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Abstract—As simulation-based scientific discovery advances to
exascale, a major question that the community is striving to
answer is how to co-design data storage and complex physics-
rich analytics in a way that the time to knowledge can be
minimized for post-processing. A particular challenge is how
to accommodate a broad spectrum of data analytics needs–
particularly those that become clear only until very late during
the post-processing, a scenario where existing methods, such as
in situ processing, are unable or less effective in supporting
data analytics. As HPC storage systems have become deeper and
more complex with the recent addition of NVMe, die-stacked
memory, and burst buffer, it requires fundamentally rethinking
new paradigms and methods for data storage and analysis.
This paper aims to address the issue of I/O interference for
data analytics over local ephemeral storage, which is shared by
multiple applications in a non-exclusive node usage scenario–
often configured for small- to medium-sized clusters. At the
core of this work is a coordinated cross-layer approach that
reacts to storage interference from both storage and application
layers. By decomposing and distributing analysis data across the
storage hierarchy, data analytics can adapt to the interference by
reducing or completely avoiding access to lower tiers whenever
there is a high interference, while maintaining a prescribed
error bound to limit the information loss. Meanwhile, proper
actions are also taken at the storage layer to ensure sufficient
bandwidth is allocated for retrieving an augmentation, which is
based upon the cardinality and accuracy of the augmentation
as well as the nature of an application. We evaluate three real-
world data analytics, XGC, GenASiS, and CFD, on Chameleon,
and quantitatively demonstrate that the I/O performance can
be vastly improved, e.g., by 52% versus no adaptivity and
36% versus single-layer adaptivity, while maintaining acceptable
outcomes of data analysis.

Index Terms—High-performance computing, data analysis,
data storage

I. INTRODUCTION

As simulation-based scientific discovery advances to ex-
ascale empowered by new accelerators and interconnects on
high-performance computing (HPC) systems, the management
of analysis data coming out of large-scale simulations has
become increasingly challenging due to the exponential growth
of data. Scientific knowledge discovery does not simply end
after the completion of a simulation, but continues well into
the post-processing phase where scientists repetitively retrieve
and analyze data over a long period. A major question that
the community is striving to answer is how to co-design data
storage and complex data analytics in a way that the time
to knowledge can be minimized in post-processing [1], [2],
[3], [4], where either routine or exploratory data analytics
(i.e., those that are unknown a priori) will be executed over
large amounts of analysis output. A particular predicament
is how to accommodate a broad spectrum of data analytics
needs–particularly those that become clear only until very late
during the post-processing, a scenario where existing methods,
such as in situ processing [5], [6], [7], [8], storage layer
optimization [9], [10], [11], and data reduction [12], [13], [14],
[15], [2], are less effective in supporting data analytics. As
HPC storage systems have become deeper and more complex
with the recent addition of NVMe, die-stacked memory and
burst buffer, it requires fundamentally rethinking new methods
for data storage and analysis. While one can simply treat these
new storage technologies as additional caching layers or faster
file system directories, a more holistic approach calls for the
hierarchical management of data, which is well suited to the
structure and hardware characteristics of HPC storage systems.
The key benefits of this new research direction are that 1)
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it allows a reduced representation of data to be placed and
accessed from a fast storage tier, which otherwise would be
too capacity-limited to store the entire dataset. As a result,
data analytics can run much faster with vastly reduced I/O
and compute overhead; 2) more importantly, it can satisfy
a wide range of accuracy needs, thus being highly relevant
to exploratory data analytics where the accuracy needs are
unknown a priori–if the accuracy of a reduced presentation is
insufficient, it can always be elevated by fetching additional
augmentations from lower storage tiers.

The I/O performance on HPC systems is observed to be
highly variable due to the lack of end-to-end quality of service
(QoS) mechanisms in place [16], [17], [3] and the fact that
HPC storage systems are generally shared by multiple appli-
cations. This is true for both remote and local storage systems.
For the former, the storage system is connected through the
network and shared among multiple nodes/systems, while for
the latter, the storage system is directly attached to a node
where several processes/threads can share the storage. The
local storage system is mostly ephemeral in HPC–before a
job starts, the analysis data needs to be staged into local
storage, and after a job exists, the data on local storage is
erased. While there has been a multitude of work focusing on
reducing I/O interference on remote storage systems [17], [18],
[19], the interference problem over local storage has rarely
been studied for HPC workloads. As compared to remote
storage, an application has more control of resources over local
storage via Linux control groups (cgroups) typically available
through containers, however, without achieving performance
guarantees. Meanwhile, the concurrency of a compute node
has improved drastically over the past decade. For example,
a shared instance in a commercial cloud today could have
hundreds of vCPUs [20], and a physical CPU could have up to
64 cores [21]. This creates more opportunities for interference
over local storage.
Target scenario. This work targets a non-exclusive node usage
scenario [22]–often configured for small- to medium-sized
clusters [23], [24], [25] where multiple applications run on
the same node to be resource efficient. As such, there will be
I/O interference over the local ephemeral storage.
Contribution. This paper aims to address the issue of I/O
interference for data analytics where the local ephemeral
storage is shared by multiple applications. In particular, we
developed Tango, which is a coordinated cross-layer approach
that reacts to I/O interference from both storage and appli-
cation layers. By decomposing and distributing analysis data
across the storage hierarchy, data analytics can adapt to the
interference by reducing the access to lower tiers whenever
there is a high interference, here referred to as application-
layer adaptivity, while maintaining a prescribed error bound
to limit the information loss. Meanwhile, proper actions are
taken at the storage layer to ensure sufficient bandwidth is
allocated for retrieving an augmentation, here referred to
as storage-layer adaptivity, based upon the cardinality and
accuracy of the augmentation as well as the priority of an
application. Inevitably, this design involves the estimation of

storage performance, which can be done by exploiting the
periodic behavior of HPC workloads [3]. Overall, this paper
makes the following contributions.

• This work is among the first to explore a cross-layer ap-
proach to managing I/O interference over local ephemeral
storage. In particular, we propose the idea that both
applications and storage should adapt to best manage
the interference. A single-layer adaptation in either stor-
age [18], [19] or application [26], [3] would simply re-
distribute the bandwidth between interfering applications
without alleviating the contention, or suffer subpar stor-
age performance. In this work, when the interference
is predicted to be low, data analytics can retrieve more
augmentations assisted by a higher allocation in the stor-
age layer to achieve the best outcomes for data analysis.
Meanwhile, when the interference is predicted to be high,
data analytics should retrieve less (or no) augmentations
and be allocated less storage resources.

• We develop new algorithms to achieve error-bounded
refactorization and interference mitigation, where we
introduce error control for normalized root mean square
error (NRMSE) and peak signal-to-noise ratio (PSNR)–
two widely used error metrics in data reduction, during
both decomposition and recomposition. Further, we pro-
pose a weight function in the storage layer that balances
the cardinality, the accuracy of an augmentation retrieved,
and the priority of data analytics to best allocate storage
resources.

• We experimentally demonstrate the effectiveness of the
cross-layer approach on Chameleon [27] using real data
analytics, XGC, GenASiS, and CFD. The results show
that the I/O performance is vastly improved, e.g., by
52% versus no adaptivity and 36% versus single-layer
adaptivity, while achieving acceptable analysis outcomes.

The remainder of this paper is organized as follows. Sec-
tion II discusses the background and motivation of this work.
Section III presents our cross-layer design of error-bounded
refactorization and augmentation to manage I/O interference.
Section IV demonstrates the performance advantages of the
proposed scheme. Section V presents the most related works,
along with conclusions in Section VI.

II. BACKGROUND AND MOTIVATION

HPC storage QoS. Table I describes the QoS mechanisms
in major HPC file systems today. In particular, Lustre is a
parallel file system that is being used by many large HPC
systems today. Since Lustre 2.6, it has introduced a new feature
that maps an RPC request to a QoS class based upon the
client’s network and job ID, and the type of I/O operation,
and uses a token bucket filter to throttle the I/O traffic for a
given class [28]. Nevertheless, the QoS control in Lustre is
cumbersome and ad-hoc, since applications are not typically
allocated with a static network and job ID, and cannot pro-
vide per-application performance guarantee. More importantly,
the QoS control cannot adapt to the workload dynamic at
runtime. Meanwhile, Spectrum Scale (5.0.4, formerly GPFS)
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provides I/O throttling for two QoS classes for each storage
pool [29]. The QoS control is coarse-grained and enforced
at each storage pool, rather than for each application, and
cannot be adjusted unless the system administrators intervene
to make manual changes. The Ceph distributed file system [30]
has also gained traction in HPC centers and very recently,
there have been efforts integrating dmClock [31] to provide a
performance guarantee. However, we confirmed with the Ceph
production team that the integration is still experimental and
the performance guarantee has not been achieved as of now.
Lastly, OrangeFS [32] is a file system in user space (FUSE)
that is specifically designed to optimize MPI-IO in a parallel
environment. OrangeFS itself does not provide QoS, but rather
relies on the lower-level file system to achieve it.

Motivation 1: Major HPC file systems do not provide
application-level performance guarantees. This motivates us to
seek alternative solutions at upper levels in the software stack,
particularly at storage and I/O intermediaries, to manage I/O
interference.

TABLE I: QoS in HPC file systems.

File system Per app.
control

Runtime
adjust-
ment

QoS mechanism Scheduling

Lustre
(>2.6)

✗ ✗ Throttling Token
bucket filter

Spectrum
Scale

(5.0.4)

✗ ✗ Throttling for two
QoS classes for

each storage pool

Unknown

Ceph
(13.2.6)

✗ ✗ Throttling dmclock

OrangeFS
(2.9.7)

✗ ✗ ✗ ✗

Ext4 with
cgroups

✓ ✓ Proportional
weight, throttling

Completely
fair

scheduling

Runtime resource control via cgroups. Containers, and
more broadly any systems with cgroups enabled, provide a
range of mechanisms for resource control over local compute
and storage. For example, the sharing of CPU cycles and block
I/O (blkio) among containers can be adjusted proportionally
via weight or be throttled at runtime by specifying the resource
key-value pairs for the subsystem of a control group. For
example, for block I/O, the proportional weight of a con-
tainer can be specified by adjusting blkio.weight in the range
from 100 to 1000. To set an upper limit of I/O operations,
we can set the value of blkio.throttle.read bps device and
blkio.throttle.write bps device.

However, the availability of proportional control through
weight or throttling does not translate to performance isolation.
In particular, the throttling function only limits the maximum
I/O rate that a container can achieve, without guaranteeing
the minimum rate–a metric that is of equal, if not more,
importance to QoS. Meanwhile, a static weight can lead to a
reduced bandwidth allocation when the interference becomes
stronger. For example, setting an I/O weight of 100 for a target
application will guarantee at least 50% of the bandwidth, when
there is another interfering application with an equal weight.
However, once a third interfering application with an equal
weight joins, the target application will receive only 33% of

the total bandwidth. As a result, the proportional allocation
using cgroups does not solve the interference problem. In
Fig. 1, we measure the average I/O performance (instead of
the instantaneous bandwidth) of three data analytics, XGC,
CFD, and GenASiS, which perform I/O periodically over time,
on ext4 on a Seagate 600GB 15000 RPM SAS hard disk,
with equal blkio weights. Clearly, the weight mechanism does
not achieve performance isolation for these applications. For
example, when XGC performs I/O without being interfered
at t = 10, it almost achieves the full bandwidth from the
underlying storage system. In contrast, when interfered at
t = 0, the perceived bandwidth drops about 75%.

Motivation 2: The weight assignment provides an important
means in controlling local resource allocation. However, a
static weight assignment in blkio is unable to achieve per-
formance isolation from interference. This calls for a more
sophisticated runtime management of weight.
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Fig. 1: I/O Performance of data analytics with equal weights on ext4
on a Seagate 600GB 15000 RPM SAS hard disk. Here we run three
data analytics in different docker containers that retrieve and analyze
data iteratively from the shared disk.

Application-layer adaptivity. It has been well recognized
that HPC applications can adapt to computing environments
in an ad-hoc fashion. The simplest form of such adaptations
is that when computing resources are constrained, domain
scientists often scale down the fidelity of the simulation by
manually throwing out non-essential terms in the governing
partial differential equations, coarsening the spatiotemporal
resolution, or reducing the degrees of freedom. As a matter
of fact, this was how production science was done when
the HPC systems were much less powerful in the past, but
still with meaningful results produced. Particularly, when the
storage system is highly congested, applications can reduce the
volume of data retrieved or the frequency of I/O operations.
While such adaptations are not completely harmless and can
discard important physics in data, it has been shown in
the literature [3], [4] that the lower accuracy of data can
still be useful for some data analysis, such as visualization
and statistical analysis, especially for high-fidelity simulations
where the solutions are over-resolved. More importantly, the
lower accuracy can be instrumental in guiding the subsequent
computation to be more localized, thus reducing the computa-
tional overhead. Fig. 2 illustrates PSNR and the relative error
of the analysis outcome, when data is reduced. While it is
clear that as the decimation ratio increases, the quality of data

3



decreases, we do not observe drastically degraded analysis
outcomes. On the other hand, even at an extreme decimation
ratio of 512, a level of reduction that is rarely achieved, the
relative error of data analytics is no more than 25%. Detailed
descriptions of the data analytics are in Section IV-A.

Motivation 3: While a reduced representation inevitably incurs
errors to the outcome of data analytics, it can maintain a
reasonable outcome and can be useful for data analysis.
Nevertheless, error control mechanisms are needed to accom-
modate a wide range of accuracy needs.

128 512256 
Decimation ratio

0

20

40

PS
N

R

XGC GenASiS CFD

(a) PSNR.

128 512256 
Decimation ratio

0.0

0.1

0.2

0.3

R
el

at
iv

e 
er

ro
r

XGC GenASiS CFD

(b) Analysis error.

Fig. 2: Accuracy of using a reduced representation.

HPC application pattern. Most parallel applications on HPC
systems are deemed to follow certain patterns that can be
described as I(CxW )∗F [33], [34]. In particular, I and F
are the initialization and finalization phases, respectively. The
compute phase C and the I/O phase W are typically iterative
in nature, and a number of rounds (x) of compute iterations
will be followed by an I/O phase, with x being adjustable
based upon the scientific needs as well as the performance of
storage. By and large, the I/O interference can be viewed as the
bandwidth competition from all other concurrent applications,
denoted as

∑
i

Ii(C
x
i Wi)

∗Fi, where the subscript i denotes the

i-th competing application. As such, the interference pattern
does exist and can be learned and predicted. Carefully note
that other random activities, such as job compilation and shell
commands, are much lower in their intensity and duration,
as compared to the simulation output, and therefore can be
neglected. In fact, prior work [3] shows the effectiveness of a
discrete Fourier transform (DFT) approach where the random
interference can be filtered out and the overall interference
intensity and phase can be accurately estimated for a future
analysis step.

III. DESIGN AND IMPLEMENTATION

A. Methodology

Fig. 3 provides a high-level view of Tango. For local
ephemeral storage, we generally consider two kinds of storage
tiers: performance tier (e.g., NVMe) and capacity tier (e.g.,
disks). The former has a relatively smaller capacity but a faster
speed than the latter. The central idea is to manage the I/O
interference through a coordinated cross-layer approach that
involves both application and storage layers, as compared to
prior works which mostly explored a single layer (see Table II
for more details). In particular, at each layer, we perform the
following actions:

• Application layer. The data analytics adapts to the inter-
ference by adjusting the accuracy of data representation
based upon the estimated interference intensity at a given
timestep ts. In an ideal case when there is little interference
on the capacity tier, a full augmentation would be retrieved,
thus incurring no error to the outcome of data analytics.
When there is a substantial interference, we proportionally
reduce the amount of augmentation retrieved from the
shared storage, to the extent that the prescribed error bound
can be satisfied, so that the interference can be mitigated
while the accuracy can be maintained as much as we can.

• Storage layer. The blkio weight of a particular application
container will be adjusted at runtime accordingly, based
upon the augmentation strategy constructed through per-
formance monitoring and estimation, to ensure sufficient
resources are allocated for a target application. In this work,
we devise a weight function that maps the cardinality and
the associated accuracy of an augmentation along with the
priority of an application to blkio weight.

TABLE II: Comparison with existing methods.

Work Storage layer App. layer Technique
[18], [19] ✓ ✗ Traffic re-routing and

throttling based upon queue
length

[17] ✗ ✓ Explicit application
coordination through new

APIs
[26] ✓ ✗ Randomized I/O scheduling
[3] ✗ ✓ Interference estimation and

adaptive data retrieval
[2] ✗ ✓ Data retrieval under no

interference
Tango ✓ ✓ Cross-layer coordination

involving storage- and
application-layer adaptivity

For explanatory purposes, notations used in this paper are
listed in Table III. Consider a local storage hierarchy that
consists of L tiers {ST l, 0 ≤ l < L}, with ST 0 being the
slowest tier of the largest capacity and STL−1 being the fastest
tier of the smallest capacity. An example of a three-tier storage
is shown in Fig. 3.

First, to exploit such storage characteristics and be adaptable
to I/O interference, the simulation output must be transformed
in a way that enables a hierarchical representation {Ωl, 0 ≤
l < L}, where Ω0, Ωl, 0 < l < L − 1, and ΩL−1 are the
original, intermediate, and base representations, respectively.
To reduce the storage footprint of these representations, we
further compute the difference between adjacent levels of
representations, i.e., Augl, which is the difference between
Ωl and Ωl+1. Furthermore, we transform Augl in a way that
a fine-grained set of error bounds can be achieved (step ❶)
when a subset of Augl is requested to be retrieved under
interference, thus avoiding an excessive loss of information.
Next, the decomposed data are staged to local ephemeral
storage before a data analytics job starts, taking advantage
of the capacity and speed characteristics of each tier.

Second, during data analysis that spans hundreds to thou-
sands of steps, we collect the performance history of data
analytics for the early steps and perform estimation for the
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• Can access the capacity tier
• Runtime weight control
• Additionally offer a higher accuracy

• Accuracy level #2: R      Aug1         Aug0

Aug1

Aug0

Performance tier

Local Ephemeral Storage

Pe
rfo

rm
an
ce
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Interfering containers

…

Error bounded decomposition

ST1

ST0

R

Interference measurement 
and estimation

Capacity tier

t1 t2

Runtime weight control and
error bounded recomposition

High interference at t1

• Stay within the performance tier
• Offer two levels of accuracy

• Accuracy level #0: R
• Accuracy level #1: R      Aug1

Medium/Low interference at t2

Target 
container

Fig. 3: An illustration of Tango. Herein we assume the interference is over the shared ST 0 and ST 1. The data analytics can be performed
in three accuracy levels. If there is interference experienced, the data analytics can adapt and lower the accuracy, so that there is less or no
data retrieved from the capacity tier. The operator ⊕ denotes the recomposition.

subsequent steps (step ❷). Based upon the estimated storage
bandwidth, data analytics can adjust the augmentation and the
weight of blkio on-the-fly (step ❸) at a future timestep ts. As
an example in Fig. 3, if a low accuracy is requested by the
user, data analytics retrieves the base representation R = Ω2

only from ST 2. If a medium accuracy is rather desired, the
base reduced representation will be further augmented by
fetching Aug1 from ST 1 and recomposing Ω1. If there is
a low interference, the data analytics may further access the
capacity tier by fetching Aug0 to elevate the accuracy to the
highest, i.e., Ω0. More details are described as follows.

B. Error-bounded Refactorization

1) Error Metric: We enforce error control during the dy-
namic augmentation to limit information loss and reduce I/O
interference. To achieve this, we use NRMSE and PSNR
to characterize and control the error between reconstructed
data and full data. For the former, we first calculate root
mean square error (RMSE), which is the square root of the
average of squared differences between the predicted and
actual value, further normalized by the data range of the
quantity. Meanwhile, PSNR is the ratio between the maximum
value of a signal and the power of distorting noise that affects
the quality of its representation. The calculations of these two
error metrics are shown below.

NRMSE =

√
1
n

∑n
i=1 (xi − x̂i)2

xmax − xmin

PSNR = 10 log10
x2
max

1
n

∑n
i=1(xi − x̂i)2

2) Hierarchical Decomposition with Error Control: To
allow the augmentations to be incrementally retrieved, data
needs to be decomposed into hierarchical levels. In this work,
we treat the analysis output from a simulation as a tensor (or a
uniform grid) and the decomposition consists of the following
iterative steps until the reduced representation R is satisfactory
(e.g., in terms of either size or accuracy), as shown in Fig 4.

TABLE III: A list of notations.

Notation Description
abplot(·) Augmentation-bandwidth plot.

Augl The augmentation that elevates the
representation from level l + 1 to l.

Augl
(x,y)

The data point at (x, y) in the augmentation
that elevates the representation from

level l + 1 to l.

Augl
ϵi,(x,y)

The set of data points in the augmentation
that elevates the accuracy from

ϵi−1 to ϵi.
b Number of error bounds.

BWlow , BWhigh

Lower/higher bandwidth threshold in the
augmentation-bandwidth plot. If the
predicted bandwidth is lower/higher
than this, storage is deemed to be

highly/lightly congested.
BWi, ˜BWi Measured/estimated bandwidth at a step i.

dl Decimation ratio of level l.
ϵi The i-th error bounds.

FCi
The amplitude of the i-th frequency

component.

˜FCi
The amplitude of the i-th frequency

component after thresholding.
L The maximum number of levels.

L(ϵi) The level that achieves error bound ϵi.
Ωl The l-th level data representation.

Ωl
(x,y)

The data point at (x, y) in l-th level
data representation.

p Priority of data analytics.

prolongate(·) A linear function that provides interpolation
from level l + 1 back to l.

ST l The l-th storage tier.
thresh Threshold of frequency amplitude.

R Reduced data representation.

restrict(·) A linear function that performs restriction
from level l to l + 1.

ts The s-th timestep.

w(·)
A weight function that maps the cardinality

of augmentation, the associated accuracy,
and priority to container weight.

Step 1: restriction. We restrict the tensor from level l to l+1
by retaining every dl-th data point along each dimension, i.e.,
Ωl+1 = restrict(Ωl). Let a data point at (x, y) in Ωl be Ωl

(x,y).
Fig. 4 shows an example of restricting a 2D tensor with dl = 2.
After the restriction, the top left element is as follows, Ωl+1

(0,0) =

Ωl
(0,0), Ω

l+1
(0,1) = Ωl

(0,2), Ω
l+1
(1,0) = Ωl

(2,0), Ω
l+1
(1,1) = Ωl

(2,2).

Step 2: prolongation and subtraction. To compute the
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Step 1: restrict

h

2h

Ωl

Ωl+1

(0,0) (0,1)

(1,0)

Step 2: 
prolongate

Step 2: subtract

Augl

Step 3: 
error control

…
𝜖i…

𝜖i+1

… …

… …

(0,0) (0,1)

(1,0)

Fig. 4: Decomposition. Here we decompose Ωl to Ωl+1 and Augl.

augmentation Augl, we prolongate Ωl+1 back to level
l and subtract Ωl from the prolongation, i.e., Augl =
prolongate(Ωl+1) − Ωl. Let a data point at (x, y) in Augl

be denoted as Augl(x,y). Those data points that are on both
levels do not need to be explicitly stored since they are zeros
after subtraction, i.e., Augl(0,0) = Augl(0,2) = Augl(2,0) =

Augl(2,2) = 0. For the rest of the data points, under a
linear interpolation, Augl(0,1) = 1

2 (Ω
l+1
(0,0) + Ωl+1

(0,1)) − Ωl
(0,1),

Augl(1,0) =
1
2 (Ω

l+1
(0,0)+Ωl+1

(1,0))−Ωl
(1,0), Aug

l
(1,1) =

1
4 (Ω

l+1
(0,0)+

Ωl+1
(0,1) + Ωl+1

(1,0) + Ωl+1
(1,1)) − Ωl

(1,1). Other data points can be
calculated in a similar fashion and are not detailed further.

Step 3: error control. Let the range of error bounds be
{ϵi, 0 ≤ i < b}, where b is the number of error bounds
and ϵi represents an accuracy lower than ϵi+1. After Augl

is constructed, all data points in Augl will be sorted by
the absolute value |Augl(x,y)| in descending order–clearly, a
larger absolute value indicates a greater impact on the overall
error, therefore needs to be retrieved earlier once the degree
of augmentation is determined. Further, the subset of data
points that need to be retrieved to reach a given error bound
ϵi, denoted as

⋃
(x,y)

Auglϵi,(x,y), will be shuffled together and

properly tagged, such that when ϵi is requested later by
data analytics,

⋃
(x,y)

Auglϵi,(x,y) can be rapidly identified and

retrieved. If an additional augmentation is needed to elevate
the accuracy from ϵi to ϵi+1,

⋃
(x,y)

Auglϵi+1,(x,y)
will be further

retrieved and applied to the reduced representation. Overall,
this shuffling is done not only for the purpose of rapidly
achieving a user-prescribed error bound, but also to ensure
the access of augmentations is mostly contiguous on disk to
achieve a higher I/O performance.

For a 1D dataset with n data points, the complexity of
decomposition is O(nlog(n)), since the algorithm will be
iterated for log(n) times and each iteration has a complexity
of O(n).

Algorithm 1 Error-bounded cross-layer recomposition.

Require: Base representation R, a set of augmentations
⋃

0≤l<L−1

Augl, a

prescribed error bound ϵi, priority p, a target timestep ts
Ensure: A recomposed representation with an accuracy satisfying ϵi
1: Retrieve the base representation R from STL−1

2: Collect the performance of data analytics for n consecutive steps {BWi}
3: Perform DFT over {BWi} to convert the measurements to the frequency

domain, i.e., {FCi} ← DFT ({BWi})
4: Perform thresholding over {FCi} and obtain { ˜FCi}. In particular, if

FCi < thresh, ˜FCi ← 0
5: Perform inverse DFT, i.e., { ˜BWi} ← IDFT ({ ˜FCi}), and obtain ˜BWs

for the target timestep ts
6: Compute the augmentation degree based upon the augmentation-

bandwidth plot abplot( ˜BWs) and in turn the accuracy level ϵj that can
be achieved

7: k ← max(i, j)
8: m← 1
9: while m ≤ k do

10: Compute the weight function w(|Aug
L(ϵm)
ϵm |, ϵm, p) and apply it to

the blkio
11: Retrieve Aug

L(ϵm)
ϵm from STL(ϵm)

12: m← m+ 1
13: end while
14: m← 0, prev ← 0, cur ← 0, r ← R
15: while m ≤ k do
16: cur ← L(ϵm)
17: if prev > cur then
18: r ← prolongate(r) +Aug

L(ϵm)
ϵm

19: else
20: r ← r +Aug

L(ϵm)
ϵm

21: end if
22: prev ← cur, m← m+ 1
23: end while

24: return r

C. Cross-layer Interference Mitigation

1) Dynamic Recomposition with Error Control: During
data analysis, we retrieve the base representation R possibly
alongside a set of augmentations ⊂

⋃
0≤l<L−1

Augl, where

L denotes the maximum number of levels. If the resulting
accuracy of R, termed as base accuracy ϵ0, is lower than
the user-prescribed error bound ϵi, i > 0, data analytics must
further augment the accuracy of data by fetching adequate

augmentations, denoted as
i⋃

m=1
Aug

L(ϵm)
ϵm , from lower stor-

age tiers regardless of the intensity of interference, where
L(ϵm) denotes the level that achieves the error bound ϵm.
Based upon the estimated interference, the data analytics may
further augment the accuracy on-the-fly by fetching more
augmentations. For example, it may augment the accuracy to

ϵj , j > i by retrieving
j⋃

m=i+1

Aug
L(ϵm)
ϵm , if the intensity of

interference is estimated to be insignificant. Algorithm 1 shows
the error-bounded recomposition algorithm. In particular, the
recomposition consists of the following steps:

Step 1: interference measurement and estimation. The goal
of interference estimation is to take advantage of the peri-
odic nature of HPC workloads and estimate the interference
on storage for a future timestep ts, so that an appropriate
amount of augmentation can be determined–the higher the
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interference is, the lower the augmentation will be. While the
HPC application patterns are periodic and can be described
as

∑
i

Ii(C
x
i Wi)

∗Fi, the reality is that the storage workload

is complex and dynamic since applications come and go and
involve some degree of randomness, such as those incurred by
code compilation and ad-hoc user commands. In this work,
we adopt a signal processing based technique that will be
periodically performed (e.g., in every 45 steps) to estimate the
storage interference. In particular, we collect the performance
of data analytics in early steps and use DFT to identify the
frequency components with an amplitude greater than thresh,
so that those interferences that are relatively low in impact
(i.e., non-recurrent and random noise) can be discarded. Next,
we perform an inverse DFT (IDFT) to convert the signal back
to the time domain so that we can obtain the amplitude of
interference at ts and in turn the available bandwidth ˜BWs.
The estimation will be done periodically so that when the
interference pattern changes, the estimation can be re-adjusted.
We note that the complexity of DFT/IDFT is O(n · log(n))
and therefore the overhead of estimation is low.

Step 2: prolongation and addition. After the interference
intensity at ts is estimated, it will be further proportionally
mapped to the degree of augmentation (i.e., the percentage of
augmentations) to be performed–when there is no interference,
a full augmentation is done, while when the interference
exhausts all storage bandwidth, no augmentation is done (if no
error control). Otherwise, the degree of augmentation is a lin-
ear function of the available bandwidth, i.e., abplot( ˜BWs) =
k1 · ˜BWs + b1 ∈ [0, 1], where k1 and b1 are coefficients.
For a given storage system, if the estimated bandwidth is
no less than BWmax, the storage system is considered to
be lightly loaded and therefore a full augmentation will be
done, i.e., if ˜BWs ≥ BWmax, abplot( ˜BWs) = 1. On
the other hand, if the estimated bandwidth is no greater
than BWmin, the storage system is considered to be heavily
loaded, and therefore no additional augmentation will be done
(beyond those for satisfying the prescribed error bound) to
avoid over-loading the system [35], i.e., if ˜BWs ≤ BWmin,
abplot( ˜BWs) = 0. Based upon these two conditions, we
can compute k1 and b1 and determine abplot( ˜BWs) when
BWmin < ˜BWs < BWmin. Once the amount of augmen-
tations and in turn the accuracy, say ϵi, to be retrieved is
known, the following recomposition will be performed by
prolongating ΩL(ϵ1)+1 to level L(ϵ1) and applying the aug-
mentation, i.e., ΩL(ϵ1) = prolongate(ΩL(ϵ1)+1) + Aug

L(ϵ1)
ϵ1 .

Similarly, if L(ϵ2) = L(ϵ1), ΩL(ϵ2) = prolongate(R) +

Aug
L(ϵ1)
ϵ1 + Aug

L(ϵ2)
ϵ2 . Otherwise, L(ϵ2) = L(ϵ1) − 1, and

ΩL(ϵ2) = prolongate(ΩL(ϵ1)) + Aug
L(ϵ2)
ϵ2 . These operations

will be repeated until we reach ϵi.

Step 3: blkio weight adjustment. At the storage layer, the
blkio weight of the associated container will be adjusted at ts
in order to cooperate with the augmentation constructed. Such
a design is motivated by the fact that a larger augmentation
requires more storage allocation than a smaller augmentation,

and without adjusting blkio weight, all applications would
share equal bandwidth, which can lead to sub-optimal out-
comes (as shown in Fig. 9 in Section IV). We carefully note
that the weight adjustment requires neither the administrator
access nor restarting the container to become effective, and
data analytics can adjust its weight on-the-fly at each iteration.
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Fig. 5: A schematic of weight function.

In this work, the blkio weight is adjusted at runtime ac-
cording to a weight function w(|Aug

L(ϵm)
ϵm |, ϵm, p) that takes

the cardinality of an augmentation |Aug
L(ϵm)
ϵm |, the associated

accuracy level ϵm, and the priority p of an application. The
central idea behind this design is three-fold: 1) the storage
layer must cooperate with the application layer by allocating
commensurate resources for augmentation. Intuitively, the
weight of a container should be proportional to the cardinality
of the total augmentations so that a large augmentation will be
allocated more bandwidth, as opposed to an equally divided
share with the interference; 2) the latency to retrieve a lower
accuracy ϵm is more important than the latency to retrieve an
augmentation to elevate the accuracy to ϵm+1. The reason is
that the low-accuracy data generally contains critical informa-
tion (Fig. 2), and for many interactive data analytics, the data
needs to be processed rapidly to ensure timely actions can
be made; 3) on the other hand, the blkio weight also needs
to be adjusted on a per-application basis. For interactive data
analytics, the weight should be set higher than those offline
data analytics to ensure a faster response time. Therefore, we
further introduce the notation of priority p to provide differen-
tial services to applications. In this work, the weight function
is designed as w(|Aug

L(ϵm)
ϵm |, ϵm, p) = k2 ·

|AugL(ϵm)
ϵm

|·p
|lg(ϵm)| + b2

for NRMSE and w(|Aug
L(ϵm)
ϵm |, ϵm, p) = k2 ·

|AugL(ϵm)
ϵm

|·p
|ϵm| +b2

for PSNR, where k2 and b2 are coefficients. In particular,
coefficient k2 determines how aggressively that data analytics
can request storage bandwidth. In general, k2 and b2 can be
determined as follows. We determine the lowest accuracy, the
highest priority, and the largest cardinality of data that can be
possibly achieved, which corresponds to the scenario of the
maximum weight (e.g., 1000 in Docker container). Similarly,
we determine the highest accuracy, the lowest priority, and the
lowest cardinality, which corresponds to the scenario of the
minimum weight (e.g., 100 in Docker container). Given these
two conditions, we can obtain k2 and b2. In Fig. 5, we illustrate
the relationship between the weight and cardinality, accuracy,
and priority, respectively. The recomposition is the inverse of
decomposition, and therefore the complexity of the algorithm
is O(nlog(n)), too. As such, this paper only focuses on the
performance of recomposition in the performance evaluation.
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IV. EVALUATION

A. Testbed

We use the Chameleon experimental facility [27] at the
University of Chicago and Texas Advanced Computing Center
to evaluate Tango. A physical compute node in our testbed
(shown in Fig. 6) has an Intel Xeon 2.3GHz processor with
10 cores, an Intel 400GB SATA SSD, and a Seagate 2TB 7200
RPM SAS HDD. The file system used for SSD and HDD is
Ext4. Based upon the hardware availability, we build a two-
tier local storage system with the fast tier being SSD and
the slow tier being HDD. Since the algorithms of Tango are
embarrassingly parallel, we obtained most results on a single
node, while for the scalability test, we used 4 compute nodes.

HDD

Node 0

SSD

Node 1 Node 2 Node 3

Interfering 
containers

Fig. 6: Testbed.

The applications were executed through the Docker con-
tainer, with each container hosting one executable (either
data analytics or noise). By default, with each node, we
configure one container to run the data analytics, alongside six
interfering containers (see Table IV) that inject periodic I/O
interference to HDD, mimicking those checkpointing activities
from simulations. Unless otherwise noted, the decimation ratio
used to construct the reduced representation is 16, and the
default blkio weight of each container is 100. The estimation
is performed for every 30 timesteps and the period of data
analytics is 60 seconds. For the DFT-based estimation method,
we extract the noises whose frequency components are higher
than 50 % of the maximum amplitude. For the augmentation-
bandwidth plot, BWlow and BWhigh are set to 30 MB/s
and 120 MB/s, respectively. For the priority parameter in
the weight function, we test three settings, i.e., 1 (low), 5
(medium), and 10 (high), for data analytics to understand the
impact of priority to the I/O performance.

TABLE IV: Noise injected to HDD.
Noise Period Checkpoint Size

Interfering container #1 200 secs 768 MB
Interfering container #2 225 secs 512 MB
Interfering container #3 360 secs 512 MB
Interfering container #4 180 secs 1024 MB
Interfering container #5 150 secs 1024 MB
Interfering container #6 120 secs 1024 MB

We test three applications, XGC, GenASiS, and CFD. For
XGC, we conduct blob detection [36], [37] for the data
produced by the XGC simulation. These blobs represent
physical regions with high electrostatic potentials that are often
of interest to fusion scientists. The data analytics examines
the characteristics of the dpot dataset and measures how
much the electric potential deviates from the background.
The dataset consists of 89,857,269 triangles in the mesh.
GenASiS [38] is a multi-physics code developed for the
simulation of astrophysical systems involving nuclear matter.

The data analytics is a simple 2D rendering of the velocity
magnitude of core-collapse. The mesh consists of 94,806,450
triangles. CFD studies and analyzes the interaction of liquids
with surfaces under certain boundary conditions. This data
analytics examines the pressure near the front of a plane and
its mesh consists of 61,529,058 triangles.

For XGC, we measure the error of the analysis outcome
with regard to the characteristics of the blobs detected, e.g.,
the number of blobs, average blob diameter, etc. For GenASiS,
we perform the 2D rendering of the velocity of core-collapse
and measure the structural similarity index (SSIM) [39] and
Dice’s coefficient [40] between the reduced and original rep-
resentations. For CFD, we measure the error regarding the
total area with a high pressure and the total force on the high-
pressure area.
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Fig. 7: DFT-based interference estimation.

B. Cross-layer vs. Single-layer

Fig. 7 demonstrates the effectiveness of the DFT-based
estimation with six interfering containers, with thresh of 25%,
50%, and 75%, respectively. Herein we use the performance
measured during the first 1800 secs to obtain ˜BW for the
subsequent 1800 secs (1800 - 3600 sec). Overall, the es-
timated bandwidth is highly accurate, despite that the low
amplitude frequency components are discarded. As thresh
becomes larger, more components are discarded, therefore the
estimation deviates more from the real bandwidth. Overall,
the accurate estimation provides the basis for our dynamic
augmentation.
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Fig. 8: Cross-layer vs. single-layer with no error control. For the
single-layer approach with storage adaptivity, we perform a full
augmentation and the blkio weight is set proportionally according to
the augmentation size. For the single-layer approach with application
adaptivity, we perform the dynamic augmentation based upon the es-
timated interference. For comparison, no adaptivity is also measured
where blkio weight is set to 100 with a full augmentation.

We next assess the effectiveness of the cross-layer approach.
In particular, we compare the cross-layer approach with the
single-layer approach where 1) only the blkio weight is
adjusted at the storage layer according to the size of data to
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be retrieved, without performing the dynamic augmentation;
2) only the dynamic augmentation is done at the application
layer without support from the storage layer (i.e., [3], [2]).
For comparison, we also test the baseline where the full
augmentation is always done without weight adjustment, i.e.,
no storage or application layer adaptivity at all. Fig. 8 shows
the average I/O time and variation (measured by the error
bar) of XGC, GenASiS, and CFD when no error control is
enforced. As such, the augmentation retrieved is completely
based upon the estimated storage load. It is clear that the
baseline case, which represents how applications access data
from storage conventionally, is static in nature and therefore
yields the highest I/O time and variation. With either the
storage or application adaptivity introduced to data retrieval,
the overall I/O performance improves. On the other hand, the
application-layer is shown to be more effective in mitigating
the interference than the storage-layer approach. The rationale
behind this is that adjusting the weight at the storage layer is
only effective when the storage bandwidth is under-utilized.
Once the storage system becomes highly loaded, the weight
adjustment only re-distributes the bandwidth among applica-
tions without fundamentally alleviating the I/O congestion.
Overall, the cross-layer approach yields the best performance
by incorporating both application- and storage-layer control.

C. Error-bounded Interference Mitigation

We further evaluate the performance of interference mitiga-
tion with error control. Fig. 9 shows the average retrieval time
with ϵ of 0.01 for NRMSE and 30 for PSNR, respectively.
Intuitively, the error control enforces the minimal amount of
augmentations that must be retrieved, and as a result, the
performance of cross-layer and single-layer with application
adaptivity may degrade as compared to the performance with-
out error control (Fig. 8).

Fig. 10 evaluates the data quality by measuring the relative
error of the analysis outcome at a loose error bound of 0.1 for
NRMSE. Other tighter error bounds (e.g., 0.01 etc.) result in
smaller deviations than the results shown here. We compare
the cross-layer to the single-layer with application adaptivity.
Note that the single-layer with storage adaptivity does not
lose accuracy and therefore is not shown here. The case of
no augmentation represents the scenario where data analytics
does not perform augmentation at all and only retrieves the
base representation from SSD with high bandwidth, thus
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(a) ϵ = 0.01 (NRMSE).
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Fig. 9: Interference mitigation with error control. Note that NRMSE
and PSNR are used here to control the error. The scenarios of
no adaptivity and singe-layer with storage adaptivity retrieve a full
augmentation and therefore do not need to be error-controlled.

serving as the worst possible scenario with regard to the data
quality. By introducing the error control in the cross-layer,
more augmentations may be retrieved by the cross-layer, thus
resulting in a higher data quality than the single-layer.

Fig. 11 further measures the percentage of the degree of
freedom retrieved across error bounds. It is observed that
retrieving less than 30% of data can maintain ϵ of 0.00001 for
NRMSE and 80 for PSNR, which demonstrates the feasibility
of Tango in trading accuracy for performance.

Fig. 12 evaluates the impact of noise intensity by varying
the number of interfering containers over HDDs. It is observed
that the cross-layer is rather insensitive to the increase of
noises, while the mean and variance of the single-layer with
storage adaptivity degrades substantially with the intensity of
interference. As the number of interfering contains increases,
the performance gain of cross-layer versus single-layer be-
comes more pronounced.

D. Weight Adjustment

We next evaluate the impact of weight assignment in blkio
on data analytics. Fig. 13 illustrates the I/O performance of
elevating the accuracy from base accuracy (achieved by R)
to ϵ1 = 0.01 for a high priority (p = 10) data analytics. In
particular, we study the scenarios where the weight assignment
is affected by 1) the cardinality of augmentation only; 2)
both cardinality and priority; and 3) cardinality, priority, and
accuracy. The performance of the single-layer approach is also
shown here as the baseline. The average I/O time measured
here represents the latency for the data analytics to retrieve
a low accuracy augmentation, a metric of high importance
for online data analytics. It is found that as we progressively
incorporate these parameters into the weight function, the
latency is gradually improved due to the higher allocation
of storage resources. Fig. 14 further shows the cross-layer
performance under a range of priorities and error bounds. In
particular, Fig. 14a shows the impact of priority at a fixed ϵ
of 0.01, while Fig. 14b shows the impact of the error bound
with a fixed p of 10. While the overall trends confirm the
effectiveness of our design, we want to point out that a 2X
increase in priority from 5 to 10 does not mean the doubling
of storage resources. For example, assume there are two
containers with equal weights of 100 competing for storage
bandwidth totaling 200 MB/s. When doubling the weight from
100 to 200 for one container, it will only increase its bandwidth
allocation from 100 MB/s to 133 MB/s. Fig. 15 illustrates the
weight assignment for XGC from 1800 to 1950 secs. It can
be seen that as the accuracy increases from 1e-2 to 1e-4, the
weight is gradually lowered mostly due to our design that
favors a low accuracy.

Fig. 16 shows the scaling performance of Tango using weak
scaling. The recomposition operation in Tango can be done
locally without communication. Given the embarrassingly
parallel nature of Tango, the average I/O stays the same when
the number of compute nodes increases from 1 to 4.
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Fig. 10: Data quality evaluated through the data analysis results. Here the priority is 10, and the decimation ratio is 8192. The error bound
ϵ is set to 0.1 (NRMSE).
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V. RELATED WORK

In-memory computing is a new paradigm proposed to
control the I/O overhead of HPC simulations. Based on how
the simulation and data analytics are coupled, there are two
major categories of in-memory computing: in situ [41], [42],
[43], [7] and in transit [44], [45], [46], [47], [48]. For the
former, the compute resource of data analytics is allocated
to the same node where the simulation is. For the latter, the
data will move from the simulation memory to a dedicated
staging area before data analysis, which benefits simulation
by allowing it to run asynchronously with the data analysis.

For large-scale systems, to improve the simplicity, effi-
ciency, and effectiveness of data analysis, new data manage-
ment frameworks, such as ADIOS [10] and Mochi [49], have
been proposed to provide multiple methods that can be easily
integrated into the applications for scientists to use. In the
meantime, to enhance the I/O performance, new methods were
proposed for data placement and organization [50], [9], [51].
However, these prior works were limited to improving either
peak or average I/O performance, ignoring the importance
of consistency of performance. To address the issue of the

XGC CFDGenASiS 
Applications

0

5

10

La
te

nc
y 

(s
ec

s)

Single-layer (app) 
Cross-layer (cardinality)

Cross-layer (cardinality, priority)
Cross-layer (cardinality, priority, accuracy)

Fig. 13: The latency to retrieve the augmentation that elevates the
accuracy to 0.01 (NRMSE). Note that the latency for single-layer
with storage adaptivity is identical to cross-layer with cardinality,
and therefore is not shown.
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Fig. 14: Impact of priority and error bound.

performance on large HPC systems, prior work [52], [19],
[18] balances the I/O requests between busy and idle devices
to mitigate the impact of storage interference. Prior work [53]
further digs into the root cause of the interference in storage
systems. In general, these works mostly focus on middleware-
level solutions, without exploring the application level.

Data reduction is another well-known research area to
manage the exponential growth of data. Data reduction can
be either lossless compression or lossy compression. Lossless
compression, FPC [12], FPZIP [54], GZIP [55], has strong
requirements that the data should be exactly the same as it
was before after compression and decompression. Lossless
compression is always used on accuracy-sensitive scenarios,
such as restart and checkpoint. But it can only reach low
compression ratios, which restricts availability, especially in
the case that the data from simulation can easily grow expo-
nentially. In such circumstances, lossy compression, SZ [13],
ZFP [14], ISABELA [56] can meet our demand by providing
higher compression ratios with low overhead by trading accu-
racy for performance. In this paper, the reduced representations
are generated by data reduction which is one of the forms
of lossy compression by retaining some selected data points.
However we should pay more attention that lossy compression
can lead to information loss, thus this work performs additional
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augmentation to address this issue.

VI. CONCLUSION

This paper aims to address the issue of I/O interference
for data analytics on local ephemeral storage. In particular,
we take advantage of proportional resource control in the
emerging scenarios of containerization, and propose a coordi-
nated cross-layer approach that reacts to storage interference
from both storage and application layers, while maintaining
a prescribed error bound to limit the information loss. We
evaluate three data analytics, XGC, GenASiS, and CFD, and
quantitatively demonstrate that the I/O performance can be
vastly improved as opposed to the single-layer approach, while
maintaining acceptable outcomes of data analysis.
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