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ABSTRACT

Given the complex geometry of white matter streamlines, Au-
toencoders have been proposed as a dimension-reduction tool
to simplify the analysis streamlines in a low-dimensional latent
spaces. However, despite these recent successes, the majority
of encoder architectures only perform dimension reduction
on single streamlines as opposed to a full bundle of stream-
lines. This is a severe limitation of the encoder architecture
that completely disregards the global geometric structure of
streamlines at the expense of individual fibers. Moreover, the
latent space may not be well structured which leads to doubt
into their interpretability. In this paper we propose a novel Dif-
ferentiable Vector Quantized Variational Autoencoder, which
are engineered to ingest entire bundles of streamlines as single
data-point and provides reliable trustworthy encodings that
can then be later used to analyze streamlines in the latent space.
Comparisons with several state of the art Autoencoders demon-
strate superior performance in both encoding and synthesis.

Index Terms— Streamlines, Diffusion Tractography, Dif-
ferentiable, Gumbel Distribution, Vector Quantization

1. INTRODUCTION

Autoencoders (AEs), drawing inspiration from traditional fac-
tor analysis, have been successfully applied in data compres-
sion, segmentation, and representation tasks. However, their
application in encoding high-dimensional structures, partic-
ularly white matter streamlines, has encountered emerging
limitations [1] [2]. While various dimension reduction tech-
niques, such as UMAP and tSNE, have been explored for white
matter streamlines [3], recent advancements in encoder archi-
tectures, notably Variational Autoencoders (VAEs) [4] [5] and
Vector Quantized-VAEs (VQ-VAESs) [6], have shown superior
results in dimension reduction tasks. In light of these develop-
ments, our research focuses on leveraging these architectures
to analyze white matter streamlines, aiming to overcome the
shortcomings associated with traditional AEs.

The application of VAEs and VQ-VAE:s to streamlines is
not without challenges. VAEs, which strive to create mean-
ingful latent encodings, encounter difficulties in optimization
since encodings are required to be Gaussian. This process

involves minimizing the KL-divergence through the Evidence
Lower Bound (ELBO), a task that can result in noisy recon-
structions. VQ-VAE:s, on the other hand, eliminate the need to
optimize the ELBO by using a uniformly distributed codebook
of quantized vectors. The distribution for selecting codebook
vectors is determined via an arg-minimization problem, mak-
ing the KL divergence between codebook and selection distri-
bution constant. Despite this advantage, VQ-VAEs introduce
the issue of non-differentiable selection of codebook vectors,
necessitating a straight-through estimator [6]. This means that
the neural network can’t backpropogate gradients to adjust the
codebook vectors during training.

This has prompted techniques such as using an exponential
moving average (VQ-EMA) to adjust and improve utilization
of the codebook vectors. However, even with these additional
improvements, the reconstruction results can still be noisy.
Other proposals to effectively sample the codebook vectors
(post-trainnig) to provide high quality image reconstructions,
requires swapping the uniform prior on the codebook with a
strong prior discovered by another model like PixelNet [6] or
a Transformer [7]. But we don’t have such luxuries for white
matter streamline analysis given that there are so few architec-
tures trained on streamlines and the datasets are typically too
small to learn powerful auto-regressive models. To address
these issues, we propose a novel Differentiable VQ-VAE (VQ-
Diff) which allows for a fully differentiable approach to the
quantization step in the traditional VQ-VAE. We demonstrate
state of the art results for streamline reconstruction and empir-
ically observe the models robustness to perturbations in the
latent space suggesting that geometrically similar streamlines
are grouped in similar neighborhoods.

1.1. Contributions

This paper makes the following contributions:

* We propose a novel neural network architecture (VQ-Diff)
that improves upon the VQ/VAE models by enabling a
differentiable approach.

* Our model avoids the need for optimizing the KL diver-
gence as is done in traditional VAE based models.

* Our model parallels the reconstructive performance with
AEs, yet yields a robust and reliable latent encodings of



streamlines.

* Our model demonstrates superior reconstruction perfor-
mance compared to the state of the art VAEs, VQ-VAEs,
and VQ-EMA:s.

* We develop and release an open-source PyTorch dataset,
derived from the Tractoinferno [8] dataset, but offering
full latent space encodings based on our model VQ-Diff as
well as other competing state of the art models.

2. METHODOLOGY

Unlike 2D images, a bundle of white matter streamlines is a
collection of curves B = {f; : R — R®|i = 1,...,N}. As
a result, streamline bundles exhibit heterogeneous patterns,
making their representation using codebook vectors challeng-
ing. Our approach involves composing weighted combinations
of codebook vectors {e1,...,er} , allowing for more flex-
ibility in the VQ-models. Typically, a VQ-model assumes
a uniform prior p(x) on the codebook and sets ¢(z) to be
a codebook selection distribution that arises from solving
argmin, ||z — e;||3. This is done in VQ-models because the
KL divergence between p(z) and g(x) will be constant [6]
and therefore these models don’t need to optimize the ELBO
which in turn produces less noisy reconstructions. However

for our VQ-Diff model we let p(z) = \/2;7 exp(f%)
and ¢(z) = %exp(—z — exp(—7%)) be a zero-mean Gaus-

sian and Gumbel distribution respectively. Then we take
the weighted combination of the codebook vectors given by
s; = 2 | wse, as our latent representation, where e; ~ p(z)
and w; ~ q(x). Here, we show for the first time that the KL
divergence between the Gaussian and Gumbel Distribution is
constant: First assume p(z) and g(x) are zero-mean Gaussian
and Gumbel distributions, as described earlier. Then the KL
divergence is computed as follows:
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Similar to the VQ-VAE architecture, this is indeed an ad-
vantage as we do not need to optimize the ELBO. Additionally,

since the Gumbel weighted sum is differentiable we may back-
propogate gradients to update the codebook. Moreover, we
may choose a flat Gumbel distribution to ensure the network
utilizes all the codebook vectors and avoids codebook collapse
[6]. In summary, we improve over the VQ-VAE’s weaknesses
by passing gradients to update the codebook vectors and the
flat Gumbel distribution ensures we utilize all of the codebook
vectors.

2.1. Architecture

The VQ-Diff architecture is comprised of a ResNet encoder
and decoder with the bottleneck being a Gumbel Soft-max
assignment of weights. Our architecture is modeled after the
VQ-VAE, but as mentioned earlier in Sec. 2, the codebook
vectors, e, are initialized with a Gaussian distribution, p(z).
Additionally instead of solving argmin,||z — e;||3 to assign
a codebook vector to the encoded input 2z, we apply Gumbel
Soft-max [9] across all distances ||z — e;]|3 to assign Gumbel
weighted selection of the codebook vectors: s; = Z?:l W;€;.
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Fig. 2.1 Schematic of the VQ-Diff Architecture.

In summary, the encoder takes in a bundle B and assigns
a collection of latent vectors z; to each streamline. Then to
each latent vector the network assigns a gumbel weighted
combination of codebook vectors: z; — s; = Y ., w;e;,
see Fig. 2.1. The goal of the network is to learn a suitable
codebook that captures features of streamlines that comprise
a bundle. We compare this architecture against an AE, VAE,
VQ-VAE and a VQ-EMA all composed of the same ResNet
encoder and decoder. The full model implementation can be
found at https://github.com/drewrl3v/diff-vq-vae.

2.2. Data

We use the open-access dataset, Tractoinferno [8], which con-
sists of 284 datasets acquired from a variety of 3T scanners,
to demonstrate the performance of our model. Here, stream-
line segmentation was performed with multiple techniques,
resulting in 30 bundles per subject. In this paper, we only
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make use of the streamline coordinates as processed in Trac-
toinferno [8]. Since not all bundles comprise the same number
of streamlines, we selected tracts that consistently had over
1000 streamlines which resulted in 12 bundles, namely, the
Middle Cerebellar Peduncle (MCP), Right Frontopontine Tract
(FPT_R), Right Inferior Longitudinal Fasciculus (ILF_R), Left
Inferior Fronto-Occipital Fasciculus (IFOF_L), Left Fronto-
pontine Tract (FPT_L), Left Inferior Longitudinal Fasciculus
(ILF_L), Left Parieto-Occipital Pontine Tract (POPT_L), Right
Inferior Fronto-Occipital Fasciculus (IFOF_R), Right Parieto-
Occipital Pontine Tract (POPT_R), FrontalRostrum of Corpus
Callosum (CC_Fr_1), Left Pyramidal Tract (PYT_L), Right
Pyramidal Tract (PYT_R).

We then sub-divided each bundle per subject into groups
of 64 streamlines and up-sampled the number of points com-
prising a streamline to be 64 points. Thus a single data-point
for our neural network yields a (64, 3, 64) tensor (has a dimen-
sion (number of streamlines X dimension (3) x number of
points). This is done for computational convenience to keep
the bundle size consistent and to allow the network to ingest
256 batches of 64 streamlines during training for a total of
16, 384 streamlines per training iteration. Since some tract
produce more streamlines than others, we down-sample the
number of bundles per tract to ensure there is an equal number
of each bundle per tract. This prevents the network from fa-
voring a particular bundle due to its overrepresentation in the
training set. We then split the dataset into a 90% train set, 10%
validation set. This PyTorch white matter streamline dataset is
now open-access, and publicly available under the Tractoin-
ferno [8] license at https://github.com/drewrl3v/diff-vq-vae.
To the author’s knowledge, this is the first such dataset that
provides not only our full model and its parameters, but also
the encoded streamlines and their latent spaces generated for
state of the art models that have been used on streamlines.

2.3. Training

All models were trained for 15,000 iterations each with a
mean-squared error (MSE) loss function penalizing for low re-
constructive quality of streamlines. Experimentally we found
that a setting a Gumbel temperature of 8 = 10.0 and assum-
ing the codebook prior to be Gaussian with variance o = 2.0
produced the best results for the VQ-Diff model. All models
were ran on an AMD Ryzen Threadripper 3960X 24-Core
Processor @ 3.8 GHz machine with a NVIDIA A6000 GPU
and are released at: https://github.com/drewrl3v/diff-vq-vae.

3. EXPERIMENTAL RESULTS

3.1. Reconstructive Quality

The Bundle analytic (BUAN) score [10] is a state of the art
method for comparing closeness of bundles of streamlines.
We used a very low threshold tolerance of 0.05 for the bun-
dle analytic score which makes the metric highly sensitive

Table 1. BUAN Scores Across Architectures

Bundle Name  VQ-Diff (Ours) AE VAE VQ-VAE VQ-EMA
PYT R 0.9988 +0.0038  0.9999 4 0.0003  0.4989 £ 0.1923  0.7154 £ 0.1227  0.6849 £ 0.126696
PYTL 0.9988 4 0.0039  0.9999 + 0.0007  0.4764 £ 0.2045  0.7045 4+ 0.1179  0.6778 £ 0.119968

POPT R 0.9990 4 0.0034  0.9999 + 0.0008  0.4649 £ 0.2166  0.6867 £0.1494  0.6562 £ 0.150048

POPT_L 0.9989 4+ 0.0037  0.9999 +0.0009  0.4815 £ 0.2145  0.6869 + 0.1397  0.6508 + 0.144388
ILF R 0.9910 +0.0114  0.9999 + 0.0008  0.2726 £ 0.2019  0.3409 £ 0.1631  0.2836 £ 0.159151
ILF_L 0.9910 +0.0112  0.9999 + 0.0007  0.2399 +0.2018  0.3228 £0.1561  0.2408 + 0.149510

IFOF R 0.9888 +0.0133  0.9988 +0.0012  0.2808 £ 0.2366  0.3437 £0.1970  0.2793 £ 0.188292
IFOF L 0.9855 4+ 0.0164  0.9975 +0.0016  0.2340 £ 0.2130  0.3143 £0.1773 2296 + 0.162993
FPTR 0.9976 4 0.0058  0.9999 # 0.0008  0.2832 +0.2102  0.5063 £ 0.1795 357 £ 0.188509

FPT_L 0.9971+£0.0074  0.9999 = 0.0006 0.2689 = 0.2261  0.4983 £ 0.2025  0.4335 = 0.209599

CCFr.1 0.9974 £ 0.0110  0.9999 4 0.0004  0.3750 £ 0.2033  0.3380 £ 0.1742  0.2458 + 0.153786

MCP 0.9986 + 0.0043  0.9999 £ 0.0008  0.3593 £ 0.2528  0.4989 £ 0.2298  0.3740 + 0.232267
Original VAE VQ-VAE

VQ-EMA AE VQ-Diff (ours)
4 - . Qe

Fig. 3.1 Full subject reconstructions across architectures.

to minor differences among the bundles. After training we
compared the BUAN scores across all the model architectures
and bundles. A BUAN score closer to 1.0 signifies perfect
reconstruction. Table 3.1 is a record of the average BUAN
score across all bundles in the validation set along with the
first standard deviation in the BUAN score. As we can see, the
VQ-Diff is on par with AE in terms of reconstructive quality,
while VAE does not fare so well since the ELBO enforcing a
Gaussian latent space is difficult to learn. As suggested in Sec.
2, the VQ architectures, despite performing well in classical
image reconstruction tasks perform poorly on streamline data.

This is because image intensities have a neighborhood
structure and may be assumed to be piecewise continuous
with more relaxed geometric constraints, while bundles of
streamlines are composed of several individual fibers and have
intrinsically complicated geometry[1].

3.2. Visualizing the Latent Space

We visualize the latent spaces for each model by approximating
the topology of the space by performing a tSNE [11] projection
of the latent vectors, z;. We see in Fig. 3.2 that the VQ-Diff is
able to cluster respective bundle latent vectors and keep them
roughly separated from other clusters. The VAE attempts to
encode all latent vectors as Gaussian, which makes it difficult
for the model to separate out categories, so we see a greater
mixture of the latent vectors. The VQ-EMA is able to cluster
the latent vectors but the clusters are more sparse. The AE on
the other hand manages to cluster some of the latent vectors,
but also mixes many of them in the center of the AE plot
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Fig. 3.2 Visualization of the latent space.

(Fig. 3.2). It is noted that tSNE doesn’t necessarily represent
distances in the projected representation in Fig. 3.2. To better
understand the geometry, we instead isolate a latent vector
and perturb it with noise. If the topology of the latent space
is well regularized, then similar bundles should be mapped
to a similar neighborhood. This means that reconstructions
coming from a perturbed latent vector shouldn’t drastically
differ from the reconstruction coming from the original latent
vector. The VQ-Diff plot in Fig. 3.2, which is tightly clustered
for bundles of the same type, but is able to achieve a separation
across different bundle types, suggests that it is robust to such
perturbations. We perform an experiment to test this tolerance
to perturbations in Sec. 3.3.

3.3. Perturbation Analysis and Synthesis

The reconstructive results of the VQ-Diff and AE are very
promising. Given the strong reconstructive results for AE,
Zhong et al. [1] and Legarreta et al. [12, 13] have suggested
that the latent space can be used to perform statistical anal-
ysis of streamlines. To explore the feasibility of these ideas,
we perform perturbation analysis of the underlying encoded
latent vectors z;. We choose the MCP bundle for demonstra-
tion purposes as it displays wide geometric variation in the
population.

Across all models we map the same MCP bundle for the
same subject to their corresponding latent vector represen-
tations z;, then we perturb the vector by a small quantity:
zj = zj + €. We then pass z; + ¢ through each bottle neck
layer for each architecture and reconstruct the bundle for each
model architecture. As we see in Fig. 3.3, given a selected
latent vector for the MCP streamline bundle, the AE performs
poorly when the latent vectors are perturbed by small noise,
€ = 0.5, while the VAE model performs better than AE as ex-
pected. The VQ-VAE and VQ-EMA models behave better for
extremely small perturbations at the mean, but quickly degrade

Fig.
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in quality with increasing . The VQ-Diff model demonstrates
superior tolerant to such perturbations across all models. This
suggests that the geometry of the latent space for the VQ-Diff
groups similar streamlines in the same neighborhood and in
turn is a very robust latent representation that can be used for
more reliable distance analysis.

4. DISCUSSION AND CONCLUSION

In this work we provide the following: A new open source
PyTorch dataset derived from the Tractoinferno dataset, a
novel Neural Network Architecture that has the state of the art
reconstructive performance of an AE, while also ensuring more
robust latent representations. We demonstrate that the common
assumption that the latent space of streamlines preserves local
features does not hold for AEs. To the author’s knowledge
this is the first study to analyze more recent AE architectures
for streamline analysis. We also observed that, while the
reconstructive performance of the VAE is not on par with the
AE or VQ-Diff, the Gaussian regularization on its latent space
ensures that similar streamlines are within a neighborhood of
the selected latent vector for MCP.

Overall, the VQ-Diff stands out as a highly robust archi-
tecture, having the potential to be trained across diverse MR
image modalities. This flexibility underlines its potentially
substantial impact in the field of medical imaging. In con-
trast, while the VQ-VAE and VQ-EMA exhibit limitations
in effectively capturing the variability of streamlines in their
codebooks, leading to lower reconstructive quality, they do
offer a slightly more robust approach in terms of latent rep-
resentations compared to the AE. This distinction highlights
the unique strengths and weaknesses of these architectures,
underscoring the VQ-Diff’s strengths as a particularly valuable
tool in medical imaging applications.

.3 Latent perturbations around the mean for the MCP bundle.
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