process so that the time overhead can be further reduced, trading
computation power for time. The above analysis shows that the additional cost
of the mask learning mechanism over other defense methods is equivalent to
the cost of conducting several iterations of local training, which is acceptable
compared to the computational power of the server.

The space complexity of existing defense methods are: O(nV') for Trim, O(n+
nV) for FLTrust, O(n?+nV) for Krum, DeepSight, and FLAME. For SKYMASK,
the additional space complexity is proportional to the number of clients n and
the space complexity of the global model parameters because SKYMASK assigns
a mask for each client and the masks have the same dimensionality as the global
model. Considering that the server stores m local models’ parameters in the
current round, the total space cost is about twice the others, and its space
complexity is O(nV'), which is reasonable.

4 Experiments

We evaluate our method with existing Byzantine-robust FL aggregation algo-
rithms and two malicious client detection algorithms. To verify the generalization
of our method, we conduct experiments using various popular datasets paired
with different models. We evaluate our method with seven popular attacks, ex-
plore the impact of the fraction of malicious clients, and verify its scalability. In
sensitivity analysis, we discuss the influence of binarization threshold, the num-
ber of features after dimensionality reduction, and root dataset’s data distribu-
tion on our method’s performance (details in supplementary §C), respectively.

4.1 Experiment Settings

Datasets and models. We evaluate SKYMASK on three widely-used datasets:
Fashion-MNIST, CIFAR-10, and CIFAR-100 |13|. Following previous methods |5}
7], we construct non-IID local dataset with bias probability p = 0.5 for each client
and the root dataset for the server. We construct a CNN with two convolutional
layers and two linear layers as the global model for Fashion-MNIST dataset. For
CIFAR-10 and CIFAR-100 datasets, to verify SKYMASK’s effectiveness on large
models in FL, we use a more complex model, ResNet20.
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Baseline attacks and defenses. The experiments cover 1) untargeted attacks:
Label-flipped (LF) [30] and four fine-grained attacks, including Fang attacks |7]
(Fang-Trim and Fang-Krum attacks) and two types of the AGR-agnostic at-
tack [28] (Min-Max and Min-Sum attacks); 2) targeted attack: Scaling attack |1
and DBA [32]. In to show the defense effectiveness, we compare SKYMASK
with five Byzantine-robust FL aggregation algorithms: FLTrust [5], Trim [33],
Krum [4], DeepSight [27] and FLAME [24]. In to reveal the significance of
learnable masks in malicious client detection, we compare SKYMASK with two
malicious client detection algorithms: Tolpegin defense [30] and FLDetector [36].

FL parameter settings. Following the previous study [5], we use 100 clients
in all experiments and apply multiple-client attacks. The default fraction of
malicious clients is set to 20%. In our experiments, the root dataset has 100
samples and no intersection with the training and test datasets, which is similar
to FLTrust [5]. Other hyperparameters are detailed in supplementary §A.4.

SKYMASK variants. Intuitively, if the fraction of malicious clients is less than
50% in the real world, we can choose the larger one in two clusters of masks
as benign. This way, we can further reduce the computational pressure on the
server. To verify the effectiveness with or without the trusted root model, we
consider the following two schemes: 1) SKYMASK-NR (no trusted root model).
The FL system does not generate a trusted root model, and after all the masks
are converged, the system chooses the larger one in two clusters of the masks as
benign for aggregation; 2) SKYMASK. The FL system uses the defense strategy
fully following the default steps described in

Metrics. The testing accuracy is obtained from the prediction accuracy of
the global model on the test dataset. The attack success rate under targeted
attack is the fraction of the trigger-embedded samples in the test dataset that
are identified as the target label. To show the malicious client detection ability,
we record false positive rate (FPR) and false negative rate (FNR) in
the malicious client detection stage. FPR indicates the number of benign clients
that are misidentified as malicious clients divided by the total number of benign
clients, and FNR indicates the number of malicious clients that are misidentified
as benign clients divided by the total number of malicious clients. The Mean
FPR/FNR is the average of FPR/FNRs in each communication round.

4.2 The Defense Effectiveness of SKYMASK

We first certificate the defensive capability under a low fraction of attacks. Then,
there is also possibly no attacker in the FL system, so the defense methods should
not affect the global model’s performance. Eventually, we consider an extreme
condition that the fraction of malicious clients is high.
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Table 1: FL testing accuracy under different attacks and attack success rates of tar-
geted attack. The experimental results of targeted attacks are in the form of “testing
accuracy/attack success rate.”

3122% Attack | FedAvg FLTrust Trim  Krum DeepSight FLAME SkyMAsk-NR SkyMAask
None 0.89 0.89 0.88 0.83 0.88 0.87 0.89 0.89
LF 0.84 0.86 0.84 0.83 0.89 0.87 0.89 0.89
Fashion | Min-Max | 0.58 0.89 0.70 0.83 0.64 0.65 0.89 0.89
e | Min-Sum | 0.80 0.89 0.73 0.47 0.82 0.75 0.89 0.89
(ONNy | Fane-Trim | 0.42 0.89 0.67 0.82 075 0.85 0.89 0.89
Fang.Krum| 0.86 0.89 0.84 0.47 0.70 0.78 0.89 0.89

Scaling |0.80/0.21 0.89/0.08 0.87/0.13 0.82/0.09 0.88/0.10 0.87/0.10  0.89/0.10  0.89/0.10

DBA  |0.86/0.51 0.88/0.18 0.88/0.31 0.83/0.11 0.89/0.16 0.89/0.11  0.89/0.11 _ 0.89/0.10
None 0.77 0.75 0.77 054 0.72 072 0.76 0.76
LF 0.71 0.74 0.71 0.55 0.69 0.68 0.75 0.76
Min-Max | 0.58 0.68 0.70 0.52 0.63 0.55 0.77 0.77
CIFAR-10 | Min-Sum | 0.66 0.72 0.74 0.32 0.66 0.68 0.75 0.77
(ResNet20)| Fang-Trim | 0.10 0.68 0.19 0.52 0.53 0.49 0.75 0.76
Fang.Krum| 0.58 0.75 0.48 0.19 0.36 0.40 0.77 0.77

Scaling |0.10/1.00 0.74/0.13 0.72/0.51 0.53/0.08 0.73/0.10 0.73/0.10  0.77/0.09  0.77/0.10

DBA  [0.72/0.99 0.76/0.88 0.76/0.97 0.56/0.09 0.77/0.16 0.77/0.14 _ 0.77/0.11 _ 0.77/0.10
None 0.44 0.39 0.43 0.17 0.44 0.44 0.44 0.44
LF 0.41 0.39 0.38 0.11 0.43 0.43 0.44 0.44
Min-Max | 0.16 0.30 0.16 0.05 0.16 0.19 0.44 0.44
CIFAR-100| Min-Sum | 0.33 0.28 0.33 0.17 0.35 0.34 0.44 0.44
(ResNet20)| Fang-Trim | 0.01 0.34 0.04 0.15 0.20 0.22 0.44 0.44
Fang.Krum| 0.03 0.37 0.04 0.03 0.03 0.02 0.44 0.44

Scaling |0.01/1.00 0.36/0.30 0.43/0.98 0.14/0.00 0.44/0.04 0.44/0.08 0.44/0.01  0.44/0.01

DBA  |0.37/0.98 0.40/0.90 0.44/0.94 0.16/0.01 0.45/0.16 0.45/0.15  0.44/0.02  0.44/0.01

Under a low fraction of attacks. By default, we set the fraction of malicious
clients to 20% following the default setting in [5]. Table [I|shows that the testing
accuracy of most existing defenses is reduced by more than 10% with at least
one attack. FLTrust is a relatively strong baseline defense because it achieves
similar good performance as ours in a few Fashion-MNIST experiments. While
under LF attack, FLTrust has a 3% accuracy loss. Our SKYMASK achieves the
highest testing accuracy on Fashion-MNIST under different attacks compared
to all others.

To demonstrate the generalization, we experiment on CIFAR-10 and CIFAR-
100 dataset using a larger model, ResNet20. In such scenarios, multi-client fine-
grained attacks are much more powerful. Trim, Krum, DeepSight, and FLAME
are out of defense. FLTrust does not perform as well as it does on Fashion-MNIST
dataset, with a severe drop in accuracy under various attacks. In contrast, our
SKYMASK reaches the highest accuracy under all attacks. Especially on CIFAR-
100 dataset, our method achieves the most significant gap with other algorithms
in Min-Max attack experiments. The accuracy is up to 0.44, while the accuracy
results obtained by others are less than 0.3. Besides, SKYMASK achieves the best
and unattacked-level performance under the targeted attacks.

Due to the attackers’ optimization for the abnormality degree, only some
particular parameters of the poisoning models changed with emphasis. The re-
sults show that the four fine-grained attacks (Min-max, Min-Sum, Fang-Trim,
and Fang-Krum attacks) bypass the existing defense methods in many cases.

In all these experiments, SKYMASK not only achieves the highest testing
accuracy but reaches the same accuracy level as unattacked FedAvg’s, i.e., the
same accuracy or no more than 1% accuracy loss.

As describes, the server does not need to consume resources to generate
a root model if the fraction of malicious clients is less than 50%. In the 20%
case, as shown in Table [l SKYMASK-NR achieves good results under any attack
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Fig. 4: The impact of high fractions of malicious clients under fine-grained attacks.

D ameaes

and on any dataset, which shows the same defensive capability as SKYMASK.
Therefore, if the server confirms that the number of malicious clients is less than
half of the total number, it can choose SKYMASK-NR as the defense strategy to
reduce the overhead while maintaining the same defensive capability. For a more
general scenario, it can choose SKYMASK as the defense strategy.

Under no attack. Some attacks send poisoned models to the server only at
certain rounds, and some model updates can be mistaken for malicious by exist-
ing defense methods due to data heterogeneity. The system collapses if the global
model performance suffers from the defense, even when there is no attack. So
when there is no attack, the expected result is that any method should not affect
the performance achieved by the basic aggregation algorithm FedAvg.

In Table [I] almost all the existing robust aggregation algorithms affect the
testing accuracy in the no-attack case. For instance, FLTrust has an accuracy loss
of about 2% on CIFAR-10 dataset and 5% on CIFAR-100. Krum algorithm has
an accuracy loss ranging from about 6% to 27% on different datasets. In contrast,
our SKYMASK maintains a comparable performance as unattacked FedAvg on
all datasets with a difference of less than 1%. The existing robust aggregation
algorithms either choose a subset of model updates that seem benign or use
model updates’ statistics to correct the impact. Hence, it is possible to introduce
harmful impacts without attack. If there is no attack, our masks form only one
cluster, or there are only several outliers. So SKYMASK selects most of clients
and has the same or very similar convergence compared with FedAvg.

Under a high fraction of attacks. The experiments mentioned in the previ-
ous sections set the fraction of malicious clients to 20%, while in a real application
environment, an attacker can control a larger fraction of malicious clients for the
attack. Therefore, to verify the defensive capability of our system in this case,
we use four-layer CNN as the global model on Fashion-MNIST dataset and con-
duct comparison experiments with 40%, 60%, and 80% malicious fractions. We



SkyMask: Attack-agnostic Robust Federated Learning 13

Table 2: Testing accuracy, FPR, and FNR of different malicious client detection meth-
ods under different attacks. The experimental results of targeted attacks are in the form
of “testing accuracy/attack success rate.”

Dataset Attack Testing accuracy FPR FNR
(Model) Tolpegin FLDetector SKYMAsK Tolpegin FLDetector SKYMAsK |Tolpegin FLDetector SKYMASK
None 0.76 0.75 0.76 0.00% 18.2% 0.00% / /
LF 0.70 0.72 0.76 13.1% 0.03% 4.72% 19.9% 25.53% 2.60%
Min-Max 0.61 0.11 0.77 36.5% 100% 0.00% 88.0% 100% 0.00%
CIFAR10 | Min-Sum 0.59 0.31 0.77 38.8% 100% 0.00% 78.0% 100% 0.00%
(ResNet20) | Fang-Trim 0.76 0.74 0.76 0.00% 0.03% 0.00% 0.00% 0.00% 0.00%
Fang-Krum| 0.17 0.31 0.77 37.4% 87.18% 0.00% 84.0% 100% 0.00%
Scaling |0.76/0.10 0.74/0.10 0.77/0.11 | 0.00% 0.00% 0.00% 0.10% 0.00% 0.00%
DBA 0.65/0.47 0.77/0.10  0.77/0.10 | 0.00% 0.00% 0.00% 46.1% 0.00% 0.00%

present the results pertaining to fine-grained attacks in Fig. 4} Additional results
can be found in the supplementary §B.1.

Only SKYMAsk and FLTrust maintain the defensive capability under fine-
grained attacks. The other defense algorithms completely lose their defensive
capability, exhibiting a significant gap from the unattacked level. From Fig. b),
Fig. c), and Fig. d)7 we can see that SKYMASK converges more stable than
FLTrust when they are attacked by Fang-Krum, Min-Max, and Min-Sum attacks.
In Fig. [4[d), the accuracy obtained by SKYMASK is 2% higher than FLTrust’s
under Min-Sum attacks.

When the fraction is more than 50%, only SKYMASK maintains the defensive
capability. Even as the best-performing baseline defense, FLTrust’s performance
worsens as the fraction rises. FLTrust’s testing accuracy fluctuates more, and the
global model even converges in the wrong direction, e.g. in Fig. l), the accuracy
obtained by FLTrust decreases from 85% to 81% after a sharp fluctuation. Under
other attacks, the increasing fraction influences FLTrust’s convergence speed,
whereas SKYMASK remains unaffected and converges faster than FLTrust.

4.3 The Significance of Learnable Masks

We conduct comparative experiments on SKYMASK and the other malicious
client detection algorithms, i.e., Tolpegin defense [30] and FLDetector [36]. We
sample the result of malicious client detection every ten communication rounds
and calculate all the metrics described in

In Table |2} we can see that FLDetector only works under LF attack, Fang-
Trim attack and targeted attack. Min-Max and Min-Sum attacks make FLDe-
tector completely confuse the malicious model updates with the benign model
updates. Tolpegin defense only survives under Fang-Trim attack, and all other
attacks greatly harm it. The large FNR of Tolpegin defense means many mali-
cious clients complete their attacks. The large FPR of Tolpegin defense shows
that the remaining benign clients may lose some representation, so Tolpegin de-
fense achieves a lousy performance. Our SKYMASK achieves the same prediction
accuracy as a no-attack case, with FPR less than 5% and FNR less than 3%.

Fig. and Fig. show the trend of testing accuracy on Fashion-MNIST
with a four-layer CNN global model under Fang-Krum and Min-Sum attack. De-
tection failure means that the FL defense system does not detect all the malicious
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clients in that round. Under Fang-Krum attack, Tolpegin defense converges but
yields poor testing accuracy, while FLDetector is rendered ineffective. Addition-
ally, both FLDetector and Tolpegin defense exhibit fluctuating and low testing
accuracy under Min-Sum attack due to detection failures. In contrast, SKYMASK
stably converges without encountering any detection failures.

Table 3: The impact of the total

08 08 number of clients. (The first line in
z06 [ Ep table is the testing accuracy result of
304 . FLDetector 3 e
o L Dt | 2] st Ao, | FedAvg under no attack.)

0o e paaasasaad searsst i - CIFAR-10 Test Acc. FPR FNR

0 500 1000 1500 2000 0255 S0 1000 150 2000 (ResNet20) 200 500 200 590 200 500
Communication Round Communication Round FedAvg 0.75 0.73 / / / /
) None 0.75 0.73 / /
(a) Fang-Krum attack  (b) Min-Sum attack LF 075 072 2.94% 6.36% 3.62% 8.36%
Min-Max 0.75 0.74 0.00% 0.00% 0.00% 0.00%

. . . . . Min-Sum 0.74 0.73  0.00% 0.00% 0.00% 0.00%
Fig. 5: The impact of detection failure on differ- pemim 075 073 0.00% 0.00% 0.00% 0.00%
E] : : Fang-Krum  0.75 0.72  0.00% 0.00% 0.00% 0.00%

ent malicious client detection methods. Scaling  0.75/0.09 0.74/0.11 0.00% 0.00% 0.00% 0.00%
DBA 0.75/0.10 0.73 /0.10 0.00% 0.00% 0.00% 0.00%

4.4 SKYMASK’s Scalability

To demonstrate the scalability of SKYMASK, we conduct experiments utilizing a
ResNet20 global model trained on CIFAR-10. We assess the prediction accuracy
of the main task, along with the FPR and FNR of SKYMASK under various
attack scenarios, encompassing 200 and 500 clients.

In Table we observe a decrease in the testing accuracy results of the
unattacked FedAvg as the total number of clients increased. This can be at-
tributed to the challenges posed by the smaller size of the local datasets and
the larger number of clients in the FL training process [12]. For the LF attack,
SKYMASK achieves comparable testing accuracy to the unattacked FedAvg, de-
spite a slight increase in the FNR to approximately 9%. For all fine-grained
attacks and targeted attacks, SKYMASK maintains FPR and FNR at 0%. Our
SKYMASK algorithm demonstrates robust performance under all attacks even
when the total number of clients significantly increases.

5 Conclusion

We propose a new attack-agnostic robust FL framework called SKYMASK to
defend against Byzantine attacks. By training parameter-level learnable binary
masks on a clean root dataset, SKYMASK is the first to design a fine-grained
detection of the poisoned elements of local model updates. Extensive experiments
on non-IID datasets under different attacks prove the effectiveness, generality,
and scalability of SKYMASK. Our SKYMASK shows a solid defensive capability,
better than various robust aggregation algorithms and existing malicious client
detection methods. Moreover, our SKYMASK also tackles the problem that most
clients are malicious and can defend against attacks with a fraction of malicious
clients up to 80%.
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