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Abstract
Knowledge distillation aims at reducing model size without
compromising much performance. Recent work has applied
it to large vision-language (VL) Transformers, and has shown
that attention maps in the multi-head attention modules of
vision-language Transformers contain extensive intra-modal
and cross-modal co-reference relations to be distilled. The
standard approach is to apply a one-to-one attention map dis-
tillation loss, i.e. the Teacher’s first attention head instructs
the Student’s first head, the second teaches the second, and
so forth, but this only works when the numbers of attention
heads in the Teacher and Student are the same. To remove this
constraint, we propose a new Attention Map Alignment Dis-
tillation (AMAD) method for Transformers with multi-head
attention, which works for a Teacher and a Student with dif-
ferent numbers of attention heads. Specifically, we soft-align
different heads in Teacher and Student attention maps using
a cosine similarity weighting. The Teacher head contributes
more to the Student heads for which it has a higher similar-
ity weight. Each Teacher head contributes to all the Student
heads by minimizing the divergence between the attention
activation distributions for the soft-aligned heads. No head
is left behind. This distillation approach operates like cross-
attention. We experiment on distilling VL-T5 and BLIP, and
apply AMAD loss on their T5, BERT, and ViT sub-modules.
We show, under vision-language setting, that AMAD outper-
forms conventional distillation methods on VQA-2.0, COCO
captioning, and Multi30K translation datasets. We further
show that even without VL pre-training, the distilled VL-
T5 models outperform corresponding VL pre-trained VL-T5
models that are further fine-tuned by ground-truth signals,
and that fine-tuning distillation can also compensate to some
degree for the absence of VL pre-training for BLIP models.

Introduction
Recently, large pre-trained Transformers-based (Vaswani
et al. 2017) models, such as BERT (Devlin et al. 2019),
T5 (Raffel et al. 2020), and GPT (Radford et al. 2018),
have shown great capabilities for language modeling. Re-
searchers have further extended these language Transform-
ers to multi-modal Transformers for visual-linguistic tasks,
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e.g. VL-BERT (Su et al. 2019), VL-T5 (Cho et al. 2021),
Oscar (Li et al. 2020b), BLIP (Li et al. 2022b, 2023), OFA
(Wang et al. 2022a), Flamingo (Alayrac et al. 2022), Flo-
rence (Yuan et al. 2021), PALI (Chen et al. 2022c). These
large vision-language (VL) models exhibit promising per-
formances on a variety of visual-linguistic tasks, including
visual question answering (VQA), image captioning, visual
grounding and image-text matching. Increasing model size
(BERT-L (340M), OFA (930M), T5 (11B), GPT-3 (175B)
(Brown et al. 2020)) leads to better performance, but also in-
creases memory consumption during deployment and leads
to large increases in inference latency.

To alleviate this problem, researchers (Jiao et al. 2020;
Sun et al. 2020; Wang et al. 2020b; Fang et al. 2021; Sanh
et al. 2019) have applied knowledge distillation (KD) (Hin-
ton, Vinyals, and Dean 2015) approaches to large Trans-
formers, aiming at compressing these large models into
smaller ones without compromising much performance. In
general, KD involves a large trained and frozen Teacher net-
work, and a small Student network to be trained. The goal
is to distill the knowledge from the larger Teacher into the
smaller Student to bridge the performance gap between the
two caused by difference of model sizes. In the distillation
process, the Student learns to mimic the soft response and
the latent representation of the Teacher. Specifically, this
may involve minimizing the divergence between the Stu-
dent’s and the Teacher’s output classification logits, and the
divergence between their intermediate representations.

In case of distilling Transformers, their attention maps
are often important and contain intermediate representations
to be transferred. (Cao et al. 2020) show that certain atten-
tion matrices of the pre-trained vision-language Transform-
ers contain extensive intra- and cross-modal co-reference
relations. (Fang et al. 2021) further show that minimizing
the divergence between these attention maps of Teacher and
Student can boost distillation performance.

However, conventional attention map distillation methods
for multi-head attention modules, either for language (Jiao
et al. 2020; Sun et al. 2020; Wang et al. 2020b; Sanh et al.
2019) or VL (Fang et al. 2021) Transformers, directly mini-
mize the divergence between the attention maps of Teacher
and Student for each of their heads in a one-to-one fashion,
i.e. the Teacher’s first attention head instructs the Student’s
first head, the second teaches the second, and so forth, as in
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the right side of Figure 1. Hence, these methods can only be
applied where the Teacher and Student have an equal num-
ber of heads, and do not generalize to the more common
case where the large Transformer and the small Transformer
have different numbers of attention heads; Otherwise if the
Teacher has more heads, its extra heads have to be discarded
in the distilling process.

This motivates the design of our approach, Attention
Map Alignment Distillation (AMAD), to remove the same-
number-of-heads restriction. In brief, AMAD soft aligns dif-
ferent heads in the Teacher and Student attention maps using
cosine similarity. Each Teacher head teaches all the Student
heads with the contribution being more for the Student heads
with which it has higher weights (higher cosine similarities).
The Teacher teaches the Student heads by minimizing the
divergence between the attention activation distributions for
the soft-aligned heads. We may view AMAD as operating
like a cross-attention itself.

One intuition behind is that, unlike embeddings for which
each vision/language token shares the same order for both
Teacher and Student, attention heads do not have a seman-
tic order. (Cao et al. 2020) found that different subsets of
attention heads in VL Transformers may encode different
co-reference knowledge, e.g. a subset of heads may evolve
to pivot on cross-modal interaction between image and text
regimes. Therefore, even in the case when Teacher and Stu-
dent have the same number of attention heads, we still can-
not assume that the Teacher’s and the Student’s heads are
aligned semantically without reordering. Conventional at-
tention map distillation methods force Student heads to have
exactly the same order as Teacher’s, while AMAD allows
similarity alignment based distillation free of head order:
each Teacher teaches all the Students, the contribution be-
ing proportional to the similarity weight between them.

We conduct experiments on distilling VL-T5 (Cho et al.
2021) base to small, and on distilling BLIP (Li et al. 2022b)
large to base. AMAD loss is applied on all their Transformer
sub-modules, including T5-Encoder + Decoder (Raffel et al.
2020) for VL-T5, and Vision Transformer (ViT) (Dosovit-
skiy et al. 2021) + BERT (Devlin et al. 2019) for BLIP. We
evaluate on VQA-2.0 (Goyal et al. 2019), COCO Caption-
ing (Chen et al. 2015), and Multi30K (Elliott et al. 2016)
datasets. We show that AMAD boosts performance.

Our contributions include:

• We propose Attention Map Alignment Distillation
(AMAD) to distill attention maps from a Teacher Trans-
former to a Student Transformer with different num-
bers of attention heads. AMAD uses a soft-alignment ap-
proach so that each Teacher head teaches all the Student
heads but in proportion to how similar the Student is to
the Teacher. We show, under vision-language setting, that
AMAD narrows the performance gap between the large
Teacher and the small Student. With AMAD, researchers
are set free from the same-number-of-heads restriction
and have more choices over Transformers for distillation.

• We show that even without VL pre-training, distilled VL-
T5 models outperform VL pre-trained VL-T5 models of
the same size further fine-tuned with ground-truth data.

• We conduct extensive experiments on distilling VL mod-
els, which contributes to this relatively under-explored
field in the current literature.

Related Work
Vision-Language Pre-training (VLP). Recently, large pre-
trained Transformers (Liu et al. 2019; Lan et al. 2020; Clark
et al. 2020; Yang et al. 2019; Ho et al. 2022; Li et al. 2022a;
Appalaraju et al. 2021) have started to show improved ca-
pability in a variety of language modeling tasks (Zellers
et al. 2018; Wang et al. 2018; Williams, Nangia, and Bow-
man 2017). Researchers have further extended these models
to large image-text and video-text pre-training multi-modal
models (Lu et al. 2019; Chen et al. 2020; Zhou et al. 2020;
Li et al. 2020a; Cho et al. 2020; Zhang et al. 2021; Sun
et al. 2019; Zhu and Yang 2020; Miech et al. 2020; Rad-
ford et al. 2021; Appalaraju et al. 2024) for visual-linguistic
tasks (Goyal et al. 2019; Hudson and Manning 2019; Lei
et al. 2018; Mao et al. 2016; Xu et al. 2016; Zhou, Xu, and
Corso 2018). These pre-trained models outperform previous
approaches (Yu et al. 2018; Yu, Kim, and Kim 2018; Kim,
Jun, and Zhang 2018; Anderson et al. 2018; Liu et al. 2020).
As their models sizes grow rapidly, recent works have also
explored parameter-efficient learning and model compres-
sion methods, including adapters (Sung, Cho, and Bansal
2022; Houlsby et al. 2019; Rebuffi, Bilen, and Vedaldi 2018,
2017), prompt tuning (Gu et al. 2021b; Lester, Al-Rfou, and
Constant 2021; Li and Liang 2021).
Knowledge Distillation. Knowledge distillation (KD) (Hin-
ton, Vinyals, and Dean 2015) transfers knowledge from a
stronger Teacher network (T ) to a Student network (S) by
minimizing the divergence of their soft response and in-
termediate features (Gou et al. 2021). Compared with re-
cent approaches to distillation in vision (Zagoruyko and Ko-
modakis 2017; Peng et al. 2019; Tung and Mori 2019; Yang
et al. 2022; Chen et al. 2022b; Wu et al. 2022b; Andonian,
Chen, and Hamid 2022; He et al. 2022; Wu et al. 2022a) or
language tasks (Wang et al. 2020b; Li et al. 2022c; Wang
et al. 2021; Ding et al. 2023), distilling VL models is a rel-
atively under-explored field, as pointed out by the review
paper of (Chen et al. 2022a). (Fang et al. 2021) claim to be
the first to distill vision-language Transformers, and MAD
(Wang et al. 2022b) claims to be the first to use multi-modal
distillation for VL models. These two papers both focus on
distilling Encoder-only VL Transformers. (Gu et al. 2021a;
Ma et al. 2022) also involve distilling knowledge from vi-
sual and linguistic domains, but their architectures are based
upon Mask RCNN (He et al. 2017) and ResNet (He et al.
2016), and apply to the visual task of object detection.

Specifically, for distilling large Transformers to smaller
ones, recent work in language distillation (Jiao et al. 2020;
Sun et al. 2020; Wang et al. 2020b; Sanh et al. 2019), vi-
sion distillation (Qu et al. 2022), and VL distillation (Fang
et al. 2021) all show that applying attention map distilla-
tion to transfer the rich co-reference relations to Student can
boost performance. These approaches apply attention map
distillation either on all attention layers or only on the last
self/cross-attention layer and the last cross-attention layer.
Specifically, for a given multi-head attention layer, most of
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these approaches (Fang et al. 2021; Jiao et al. 2020; Sun
et al. 2020; Wang et al. 2020b; Sanh et al. 2019) minimize
the sum of divergence between the attention matrices of each
head of Teacher and Student. However, this formulation only
applies when the Teacher and Student have the same num-
ber of attention heads. (Qu et al. 2022) minimizes the diver-
gence between the mean attention matrices of all the heads
of Teacher and Student. However, as pointed out by (Cao
et al. 2020), different attention heads encode different co-
reference knowledge, hence applying mean reduction may
result in knowledge loss.

Different from most approaches for distilling intermediate
features in a one-to-one fashion, (Lin et al. 2022) propose a
one-to-all spatial matching strategy for distilling Convnets
feature maps, allowing each pixel of the Teacher feature to
be distilled to all spatial locations in the Student by simi-
larity mapping; (Ji, Heo, and Park 2021) propose to learn
to match Teacher and Student features maps in different
ResNet layers. Our design is also inspired by these works.

Attention Map Alignment Distillation
In this section, we introduce our proposed Attention Map
Alignment Distillation (AMAD) method. We use plain
lower case letters x for scalars, bold lower case letters x for
vectors, and bold upper case letters X for matrices.

In a multi-head attention layer of Transformer (Vaswani
et al. 2017), each entry of the attention matrix for a head is
a dot-product of query and key vectors followed by softmax
normalization (Bahdanau, Cho, and Bengio 2014). In matrix
form, for each head h, if we denote the number of query
vectors as q, the number of key vectors as k, and the attention
matrix as Ah ∈ Rq×k, then we have

Ah = softmax(QhK
T
h /

√
dk) (1)

where Qh and Kh are the query and key matrices of head h,
and dk is the dimension of the key as a scaling factor.

For each training data sample (not batched), the attention
maps of all heads for a given H-head multi-head attention
layer form a tensor of [A1,A2, ...,AH ] ∈ RH×q×k. AMAD
aims at distilling the attention maps of the Ht heads in the
Teacher to those of the Hs ≤ Ht heads in Student.

For representational simplicity, let n = q · k, and ti ∈ Rn

denote the column vector representing the flattened attention
map Ai ∈ Rq×k of Teacher head i. Let sj ∈ Rn denote
the column vector representing the flattened attention map
Aj ∈ Rq×k of Student head j.

For a given Teacher head ti, compute its cosine similarity
wij with each Student head sj as in Equation 2:

wij = ti · sj/(∥ti∥2 · ∥sj∥2) (2)

aij =
exp(wij)∑Hs

m=1 exp(wim)
(3)

Then as in Equation 3 above, for the given Teacher head,
compute its distilling contribution aij to each of the Student
heads j ∈ {1, 2, · · · , Hs} by applying softmax non-linearity
on the similarity weights wij :

Teacher Attention Maps Student

Head 1: s1

Head 2: s2

Head 1Head 1

Head 2 Head 2

Head 3

AMAD Conventional

a11=0.1

a12=0.9
a21=0.2

a31=0.9

a22=0.8
a32=0.1

Teacher Student

Head 1: t1

Head 2: t2

Head 3: t3

Figure 1: An illustration of AMAD in a toy case, corre-
sponding to Equation 7, where the Teacher has Ht = 3
heads (t1, t2, t3) and Student has Hs = 2 heads (s1, s2),
all with self attention maps of dimension n = q×k = 3×3.
Different matrix entry colors denote different attention val-
ues. On the left, AMAD uses soft-alignment: each Teacher
head attention map teaches all the Student heads but in pro-
portion to how close the Student head is to the Teacher head.
As in the coloring of the matrices, Teacher heads 1 and 2 are
similar to each other, and are relatively similar to Student
head 2; While Teacher head 3 is similar to Student head 1. In
this case, with AMAD, Teacher heads 1 and 2 instruct Stu-
dent head 2 more (larger a12, a22 and wider arrows above)
and instruct Student head 1 less (smaller a11, a21 and nar-
rower arrows above), and Teacher head 3 mainly instructs
Student head 1. Also note that the knowledge in the two
similar Teacher heads t1 and t2 can be compressed mostly
to a single Student head s2. While on the right, conventional
attention map distillation method does not apply when the
numbers of heads are different between Teacher and Stu-
dent: Teacher head 3 has to be discarded in distilling.

Next, we minimize the mean squared error between the
given normalized Teacher head attention map ti and the
weighted sum of soft-aligned Student head attention maps.

For each Attention head i of the Teacher,

LAMADi
=

∥∥∥∥∥∥ ti
∥ti∥2

−
Hs∑
j=1

aij ·
sj

∥sj∥2

∥∥∥∥∥∥
2

2

(4)

The total loss LAMAD is the summation of LAMADi
over

all the heads of the Teachers,

LAMAD =

Ht∑
i=1

LAMADi
(5)

Now we rewrite the above formulas using a matrix formu-
lation to parallel computations. For each training data sam-
ple (not batched), recall that n = q·k, let matrix T ∈ RHt×n

represent the Teacher attention maps of all its heads, whose
each row vector is the normalized flattened attention map
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tTi /∥ti∥2 of the i-th head. Similarly, let matrix S ∈ RHs×n

represent the normalized Student attention maps of all its
heads. We have (detailed derivation in Appendix),

LAMAD = ∥T− softmaxdim=row(TST )S∥22 (6)

where the softmax function applies to each row. The pair-
wise similarity weight matrix TST before and after softmax
are both of dimension RHt×Hs . Computation with respect
to the i-th row of the matrix formulation corresponds to the
operations regarding the i-th Teacher head as in Equation 4.

For instance, in the case as in Figure 1, we have,

softmax(TST ) = (aij)Ht×Hs =

0.1 0.9
0.2 0.8
0.9 0.1

 (7)

The above formulas focus on each training data sample
(not batched); For implementation, we use batched tensor
computations via PyTorch, and we L2-normalize each row
of the weighted sum softmax(TST )S before calculating the
mean squared error. Code is provided in the Appendix.

In contrast to previous attention map distillation methods
directly minimizing ∥T−S∥22 or KL(T∥S), requiring T and
S of the same shape (Fang et al. 2021; Jiao et al. 2020; Sun
et al. 2020; Wang et al. 2020b), AMAD removes the limita-
tion of requiring Teacher and Student to have the same num-
ber of attention heads, by letting each Teacher head teaches
all the Student heads with the contribution being more for
the Student heads with which it has a higher weight (higher
cosine similarity), and supports flexible and smooth distilla-
tion because of the soft semantic alignment mechanism.

Formulation Variants
We refer to the above formulation as Variant 1 and the cor-
responding loss as LAMAD-1, and we also explore the follow-
ing ablative baselines and variants:
Baseline: One-to-one Distillation. In this baseline, follow-
ing (Fang et al. 2021; Jiao et al. 2020; Sun et al. 2020; Wang
et al. 2020b), we distill the attention maps in a one-to-one
fashion. Note that different from previous work, we have
more heads in the Teacher than in Student, Ht ≥ Hs, so
we distill the first Hs heads in Teacher to the Hs heads in
Student, respectively, the extra Ht − Hs Teacher heads are
ignored during distillation, as in the right part of Figure 1:

LKD-ATT = ∥S−T[: Hs, :]∥22 (8)
Variant 2: KL Divergence. In this variant, we minimize
the sum of Kullback–Leibler divergence between the aligned
weighted sum of Student multi-head attention map distribu-
tions and the Teacher distributions:

LAMAD-2 = KL(T∥softmax(TST )S) (9)

where the Teacher T and the Student S are all L1-
normalized by each row in all KL variants, instead of L2-
normalized. Both input and target contain q·Ht distributions,
and KL(·) is computed for each of these q ·Ht distributions
and then summed up.
Variants 3: Parameterized Projection. We borrow the idea
from attention mechanisms to apply a learnable linear pro-
jection W on each flattened vector of attention map sj of

Student head j before computing similarity and alignment:
Wsj + b. In matrix form:

S̃ = ReLU(SWT + b) (10)

LAMAD-3 = KL(T∥softmax(TS̃T )S̃) (11)
where W ∈ Rn×n is a learnable matrix and b is the bias.
Variant 4: Token-level Alignment. Here, we adopt a finer
token-level granularity of aligning correspondence and al-
low independence for the soft alignment weights wij for dif-
ferent query attention vectors in Teacher / Student heads.

Formally, denote Tl ∈ RHt×k as the matrix whose h-th
row vector is the l-th row vector tTh,l ∈ Rk in the Teacher’s
h-th head attention map Ah, and Sl ∈ RHs×k as the matrix
whose each h-th row vector is sTh,l ∈ Rk. We have:

LAMAD-4 =

q∑
l=1

KL(Tl∥softmax(TlS
T
l )Sl) (12)

where KL(·) is computed for each of the Ht distributions
and then summed up. In this variant, the weight matrices
softmax(TlS

T
l ) are different for each l-th query attention

vector, in contrast to the unified same weight matrix of
softmax(TST ) for all the queries in previous variants.

We report ablation results for each variant in Table 8.
More theoretical analysis is in Appendix.

Experimental Setup
We distill VL-T5 base to small; and distill BLIP large to
base. Table 1 summarizes their architectural backbones. Vi-
sualized architecture and distilling pipeline are in Appendix.

Knowledge Distillation (KD)
For training efficiency, we only apply distillation in down-
stream fine-tuning, no distillation involved in pre-training.

As in previous work (Hinton, Vinyals, and Dean 2015;
Fang et al. 2021; Jiao et al. 2020; Sanh et al. 2019), we apply
classification distillation loss on the classifier output logits.
For VQA with a single classifier head,

LKD = CE(zS/τd, zT /τd) (13)
where τd denotes the distillation temperature (Hinton,
Vinyals, and Dean 2015), which we simply use 1, as in
(Fang et al. 2021). zS and zT refer to the logits from Stu-
dent and Teacher classifier. CE denotes Cross Entropy, i.e.
pi =

exp(zi/τd)∑
k exp(zk/τd)

and LKD =
∑

i p
T
i · log(pSi ).

For auto-regressive captioning and translation tasks, the
Teacher and the Student both take ground-truth answer to-
ken sequence as input in Teacher Forcing style to maintain
consistency for distillation (Beyer et al. 2022),

LKD =

|y|∑
j=1

CE(zSj /τd, z
T
j /τd) (14)

where zSj and zTj denote logits for the j-th output token from
Student and Teacher classifier, and |y| denotes length of seq.
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VL #Learnable Vision Stream Language (Multi-modal) Stream
Model Params Backbone #Layers dmodel #Heads Backbone #Layers dmodel #Heads

Teacher VL-T5 base 220M Faster R-CNN - - - T5 12+12 768 12
Student VL-T5 small 60M (frozen) - - - w/ LAMAD 6 + 6 512 8

Teacher BLIP large 446M ViT 24 1024 16 BERT 12 768 12
Student BLIP base 210M w/ LAMAD 12 768 12 w/ LAMAD 12 768 12

Table 1: Model architectures with details of their Transformer sub-modules. We distill VL-T5 base to small; and distill BLIP
large to base. AMAD loss is applied on all Transformer modules, including T5-Encoder + Decoder for VL-T5, and ViT +
BERT for BLIP. Conventional one-to-one attention map distillation does not apply to some of these modules when Teacher and
Student have different numbers of attention heads; AMAD removes the same-number-of-heads constraint and works here.

The overall training objective for the Student LTOTAL is a
weighted sum of the classification distillation loss LKD and
the proposed loss LAMAD,

LTOTAL = LKD + αLAMAD (15)
We apply LAMAD to distill the self/cross-attention maps of

the last (Wang et al. 2020b; Fang et al. 2021) layers of each
stream. α is tuned so that LKD and LAMAD scale similarly.
We do not add ground-truth loss (Beyer et al. 2022).

Pre-training and Fine-tuning
As VL-T5 small is not released, we pretrain it by ourselves,
adopting the same setting as how they pretrain base. After
uni-modal pretraining its T5 and Faster R-CNN (Ren et al.
2015) sub-modules, it is then VL pretrained on MS COCO
(Lin et al. 2014; Chen et al. 2015), Visual Genome (Krishna
et al. 2016), VQA-2.0 (Goyal et al. 2019), GQA (Hudson
and Manning 2019), and Visual7W (Zhu et al. 2016). For
VL-T5 base and BLIP, we directly use their released pre-
trained checkpoints.

After VL pre-training the Teacher and the Student, we
finetune the Teacher on downtream tasks, adopting the same
settings as in VL-T5 or BLIP. The Teacher model is then
frozen and ready to be distilled. We then distill the Teacher
to the Student with LTOTAL on downstream tasks.

In some of our ablative settings, we do not conduct any
VL pre-training for Student: After loading the language-only
pre-trained language / multi-modal branch checkpoint and
the vision-only pre-trained vision branch checkpoint, we di-
rectly finetune the Student on downstream VL tasks with
distillation; Teacher is always pre-trained and finetuned.

Downstream Fine-tuning Datasets
We demonstrate visual question-answering performance on
VQA-2.0 dataset. We report results on Karpathy test, test-
std and test-dev via: https://visualqa.org/challenge.html.

We evaluate image captioning performance on MS COCO
dataset (Chen et al. 2015). As in (Cho et al. 2021; Fang et al.
2021; Li et al. 2022b), we use the Karparthy split (Karpa-
thy and Fei-Fei 2015), which re-splits train2014 and val2014
images (Lin et al. 2014) into ∼11K / 5K / 5K for train / vali-
dation / test. We report BLEU@4 (B) (Papineni et al. 2002),
CIDEr (C) (Vedantam, Zitnick, and Parikh 2015), METEOR
(M) (Banerjee and Lavie 2005), SPICE (S) (Anderson et al.
2016) evaluation metrics.

We also evaluate multi-modal machine translation perfor-
mance on Multi30K dataset (Elliott et al. 2016), where mod-
els translate English text to German given context images.
We report BLEU@4 score using SacreBLEU (Post 2018).

We report our implementation details in Appendix.

Results and Analysis
Table 2 shows results on distilling VL-T5 and BLIP with
AMAD, in comparison to recent vision-language models.
The higher the better for all metrics. As in previous work
(Fang et al. 2021; Cho et al. 2021), captioning performance
are shown with their cross entropy optimization variants in-
stead of CIDEr optimization variants. Figure 2 visualizes the
effect of model size and number of VL pre-training images
to VQA performance for recent models. Overall, Table 2 and
Figure 2 support the following arguments:
1. Reducing VL model size within same family of mod-
els causes performance drops: If all trained with ground-
truth supervision without distillation, VL-T5 small performs

Figure 2: VL model performance with respect to # learnable
params (X-axis) and # VL pre-training images (marker size).
AMAD pushes VL-T5 towards upper-left (orange to red).
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# Learnable # VLP Distilled From VQA-2.0 Acc ↑ COCO Captioning
Method Parameters Images Which Model Karpathy test-std test-dev B ↑ C ↑ M ↑ S ↑

CNN-LSTM-based Models

1 Up-Down * - 108K ✗ - 70.34 36.2 113.5 27.0 20.3
2 GLIED * 18.3M - self distillation - - - 37.9 118.2 28.3 21.2

Encoder-Only Transformers

3 ViLBERT * 220M 3M ✗ - 70.92 70.55 - - - -
4 UNITER base * 220M 4M ✗ - 72.91 72.70 - - - -
5 Unified VLP * 112M 3M ✗ - 70.7 - 36.5 116.9 28.4 21.2
6 OSCAR base * 112M 4M ✗ - 73.44 73.16 36.5 123.7 30.3 23.1
7 MiniVLM * 35M 7M ✗ - - - 34.3 116.7 28.1 21.3
8 MiniVLM * 35M 14M ✗ - 69.4 69.1 35.6 119.8 28.6 21.6
9 DistillVLM * 35M 7M Oscar base - 69.8 69.6 35.6 120.8 28.7 22.1
10 MAD-ViLBERT * 220M - CLIP-V+T - 72.22 - - - - -
11 MAD-UNITER * 220M - CLIP-V+T - 74.02 - - - - -

Encoder-Decoder Transformers

12 OFA huge * 930M 15M ✗ - 82.0 82.0 43.9 145.3 31.8 24.8

13 VL-T5 base * 220M 180K ✗ 67.9 70.30 - 34.5 116.5 28.7 21.9
14 VL-T5 small † 63M 180K ✗ 66.72 69.28 69.04 32.8 108.2 27.0 20.4
15 Ours VL-T5 small 63M 180K VL-T5 base † 68.06 70.47 70.41 33.9 114.4 28.3 21.5
16 VL-T5 base * 220M 0 ✗ - - - 32.6 109.4 28.2 21.0
17 VL-T5 small † 63M 0 ✗ 56.44 - 58.47 30.8 101.4 26.3 19.5
18 Ours VL-T5 small 63M 0 VL-T5 base † 67.79 70.25 70.06 33.3 112.9 28.0 21.3

Mixture of Encoder / Decoder Transformers

19 BLIP large * 446M 129M ✗ - - - 40.4 136.7 - -
20 BLIP base * 210M 129M ✗ - 78.32 78.25 39.7 133.3 - -
21 Ours BLIP base 210M 129M BLIP large * - - - 40.0 134.1 31.0 23.9
22 BLIP base * 210M 14M ✗ - 77.62 77.54 38.6 129.7 - -
23 BLIP base † 210M 0 ✗ - - - 34.7 115.8 28.5 21.5
24 Ours BLIP base 210M 0 BLIP large * - - - 38.7 129.6 30.4 23.3

Table 2: Results on distilling VL-T5 and BLIP with AMAD, with comparisons to recent VL models. Results with * are reported
from their papers; with † are trained by ourselves; also in following tables. AMAD narrows the performance gaps caused by
reducing model size or removing VL pre-training (VLP). Furthermore, to our surprise, the finetuning distilled VL-T5 small
w/o VL pretraining (row 18) even outperforms VL pre-trained and GT fine-tuned VL-T5 small (row 14). Also, for BLIP, fine-
tuning distillation (row 24) compensates for 14M-scale VL pre-traning (row 22), but cannot fully compensate for 129M-scale
pre-training (row 20).

worse than base (row 13-14, 16-17); and BLIP base worse
than large (row 19-20). This is also visualized in Figure 2.
2. For a same model, removing VL pre-training / Pre-
training with fewer images degrades performance: Per-
formance of VL-T5 base and small both drop significantly
if not VL pre-trained (row 13 vs 16; 14 vs 17). Even when
VL pretrained, smaller numbers of VL pre-training images
cause performance drop in MiniVLM (row 7 vs 8) and in
BLIP (row 20, 22, 23; pink triangles in Figure 2).
3. Distilling with AMAD narrows the aforementioned
gaps caused by shrinking model size or by removing
VL pre-training: Supported by results of distilling VL pre-
trained VL-T5 (row 14 vs 15); distilling non-VL-pretrained
VL-T5 (row 17 vs 18); and distilling BLIP (row 20 vs 21).

Note that, DistillVLM (row 9) (Fang et al. 2021) distilled
Oscar base (row 6) to MiniVLM (row 8) (Wang et al. 2020a)
and achieved 0.4% VQA accuracy boost and 1.0% Caption-
ing CIDEr score boost. And they claimed to be the first work
to apply KD in training VL models. Neither MiniVLM nor

DistillVLM has released their model or code.

4. Knowledge distillation compensates to some degree for
the absence of VL pre-training: When we do not conduct
any VL pre-training for VL-T5 small, fine-tuning distilled
VL-T5 small (row 18) even outperforms the ground-truth
supervised VL pre-trained and fine-tuned VL-T5 small base-
line (row 14). It also outperforms non-VL-pretrained VL-T5
base (row 16). The performance is also rather comparable to
other recent pre-trained and finetuned VL models. For BLIP,
distillation (row 24) compensates for the absence of 14M-
scale VL pre-traning (row 22), but cannot compensate for
129M-scale pre-training (row 20).

One possible explanation is that the knowledge obtained
in the pre-training stage of the Teacher can somehow be dis-
tilled to the Student in the downstream fine-tuning process
when the Student tries to mimic the Teacher’s classification
logits and tries to align and mimic the Teacher’s attention
maps, even if the Student has no access to the pre-training
data by itself. The Teacher’s attention maps contain valuable
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VL-T5 Model #Params test-2016 test-2017 test-2018

Teacher † 220M 44.00 39.40 37.00
Student 60M 41.90 36.85 34.02

Our Student 60M 43.88 38.70 36.64
∆ +1.98 +1.85 +2.62

Table 3: Multi30K English-German translation BLEU@4
score. The VL-T5 small Student distilled with AMAD out-
performs ground-truth (GT) fine-tuned VL-T5 small.

BLIP Model #Params B C M S

Teacher * 446M 40.4 136.7 - -
Student 210M 22.3 65.1 20.9 13.5

Student w/ AMAD 210M 29.7 95.0 25.4 18.5
∆ +7.4 +29.9 +4.5 +5.0

Table 4: Results on COCO Captioning karpathy test split.
All BLIP Students are w/o any pretraining, i.e. the ViT and
BERT modules are randomly initialized for all Students.
Results for pretrained and finetuning distilled BLIP mod-
els are reported in Appendix. The distilled Student outper-
forms the GT trained Student by a surprisingly large mar-
gin, although the performance still degrades a lot because
of neither VL nor uni-modal pre-trained. This indicates that
uni-modal pretraining is still necessary even when finetun-
ing distillation is applied.

#Params LKD LAMAD B C M S

T † 220M 34.2 115.1 28.3 21.6

S † 60M 32.8 108.2 27.0 20.4
S 60M ✓ 33.1 111.8 27.9 21.2
S ‡ 60M ✓ 33.6 113.4 28.1 21.3
S 60M ✓ ✓ 33.9 114.4 28.3 21.5

Table 5: Ablation results of VL-T5 models on COCO Cap-
tioning karpathy test split. ‘T’ denotes Teacher, and ‘S’ de-
notes Student; Also in following tables. All VL-T5 Students
are first VL pretrained. Ablation results w/o VL pretraining
are in Appendix. Distilling with LAMAD outperforms logits
distillation with LKD, and narrows the CIDEr gap between
the small Student and the base Teacher to only 0.7% with
72% less parameters. The VL-T5 Teacher is reproduced, as
their fine-tuned checkpoints are not released, also in follow-
ing Tables. We also compare AMAD with RKD-D (Park
et al. 2019) (the row with ‡ in the Table), a distance-based
similarity distillation method: We treat attention maps of all
heads as a whole single feature and apply RKD-D on that,
since #heads are different between Teacher and Student.

intra-modal and cross-modal coreference relations learned
from the pre-training dataset, and LAMAD helps the Student
to inherit the rich learned representation from the Teacher.

Besides these observations 1-4, we show in Table 3 that
AMAD can generalize well to language-heavy translation
task. Table 4 unveils one limitation that, although fine-tuning

#Params LKD LAMAD Karpathy std dev

T † 226M 68.75 71.34 71.23

S † 63M 66.72 69.28 69.04
S 63M ✓ 67.74 70.19 70.10
S 63M ✓ ✓ 68.06 70.47 70.41

Table 6: Ablation results of VL-T5 models on VQA-2.0 test
splits. All Students are first VL pretrained.

#Params LKD LAMAD Karpathy std dev

T † 226M 68.75 71.34 71.23

S † 63M 56.44 - 58.47
S 63M ✓ 66.39 - 68.71
S 63M ✓ ✓ 67.79 70.25 70.06

Table 7: Ablation results of VL-T5 models on VQA-2.0
test splits. All Students are w/o VL pretraining, i.e. initial-
ized with language-only pre-trained T5 and vision-only pre-
trained Faster R-CNN checkpoints. This shows that vanilla
finetuning logits distillation already compensates to some
degree for the absence of VL pre-training, and AMAD nar-
rows the gap further.

VL-T5 #Params Loss Variant Acc ∆

Teacher † 226M 68.75

Student † 63M Ground-Truth 66.72
Student 63M LKD 67.74 +1.02

Student 63M LKD + LKD-ATT 67.73 +1.01

Student 63M LKD + LAMAD-1 67.96 +1.24
Student 63M LKD + LAMAD-2 68.06 +1.34
Student 63M LKD + LAMAD-3 68.02 +1.30
Student 63M LKD + LAMAD-4 68.05 +1.33

Student 63M w/ AMAD mean 68.02 +1.30
std-err of the mean ± 0.02 ± 0.02

Table 8: Ablation results on VQA-2.0 Karpathy test split.
All VL-T5 Students are first VL pretrained. The baseline
of distilling the attention maps from the first 8 heads of
Teacher to those of the 8 heads of Student in a one-to-one
fashion with LKD-ATT = ∥S − T [: Hs, :]∥22 does not help
improve performance than distilling with LKD only, maybe
because the extra Ht −Hs Teacher heads are discarded dur-
ing distillation, causing forced knowledge loss. Meanwhile,
all LAMAD variants help improve performance consistently.
KL variants for LAMAD (2, 3, 4) perform slightly better than
MSE LAMAD-1. We have not observed significant perfor-
mance change brought by learnable projection LAMAD-3 or
token-level alignment LAMAD-4, compared to LAMAD-2.

distillation might close the performance gap of removing VL
pretraining, uni-modal pretraining is still necessary.

Ablations
Effects of logits distillation LKD and AMAD LAMAD: We
ablates on captioning and VQA tasks in w/ and w/o VL pre-
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train settings in Table 5-7 and in Appendix. In w/o VL pre-
train settings, Students are finetuned directly after loading
the vision-only pretrained visual branch and the language-
only pretrained linguistic branch sub-modules.
AMAD Variants and Baselines are analyzed in Table 8.

We present visualizations, more ablations, and qualitative
analysis of LAMAD distilled attention maps in Appendix.

Appendix
Please kindly refer to the Appendix via the following link:
https://www.amazon.science/publications/no-head-left-
behind-multi-head-alignment-distillation-for-transformers

In the Appendix, we provide a further illustration on
the matrix-form loss derivation and formulation of differ-
ent AMAD variants in Section A; more ablation results
and a reverse experiment of distilling a smaller Teacher
to a larger Student in Section B; implementation details
including training environment, training time, and hyper-
parameters in Section C; an additional illustration of the
distillation workflow for our experimental setup and the ar-
chitecture of VL-T5 in Section D; visualizations of AMAD
distilled cross- and self- attention maps in Section E; and
PyTorch code for the proposed AMAD loss in Section F.

Conclusion
We have proposed the Attention Map Alignment Distillation
(AMAD) method to distill attention maps from a Teacher to
a Student Transformer with different numbers of attention
heads. AMAD narrows the performance gap between the
large Teacher and the small Student in both discriminative
VQA and auto-regressive generative captioning / translation
tasks. Our ablation further suggests that fine-tuning knowl-
edge distillation can compensate to some degree for the ab-
sence of VL pre-training for VL Transformers. However,
uni-modal pre-training is still necessary. Exploring theoret-
ically or empirically why fine-tuning distillation can com-
pensate for VL pre-training is potentially intriguing for fu-
ture work.
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