
INTERPRET: Interactive Predicate Learning from
Language Feedback for Generalizable Task Planning

Muzhi Han1, Yifeng Zhu2, Song-Chun Zhu1, Ying Nian Wu1, Yuke Zhu2
1University of California, Los Angeles, 2The University of Texas at Austin

https://interpret-robot.github.io

Abstract—Learning abstract state representations and knowl-
edge is crucial for long-horizon robot planning. We present Inter-
PreT, an Large Language Model (LLM)-powered framework for
robots to learn symbolic predicates from language feedback of
human non-experts during embodied interaction. The learned
predicates provide relational abstractions of the environment
state, facilitating the learning of symbolic operators that capture
action preconditions and effects. By compiling the learned predi-
cates and operators into a Planning Domain Definition Language
(PDDL) domain on-the-fly, InterPreT allows effective planning
toward arbitrary in-domain goals using a PDDL planner. In
both simulated and real-world robot manipulation domains, we
demonstrate that InterPreT reliably uncovers the key predicates
and operators governing the environment dynamics. Although
learned from simple training tasks, these predicates and opera-
tors exhibit strong generalization to novel tasks with significantly
higher complexity. In the most challenging generalization setting,
InterPreT attains success rates of 73% in simulation and 40%
in the real world, substantially outperforming baseline methods.

I. INTRODUCTION

Effective long-horizon planning is a long-standing challenge
in robotics [1, 2, 3]. Imagine a household robot that prepares
a meal in your kitchen. It must be capable of generating
faithful multi-step action plans to manipulate novel objects and
achieve diverse task goals. Recently, Large Language Models
(LLMs) have shown the ability to decompose a high-level
task goal into semantically meaningful sub-tasks leveraging
the vast amount of world knowledge they encode [4, 5]. They
exhibit the emergent property of acquiring planning capabili-
ties from a few in-context examples [6, 5]. Researchers have
successfully applied LLM-based planners in real-world robotic
tasks [7, 8, 9, 10], where they can easily incorporate various
forms of feedback and produce plans in novel situations.
Nevertheless, LLM-based planners still struggle to generalize
strongly to long-horizon tasks, and they offer no performance
guarantees [11, 12, 13].

In contrast, classical planners [14, 15] based on sym-
bolic abstractions provide complementary strengths in gen-
erating long-horizon plans with formal guarantees. At the
heart of these planners are predicates, which are binary-
valued functions that map environment states to high-level
symbolic representations, e.g., a function that transforms
the workspace observation into semantic relations such as
on_table(apple). With these symbolic predicates, we
can subsequently model state transitions with symbolic op-
erators [16], describing the preconditions and effects of the
robot’s actions on the symbolic states. The predicates and

�����������������

������������������

������������������������
���������������������������
������
��������������������
������������

						

��������
���������
����������������
����

���������
�������
�
�������

������������������
���������
�
�����������
������
���
���������
�
� � ��������	�����������
�����
�
������
�
� � �����������������������

		�

�����
���

		��
������

Fig. 1: InterPreT learns predicates as Python functions and
operators in PDDL from human language feedback during
embodied interaction. The learned predicates and operators can be
leveraged by a PDDL planner for planning for unseen tasks involving
more objects and novel goals.

operators together form a PDDL domain [17], enabling a
planning algorithm to generate plans for arbitrary in-domain
tasks [18]. Despite the wide adoptions of planning algorithms
in robotics [19, 20, 21], these methods usually require substan-
tial manual effort and domain expertise to meticulously design
the predicates and operators, hindering their applicability to
real-world problems.

To combine the best of both worlds, there has been a
growing interest in integrating learning methods with planning
algorithms. Notable efforts have been made to learn symbolic
representations from interaction data through unsupervised
learning methods [22, 23, 24, 25, 26]. However, without
explicit guidance, they struggle to uncover predicates that
capture task-relevant semantic relations to facilitate planning.
Meanwhile, cognitive studies [27, 28] have shown that human
infants are remarkably efficient in acquiring new predicate-
like relational concepts, such as spatial relations for stacking
blocks, from the language feedback of caregivers during phys-
ical play. Inspired by these studies, we envision an interactive
learning scheme that will enable a robot to rapidly learn useful
abstractions for planning from online human feedback.

We hypothesize that for robots to achieve human profi-
ciency in learning predicates for planning, they must possess
an ability similar to infants to learn from the rich human

ar
X

iv
:2

40
5.

19
75

8v
1

 [c
s.R

O
]

30
 M

ay
 2

02
4

https://interpret-robot.github.io

language feedback in an interactive manner. Recent work has
incorporated human language feedback into learning reward
functions [29] and motion policies [30]. The crux of these
methods is to harness the capabilities of pretrained LLMs [31],
in particular GPT-4 [32], in understanding natural language
input, performing reasoning [33, 34], and generating text-
based responses (computer programs [35], etc.). Following
this line of work, we present InterPreT (Interative Predicate
Learning for Task Planning), the first framework for robots to
learn planning-oriented predicates from interactive language
feedback, as depicted in Fig. 1. InterPreT formalizes predicate
learning as generating Python functions with GPT-4, which are
iteratively refined based on human language feedback. These
predicates (as Python functions) can access raw environment
states with Python perception APIs and freely compose logic
structures and arithmetical computations (e.g., with NumPy) to
form complex semantics. With the learned predicates, we can
easily learn symbolic operators from the robot’s interaction
data using a cluster-and-search algorithm [36]. The learned
predicates and operators are compiled into the PDDL format
on the fly to be used by a planner. LLMs’ capabilities of open-
world text processing and symbolic planners’ performance
guarantees together empower our approach to generalize
strongly to arbitrary tasks in the target domains.

Specifically, we consider language feedback for learning
two types of planning-oriented predicates, i.e., goal predicates
and action precondition predicates [22]. These predicates play
an essential role in indicating task progress and determining
action feasibility, respectively. We design a concise and natural
communication protocol to incorporate this feedback:

‚ Feedback for learning goal predicates: At the beginning
of each task, the human user specifies the goal, e.g.,
“put plate on table mat”. Then, it signals when the
robot achieves the goal and it explains any unsatisfied
conditions if the robot mistakenly declares success.

‚ Feedback for learning precondition predicates: The
human user verifies the feasibility of the action the robot
proposes to execute next. They explain any violated
preconditions if the action is infeasible, e.g., “you can’t
pick up the plate because it is too large for the gripper to
grasp”, or otherwise confirm that the action is feasible,
e.g., “you can go ahead and pick up red block”.

This protocol allows InterPreT to verify and refine the learned
predicates from time to time, enabling predicate learning with
closed-loop feedback.

In the experiments, we evaluate InterPreT’s effectiveness
in a suite of simulated and real-world robot manipulation
domains. These domains are designed such that their dynamics
can be modeled using specific predicates and operators, which
the robot must uncover. We first have InterPreT learn predi-
cates and operators by having the robot interact with a series
of simple training tasks while receiving natural language feed-
back from human users. We then test the learned predicates
and operators on harder tasks involving more objects and novel
goals. We show with qualitative and quantitative results that:

(i) InterPreT learns valid predicates and operators that capture
essential regularities governing each domain. (ii) The learned
predicates and operators allow the robot to solve challenging
unseen tasks requiring combinatorial generalization, with a
73% success rate in simulation, outperforming all baselines
by a large margin. (iii) InterPreT can effectively handle real-
world uncertainty and complexities, operating with consider-
able performance in real-world robot manipulation tasks.

II. RELATED WORK

A. Learning Symbolic Representations for Planning

Learning symbolic abstractions of complex domains for
effective planning is a long-standing pursuit in the planning
community [37, 38, 39, 22, 26, 25, 3, 40]. Previous methods
have focused on discovering propositional [22] or predicate
state symbols [23] from embodied experience. These symbols
are usually acquired by composing predefined features [37,
24, 41, 25], or learning statistical [38] or neural network [26]
models with clustering [39, 22, 23] or representation learn-
ing techniques [42, 43, 26]. Such learning often relies on
unsupervised objectives like minimizing state reconstruction
error [42, 43, 26], prediction error [38, 42, 26], bisimulation
distance [41] or planning time [25]. However, these approaches
struggle to capture high-level semantic relations [43, 26] and
often require manual feature engineering [24, 41, 25].

Supervised learning has also been explored to ground
semantic predicates to continuous observations, e.g., images
or continuous states [44, 45]. While large-scale annotated
datasets [46] are available to learn general-purpose predicate
grounding models, fine-tuning with task-specific data is still
needed for learned predicates to serve reasoning and planning
in specific domains [47, 48, 49]. To reduce annotation needs,
prior works have employed active learning [50, 51] or novel
labeling techniques [52, 53], but a minimum of 500-1000
labels [50, 51] are still required per predicate.

Our work builds on this line of research in learning sym-
bolic abstractions from interaction data and weak supervision.
We mitigate limitations of unsupervised methods by learning
predicates from natural language feedback. Meanwhile, we are
able to learn semantic predicates as Python functions from a
few data samples, leveraging the code generation capability
and world knowledge of GPT-4.

B. Large Language Models-enabled Planning and Learning

Large Language Models [31] have shown remarkable abil-
ities in encoding vast semantic knowledge and demonstrate
emergent capabilities in learning, reasoning, and planning with
few-shot or even zero-shot prompting [54, 33, 5]. Pretrained
LLMs have been applied as planners in text-based environ-
ments with natural language instructions and feedback [34, 5,
4, 55, 56]. For grounded planning in realistic robotic domains,
a common approach is to utilize out-of-the-box perception
models to convert raw observations into textual descriptions
for LLMs to consume [57, 58, 8, 59, 60, 61], or provide
perception and action APIs for LLMs to generate executable
programs [10, 9]. However, these perception models struggle

to capture complex task-relevant information like semantic ob-
ject relations without task-specific tuning [47, 49]. Leveraging
GPT-4’s power, our work effectively acquires meaningful task-
relevant predicates to facilitate grounded planning.

Pretrained LLMs are also leveraged to enhance robot agent
intelligence by generating formatted outputs (e.g., code, formal
language) and refining them based on language feedback
via iterative prompting. They have been used as interfaces
between natural language and robotics modalities like formal
planning languages [62, 11] (e.g., PDDL [17]), reward func-
tions [29, 63] and trajectories [30]. Specifically, Voyager [64]
uses GPT-4 to construct an automatic curriculum and a skill
library to build lifelong learning agents, while Eureka [29]
and OLAF [30] leverage GPT-4 for learning from language
feedback effectively by prompting. Inspired by these works,
we learn predicates from language feedback by generating and
iteratively refining Python functions with GPT-4.

III. PRELIMINARIES AND PROBLEM SETUP

We consider robot task planning in a continuous state
space O with language goal specifications G. Without losing
generality, we assume the states are factorized with respect to
a set of objects E, where such information can be obtained
using mainstream perception models like object detectors. The
robot is equipped with a library of primitive actions A, where
each a P A is parameterized by object variables and can be
grounded to certain objects to produce an executable action a,
e.g., Pick(cup). Then, a task planning problem is to find a
sequence of actions a1:T to reach a final state og that satisfies
a language goal g P G from an initial state o0 P O.

Following the classical planning formulation [15, 16], we
aim to learn predicates Ψ to abstract the state space O into
a symbolic one S for effective and generalizable planning.
A predicate ψ :“ă dψ, fψ ąP Ψ defines a function fψ that
captures a symbolic relation among a list of object variables,
with its semantic meaning described as dψ . The function fψ :
O ˆ Ek Ñ t0, 1u takes a continuous state o P O and a list
of k objects pe1, e2, ..., ekq P Ek and outputs a binary value
indicating whether the relation holds or not. For example, a
predicate on(a,b) can be applied to check whether cup is
physically on plate, producing a positive literal on(cup,
plate) or a negative literal ␣on(cup, plate). Then the
symbolic state s of a continuous state o can be obtained by
collecting all positive literals at state o given predicate set Ψ
and object set E, denoted s “ Parsepo; Ψ, Eq.

With the object-factorized symbolic state space S, we model
the preconditions and effects of primitive actions with sym-
bolic operators Ω. Each symbolic operator ω P Ω correspond-
ing to a primitive action a is characterized by a precondition
set CON (literals must hold before executing a), and adding
and deleting effect set EFF` and EFF´ (literals added and
removed from symbolic state s after executing a). These
symbolic operators are lifted by design, enabling the evaluation
of preconditions and effects for any executable version a
obtained by applying the primitive action a to any objects.
With the learned predicates Ψ, we further learn the symbolic

operators Ω of all primitive actions A to achieve generalizable
task planning. The learned predicates and operators can be
compiled into a PDDL domain. By converting a language goal
g P G into a symbolic goal sg [11, 62], such a PDDL domain
can enable effective planning using an off-the-shelf classical
planner [18].

IV. METHOD

In this section, we present the InterPreT framework that
learns predicates and operators from language feedback for
planning. The overall architecture is depicted in Fig. 2. There
are five essential modules that operate together to empower
InterPreT: (i) Reasoner, which analyzes language feedback to
identify new predicates and extract task-relevant information
(e.g., predicate labels, action preconditions), (ii) Coder, which
generates Python functions to ground the new predicates, (iii)
Corrector, which iteratively refines existing predicate func-
tions to align their predictions to the extracted predicate labels,
(iv) Operator Learner, which learns operators from interaction
data based on the learned predicates, and (v) Goal Translator,
which translates language goal specifications into symbolic
goals to enable planning. Below, we elaborate on the core
GPT-4-powered modules-Reasoner, Coder and Corrector-that
enable predicate learning, and briefly introduce the rest, which
are mainly adapted from existing works.

Given language feedback lt at time step t, our objective is to
learn new predicates and refine existing predicates Ψt´1, pro-
ducing an updated set of predicates Ψt. For simplicity of nota-
tion, we denote the textual descriptions of predicates as tdψu
and the corresponding predicate functions as tfψu for any
predicate set Ψ. We decompose the predicate learning process
at time step t into three sequential sub-steps (see Fig. 2(a)): (i)
Reasoner identifies new predicates with descriptions tdψnew

u

and extracts current state literals that provide predicate labels
tyu, (ii) Coder generates new predicate functions tfψnewu,
and (iii) Corrector refines existing predicate functions to fix
execution errors and match their predictions to tyu. Formally,
we summarize this process in Eq. (1):

Reasoner : tdψnew
u, tyu “ fReasonplt, tdψt´1

uq,

tdψt
u “ tdψnew

u Y tdψt´1
u

Coder : tfψnew
u “ fCodeptdψnew

u,Ψt´1q,

tfψ̂t
u “ tfψnew

u Y tfψt´1
u,

Corrector : tfψt
u “ fCorrectpot, tyu, tfψ̂t

uq,

Ψt “ tă dψt
, fψt

ąu,

(1)

where fReason, fCode, fCorrect are parameterized by GPT-4
with varying prompt templates, and the initial predicate set is
empty, i.e., Ψ0 “ H. Note that we omit some of the output
terms irrelevant to predicate learning for clarity. We detail the
modules below and provide the complete prompt templates in
the supplementary material.

A. Reasoner

The Reasoner module is designed to identify essential
predicates and extract task-relevant information from goal-

������������������������������
���
�����������������������������������
�������
���
�������������������
���������
���	�������
������������������

����������������������
���������
���
����������������������������
����������������
�	�
���
������������	������
�������������������������������������
���
����
�����������	
��������	������

��������������������
����	����
��
����������

������
��������

��������������������
���������������
������
����������

�����������������
�����������������������������
���������
����
����������������
�������
���������������������
���������
������
����������

������
���������

���

����
�������

����������
��������������������������������������

x �

����������
���������������

����������
������

�������������������
�������������������

���������������������������������������

� � �����
�����������

� � ��������������������

������������������������
���������

� � ����������������������

����������
���

������
�����

����������������
�������

����������

�������������������������������������
 ���������

���������
�����
 ��������������������������������
­

���������������� ����������������������
�����­

 �����������������
�����­��������

�������
����������

Fig. 2: The system architecture of InterPreT. (a) We design three GPT-4-enabled modules that operate sequentially to identify planning-
oriented predicates and generate the predicate functions based on language feedback. (b) An example predicate function learned. (c) With the
learned predicates, we learn PDDL operators with a cluster-then-search algorithm. (d) The learned predicates and operators enable effective
task planning, after we translate language goals into symbolic goals with GPT-4.

related or precondition-related language feedback; see the top
left corner of Fig. 2(a) for examples of these feedback types.
We tailor Reasoner to each language feedback type using
different prompt templates, as detailed below. We highlight
the language feedback in blue, and the GPT-4 output in
orange. We employ Chain-of-Thought (CoT) prompting [65]
for Reasoner to provide the complete reasoning trace and in-
context learning [33] to enable Reasoner to learn from a single
example. These techniques are applied to all LLM promptings
to facilitate robust response generation.

1) Goal-related feedback:

‚ (Specify task goal) Given a natural language goal spec-
ification, Reasoner identifies new goal predicates and
converts the language goal into symbolic form using
existing and new predicates:

Context: ...{example} {objects} {existing predicates}...
Goal: Stack red block on coaster.
Reasoning: The goal can be captured by a symbolic literal
obj on obj(red block, coaster). As predicate obj on obj(a, b)
is unknown, we need to learn it.
Predicates to learn: {“obj on obj(a, b)”: “check whether ob-
ject a is on object b”}
Symbolic goal: {“obj on obj(red block, coaster)”: true}

The identified predicates to learn tdnewu are to be sup-
plied to Coder for predicate function generation, and the
converted symbolic goal sg is recorded for robot planning
and exploration.

‚ (Explain unsatisfied goal) Given explanations for unsat-
isfied goal literals, Reasoner extracts the current symbolic
literals from the language feedback, which provide pred-
icate labels tyu. These predicate labels are crucial for
Corrector to correct the generated goal predicates.

Context: ...{example} {objects} {existing predicates}...
Human explanation: You haven’t reached the goal because
red block is not on coaster.
Current symbolic state: {“obj on obj(red block, coaster)”:
false}

‚ (Signal goal achieved) When receiving goal-achieved
signals, we simply use the extracted symbolic goal as
the current literals, which provide positive labels tyu to
supervise goal predicates.

2) Precondition-related feedback:

‚ (Explain infeasible action) Given an explanation of an
infeasible action, Reasoner identifies new precondition
predicates to learn tdnewu, reasons about the current
symbolic state tyu, and summarizes the reflected action

preconditions CONnew, as shown in the example below.
The summarized action preconditions only take argu-
ments that exist in those of the action, e.g., for action
pick_up(a), we only summarize the preconditions
that take no argument or object a as an argument. We
aggregate CONnew into the precondition set CONa of
the corresponding action a, which is maintained for op-
erator learning (described in Section IV-D). Additionally,
tdnewu is fed into Coder to generate precondition predi-
cate functions, and the predicate labels tyu are provided
to Corrector for correction.
Context: ...{example} {objects} {existing predicates}...
Infeasible action: pick up(coaster)
Human explanation: You can’t pick up coaster it is too large
to be grasped.
Reasoning: ... The precondition of pick up(coaster) is that
it is small enough to be grasped by the gripper... We learn
predicate obj graspable(a) to check whether object a can be
grasped by the gripper...
Predicates to learn: {“obj graspable(a)”: “check whether
object a is small enough to be grasped by the gripper...”}
New action preconditions: {“action”: ”pick up(a)”, “new
preconditions”: {“obj graspable(a)”: true}}
Current symbolic state: {“obj graspable(coaster)”: false}

‚ (Signal feasible action) When an action is signaled as
feasible, we confirm that all preconditions in CONa are
satisfied. The labels y for these precondition predicates
are obtained and provided to Corrector to correct precon-
dition predicate functions.

B. Coder

Once Reasoner identifies a set of new predicates with
text descriptions tdnewu, the next step is to construct the
corresponding predicate functions tfnewu to truly learn them.
Inspired by recent successes in using pretrained LLMs to gen-
erate computer programs for robotic tasks [10, 9, 64, 29], we
design Coder to generate these predicate functions as Python
code based solely on tdnewu, leveraging the power of GPT-
4. We assume the availability of a library of perception API
functions that provide access to continuous states, such as the
bounding boxes and categories of detected objects. The pred-
icate functions can then be constructed by composing these
API functions with classical logic structures and arithmetical
computations (e.g., using NumPy), exploiting the flexibility
of Python programming. Representing predicates as Python
functions offers several advantages: (i) They are semantically
rich and interpretable compared to neural networks [26, 42],
and have better representation power and more versatile syntax
than logical programs [25, 41]. (ii) They enable one-shot
generation purely from the text description without labeled
data, leveraging the extensive commonsense priors in GPT-4.

To facilitate the construction of predicate functions, we
provide Coder with the following primitives: (i) perception
API functions for accessing environment states, (ii) the NumPy
library for arithmetic computations, and (iii) if-else and loop

statements for controlling the logic structure. We also al-
low Coder to create additional utility functions that can be
reused to define different predicate functions. This divide-
and-conquer strategy helps mitigate the complexity of building
predicate functions from scratch. In practice, we prompt GPT-
4 with a code snippet demonstrating the usage of primitives
by a few examples of utility functions and one example
predicate function. Detailed comments are included in these
examples to enable CoT prompting. Due to space limitations,
we show a partial prompt with an example utility func-
tion get_object_x_range below, and an example predicate
function in Fig. 2(b). The complete prompt for Coder can be
found in the supplementary material.

import numpy as np
from perception_api import get_object_center_3d,
get_object_size_3d...

<utility>
def get_object_x_range(a) -> np.ndarray:

"""
Get the range of object a along x axis
:param a: string, name of detected object
"""
center = get_object_center_3d(a)
extent = get_object_size_3d(a)
return np.array([center[0] - extent[0] / 2,
center[0] + extent[0] / 2])

<end-of-utility>

......

C. Corrector

The predicate functions generated by Coder are pruned
to two types of errors: (i) execution errors due to invalid
operations or syntax errors in the function, and (ii) alignment
errors that arise when GPT-4’s understanding of predicates
misaligns with that of the human user. Inspired by [64, 29],
we introduce Corrector, which adopts an iterative prompting
mechanism to correct the functions and rectify these errors.

When an execution error occurs while calling a predicate
function, Corrector takes the execution trace from the code
interpreter and the erroneous code as input. It then performs
zero-shot reasoning on the error and generates the corrected
code as output. This process is repeated until the error is
resolved or the maximum number of iterations is reached. Sim-
ilarly, to address alignment errors, Corrector is provided with
the predicate labels tyu and the current predicate functions. It
then iteratively refines the functions to align their outputs with
the given labels. An example prompt illustrating this process
is shown below:
Context: ...{instructions} <code> {observation}...
Alignment error: obj on obj(red block, blue block) should be
true, but your prediction is false.
Reasoning: This is because we assume object a should be within
object b along the x-axis when we define the predicate function
obj on obj(a, b), which is wrong; in fact, the relation is established
when object a is overlapped with b, so we need to correct the
function accordingly.
Corrected code: <corrected_code>

D. Other Components

Given the learned predicates, we implement a variant of
the cluster-then-search algorithm [36] to learn operators. This
algorithm effectively learns symbolic operators that best cap-
ture the action effects and preserve a minimal set of necessary
preconditions from a small number of successful and failed
interactions. We also incorporate the action preconditions
summarized by Reasoner into the learned operators. To ensure
learning from language feedback with no delays, we run the
operator learning algorithm at each interaction step, maintain-
ing an operator set compatible with the up-to-date predicates
and interaction experience. The implementation details are
included in the supplementary material.

During the training phase, InterPreT learns predicates and
operators as the robot interacts with the environment to
perform a series of training tasks (detailed in Section V-A3).
We employ a strategy where the robot plans with a classical
planner [18] based on the learned predicates and operators
50% of the time, and randomly takes a symbolically feasible
action according to the recorded action preconditions other-
wise. Empirically, this approach enables a balance between
exploration and exploitation.

At test time, we introduce an LLM-based goal translator to
convert language goals into symbolic form, following previous
works [62, 11]. We refer the reader to the original papers for
a detailed explanation of how the method works. In practice,
we find that the GPT-4-based goal translator performs robustly
when provided with a few examples.

V. EXPERIMENTS

We conduct experiments to answer the following questions:
(i) Can InterPreT learn meaningful task-relevant predicates
and operators from language feedback? (ii) How well do the
learned predicates and operators (i.e., PDDL domains) gener-
alize to tasks that involve more objects and novel goals? (iii)
Can InterPreT handle perception and execution uncertainties
in the real world?

A. Experimental Setup

We quantitatively and qualitatively evaluate InterPreT on
a suite of robot manipulation domains in a simulated 2D
kitchen environment [66] and a real-world environment. The
domain design, baseline methods, and evaluation protocol are
described below.

1) Domain design: We design three simulated domains
based on the Kitchen2D environment [66] and two real-world
domains that represent the counterpart of the simulation. Each
domain is associated with a set of simple and complex tasks,
and designed with a ground-truth PDDL domain file specifying
the essential symbolic constraints and regularities. The five
domains are each demonstrated with an example simple task in
Fig. 3(a). We briefly introduce the domains below and include
further details in the supplementary material.

‚ StoreObjects (Sim and Real): This domain involves
storing objects on a large receptacle by picking, placing,

and stacking actions. It features predicates and corre-
sponding constraints similar to those in the BlockWorld
domain [67], such as on(a,b), and on_table(a).

‚ SetTable (Sim and Real): This domain involves rear-
ranging objects to set up a breakfast table. Compared
to StoreObjects, it additionally introduces a push ac-
tion to move large objects (e.g., plates) that cannot
be grasped. It features precondition predicates such as
is_graspable(a) and is_flat(a).

‚ CookMeal (Sim only): This domain involves putting
ingredients into a pot and filling the pot/cups with wa-
ter. It requires understanding the task semantics of ac-
tions, featuring predicates such as is_container(a),
in(a,b) and has_water(a). It also imposes con-
straints such as the only way to fill a large container
(e.g., a pot) with water is by using a cup.

2) Baselines: As there are no prior methods that learn
predicates from human language feedback for planning, we
compare InterPreT with state-of-the-art LLM-based planners.
(i) Inner Monologue (IM)[8] generates action plans based
on textualized environment states using an LLM. (ii) Code-
as-Policies (CaP)[10] employs an LLM to generate policy
code that invokes perception and action APIs. We also imple-
ment variants of IM that incorporate predicates and operators
learned with InterPreT. For a fair comparison, all baselines
access the environment state through perception APIs and
learn from in-context examples.

‚ IM + Object [8]: A naive IM variant that utilizes the tex-
tualized output of perception APIs, e.g., detected objects
with positions and categories, as the environment state.

‚ IM + Object + Scene [8]: An IM variant that uses envi-
ronment states augmented by scene descriptions, obtained
using predicates learned by InterPreT.

‚ IM + Object + Scene + Precond [8]: An IM variant that
leverages the operators learned with InterPreT to check
the precondition of actions proposed by IM. Infeasible
actions are prompted back to the LLM for replanning.

‚ CaP [10]: A strong CaP baseline that performs precondi-
tion checks using “assertion” or if-else statements (akin
to ProgPrompt[9]) and hierarchically composes policies
for long-horizon planning. We have it generate predicate
functions for precondition checks.

3) Evaluation protocol: We adopt a train-then-test evalua-
tion workflow for all domains. For each domain, the robot first
learns from a series of 10 simple training tasks accompanied
by language feedback. For testing, we design four sets of
tasks (10 tasks per set) that pose different levels of challenge
to the generalizability of the methods. We present example
tasks in different test sets of the real-world SetTable domain
in Fig. 3(b).

‚ Canonical: Simple tasks with objects and goals seen
in training but with different initial configurations.

‚ More objects: Simple tasks with seen goals but in-
volve additional unseen objects.

‚ Novel goals: Complex tasks with seen objects but

������������������

����� �������

�������

���������

����������

����������������
��
�����
	�

��������������

����
����

���������

�����
�����

������������
����������	�

��������������

������

����������

���

�������������
������	�

�������������������

������������������
��������	�

���������������

������������
����������	�

���������������
������������������
���������������������������

Canonical:
������������
����������	�

Novel goals:
���������������
���������
������������
������������
�
�����������
������	�

�������������������
��� ���
�������������

�������������������������

More objects:
���������
��
����������	�

Combined:
���������������
���������
������������
����������­
�����������
��������
��
����
��
����������	�

����
���
���
�

Fig. 3: Simulated and real-world domains used in the experiments. We show example training tasks of all five domains in (a) and
demonstrate the design of the 4 test sets in the real-world SetTable domain in (b). In More objects and Combined, an unseen object
“spoon” introduces additional generalization challenges.

novel goals that compose goals seen in training tasks.
‚ Combined: Complex tasks with unseen objects and

goals, combining the last two setups.
We evaluate the performance of all methods using the success
rate on the 10 tasks of each test set. In simulation, we conduct
systematic evaluations by running the whole training-testing
pipeline 3 times with varied seeds. We directly terminate the
episode upon action failure for all methods.

Domain Goal Predicates Precondition Predicates

StoreObjects obj_on_obj(a, b),
obj_on_table(a)

obj_graspable(a),
obj_clear(a),

gripper_empty()

SetTable obj_on_obj(a, b),
obj_on_table(a)

obj_graspable(a),
obj_clear(a),

gripper_empty(),
obj_is_plate(a),

obj_thin_enough(a)

CookMeal
obj_inside_obj(a, b),

obj_on_table(a),
obj_filled_with_water(a)

obj_graspable(a),
obj_clear(a),

gripper_empty(),
obj_is_plate(a),

obj_thin_enough(a),
obj_large_enough(a),

obj_is_food(a),
obj_is_container(a)

TABLE I: Learned goal and precondition predicates in simulated
domains. We report the union of the three runs. While we learn both
the positive predicate and its negated counterpart, we only show the
positive ones here for clarity. We adjust some of the predicate names
to unify them across domains and runs for better readability.

B. Experimental results

1) Qualitative analysis: We answer Question (i) by qual-
itatively analyzing the predicates and operators learned by
InterPreT in the simulated domains. The full details of the
learned predicate functions and operators are included in the
supplementary material. Table I shows InterPreT can effec-
tively learn language-grounded and semantically meaningful
goal and precondition predicates in all three domains. We

obj_in_gripper

obj_on_obj

obj_graspable

obj_clear

pick_from_table

pick_from_obj

place_on_table

obj_on_table

gripper_empty

place_first_on_second

����������������������������
� ��
���������
������	�
�������

Fig. 4: Visualization of one training run in simulated StoreObjects
domain. The total number of learned predicates increases by 2 for
each labeled predicate as we also learn its negation. We provide the
predicate function of obj_in_gripper as an in-context example,
known at Step 0. We empirically label the learned operators with
semantic names based on their interpreted meanings.

report the union of learned predicates over three runs; we
observe that the learned predicates are generally consistent
across the runs. Specifically, InterPreT successfully learns goal
predicates that acquire the desired task outcomes, such as
“fruit can on shelf” and “plate on table” in StoreObjects and
SetTable domains and “sausage in pot” and “cup is filled”
in CookMeal domain. The learned precondition predicates
acutely capture the essential task constraints, such as “fruit
can can only be picked up when there is nothing on its
top”, and “water can only be poured into a container”. These
well-learned predicates necessarily build the foundations for
learning good operators.

We conduct a case study on one training run in the Store-
Objects domain. Fig. 4 visualizes the process of learning
new predicates and operators (represented as red and blue
lines, respectively) while provided with intermittent language

Domain Test Set IM + Object [8] IM + Object IM + Object CaP [10] InterPreT (Ours)
+ Scene [8] + Scene + Precond [8]

StoreObjects Canonical 0.60 ˘ 0.00 0.90 ˘ 0.00 1.00 ˘̆̆ 0.00 1.00 ˘̆̆ 0.00 0.93 ˘ 0.12
More objects 0.30 ˘ 0.00 0.83 ˘ 0.06 1.00 ˘̆̆ 0.00 0.83 ˘ 0.15 0.90 ˘ 0.17
Novel goals 0.00 ˘ 0.00 0.87 ˘ 0.15 0.97 ˘ 0.06 0.53 ˘ 0.21 1.00 ˘̆̆ 0.00
Combined 0.00 ˘ 0.00 0.77 ˘ 0.06 0.87 ˘ 0.15 0.03 ˘ 0.06 1.00 ˘̆̆ 0.00

SetTable Canonical 0.80 ˘ 0.10 0.80 ˘ 0.10 1.00 ˘̆̆ 0.00 0.87 ˘ 0.06 1.00 ˘̆̆ 0.00
More objects 0.73 ˘ 0.06 0.83 ˘ 0.12 1.00 ˘̆̆ 0.00 0.73 ˘ 0.15 1.00 ˘̆̆ 0.00
Novel goals 0.00 ˘ 0.00 0.10 ˘ 0.10 0.53 ˘ 0.33 0.77 ˘̆̆ 0.25 0.53 ˘ 0.41
Combined 0.00 ˘ 0.00 0.03 ˘ 0.05 0.20 ˘ 0.16 0.33 ˘ 0.15 0.37 ˘̆̆ 0.45

CookMeal Canonical 0.90 ˘ 0.00 1.00 ˘̆̆ 0.00 1.00 ˘̆̆ 0.00 0.97 ˘ 0.06 0.97 ˘ 0.06
More objects 1.00 ˘ 0.00 1.00 ˘̆̆ 0.00 1.00 ˘̆̆ 0.00 0.93 ˘ 0.06 1.00 ˘̆̆ 0.00
Novel goals 0.97 ˘ 0.06 0.93 ˘ 0.06 1.00 ˘̆̆ 0.00 1.00 ˘̆̆ 0.00 1.00 ˘̆̆ 0.00
Combined 0.00 ˘ 0.00 0.23 ˘ 0.15 0.97 ˘̆̆ 0.06 0.77 ˘ 0.12 0.83 ˘ 0.12

Average success rate over Combined 0.00 0.34 0.68 0.38 0.73

TABLE II: Systematic evaluations of the methods on all test sets in simulated domains. We highlight our method in deep gray and
baselines that benefit from our learned predicates and/or operators in light grey. InterPreT achieves a 73% success rate in the most challenging
Combined test set, outperforming all baselines by a large margin.

feedback (indicated by light green bars). Note that feedback
less important for predicate learning, i.e., signaling task suc-
cess or feasible action, are omitted in the figure for clarity.
We observe that InterPreT is able to explore effectively and
acquire all predicates in 20 steps of interaction. Based on the
predicates learned, InterPreT sequentially learns four operators
that exhibit clear semantic meaning. Notably, it recovers two
operators pick_from_table and place_on_table for
the same primitive action place_up that is executed in
different contexts. As the robot blindly explores the domain
with inadequate knowledge and continuously proposes infea-
sible actions, dense language feedback is provided to explain
precondition violations in Steps 8-20. Once InterPreT captures
all action preconditions, the robot can freely navigate the
environment without human intervention. Fig. 4 shows that all
predicates and operators are properly initialized at Step 20 and
are further corrected and refined in subsequent interactions.

2) Evaluating planning and generalization: We systemati-
cally evaluate the planning performance of all methods on the
four test sets for each simulated domain. Table II presents the
full results, demonstrating the strong generalizability of Inter-
PreT when planning with a classical planner [18]. Note that
several baselines utilize predicates and operators learned with
InterPreT; their results are shown in light gray, while Inter-
PreT’s results are in dark gray. InterPreT achieves success rates
over 90% on most test sets. On the challenging Combined
test set, which requires strong compositional generalizabil-
ity, it attains an average success rate of 73%, substantially
outperforming IM variants (IM + Object, IM + Object + Scene,
and IM + Object + Scene + Precond) by 73%, 39%, and 5%,
respectively, and the CaP baseline by 35%.

We find the predicates and operators learned with InterPreT
enable significantly improved generalization in planning, by
providing meaningful relational abstractions and explicit tran-
sition modeling. The naive IM variant (IM + Object) struggles
to generalize with only textualized state descriptions, solv-

ing 0% of Combined tasks. However, augmenting states
with predicates learned by InterPreT (IM + Object + Scene)
boosts the success rate on Combined tasks from 0% to
34%. Further ensuring action validity using learned operators
(IM + Object + Scene + Precond) rivals InterPreT at 68% aver-
age success. This hybrid approach benefits from combining
world knowledge in the LLM with validity guarantees from
operators. However, we observe that it sometimes fails to
reach the goal within the maximum number of steps due to
frequent replanning. In contrast, InterPreT perform explicit
PDDL planning with learned predicates and operators, and
thus can generate optimal long-sequence plans with guarantee.

We demonstrate the importance of learning from language
feedback by comparing InterPreT with CaP, a baseline that
generates predicate functions for precondition checks and
composes policies for long-horizon planning, but without
leveraging language feedback. Although CaP can generate
policy code with correct logic based on in-context examples, it
occasionally fails to generate accurate predicate functions due
to the lack of language supervision. This limitation becomes
evident in CaP’s poor performance on Combined tasks in
the StoreObjects and SetTable domains, which require precise
predicate understanding for successful long-horizon planning.
The superior performance of InterPreT in these challenging
scenarios highlights the significant benefits of incorporating
natural language supervision compared to CaP.

Furthermore, we explore the transferability of learned pred-
icates to facilitate learning and planning in new domains.
We investigate the unsatisfactory performance of InterPreT in
the SetTable domain, and find that simultaneously learning
predicates related to pick-and-place and push actions poses
a significant challenge. To address this issue, we bootstrap
the learning process with predicates acquired from simpler
domains. Table III demonstrates that initializing InterPreT
with predicates learned in the StoreObjects domain leads to
near-perfect learning in the SetTable domain, achieving 100%

From scratch Bootstrapped

Canonical 1.00 ˘̆̆ 0.00 1.00 ˘̆̆ 0.00
More objects 1.00 ˘̆̆ 0.00 1.00 ˘̆̆ 0.00
Novel goals 0.53 ˘ 0.41 1.00 ˘̆̆ 0.00
Combined 0.37 ˘ 0.45 1.00 ˘̆̆ 0.00

TABLE III: Bootstrapping predicate learning from previously
learned predicates in similar domains. Reusing predicates learned
in StoreObjects leads to near-perfect predicate learning in SetTable.
The transfer of predicates is natural as all predicate functions utilize
the same Perception API functions.

��������������������������
�����
	 ����������������������������
	

Fig. 5: Real-robot evaluations in real-world StoreObjects and
SetTable domains. We train InterPreT once on 10 tasks and test
on 5 tasks per test set. Note that the predicate learning in SetTable
is bootstrapped from predicates learned in StoreObjects.

success across all test sets. This finding highlights the potential
for reusing previously learned predicates to enhance learning
efficiency and planning performance in complex domains.

3) Real-robot results: We evaluate InterPreT in the real-
world StoreObjects and SetTable domains, compared to the
vanilla IM + Object baseline [8]. We train InterPreT on 10
training tasks while a human user provides language feedback
with a keyboard. We then test all methods on 5 test tasks
per test set, with the success rates shown in Fig. 5. In the
SetTable domain, we directly bootstrap the learning with pred-
icates learned from StoreObjects, as the simulated results have
already demonstrated the difficulty of learning from scratch in
SetTable. The results indicate that InterPreT can effectively
capture symbolic constraints and regularities in real-world
settings where perception and execution uncertainties present.
In contrast, the baseline struggles to generalize to novel task
goals, highlighting the importance of the learned predicates
and operators. We observe a severe performance drop for
InterPreT in the StoreObjects domain under the Combined
and Novel goals settings. We find that this is attributed
to the increased occurrence of primitive action execution
failures as the task horizon extends. Despite this, InterPreT still
outperforms the baseline by a significant margin, achieving
success rates of 60% and 20% in the Novel goals and
Combined settings, respectively.

C. Additional Analysis and Discussions

1) Runtime Analysis: To gain insights into the compu-
tational efficiency of InterPreT, we measure its runtime in
the simulated domains and provide a breakdown by stage in

Stage Run time / Iteration

Median Min Max

Training Learn predicates 2.94 s 1.05 s 23.32 s
Learn operators 32 ms 1 ms 97 ms

Testing Translate goal 1.60 s 0.91 s 5.53 s
Plan with PDDL 99 ms 75 ms 130 ms

TABLE IV: Run time breakdown of InterPreT at different
training and testing stages. We show the median, minimum, and
maximum values as the statistics are not normally distributed.

Domain #LLM Calls #Transitions #Feedback

StoreObjects 22{31{23 54{75{90 17{26{18
SetTable 38{38{62 41{39{67 31{30{55
CookMeal 32{29{46 62{34{48 23{22{38

TABLE V: Number of LLM calls (#LLM Calls), successful state
transitions collected (#Transitions), and language feedback provided
(#Feedback) across the three runs in each domain.

Table IV. Due to the variability in runtime across different
iterations, we report the median, minimum, and maximum
values for a comprehensive overview. The results reveal that
the GPT-4-powered predicate learning and goal translation
stages constitute the primary computational bottleneck. This
is expected as calling the GPT-4 API involves a relatively
long waiting time, which is also significantly influenced by
the quality of the Internet connection. However, we anticipate
that response time will cease to be a limiting factor for LLMs
in the near future, given the rapid advancements in the field.

We also present other relevant statistics in Table V, in-
cluding the number of LLM calls, successful state transitions
collected, and the amount of human feedback provided across
three training runs for each domain. While these values exhibit
considerable variation due to the inherent randomness in ex-
ploration and LLM outputs, InterPreT demonstrates the ability
to recover a PDDL domain from a relatively small number
of language feedback and interaction data. This highlights
the sample efficiency of our approach, which is crucial for
practical applications where extensive human feedback and
interaction may be costly or time-consuming to obtain.

2) Robustness to varied language feedback: Natural lan-
guage feedback from non-expert human users can be varied,
with the same predicate being referred to in different ways. We
evaluate the robustness of InterPreT to such varied feedback
in the simulated StoreObjects domain by synthesizing diverse
feedback templates. Using ChatGPT [68], we generate 3
alternatives for each possible feedback, which are randomly
sampled during each training step. We conduct three training
runs with this varied feedback and perform both qualitative
and quantitative evaluations.

Table VI presents the predicates learned across the three
runs, demonstrating that InterPreT robustly captures the essen-
tial goal and precondition predicates. As the goal specifications
are generally consistent, InterPreT learns goal predicates with
the same names in all runs. Despite the varied explanations of

Run1 Run2 Run3

Goal Predicates obj_on_obj(a, b),
obj_on_table(a)

obj_on_obj(a, b),
obj_on_table(a)

obj_on_obj(a, b),
obj_on_table(a)

Precondition Predicates
obj_small_enough(a),

obj_clear(a),
gripper_empty()

obj_size_ok_for_gripper(a),
no_obj_on_top(a),

hand_empty()

obj_small_enough_for_gripper(a),
obj_free_of_objects(a),

gripper_empty()

TABLE VI: Learned predicates across three training runs with varied language feedback for the simulated StoreObjects domain.

Run1 Run2 Run3

Canonical 1.00 1.00 1.00
More objects 1.00 1.00 1.00
Novel goals 1.00 1.00 1.00
Combined 1.00 1.00 1.00

TABLE VII: Evaluating InterPreT trained with varied language
feedback for the simulated StoreObjects domain. We report the
results of all three training runs.

precondition violations, InterPreT learns precondition predi-
cates with different names but consistent semantics. Table VII
shows that the predicates and operators learned from the
varied feedback yield robust planning in all test sets. These
results demonstrate InterPreT’s robustness to diverse language
feedback, highlighting its ability to capture the underlying
semantics despite variations in the feedback provided.

VI. CONCLUSIONS AND LIMITATIONS

We present InterPreT, an interactive framework that enables
robots to learn symbolic predicates and operators from lan-
guage feedback during embodied interaction. InterPreT learns
predicates as Python functions leveraging the capabilities of
LLMs like GPT-4. It allows iterative correction of these
learned predicate functions based on human feedback to
capture the core knowledge for planning. The predicates and
operators learned by InterPreT can be compiled on the fly
as a PDDL domain, which enables effective task planning
with a formal guarantee with a PDDL planner. Our results
demonstrate that InterPreT can effectively acquire meaningful
planning-oriented predicates, which allows learning operators
to generalize to novel test tasks. In simulated domains, it
achieves a 73% success rate on the most challenging test set
that requires generalizability to more objects and novel task
goals. We also show InterPreT can be applied in real-robot
tasks. These findings validate our hypothesis that human-like
planning proficiency requires interactive learning from rich
language input, akin to infant development.

While showing promise, InterPreT has several limitations
that we would like to acknowledge. First, the generalizable
planning capability of InterPreT is realized by the learned
symbolic operators. This introduces the assumption that the
underlying domain can be well modeled at a symbolic level.
This is generally not exact, as the physical world is inherently
continuous. A promising future direction is to extend InterPreT
into the setup of Task and Motion Planning (TAMP) [69],
which considers both symbolic understanding and continuous

interactions. Also, the operators learned by InterPreT are
deterministic, which falls short of capturing the uncertainty
in state transitions. This issue can be mitigated by learning
operators with probabilistic effects [22, 26].

REFERENCES

[1] Yifeng Zhu, Jonathan Tremblay, Stan Birchfield, and
Yuke Zhu. Hierarchical planning for long-horizon ma-
nipulation with geometric and symbolic scene graphs.
In International Conference on Robotics and Automation
(ICRA), pages 6541–6548. IEEE, 2021.

[2] Danfei Xu, Roberto Martı́n-Martı́n, De-An Huang, Yuke
Zhu, Silvio Savarese, and Li F Fei-Fei. Regression
planning networks. Advances in Neural Information
Processing Systems (NeurIPS), 32, 2019.

[3] Zeyu Zhang, Muzhi Han, Baoxiong Jia, Ziyuan Jiao,
Yixin Zhu, Song-Chun Zhu, and Hangxin Liu. Learning
a causal transition model for object cutting. In Inter-
national Conference on Intelligent Robots and Systems
(IROS), pages 1996–2003. IEEE, 2023.

[4] Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clin-
ton Wang, Linxi Fan, Tao Chen, De-An Huang, Ekin
Akyürek, Anima Anandkumar, et al. Pre-trained lan-
guage models for interactive decision-making. Advances
in Neural Information Processing Systems (NeurIPS),
35:31199–31212, 2022.

[5] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. In
International Conference on Machine Learning (ICML),
pages 9118–9147. PMLR, 2022.

[6] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, and Zhifang
Sui. A survey for in-context learning. arXiv preprint
arXiv:2301.00234, 2022.

[7] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-
man, et al. Do as i can, not as i say: Grounding language
in robotic affordances. arXiv preprint arXiv:2204.01691,
2022.

[8] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, et al. Inner monologue:
Embodied reasoning through planning with language
models. arXiv preprint arXiv:2207.05608, 2022.

[9] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse
Thomason, and Animesh Garg. Progprompt: Generating
situated robot task plans using large language models.
In International Conference on Robotics and Automation
(ICRA), pages 11523–11530. IEEE, 2023.

[10] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy Zeng.
Code as policies: Language model programs for embod-
ied control. In International Conference on Robotics and
Automation (ICRA), pages 9493–9500. IEEE, 2023.

[11] Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi
Zhang, Joydeep Biswas, and Peter Stone. Llm+ p: Em-
powering large language models with optimal planning
proficiency. arXiv preprint arXiv:2304.11477, 2023.

[12] Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. Large language models still
can’t plan (a benchmark for llms on planning and rea-
soning about change). arXiv preprint arXiv:2206.10498,
2022.

[13] Tom Silver, Varun Hariprasad, Reece S Shuttleworth,
Nishanth Kumar, Tomás Lozano-Pérez, and Leslie Pack
Kaelbling. Pddl planning with pretrained large language
models. In NeurIPS 2022 Foundation Models for Deci-
sion Making Workshop, 2022.

[14] Steven M LaValle. Planning algorithms. Cambridge
university press, 2006.

[15] Stuart J Russell. Artificial intelligence a modern ap-
proach. Pearson Education, Inc., 2010.

[16] Richard E Fikes and Nils J Nilsson. Strips: A new ap-
proach to the application of theorem proving to problem
solving. Artificial intelligence, 2(3-4):189–208, 1971.

[17] Maria Fox and Derek Long. Pddl2. 1: An extension to
pddl for expressing temporal planning domains. Journal
of Artificial Intelligence Research, 20:61–124, 2003.

[18] Malte Helmert. The fast downward planning system.
Journal of Artificial Intelligence Research, 26:191–246,
2006.

[19] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hi-
erarchical task and motion planning in the now. In
International Conference on Robotics and Automation
(ICRA), pages 1470–1477. IEEE, 2011.

[20] Marc Toussaint. Logic-geometric programming: An
optimization-based approach to combined task and mo-
tion planning. In International Joint Conference on
Artificial Intelligence (IJCAI), pages 1930–1936, 2015.

[21] Caelan Reed Garrett, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. Pddlstream: Integrating symbolic
planners and blackbox samplers via optimistic adaptive
planning. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 30,
pages 440–448, 2020.

[22] George Konidaris, Leslie Pack Kaelbling, and Tomas
Lozano-Perez. From skills to symbols: Learning sym-
bolic representations for abstract high-level planning.
Journal of Machine Learning Research (JMLR), 61:215–

289, 2018.
[23] Steven James, Benjamin Rosman, and George Konidaris.

Autonomous learning of object-centric abstractions for
high-level planning. In International Conference on
Learning Representations (ICLR), 2021.

[24] João Loula, Tom Silver, Kelsey R Allen, and Josh
Tenenbaum. Discovering a symbolic planning language
from continuous experience. In Annual Meeting of the
Cognitive Science Society (CogSci), page 2193, 2019.

[25] Tom Silver, Rohan Chitnis, Nishanth Kumar, Willie
McClinton, Tomás Lozano-Pérez, Leslie Kaelbling, and
Joshua B Tenenbaum. Predicate invention for bilevel
planning. In AAAI Conference on Artificial Intelligence
(AAAI), volume 37, pages 12120–12129, 2023.

[26] Alper Ahmetoglu, M Yunus Seker, Justus Piater, Erhan
Oztop, and Emre Ugur. Deepsym: Deep symbol gener-
ation and rule learning for planning from unsupervised
robot interaction. Journal of Artificial Intelligence Re-
search, 75:709–745, 2022.

[27] Jean M Mandler. How to build a baby: Ii. conceptual
primitives. Psychological review, 99(4):587, 1992.

[28] Tilbe Göksun, Kathy Hirsh-Pasek, and Roberta Mich-
nick Golinkoff. Trading spaces: Carving up events
for learning language. Perspectives on Psychological
Science, 5(1):33–42, 2010.

[29] Yecheng Jason Ma, William Liang, Guanzhi Wang, De-
An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu,
Linxi Fan, and Anima Anandkumar. Eureka: Human-
level reward design via coding large language models.
arXiv preprint arXiv:2310.12931, 2023.

[30] Huihan Liu, Alice Chen, Yuke Zhu, Adith Swaminathan,
Andrey Kolobov, and Ching-An Cheng. Interactive
robot learning from verbal correction. arXiv preprint
arXiv:2310.17555, 2023.

[31] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. A survey of
large language models. arXiv preprint arXiv:2303.18223,
2023.

[32] OpenAI. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[33] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners. Advances in Neural
Information Processing Systems (NeurIPS), 35:22199–
22213, 2022.

[34] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models.
In International Conference on Learning Representations
(ICLR), 2022.

[35] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

[36] Tom Silver, Rohan Chitnis, Joshua Tenenbaum,
Leslie Pack Kaelbling, and Tomás Lozano-Pérez.
Learning symbolic operators for task and motion
planning. In International Conference on Intelligent
Robots and Systems (IROS), pages 3182–3189. IEEE,
2021.

[37] Hanna M Pasula, Luke S Zettlemoyer, and Leslie Pack
Kaelbling. Learning symbolic models of stochastic
domains. Journal of Artificial Intelligence Research,
29:309–352, 2007.

[38] Nikolay Jetchev, Tobias Lang, and Marc Toussaint.
Learning grounded relational symbols from continuous
data for abstract reasoning. In Proceedings of the 2013
ICRA Workshop on Autonomous Learning, 2013.

[39] Emre Ugur and Justus Piater. Bottom-up learning of
object categories, action effects and logical rules: From
continuous manipulative exploration to symbolic plan-
ning. In International Conference on Robotics and
Automation (ICRA), pages 2627–2633. IEEE, 2015.

[40] Eric Rosen, Steven James, Sergio Orozco, Vedant Gupta,
Max Merlin, Stefanie Tellex, and George Konidaris.
Synthesizing navigation abstractions for planning with
portable manipulation skills. In Conference on Robot
Learning (CoRL), pages 2278–2287. PMLR, 2023.

[41] Aidan Curtis, Tom Silver, Joshua B Tenenbaum, Tomás
Lozano-Pérez, and Leslie Kaelbling. Discovering state
and action abstractions for generalized task and motion
planning. In AAAI Conference on Artificial Intelligence
(AAAI), volume 36, pages 5377–5384, 2022.

[42] Elena Umili, Emanuele Antonioni, Francesco Riccio,
Roberto Capobianco, Daniele Nardi, and Giuseppe
De Giacomo. Learning a symbolic planning domain
through the interaction with continuous environments. In
ICAPS PRL Workshop, 2021.

[43] Masataro Asai. Unsupervised grounding of plannable
first-order logic representation from images. In Pro-
ceedings of the International Conference on Automated
Planning and Scheduling, volume 29, pages 583–591,
2019.

[44] Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-
Fei. Scene graph generation by iterative message passing.
In Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 5410–5419, 2017.

[45] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B
Tenenbaum, and Jiajun Wu. The neuro-symbolic concept
learner: Interpreting scenes, words, and sentences from
natural supervision. arXiv preprint arXiv:1904.12584,
2019.

[46] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis
Kalantidis, Li-Jia Li, David A Shamma, et al. Visual
genome: Connecting language and vision using crowd-
sourced dense image annotations. International Journal
of Computer Vision (IJCV), 123:32–73, 2017.

[47] Xiaohan Zhang, Yan Ding, Saeid Amiri, Hao Yang, Andy
Kaminski, Chad Esselink, and Shiqi Zhang. Grounding

classical task planners via vision-language models. arXiv
preprint arXiv:2304.08587, 2023.

[48] Amita Kamath, Jack Hessel, and Kai-Wei Chang.
What’s” up” with vision-language models? investigating
their struggle with spatial reasoning. arXiv preprint
arXiv:2310.19785, 2023.

[49] Yanjiang Guo, Yen-Jen Wang, Lihan Zha, Zheyuan Jiang,
and Jianyu Chen. Doremi: Grounding language model by
detecting and recovering from plan-execution misalign-
ment. arXiv preprint arXiv:2307.00329, 2023.

[50] Andreea Bobu, Chris Paxton, Wei Yang, Balakumar
Sundaralingam, Yu-Wei Chao, Maya Cakmak, and Dieter
Fox. Learning perceptual concepts by bootstrapping from
human queries. IEEE Robotics and Automation Letters
(RA-L), 7(4):11260–11267, 2022.

[51] Amber Li and Tom Silver. Embodied active learning of
relational state abstractions for bilevel planning. In Con-
ference on Lifelong Learning Agents (CoLLAs), 2023.

[52] Toki Migimatsu and Jeannette Bohg. Grounding pred-
icates through actions. In International Conference
on Robotics and Automation (ICRA), pages 3498–3504.
IEEE, 2022.

[53] Jiayuan Mao, Tomás Lozano-Pérez, Josh Tenenbaum,
and Leslie Kaelbling. Pdsketch: Integrated domain pro-
gramming, learning, and planning. Advances in Neural
Information Processing Systems (NeurIPS), 35:36972–
36984, 2022.

[54] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. Advances
in Neural Information Processing Systems (NeurIPS),
33:1877–1901, 2020.

[55] Noah Shinn, Federico Cassano, Edward Berman, Ashwin
Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflex-
ion: Language agents with verbal reinforcement learning,
2023.

[56] Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jin-
bing Hou, Bowei Zhang, Haowei Lin, Zhaofeng He,
Zilong Zheng, Yaodong Yang, et al. Jarvis-1: Open-world
multi-task agents with memory-augmented multimodal
language models. arXiv preprint arXiv:2311.05997,
2023.

[57] Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M Sadler, Wei-Lun Chao, and Yu Su. Llm-planner:
Few-shot grounded planning for embodied agents with
large language models. In International Conference on
Computer Vision (ICCV), pages 2998–3009, 2023.

[58] Zhenyu Wu, Ziwei Wang, Xiuwei Xu, Jiwen Lu, and
Haibin Yan. Embodied task planning with large language
models. arXiv preprint arXiv:2307.01848, 2023.

[59] Yuqing Du, Ksenia Konyushkova, Misha Denil, Akhil
Raju, Jessica Landon, Felix Hill, Nando de Freitas,
and Serkan Cabi. Vision-language models as success
detectors. arXiv preprint arXiv:2303.07280, 2023.

[60] Shu Wang, Muzhi Han, Ziyuan Jiao, Zeyu Zhang,

Ying Nian Wu, Song-Chun Zhu, and Hangxin Liu.
Llm3:large language model-based task and motion plan-
ning with motion failure reasoning. arXiv preprint
arXiv:2403.11552, 2024.

[61] Peiyuan Zhi, Zhiyuan Zhang, Muzhi Han, Zeyu Zhang,
Zhitian Li, Ziyuan Jiao, Baoxiong Jia, and Siyuan Huang.
Closed-loop open-vocabulary mobile manipulation with
gpt-4v. arXiv preprint arXiv:2404.10220, 2024.

[62] Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong,
and Harold Soh. Translating natural language to plan-
ning goals with large-language models. arXiv preprint
arXiv:2302.05128, 2023.

[63] Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kir-
mani, Kuang-Huei Lee, Montse Gonzalez Arenas, Hao-
Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan
Humplik, et al. Language to rewards for robotic skill
synthesis. arXiv preprint arXiv:2306.08647, 2023.

[64] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar,
Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima Anand-
kumar. Voyager: An open-ended embodied agent with
large language models. arXiv preprint arXiv:2305.16291,
2023.

[65] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. Chain-of-thought prompting elicits reasoning in
large language models. Advances in Neural Information
Processing Systems (NeurIPS), 35:24824–24837, 2022.

[66] Zi Wang, Caelan Reed Garrett, Leslie Pack Kaelbling,
and Tomás Lozano-Pérez. Active model learning and
diverse action sampling for task and motion planning.
In International Conference on Intelligent Robots and
Systems (IROS), pages 4107–4114. IEEE, 2018.

[67] Naresh Gupta, Dana S Nau, et al. Complexity results for
blocks-world planning. In AAAI Conference on Artificial
Intelligence (AAAI), volume 91, pages 629–633. Citeseer,
1991.

[68] OpenAI. Chatgpt. https://chat.openai.com/.
[69] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay,

Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling, and
Tomás Lozano-Pérez. Integrated task and motion plan-
ning. Annual review of control, robotics, and autonomous
systems, 4:265–293, 2021.

[70] Nishanth Kumar, Willie McClinton, Rohan Chitnis, Tom
Silver, Tomás Lozano-Pérez, and Leslie Pack Kaelbling.
Learning efficient abstract planning models that choose
what to predict. In Conference on Robot Learning
(CoRL), pages 2070–2095. PMLR, 2023.

[71] Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kun-
chang Li, He Cao, Jiayu Chen, Xinyu Huang, Yukang
Chen, Feng Yan, et al. Grounded sam: Assembling open-
world models for diverse visual tasks. arXiv preprint
arXiv:2401.14159, 2024.

[72] Yifeng Zhu, Abhishek Joshi, Peter Stone, and Yuke
Zhu. Viola: Imitation learning for vision-based ma-
nipulation with object proposal priors. arXiv preprint
arXiv:2210.11339, 2022.

https://chat.openai.com/

APPENDIX A
IMPLEMENTATION DETAILS

A.I Operator Learning

With a set of known predicates, operator learning from interaction data has been studied in Task and Motion Planning
(TAMP) [36, 41, 70]. In this work, we implement a vairant of the Cluster-and-search operator learning algorithm [36] to learn
deterministic operators Ω from: (1) collected symbolic state transitions Ds “ tpspre, a, spostqu (where actions are successfully
executed) and (2) action preconditions summarized from language feedback tCONau. Note that the symbolic transitions are
pre-calculated by parsing the raw states opre and opost with the learned predicates Ψ. We briefly describe how this algorithm
works below.

Our operator learning algorithm aims to explain as many transitions in Ds with the learned operators Ω, while preserving
the known action preconditions tCONau in Ω. Formally, an operator ω is parameterized by a list of object variables PAR,
while the lifted action a, precondition and effect sets CON, EFF` and EFF´ are defined with respect to PAR. A symbolic
transition pspre, a, spostq is explained by an operator ω when there exists an assignment from PAR to specific objects in the
scene, so that the grounded sets follow CON P spre, EFF´

“ pspre ´ spostq and EFF`
“ pspost ´ spreq. We learn Ω to

maximize the number of symbolic transitions explained while subject to the constraints below: (i) Each symbolic transition
can be explained by at most one operator; (ii) No two operators have the same precondition sets but different effects; (iii)
All operators corresponding to primitive action a must have tCONau in their preconditions; (iv) All operators keep a minimal
set of preconditions as possible. In practice, learning such a set of operators can be achieved in two steps following [36]: (i)
initialize operators by clustering symbolic transitions by their lifted effects and preconditions, and (ii) searching for the final
operators with minimal precondition set by keeping removing lifted preconditions and merging the initialized operators. We
refer the readers to the original paper for more details.

A.2 Real-robot Setup

We conduct real-robot experiments on a 7-Dof Franka Panda robot arm, where a table-mounted Kinect Azure camera provides
RGB-D workspace observations.

Perception APIs: We implement a set of perception APIs to retrieve the semantic and geometric information of detected
objects. We detect and segment tabletop objects with Grounded-SAM [71], and use the object masks to crop the observed
depth map to obtain object point clouds. Then we can estimate the geometric information, e.g., 3D object bounding boxes,
based on the object point clouds. To , we use higher thresholds for detection and classification, The full list of implemented
perception APIs can be found in Appendix B.2.

Primitive Actions: We implement heuristic-based action primitives to physically pick, place, and push objects with the
robot arm. We utilize the Deoxys [72] library for low-level control.

Handling Perception Uncertainty: To enable robust predicate learning, we also implement various strategies to handle
real-world perception errors. We observe two types of errors that could happen: (i) misdetected or misclassified objects, and
(ii) inaccurately estimated 3D object bounding boxes due to noisy depth maps and occlusions. Our strategies include:

‚ Increase detection and classification thresholds to avoid false positives. We skip the predicate learning step when a task-
relevant object is not detected.

‚ Filter out noisy outliers for point clouds to improve 3D object bounding box accuracy.
‚ Prompt GPT-4 to generate predicate functions that handle uncertainties. For example, testing equality between x and b is

represented as |x´ y| ă tol, where tol is a constant tolerance that is estimated and refined during iterative correction.
‚ Iteratively refine existing predicate functions to correct errors by prompting as the robot interacts with the environment

and receives new observations and feedback.

A.3 Varied Feedback Experiment Setup

In the varied feedback experiment, we synthesize three alternatives for each language feedback template with ChatGPT [68],
which are used to evaluate the robustness of InterPreT against varied language. We present the synthesized feedback templates
for the StoreObjects domain as below.

‚ Explain infeasible action
– Precondition 1: you can’t execute pick_up(a) because
˚ the gripper is already occupied
˚ the gripper already held an object
˚ the gripper has an object in hand and can’t pick up more objects

– Precondition 2: you can’t execute pick_up(a) because
˚ there is something on a

˚ object a has another object on its top
˚ there is another object on object a so you can’t pick it up

– Precondition 3: you can’t execute pick_up(a) because
˚ a can not be grasped by the gripper as it is too wide
˚ object a is too large for the gripper to pick up
˚ you can’t pick up object a because it is too large

– Precondition 4: you can’t execute place_on_table(a) because
˚ object a is not held by the gripper
˚ object the gripper does not hold object a
˚ object a is not in the gripper

– Precondition 5: you can’t execute place_first_on_second(a,b) because
˚ object a is not held by the gripper
˚ object the gripper does not hold object a
˚ object a is not in the gripper

– Precondition 6: you can’t execute place_first_on_second(a,b) because
˚ there is something on b
˚ object b has another object on its top
˚ there is another object on object b so you can’t pick it up

‚ Explain unsatisfied goal conditions
– You haven’t achieved the goal because
˚ object a is not yet on b
˚ object a has not been put on object b
˚ you haven’t put object a on object b

– You haven’t achieved the goal because
˚ object a is not on table
˚ object a is not yet on table
˚ you haven’t put object a on table

APPENDIX B
FULL PROMPT TEMPLATES

B.1 Reasoner

We present the prompt templates of Reasoner for different types of language feedback below.
1) Specify goal:

You are a helpful assistant that converts natural language goals into symbolic goals, by
proposing necessary predicates to learn. A predicate is a function that takes objects as
arguments and outputs True or False. Please reason about predicates that directly reflect the
goals, and only include these predicates in the symbolic goal. Please try to reuse available
predicates to avoid redundant predicates. When give the symbolic goal, only include the
symbolic literals that are directly mentioned in the goal text. The literals only take
available objects as arguments (not "table", "any", or other variables). Do not infer or
guess on what other literals should be in the goal. If you can’t come up with goal literals
given the above constraints, think about inventing new predicates. Other known environment
entities include "table" and "gripper", so you can invent predicates such as "in_gripper",
"under_table", etc.
Note that the predicates in the given example are unknown to you.

Example:
Available objects: [’plate’]
Available predicates: {’obj_in_sink(a)’: ’check whether object a is in sink or not’}
Goal: Wash the plate and move it out of the sink.
Output:
{

"Reasoning": "The goal directly captures two symbolic literals, obj_washed(plate) and
obj_in_sink(plate). As predicate obj_in_sink(a) is available, we only need to invent
predicate obj_washed(a).",

"Invented predicates": {
"obj_washed(a)": "check whether object a is washed or not"

},
"Symbolic goal": {

"obj_washed(plate)": true,
"obj_in_sink(plate)": false

}
}

{domain_desc}
Available objects: {entities}
Available predicates: {predicates}
Goal: {goal_spec}
Please give the output following the format in the examples, and make sure to include all
fields of the json in your outputs.
Output (please don’t output ‘‘‘json):

2) Explain unsatisfied goal:

You are a helpful assistant that translates human explanations of the current state into
symbolic literals, using the available predicates. The human explanations are about why the
goal is not achieved in the current state.

Example:
Available objects: [’cup’, ’block’, ’plate’]
Available predicates: {’holding(x)’: ’check whether the gripper is holding x or not’,
’in_sink(x)’: ’check whether x is in sink or not’}
Human explanation: The cup is not in the sink, and it is held by the gripper.
Output:
{

"Current state": {
"holding(cup)": true,
"in_sink(cup)": false

}
}

{domain_desc}
Available objects: {entities}
Available predicates: {predicates}
Human explanation: {human_explain}
Output (please don’t output ‘‘‘json):

3) Explain infeasible action:

You are a helpful assistant that invents predicates to describe action preconditions, based
on human explanations of why an action is infeasible. A predicate is a function that takes
objects as arguments and outputs True or False. A literal (or an atom) grounds a predicate on
available objects (but not "table", "any", or other variables).
Please generate output step-by-step:
1. Reasoning: Based on the human explanation, reason about the current state and the
preconditions of executing the action. Then invent predicates that directly represent the
action preconditions. The predicates can only take in object variables as inputs, but not
environment-related entities such as "gripper", "robot", or vague entities such as "any
object". Predicates can have empty arguments. Please try to reuse available predicates to
avoid inventing redundant predicates.
2. Invented predicates: Based on the reasoning in Step 1, list the invented predicates and
their explanations. Make sure to include as detailed explanations as possible according to
the human explanation. The predicates only take object variables as arguments (not numerical
variables).
3. New action preconditions: Based on the reasoning in Step 1, give the new preconditions of
the action that take lifted variables such as "a", "b" as arguments. Please do not include
other preconditions that are not mentioned in the human explanation.
4. Current state literals: Based on the explanation and reasoning in Step 1, give the curent
state literals mentioned in the human explanation, using the invented and existing
predicates. Please do not include other literals that are not mentioned in the human
explanation. If you are not sure about whether to include a literal, don’t include it.

Note that the predicates in the given example are unknown to you.

Example:
Available objects: [’cup’, ’plate’]
Available predicates: {}
Infeasible action: wash(plate)
Human explanation: You can’t wash plate because the robot is far away from the plate, the
robot needs to be within 1m from the plate to wash it; also, the robot has something else in
hand.
Output:
{

"1. Reasoning": "Based on human explanation, we know the robot is farther than 1m from
the plate, and it has something else in hand, so it can’t to wash the plate. The
precondition of action wash(plate) is that the robot is close enough (smaller than 1m) to
the plate, and its hand is empty. Given the available predicates, none of them can
directly represent the precondition; so we invent predicate obj_close_enough(a) to check
whether object a is close enough, and predicate hand_empty() to check whether robot has
its hand free. Then the current literal follows obj_close_enough(plate) is false and
hand_empty() is false, and the action precondition is obj_close_enough(plate) is true and
hand_empty() is true."
"2. Invented predicates": {

"obj_close_enough(a)": "check whether object a is close enough to the robot, the
predicate holds when the distance between robot and object is smaller that 1m",
"hand_empty()": "check whether the robot has its hand free, the predicate holds when
the robot is not holding anything"

},
"3. New action preconditions": {

"action": "wash(a)",
"new preconditions": {

"obj_close_enough(a)": true,
"hand_empty()": true

}
},
"4. Current state literals": {

"obj_close_enough(plate)": false,
"hand_empty()": false

}
}

{domain_desc}
Available objects: {entities}
Available predicates: {predicates}
Infeasible action: {failed_action}
Human explanation: {failure_explain}
Please give the output following the format in the examples, and make sure to include all
fields of the json in your outputs.
Output (please don’t output ‘‘‘json):

B.2 Coder

1) Main template:

You are a helpful assistant that writes python functions to ground the given predicates. A
set of perception API functions are available to provide the basic perception information.
You can write extra utility functions that can be used in your predicate functions. You can
also introduce new dependent predicates when necessary, but please keep the set of predicates
as compact as possible. Note that some predicates may depend on each other; so you can reuse
predicate functions in other predicates to avoid writing duplicate code.
{domain_desc} Please find the available API functions, and examples of utility and predicate
functions below.

{known_functions}

The observation is: {observation}

Now you are asked to ground the predicates below: {new_predicates}
Please put "# <predicate>" and "# <end-of-predicate>", "# <utility>" and "# <end-of-utility>"
at the beginning and end of each predicate function and utility function. Remember to include
description surrounded with "<<", ">>" for predicates.

2) Code example for simulated domains:

import numpy as np
from typing import *
from predicate_learning.predicate_gym.perception_api import (

get_detected_object_list,
get_object_xy_position,
get_object_xy_size,
get_object_category,
get_object_water_amount,
get_gripper_position,
get_gripper_open_width,
get_in_gripper_mass,
get_gripper_y_size,
get_gripper_max_open_width,
get_table_x_range,
get_table_y_height,

)

eps = 0.2

Utility functions:
<utility>
def get_object_xy_bbox(a) -> np.ndarray:

"""
Get the xyxy bounding box of object a
:param a: string, name of detected object
:return: np.ndarray, [x1, y1, x2, y2], where x1 is left, x2 is right, y1 is bottom, y2 is top
"""
object_a_position = get_object_xy_position(a)
object_a_size = get_object_xy_size(a)
return [

object_a_position[0] - object_a_size[0] / 2,
object_a_position[1] - object_a_size[1] / 2,
object_a_position[0] + object_a_size[0] / 2,
object_a_position[1] + object_a_size[1] / 2,

]
<end-of-utility>

<utility>
def get_in_gripper_xy_bbox() -> np.ndarray:

"""
Get the xyxy bounding box of space within the gripper
:param a: string, name of detected object
:return: np.ndarray, [x1, y1, x2, y2], where x1 is left, x2 is right, y1 is bottom, y2 is top
"""
gripper_position = get_gripper_position()
gripper_open_width = get_gripper_open_width()
gripper_y_size = get_gripper_y_size()
return [

gripper_position[0] - gripper_open_width / 2,
gripper_position[1] - gripper_y_size / 2,
gripper_position[0] + gripper_open_width / 2,
gripper_position[1] + gripper_y_size / 2,

]
<end-of-utility>

Predicates:
<predicate>
def obj_in_gripper(a) -> bool:

"""
Description: <<whether object a is held by the gripper>>
The predicate holds True when the mass in gripper is non-zero, object a is aligned with the opened
gripper along x axis, and overlaps with the gripper along y axis

:param a: string, name of detected object
:return: bool
"""
get in gripper mass
in_gripper_mass = get_in_gripper_mass()
get in_gripper xyxy bbox
in_gripper_xyxy_bbox = get_in_gripper_xy_bbox()

get bbox_xyxy of object a
object_a_xyxy_bbox = get_object_xy_bbox(a)

check whether the mass in gripper is non-zero
in_gripper_mass > eps
if in_gripper_mass > eps:

check whether the object a is aligned with the gripper along x axis
abs(a.x1 - gripper.x1) < eps and abs(a.x2 - gripper.x2) < eps
if (

np.abs(object_a_xyxy_bbox[0] - in_gripper_xyxy_bbox[0]) < eps
and np.abs(object_a_xyxy_bbox[2] - in_gripper_xyxy_bbox[2]) < eps

):
check whether the object a overlaps with the gripper along y axis
a.y1 < gripper.y2 + eps and a.y2 > gripper.y1 - eps
if (

object_a_xyxy_bbox[1] < in_gripper_xyxy_bbox[3] + eps
and object_a_xyxy_bbox[3] > in_gripper_xyxy_bbox[1] - eps

):
return True

else:
return False

else:
return False

else:
return False

<end-of-predicate>

3) Code example for real-world domains:

import numpy as np
from typing import *
from real_robot.perception_api import (

get_detected_object_list,
get_object_category,
get_object_center_3d,
get_object_size_3d,
get_gripper_position_3d,
get_gripper_max_open_width,
get_gripper_open_width,
get_table_height,

)

All numbers are in meters. Please reason about the proper tolerance value for each predicate to
incoporate real-world perception uncertainty. You may design different tolerance for different variables,
like along different axis.
Usually, when objects are close to each other (e.g., stacked together), the segmented objects may
include part of each other and their bounding boxes may overlap. You need to handle this using the
tolerance properly.

Utility functions:
<utility>
def get_object_x_range(a) -> np.ndarray:

"""
Get the range of object a along x axis
:param a: string, name of detected object
"""
center = get_object_center_3d(a)
extent = get_object_size_3d(a)
return np.array([center[0] - extent[0] / 2, center[0] + extent[0] / 2])

<end-of-utility>

Predicates:
<predicate>
def obj_in_gripper(a) -> bool:

"""

Description: <<whether object a is held by the gripper>>
The predicate holds True when gripper is half open and object a is close to the gripper.
:param a: string, name of detected object
"""
gripper_open_tol = 0.01
z_tol = 0.01
xy_tol = 0.01

check whether gripper is half-open
gripper_width < max_gripper_width + gripper_open_tol
if get_gripper_open_width() < get_gripper_max_open_width() - gripper_open_tol:

gripper_position = get_gripper_position_3d()
object_center = get_object_center_3d(a)
object_extent = get_object_size_3d(a)
check whether the distance between object a and gripper along z is within z_tol
abs(gripper_z - object_center_z) < z_tol
if np.abs(gripper_position[2] - object_center[2]) < z_tol:

check whether the distance between object a and gripper along x and y is within half the
extent of a
abs(gripper_xy - object_center_xy) < object_extent_xy / 2 + xy_tol
if np.all(np.abs(gripper_position[:2] - object_center[:2]) < object_extent[:2] / 2 + xy_tol):

return True
else:

False
else:

False
else:

return False
<end-of-predicate>

B.3 Corrector

1) Execution error:

You are a helpful assistant that modifies the predicate grounding functions based on the
execution error.

{domain_desc}

{known_functions}

The observation is: {observation}

The execution error is: {error}

The error trace is: {trace}

Please answer the two questions below:
1. What is your reasoning for the execution error? How would you modify the predicate
grounding functions to fix the error?
2. Based on your reasoning, please return the modified functions without further
explanations. Please put "# <predicate>" and "# <end-of-predicate>", "# <utility>" and "#
<end-of-utility>" at the beginning and end of each predicate function and utility function,
following the format of the original functions. Remember to include description surrounded
with "<<", ">>" for predicates.

2) Alignment error:

You are a helpful assistant that modifies the predicate functions based on correction from
human. You can introduce new utility functions and predicates in your modification when
necessary. Note that the inconsistency might not due to the direct implementation of the
predicate, but other predicate functions or utility functions it depends on. If this is the
case, you need to modify its dependent predicates andutility functions.
{domain_desc} The current predicate functions are below.

{known_functions}

The observation is: {observation}

The human correction is: {correction}

Please answer the two questions below:
1. What is your reasoning for the human corection? Which part of the predicate functions is
wrong? How would you modify the predicate grounding functions to reflect the correction?
2. Based on your reasoning, please return the modified functions without further
explanations. Please put "# <predicate>" and "# <end-of-predicate>", "# <utility>" and "#
<end-of-utility>" at the beginning and end of each predicate function and utility function,
following the format of the original functions. Remember to include description surrounded
with "<<", ">>" for predicates.

B.4 Goal Translator

You are a helpful assistant that converts natural language goals into symbolic goals. The
symbolic goal must only use available predicates.
It is fine if the natural language goal can not be fully captured by the available
predicates, please just output the symbolic goal that is as close as possible to the natural
language goal.

Example:
Available entities: [’plate’]
Available predicates: {’obj_in_sink(a)’: ’check whether object a is in sink or not’}
Goal: Wash the plate and put it in sink.
Output:
{

"Symbolic goal": ["obj_in_sink(plate)"]
}

{domain_desc}
Available entities: {entities}
Available predicates: {predicates}
Goal: {goal_spec}
Output (please don’t output ‘‘‘json):

APPENDIX C
DOMAIN DESIGN

We provide further details of the designed domains including: (i) the available objects, (ii) the available primitive actions,
(ii) Simple and complex tasks, and (iii) language feedback templates.

C.1 StoreObjects

Available objects:
‚ A large object, i.e., a shelf or coaster that can not be picked up
‚ A number of small objects that are to be stored on the large object
Available primitive actions:
‚ pick_up(a): pick up an object a
‚ place_on_table(a): place an object a on table
‚ place_first_on_second(a,b): place an object a on object b
Simple and complex tasks:
‚ Simple task 1: stack a small object a on the large object b
‚ Simple task 2: stack a small object a on a small object b
‚ Simple task 3: put a small object a on table
‚ Complex task: store objects on the large object a following the order: b on a, c on b, ...
Language feedback templates:
‚ Explain infeasible action

– Precondition 1: you can’t execute pick_up(a) because the gripper is already occupied
– Precondition 2: you can’t execute pick_up(a) because there is something on a
– Precondition 3: you can’t execute pick_up(a) because a can not be grasped by the gripper as it is too wide
– Precondition 4: you can’t execute place_on_table(a) because object a is not held by the gripper
– Precondition 5: you can’t execute place_first_on_second(a,b) because object a is not held by the gripper
– Precondition 6: you can’t execute place_first_on_second(a,b) because there is something on b

‚ Explain unsatisfied goal
– Unsatisfied goal 1: you haven’t achieved the goal because object a is not yet on b
– Unsatisfied goal 2: you haven’t achieved the goal because object a is not on table

C.2 SetTable

Available objects:

‚ A table mat that can not be moved
‚ A plate that can only be pushed but not grasped
‚ A number of small objects that are to be placed on plate / table mat

Available primitive actions:

‚ pick_up(a): pick up an object a
‚ place_on_table(a): place an object a on table
‚ place_first_on_second(a,b): place an object a on object b
‚ push_plate_on_object(a,b): push a plate a onto object b

Simple and complex tasks:

‚ Simple task 1: place a small object a on table mat / plate b
‚ Simple task 2: place the plate a on table mat b
‚ Simple task 3: place a small object a on table
‚ Complex task: set a breakfast table with plate b on table mat a, c on b, ...

Language feedback templates:

‚ Explain infeasible action
– The 6 precondition explanations as in StoreObjects
– Precondition 7: you can’t execute push_plate_on_object(a,b) because object a is not a plate
– Precondition 8: you can’t execute push_plate_on_object(a,b) because the gripper is occupied
– Precondition 9: you can’t execute push_plate_on_object(a,b) because there is something on a
– Precondition 10: you can’t execute push_plate_on_object(a,b) because there is something on b
– Precondition 11: you can’t execute push_plate_on_object(a,b) because object b is not thin enough as its height

is greater than xxx
‚ Explain unsatisfied goal

– Unsatisfied goal 1: you haven’t achieved the goal because object a is not yet on b
– Unsatisfied goal 1: you haven’t achieved the goal because object a is not on table

C.3 CookMeal

Available objects:

‚ A heavy pot that can contain food ingredients and water, but can not be moved by the gripper
‚ A faucet that can get water from with a container
‚ One or more cups that can be used to get water from facet and contain water
‚ A number of food ingredients that are to be put into the pot

Available primitive actions:

‚ pick_up(a): pick up an object a
‚ place_on_table(a): place an object a on table
‚ place_first_in_second(a,b): place an object a into container b
‚ get_water_from_faucet(a): get water from the faucet with cup a
‚ pour_water_from_first_to_second(a,b): pour water from container a to container b

Simple and complex tasks:

‚ Simple task 1: pour water into cup a and put it on table
‚ Simple task 2: pour water into pot a
‚ Simple task 3: put object a into pot b
‚ Complex task: pour water and put a, b, ... in pot c, pour water into cup d and put it on table

Language feedback templates:
‚ Explain infeasible action

– Precondition 1: you can’t execute pick_up(a) because the gripper is already occupied
– Precondition 2: you can’t execute pick_up(a) because a is in a container
– Precondition 3: you can’t execute pick_up(a) because a can not be grasped by the gripper as it is too wide
– Precondition 4: you can’t execute place_on_table(a) because object a is not held by the gripper
– Precondition 5: you can’t execute place_first_in_second(a,b) because object a is not held by the gripper
– Precondition 6: you can’t execute place_first_in_second(a,b) because object b is not a container, only objects

with category cup, pot, and basket are containers
– Precondition 7: you can’t execute place_first_in_second(a,b) because object a is not food
– Precondition 8: you can’t execute place_first_in_second(a,b) because object b can not contain food as it’s

too small, i.e., its width is smaller than 10
– Precondition 9: you can’t execute get_water_from_faucet(a) because object a is not held by the gripper
– Precondition 10: you can’t execute get_water_from_faucet(a) because object a is not a container
– Precondition 11: you can’t execute get_water_from_faucet(a) because object a already contains water
– Precondition 12: you can’t execute pour_water_from_first_to_second(a,b) because object a is not held

by the gripper
– Precondition 13: you can’t execute pour_water_from_first_to_second(a,b) because object a does not have

water
– Precondition 14: you can’t execute pour_water_from_first_to_second(a,b) because object b is not a

container
‚ Explain unsatisfied goal

– Unsatisfied goal 1: you haven’t achieved the goal because object a does not have water
– Unsatisfied goal 2: you haven’t achieved the goal because object a is not on table
– Unsatisfied goal 3: you haven’t achieved the goal because object a is not in pot b

APPENDIX D
EXAMPLES OF LEARNED PREDICATES AND OPERATORS

We present examples of learned predicates and operators in the real-world SetTable domain. Note that these predicates
and operators are pretty much a superset of those in the real-world StoreObjects domain. We show the predicates as Python
functions and the operators in a PDDL domain file. For the learned predicates and operators in the simulated domains, please
refer to our github repo.

import numpy as np
from typing import *
from real_robot.perception_api import (

get_detected_object_list,
get_object_category,
get_object_center_3d,
get_object_size_3d,
get_gripper_position_3d,
get_gripper_max_open_width,
get_gripper_open_width,
get_table_height,

)

All numbers are in meters. Please reason about the proper tolerance value for each predicate to
incoporate real-world perception uncertainty. You may design different tolerance for different variables,
like along different axis.
Usually, when objects are close to each other (e.g., stacked together), the segmented objects may
include part of each other and their bounding boxes may overlap. You need to handle this using the
tolerance properly.

Utility functions:
<utility>
def get_object_x_range(a) -> np.ndarray:

"""
Get the range of object a along x axis
:param a: string, name of detected object
"""
center = get_object_center_3d(a)
extent = get_object_size_3d(a)

https://github.com/hmz-15/Interactive-Predicate-Learning

return np.array([center[0] - extent[0] / 2, center[0] + extent[0] / 2])
<end-of-utility>

<utility>
def get_object_y_range(a) -> np.ndarray:

"""
Get the range of object a along y axis
:param a: string, name of detected object
"""
center = get_object_center_3d(a)
extent = get_object_size_3d(a)
return np.array([center[1] - extent[1] / 2, center[1] + extent[1] / 2])

<end-of-utility>

Predicates:
<predicate>
def obj_in_gripper(a) -> bool:

"""
Description: <<whether object a is held by the gripper>>
The predicate holds True when gripper is half open and object a is close to the gripper.
:param a: string, name of detected object
"""
gripper_open_tol = 0.01
z_tol = 0.02
xy_tol = 0.01

check whether gripper is half-open
gripper_width < max_gripper_width + gripper_open_tol
if get_gripper_open_width() < get_gripper_max_open_width() - gripper_open_tol:

gripper_position = get_gripper_position_3d()
object_center = get_object_center_3d(a)
object_extent = get_object_size_3d(a)
check whether the distance between object a and gripper along z is within z_tol
abs(gripper_z - object_center_z) < z_tol
if np.abs(gripper_position[2] - object_center[2]) < z_tol:

check whether the distance between object a and gripper along x and y is within half the
extent of a
abs(gripper_xy - object_center_xy) < object_extent_xy / 2 + xy_tol
if np.all(np.abs(gripper_position[:2] - object_center[:2]) < object_extent[:2] / 2 + xy_tol):

return True
else:

False
else:

False
else:

return False
<end-of-predicate>

<predicate>
def obj_on_obj(a: str, b: str) -> bool:

"""
Description: <<check whether object a is on top of object b or not>>
The predicate holds True if the bottom of object a is within a certain tolerance above the top of
object b,
and their x and y projections overlap.
:param a: string, name of detected object
:param b: string, name of detected object
"""
z_tol = 0.01 # Reduced tolerance for the z-axis to consider object a is on top of object b
overlap_tol = 0.01 # Reduced tolerance for the overlap in x and y axis

Get the center and size of both objects
center_a, size_a = get_object_center_3d(a), get_object_size_3d(a)
center_b, size_b = get_object_center_3d(b), get_object_size_3d(b)

Calculate the z position of the bottom of object a and the top of object b
bottom_a = center_a[2] - size_a[2] / 2
top_b = center_b[2] + size_b[2] / 2

Check if bottom of a is within tolerance above top of b
if not (bottom_a <= top_b + z_tol and bottom_a >= top_b - z_tol):

return False

Check if the projections of a and b on the x and y axes overlap
x_range_a = get_object_x_range(a)
x_range_b = get_object_x_range(b)
y_range_a = get_object_y_range(a)
y_range_b = get_object_y_range(b)

Check overlap in x and y axis
overlap_x = min(x_range_a[1], x_range_b[1]) - max(x_range_a[0], x_range_b[0]) > -overlap_tol
overlap_y = min(y_range_a[1], y_range_b[1]) - max(y_range_a[0], y_range_b[0]) > -overlap_tol

return overlap_x and overlap_y
<end-of-predicate>

<predicate>
def gripper_empty() -> bool:

"""
Description: <<check whether the gripper is empty, the predicate holds when the gripper is not
holding any object>>
"""
gripper_open_tol = 0.01 # Tolerance for considering the gripper as not fully open
max_gripper_width = get_gripper_max_open_width()
current_gripper_width = get_gripper_open_width()

If the gripper is almost fully open, we consider it empty
if current_gripper_width >= max_gripper_width - gripper_open_tol:

return True

If the gripper is not fully open, check proximity of objects to gripper
detected_objects = get_detected_object_list()
for obj in detected_objects:

if obj_in_gripper(obj):
return False # Found an object in the gripper

return True # No object found in the gripper
<end-of-predicate>

<predicate>
def obj_on_table(a: str) -> bool:

"""
Description: <<check whether object a is on the table or not>>
The predicate holds True if the bottom of object a is within a certain tolerance above the table
height.
:param a: string, name of detected object
"""
z_tol = 0.01 # Tolerance for considering object a is on the table

If object a is on another object, we consider it not on table
detected_objects = get_detected_object_list()
for obj in detected_objects:

if obj == a:
continue # Skip the object itself

if obj_on_obj(a, obj):
return False # Found object a on top of obj

Get the table height
table_height = get_table_height()

Get the center and size of object a
center_a, size_a = get_object_center_3d(a), get_object_size_3d(a)

Calculate the z position of the bottom of object a
bottom_a = center_a[2] - size_a[2] / 2

Check if bottom of a is within tolerance above the table height
return (bottom_a <= table_height + z_tol) and (bottom_a >= table_height - z_tol)

<end-of-predicate>

<predicate>
def obj_too_large_to_grasp(a: str) -> bool:

"""
Description: <<check whether object a is too large for the gripper to grasp, the predicate holds when
the object’s size exceeds the gripper’s grasping capacity>>
:param a: string, name of detected object

"""
Get the maximum open width of the gripper
max_gripper_width = get_gripper_max_open_width()

Get the size of object a
size_a = get_object_size_3d(a)

Check if the object’s size along the x axis (gripper open direction) exceeds the gripper’s grasping
capacity
return size_a[0] > max_gripper_width

<end-of-predicate>

<predicate>
def obj_free_of_objects(a: str) -> bool:

"""
Description: <<check whether object a does not have any other objects on top of it, the predicate
holds when there are no objects placed on object a>>
:param a: string, name of detected object
"""
detected_objects = get_detected_object_list()
for obj in detected_objects:

if obj == a:
continue # Skip the object itself

if obj_on_obj(obj, a):
return False # Found an object on top of object a

return True # No objects found on top of object a
<end-of-predicate>

<predicate>
def is_plate(a) -> bool:

"""
Description: <<check whether object a is a plate, the predicate holds true if a is a plate>>
:param a: string, name of detected object a
"""
Get the category of object a
object_a_category = get_object_category(a)

Check whether the category of object a is plate
if object_a_category == "plate":

return True
else:

return False
<end-of-predicate>

<predicate>
def obj_thin_enough(a) -> bool:

"""
Description: <<check whether object a is thin enough, the predicate holds true if the height of
object a is less than or equal to 0.01>>
:param a: string, name of detected object a
"""
Get the size of object a
size_a = get_object_size_3d(a)

check whether the height of object a is less than or equal to 0.01
if size_a[2] <= 0.01:

return True
else:

return False
<end-of-predicate>

Listing 1: Learned Predicates for Real-world SetTable Domain

(define (domain set_table)
(:requirements :typing)
(:types default)

(:predicates (obj_in_gripper ?v0 - default)
(not_obj_in_gripper ?v0 - default)
(obj_on_obj ?v0 - default ?v1 - default)
(not_obj_on_obj ?v0 - default ?v1 - default)

(gripper_empty)
(not_gripper_empty)
(obj_on_table ?v0 - default)
(not_obj_on_table ?v0 - default)
(obj_too_large_to_grasp ?v0 - default)
(not_obj_too_large_to_grasp ?v0 - default)
(obj_free_of_objects ?v0 - default)
(not_obj_free_of_objects ?v0 - default)
(is_plate ? v0 - default)
(not_is_plate ? v0 - default)
(obj_thin_enough ? v0 - default)
(not_obj_thin_enough ? v0 - default)
(pick_up ?v0 - default)
(place_on_table ?v0 - default)
(place_first_on_second ?v0 - default ?v1 - default)

)
; (:actions pick_up place_on_table place_first_on_second push_plate_on_object)

(:action place_on_table_1
:parameters (?v_0 - default)
:precondition (and (obj_in_gripper ?v_0)

(place_on_table ?v_0))
:effect (and

(not_obj_in_gripper ?v_0)
(gripper_empty)
(not (obj_in_gripper ?v_0))
(obj_on_table ?v_0))

)

(:action pick_up_1
:parameters (?v_1 - default ?v_0 - default)
:precondition (and (gripper_empty)

(obj_free_of_objects ?v_0)
(not_obj_too_large_to_grasp ?v_0)
(pick_up ?v_0)
(obj_on_obj ?v0 ?v_1))

:effect (and
(obj_in_gripper ?v_0)
(not (obj_on_obj ?v_0 ?v_1))
(obj_free_of_objects ?v_1)
(not (gripper_empty))
(not (not_obj_in_gripper ?v_0)))

)

(:action pick_up_2
:parameters (?v_0 - default)
:precondition (and (obj_on_table ?v_0)

(gripper_empty)
(obj_free_of_objects ?v_0)
(not_obj_too_large_to_grasp ?v_0)
(pick_up ?v_0))

:effect (and
(not (gripper_empty))
(not (not_obj_in_gripper ?v_0))
(obj_in_gripper ?v_0)
(not (obj_on_table ?v_0)))

)

(:action place_first_on_second_1
:parameters (?v_1 - default ?v_0 - default)
:precondition (and (obj_in_gripper ?v_0)

(obj_free_of_objects ?v_1)
(place_first_on_second ?v_0 ?v_1))

:effect (and
(not_obj_in_gripper ?v_0)
(not (obj_free_of_objects ?v_1))
(gripper_empty)
(obj_on_obj ?v_0 ?v_1)

(not (obj_in_gripper ?v_0)))
)

(:action push_plate_on_object_1
:parameters (?v_1 - default ?v_0 - default)
:precondition (and (gripper_empty)

(obj_free_of_objects ?v_0)
(obj_free_of_objects ?v_1))
(obj_thin_enough ?v_1)
(is_plate ?v_0)
(push_plate_on_object ?v_0 ?v_1))

:effect (and
(obj_on_obj ?v_0 ?v_1)
(not (obj_free_of_objects ?v_1)))

)

)

Listing 2: Learned Operators for Real-world SetTable Domain

	Introduction
	Related Work
	Learning Symbolic Representations for Planning
	Large Language Models-enabled Planning and Learning

	Preliminaries and Problem Setup
	Method
	Reasoner
	Goal-related feedback
	Precondition-related feedback

	Coder
	Corrector
	Other Components

	Experiments
	Experimental Setup
	Domain design
	Baselines
	Evaluation protocol

	Experimental results
	Qualitative analysis
	Evaluating planning and generalization
	Real-robot results

	Additional Analysis and Discussions
	Runtime Analysis
	Robustness to varied language feedback

	Conclusions and Limitations

