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Abstract—The growing demand for high-speed wireless com-
munication has generated considerable interest in using fre-
quency bands adjacent to those occupied by legacy wireless
systems. Since legacy wireless systems were designed for past
spectral usage, when bands were sparsely used, utilizing these
new bands will lead to interference with the legacy users. There-
fore, it is essential to develop signaling schemes that can protect
legacy users from such interference. For many applications,
legacy users are located within a geographically constrained
region. In this paper, we use the knowledge of this region to limit
the interference at legacy users. We achieve this by incorporating
received power constraints termed as region constraints, in the
massive multiple-input multiple-output (MIMO) system design.
We perform a sum-rate analysis of the multi-user massive MIMO
system with transmit power and region constraints.

I. INTRODUCTION

The demand for high-speed wireless communication has
increased rapidly over the last decade. To address this, the
Federal Communications Commission (FCC) and other spec-
trum authorities have considered several new sub-6 GHz bands
suitable for wireless communication. However, the sub-6 GHz
frequencies are heavily used by legacy systems essential to
critical networks, e.g., airplane radar systems, global posi-
tioning systems, etc. The need to share spectrum with these
legacy systems, which were deployed decades ago, has led
to previously unexpected interference issues [1], [2]. This
is primarily due to the lack of regulation for receivers in
these legacy systems [3]. These receivers were designed when
spectrum was lightly used, and they often used the assumption
that there was little to no interference in bands 10s-100s of
MHz away. The filters in these receivers may have sidebands
that allow significant interference from transmissions in bands
several hundred MHz away.

One example of such an interference scenario is at the radar
altimeter receivers resulting from 5G C-band deployments [4].
It had been speculated that a 5G deployment might result
in interference level that could potentially corrupt the radar
altimeter measurements. Because of this issue, the deployment
of 5G base stations using this band was delayed near airports,
hospitals, and other areas of use. The Federal Aviation Ad-
ministration (FAA) has stated that permanent changes to 5G
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Fig. 1: Power restricted region using legacy wireless systems

systems must be made to guarantee the safety of aircraft [4].
Another example is the Ligado-GPS dispute, where Ligado
proposed a wideband wireless network in the L-band [2],
adjacent to band used by GPS. The GPS industry showed
that allocating this band would lead to interference with GPS
signals. Ligado later came up with a lower-power solution to
mitigate this interference issue. The much discussed public
policy solutions to such interference challenges are not viable
in the long term due to the growing demand for additional
spectrum. There is an urgent need for communication theory
solutions that can incorporate the interference issue in the
current system model.

Massive MIMO presents a promising solution to the increas-
ing demand for high-speed wireless communication. However,
most prior works on massive MIMO system design have
not considered the interference issue with legacy systems.
In this paper, we focus on regions (e.g., airports, hospitals,
etc.) where strict received power requirements may apply,
and we incorporate these regions into our system model. Fig.
1 illustrates an example of such a region containing legacy
wireless users. To limit the received power in specific areas, we
employ quadratic constraints in the design of massive MIMO
precoders. Quadratically constrained optimization problems in
MIMO systems have been explored in various contexts, some
examples are in [5], [6]. Since many of these problems are
convex, they can be solved using standard convex optimization
techniques. We use convex optimization techniques in [7] to
design precoders that maximizes the sum-rate under quadratic



constraints.

II. SYSTEM MODEL

We consider a downlink multi-user massive MIMO setup
with K users, where the base station is equipped with Mt

transmit antennas and each user has Mr receive antennas.
Assuming a narrow band channel, the input-output relationship
for the kth user is given by

yk = Hkx+ nk, k = 1, ...,K, (1)

where yk ∈ CMr×1 is the received vector, nk ∈ CMr×1 is
the additive noise vector assumed to be distributed as nk ∼
CN (0, σ2I), and Hk ∈ CMr×Mt is the channel matrix. We
assume a precoding transmitter with the transmitted vector
x ∈ CMt×1 is

x =
K∑
k=1

Fksk, (2)

where Fk ∈ CMt×M is the kth user’s linear precoder and
sk ∈ CM×1 denotes the kth user’s transmit vector of M data
streams, where KM ≤Mt. All transmit vectors are mutually
independent and identically distributed, with E[sk] = 0 and
E[sksHk ] = I, where I is the identity matrix. To satisfy the
transmit power constraint, the precoder must be designed such
that

E[xHx] =

K∑
k=1

tr(FHk Fk) ≤ P, (3)

where E[·] denotes statistical expectation and tr(A) is the trace
of the matrix A.

Let Gk ∈ CM×Mr be the kth user receiver such that the
estimated transmit vector is

ŝk = Gkyk. (4)

The mean squared error (MSE) matrix of the kth user is [8]

Ek = E[(ŝk − sk)(ŝk − sk)
H ] (5)

= I+GkHk

(
K∑
m=1

FmFHm

)
HH
k GH

k −GkHkFk

− FHk HH
k GH

k + σ2GkG
H
k .

(6)

For fixed transmit precoders, the optimal minumum mean
squared error (MMSE) receiver is [8]

Gopt
k = FHk HH

k

(
Hk

(
K∑
m=1

FmFHm

)
HH
k + σ2I

)−1

. (7)

Using (7), the corresponding MSE matrix is [8]

Ek =
(
I+ FHk HH

k C−1
k HkFk

)−1
, (8)

where Ck is the effective noise covariance matrix given by

Ck = Hk

 K∑
m=1,m ̸=k

FmFHm

HH
k + σ2I. (9)

The sum-rate is [8]

Rsum =
K∑
k=1

log
∣∣E−1

k

∣∣ . (10)

We assume that legacy wireless users are located at a
confined geographic area, such as radar altimeters located
at airports. The base station is assumed to be centered at
the origin. We also assume that the base station is equipped
with a uniform linear array (ULA). We consider a scenario
with N distinct geographic regions, each containing legacy
wireless users. These regions are represented by sets of points
Ri ⊂ R2, i = 1, . . . , N .

The average interference power density in the ith region is
constrained such that E[S(pi,x)] ≤ Qi, ∀pi ∈ Ri, where
S(pi,x) denotes the instantaneous power density at point
pi ∈ Ri due to the transmitted vector x. Qi represents
the maximum permissible interference in the ith region. If
the region Ri is in the line-of-sight of the base station, the
instantaneous received power density at any point pi ∈ Ri

can be expressed as [9]

S(pi,x) =
1

4πdγi
|AF (pi,x)|2, (11)

where AF (pi,x) denotes the array factor with the array
elements illuminated by the transmit vector x, γ represents the
generalized path loss exponent, and di is the distance between
the base station and the point pi.

The point pi can be expressed either in Cartesian coordi-
nates (c1, c2) or in polar coordinates (di, ϕi). In polar coordi-
nates, the array response vector is denoted by a(ϕi) ∈ CMt×1,
where ϕi represents the azimuth angle of departure (AoD)
corresponding to the point pi. We define the array factor
illuminated by the transmit vector x as

AF (pi,x) = a(ϕi)
Hx. (12)

Using (12), the instantaneous power density at point pi can
be expressed as

S(pi,x) = xHRix, (13)

where Ri is a characteristic matrix given by

Ri ≜
1

4πdγi
a(ϕi)a(ϕi)

H . (14)

The characteristic matrix is Hermitian positive semi-definite
by construction. We want to constrain the average received
power density in the region. The expected value of (13) is

E[xHRix] =
K∑
k=1

tr(FHk RiFk). (15)

The characteristic matrix in (14) is inversely proportional to
dγi . As a result, by limiting the received power density at the
region’s boundary closest to the base station, the path loss will
inherently satisfy the received power requirements throughout
the rest of the region. The boundary of the ith region can be
represented by a set of points Bi that satisfy a curve equation.



The boundary Bi is represented as

Bi = {(c1, c2) ∈ Ri : κc(c1, c2) = 0}, (16)

where κc(c1, c2) = 0 is a curve equation in Cartesian
coordinates. The curve can be transformed from Cartesian
coordinates to polar coordinates yielding the set

Bi = {(d, ϕ) ∈ Ri : κp(d, ϕ) = 0}, (17)

where κp(d, ϕ) = 0 is a curve equation in polar coordinates.
To define the region constraints, we consider a sampled

constraint problem. By sampling the region’s boundary, we
can represent the interference problem using a finite number
of constraints. The number of samples should be large enough
to account for the worst-case interference. Let Li denote the
number of discrete samples for the ith region. By obtaining Li
samples of the azimuth angle along the boundary curve nearest
to the base station, denoted as (dℓ, ϕℓ) for ℓ = 1, 2, . . . , Li,
we can effectively limit the power density within the region
Ri using Li quadratic constraints.

To limit the interference within the region, the power density
at all points pi ∈ Ri must stay below a given power threshold
Qi. This power density requirement in the ith region Ri can
be approximated using Li quadratic inequality constraints.
For N regions with specific received power requirements, we
generalize these quadratic inequality constraints, known as
region constraints, as
K∑
k=1

tr(FHk Ri,ℓFk) ≤ Qi, i = 1, 2, .., N, ℓ = 1, 2, .., Li, (18)

where Ri,ℓ =
1

4πdγi,ℓ
a(ϕi,ℓ)a(ϕi,ℓ)

H denotes the ℓth character-

istic matrix used to constrain the interference in the ith region.
We assume that the channel Hk is perfectly known at both
the transmitter and receiver.

III. REGION CONSTRAINTS

As introduced in the previous section, the legacy wireless
users will be confined to N geographic regions represented by
sets of points Ri ∈ R2, i = 1, . . . , N . To restrict the received
power density in these regions, we use multiple quadratic
inequality constraints. The array steering vector for ULA is

a(ψ) = [1, e−jψ, e−j2ψ, . . . , e−j(Mt−1)ψ]T , (19)

where ψ = 2πδ cosϕ/ν, δ is the distance between the antenna
array elements, ν is the wavelength, and ϕ is the azimuth
angle.

The region boundary can be represented using multiple line
segments. Let Bi =

⋃
η
Ξi,η , where Ξi,η denotes the set of

points representing the ηth line segment used to represent the
ith region boundary. The equation of a line segment is

ω1,i,ηc1 + ω2,i,ηc2 = ω3,i,η, (20)

where the line segment is the set of points Ξi,η =
{(c1, c2) : c1,i,η,min ≤ c1 ≤ c1,i,η,max, c2,i,η,min ≤ c2 ≤
c2,i,η,max, and (c1, c2) satisfies (20)}. If we substitute c1 =
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Fig. 2: Region boundary defined by two line segments

d cos(ϕ) and c2 = d sin(ϕ), (20) leads to the distance in terms
of angle ϕ as

d(ϕ) =
ω3,i,η

ω1,i,η cos(ϕ) + ω2,i,η sin(ϕ)
, ϕ ∈ [ϕi,η,min, ϕi,η,max],

(21)
where ϕi,η,min = min(Φi,η), ϕi,η,max = max(Φi,η), and Φi,η is
a set given by Φi,η =

{
ϕ : ϕ = arctan c2

c1
, ∀(c1, c2) ∈ Ξi,η

}
.

Fig. 2 shows an example of a region defined by multiple line
segments. The line segment closest to the base station is the
curve equation c2 + c1 = 9000, where the end points are
(4000,5000) and (6000,3000).

IV. PROBLEM FORMULATION AND SUM-RATE ANALYSIS
OF MULTI-USER MASSIVE MIMO WITH REGION

CONSTRAINT

In this section, we formulate the optimization problem for
multi-user massive MIMO with transmit power and region
constraints. We extend the precoder design framework in
[10] and [8] to include region constraints. We formulate a
multi-user MMSE problem with transmit power and region
constraints and provide an optimal precoder structure. In what
follows, we formulate a sum-rate maximizing problem with
transmit power and region constraints, and provide an optimal
precoder structure.

A. Multi-User MMSE Precoder With Region Constraints

The multi-user MMSE optimization problem with the trans-
mit power and region constraints is

(T 1) min
{{Fk},{Gk}}

K∑
k=1

tr(Ek),

s.t.
K∑
k=1

tr
(
FHk Ri,ℓFk

)
≤ Qi, i = 1, .., N, ℓ = 1, .., Li,

K∑
k=1

tr
(
FHk Fk

)
≤ P.



The Lagrangian of the problem (T 1) is

L({Fk}, {Gk}, µ, {λi,ℓ}) =
K∑
k=1

tr(Ek)+

µ

(
K∑
k=1

tr
(
FHk Fk

)
− P

)
+

N∑
i=1

Li∑
ℓ=1

λi,ℓ

( K∑
k=1

tr
(
FHk Ri,ℓFk

)
−Qi

)
, (22)

where λi,ℓ ≥ 0, i = 1, 2, . . . , N, ℓ = 1, 2, . . . , Li and µ ≥ 0
are, respectively, the dual variables for the region constraints
and transmit power constraint. For fixed precoders, the optimal
MMSE receiver structure is given by (7). Taking the gradient
of (22) with respect to (w.r.t) the precoder Fk and setting it
to 0, we get [10]

Fk =

( K∑
m=1

HH
mGH

mGmHm +
N∑
i=1

Li∑
ℓ=1

λi,ℓRi,ℓ+

µI

)−1

HH
k GH

k , k = 1, . . . ,K. (23)

Since the optimal receivers are a function of the precoders
and vice versa, [10] has proposed an iterative procedure to find
the solution which is outlined in Algorithm 1. The problem
(T 1) is not jointly convex over all the precoder and receiver
matrices, but it is convex when the receivers are designed with
fixed precoders and vice versa. This ensures that the proposed
algorithm converges to at least a local minimum [10]. In each
iteration, the optimal dual variables are determined using sub-
gradient search method, which is detailed in Section V.

B. Sum-Rate Maximizing Precoder With Region Constraints

The sum-rate maximization problem with the transmit
power and region constraints is

(T 2) max
{{Fk},{Gk}}

K∑
k=1

log
∣∣E−1

k

∣∣ ,
s.t.

K∑
k=1

tr
(
FHk Ri,ℓFk

)
≤ Qi, i = 1, .., N, ℓ = 1, .., Li,

K∑
k=1

tr
(
FHk Fk

)
≤ P.

The Lagrangian of the problem (T 2) is

L({Fk}, {Gk}, µ, {λi,ℓ}) = −
K∑
k=1

log
∣∣E−1

k

∣∣+
µ

( K∑
k=1

tr
(
FHk Fk

)
− P

)
+

N∑
i=1

Li∑
ℓ=1

λi,ℓ

( K∑
k=1

tr
(
FHk Ri,ℓFk

)
−Qi

)
, (24)

where {λi,ℓ} and µ are the dual variables. For fixed precoders,
the optimal MMSE receiver structure is given by (7). Taking
the gradient of (24) w.r.t the precoder Fk and setting it to
0, and after some algebraic manipulation we get the precoder
structure [8]

Fk =

( K∑
m=1

HH
mGH

mE−1
m GmHm +

N∑
i=1

Li∑
ℓ=1

λi,ℓRi,ℓ+

µI

)−1

HH
k GH

k E−1
k , k = 1, . . . ,K. (25)

Algorithm 1 Iterative MMSE solution

1: initialize{
G

(0)
k

}
, and τ = 1, where τ is the index of iteration.

2: repeat
3: Compute

{
F

(τ)
k

}
for given

{
G

(τ−1)
k

}
using (23) and

the sub-gradient search method.
4: Compute

{
G

(τ)
k

}
for given

{
F

(τ)
k

}
using (7).

5: τ = τ + 1.
6: until

∣∣∣R(τ−1)
sum −R

(τ)
sum

∣∣∣ ≤ ϵ.

Similar to Section IV-A, the optimal receivers and precoders
are interdependent. To find the solution, [8] has proposed
an iterative approach outlined in Algorithm 2. Although the
problem (T 2) is not jointly convex with respect to both the
precoder and receiver matrices, it becomes convex when either
the receivers are designed for fixed precoders or vice versa.
This guarantees that the proposed algorithm at least converges
to a local maximum [8]. In each iteration, the optimal dual
variables are computed using the sub-gradient search method,
as detailed in Section V.

Algorithm 2 Iterative sum-rate maximizing solution

1: initialize{
F

(0)
k

}
, and τ = 1.

2: repeat
3: Compute

{
G

(τ)
k

}
for given

{
F

(τ−1)
k

}
using (7).

4: Compute
{
E

(τ)
k

}
for given

{
F

(τ−1)
k

}
using (8).

5: Compute
{
F

(τ)
k

}
for given

{
G

(τ)
k

}
and

{
E

(τ)
k

}
,

using (25) and the sub-gradient search method.
6: τ = τ + 1.
7: until

∣∣∣R(τ−1)
sum −R

(τ)
sum

∣∣∣ ≤ ϵ.

V. SIMULATION

This section presents the simulation results for the proposed
precoder design methods. We performed Monte Carlo simula-
tions to get the average sum-rate. We compare the performance
of our proposed precoding methods, and precoding without
the region constraints. We use the region boundary shown in
Fig. 2. We take 16 equally spaced samples of the azimuth
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Fig. 3: Transmit power constraint P vs. sum-rate.
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Fig. 4: Number of users vs. sum-rate.

angle span of the region, and we compute the distance in
terms of ϕ using (21) to define the region constraints. In all
simulations, the noise variance has a fixed value of σ2 = 1,
and the interference power threshold is Q = −80 dBm.
We assume the channel follows an uncorrelated Rayleigh
fading channel model, i.e., Hk ∼ CN (0, I). We assume half-
wavelength array element spacing, i.e., δ = ν/2. In all the
plots RC in the legend stands for region constraints. The
legend ‘log|MSE−1|’ refers to the precoder in Section IV-B,
while the legend ‘tr(MSE)’ corresponds to the precoder in
Section IV-A. We use a sub-gradient search method to find the
optimal dual variables. The dual variables must satisfy the fol-

lowing KKT conditions: µ
(

K∑
k=1

tr
(
FHk Fk

)
− P

)
= 0, µ ≥ 0,

and λi,ℓ

(
K∑
k=1

tr
(
FHk Ri,ℓFk

)
−Qi

)
= 0, λi,ℓ ≥ 0, ∀i, ℓ.

Based on that we define the sub-gradient of the Lagrangaian

w.r.t. µ as
(
P −

K∑
k=1

tr
(
FHk Fk

))
, and the sub-gradient of

the Lagrangian w.r.t. λi,ℓ as
(
Qi −

K∑
k=1

tr
(
FHk Ri,ℓFk

))
. We

use the constant step-size method in [11] to iteratively update
the dual variables and the precoders until the dual variables
converges to a prescribed accuracy.

Fig. 3 shows transmit power vs. sum-rate for 32×2 massive
MIMO, where Mt = 32 and Mr = 2. The number of users are
K = 10. As P increases, the gap in sum-rate with and without
region constraints widens because the impact of region con-
straints grows. For instance, at P = 30 dBm, the difference in
sum-rate are 3 bits/s/Hz, and 3.2 bits/s/Hz for the log|MSE−1|
precoder, and tr(MSE) precoder, respectively. Additionally,
the log|MSE−1| precoder marginally outperforms the tr(MSE)
precoder, at P = 30 dBm, the difference is 0.7 bits/s/Hz for
simulation with the region constraints.

Fig. 4 shows the sum-rate vs. number of users for 32×2
massive MIMO with P = 30 dBm. Similar to the previous
simulation, the log|MSE−1| precoder marginally outperforms
the tr(MSE) precoder. For example, with region constraints
active and K = 9, the difference in sum-rate is 0.6 bits/s/Hz.
The sum-rate increases as the number of users increases.

VI. CONCLUSION

The increased demand for wireless access and applications
has led to the wireless spectrum becoming more congested.
To protect legacy users from this new interference, we showed
how signal processing techniques can be used to design wave-
forms that protect certain geographic regions. We incorporated
quadratic constraints, referred to as region constraints, into the
massive MIMO system model. We proposed MMSE precoder
design and sum-rate maximizing precoder design approaches.
Simulation results demonstrated the achievable sum-rate for
multi-user massive MIMO systems with region constraints.
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