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ABSTRACT
As embodied agents learn to interact, it is crucial for them to
understand when, what, and to whom they should respond.
While advances in natrual language processing and speech
technologies have enabled conversational agents to focus on
what to respond, they still struggle to determine when and to
whom they should respond. In this paper, we address the ad-
dressee detection (Talking-To-Me, TTM) problem under the
egocentric view. Instead of relying solely on short-term audio
and video data, we propose a simple architecture SICNet with
self/cross-modality attention that leverages long-term social
interaction context. By leveraging long-term information, our
approach has achieved a mean Average Precision (mAP) of
68.98% on the Ego4D TTM task, surpassing the previous
state-of-the-art single-task model by 10.07%. We also con-
ducted a detailed ablation study to demonstrate the effective-
ness of each component in the long-term social interaction
context.

Index Terms— talking-to-me detection, social interac-
tion detection, multimodal analysis, human-centric analysis

1. INTRODUCTION

Addressee detection is a task of identifying the intended tar-
get or recipient of an utterance given audio (and sometimes
video) information of a conversation [1, 2, 3, 4, 5, 6]. With the
rapid evolution of the Metaverse and the development of so-
cial robots, there is a growing demand to solve the addressee
detection problem from an egocentric view. Our work focuses
on the Talking-To-Me (TTM) problem [7] which involves de-
tecting if the target of one utterance is the camera-wearer.

Previous TTM research often take limited audio and video
context (generally 1-2s from the start of the speech) as the in-
put to a multi-modal network [7, 8]. However, relying solely
on short-term information proves insufficient for addressing
the problem. Consider a multi-agent setting where an utter-
ance like “What happens next?” could be directed at any par-
ticipant. The ambiguity in such cases is often resolvable by
incorporating longer-term social interaction context, which
includes conversational context and the visual information of
all participants involved in the conversation [2, 9].
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We handle the long-term social interaction context from
both conversational and visual perspectives. By extracting in-
formation from long-term audio and video, we utilize a self-
attention module to fuse conversational interaction context
(including the context of the conversation and the diarization
information) and visual social interaction context (including
the face and body information for each participant). We name
the proposed network the Social Interaction Context (SIC)
network. The proposed network outperforms state-of-the-art
(SOTA) single task TTM model by 10.07% on mAP and the
SOTA multi-task TTM model (which utilizes annotation from
other egocentric tasks) by 2.44% [8].

As far as we know, this is the first work showing the im-
portance of long-term social interaction context in addressing
the egocentric TTM problem. Our contributions include:

1. Establishing a simple yet effective baseline SICNet,
incorporating long-term social interaction context to
solve the ego-centric TTM problem.

2. On the Ego4D dataset [7], the proposed SICNet achieves
mAP of 68.98% to establish a new state-of-the-art, out-
performing the previous SOTA single task TTM model
by 10.07%.

3. A detailed ablation study is conducted to evaluate the
effectiveness of each component in the long-term social
interaction context.

2. METHOD

Given an utterance Ut ending at time t, with corresponding
video V and audio A segments from t − T to t, denoted as
V[t−T,t] and A[t−T,t], where T is a fixed time interval, the
TTM problem seeks to determine if Ut addresses the egocen-
tric agent (the camera wearer). For simplicity, throughout this
paper, Ut, A[t−T,t], and V[t−T,t] are referred to as U , A, and
V , respectively.

To fully understand the context of the conversation, T
should be sufficiently large (we set T = 10s instead of 1-2s in
the experiment). The major challenge of TTM is then how to
effectively extract features from long-term audio A and video
V . We propose a conversational context (CC) branch and a
visual social context branch (VSC) to encode audio and video



Fig. 1. SICNet: High-level diagram of the proposed So-
cial Interaction Context Network. It consists of two seper-
ate branches: conversational context branch and visual social
context branch.

respectively. For CC branch, we leverage the pretrained lan-
guage model (PLM) to obtain conversational context embed-
ding. For VSC, we utilize pretrained visual feature extractors
to aggregate the information of the face, body and position of
all participants in the conversation. Those two types of em-
beddings are fused by a multi-modal self-attention layer to
produce a joint embedding, followed by a classifier for the
final TTM prediction (see Fig. 1).

2.1. Conversational Context Branch

We leverage a powerful pretrained language model (PLM),
specifically RoBERTa [10], to encode long-term audio. The
audio clip A is transcribed to text L, using a speech-to-text
engine, such as Whisper [11]. Transcribed tokens are then
converted into word embeddings using the PLM.

Directly sending the full plain conversation text into the
PLM will lose the diarization information of the conversa-
tion. To overcome this issue, we introduce a few special to-
kens to help the PLM better understand the conversation. As
multi-modal diarization is not the main focus of the work, we
directly use the diarization information in the dataset. In prac-
tise, we can leverage some diarization tools [11] for this. We
introduce 4 special tokens:

• [C]: the most recent utterance from history

• [H]: the start of the context history

• [EA]: an utterance from the egocentric agent

• [NEA]: an utterance from a non-egocentric agent

[C] and [H] are introduced to distinguish historical context
from the current utterance. While [EA] and [NEA] are used to
distinguish if one utterance is spoken by the egocentric agent.

We find this distinction to be helpful. Specifically, if the pre-
vious utterance is spoken by the egocentric agent, it is likely
that the current utterance is spoken by a non-egocentric agent.
The [EA] and [NEA] information are also easy to derive since
we can leverage audio magnitude for this purpose, as the ego-
centric agent’s voice is louder due to proximity to the micro-
phone. Below is an example of the enhanced language token
sequence L̂, augmented with special tokens to capture the full
conversational context:
[H] [EA] How are you going to annotate this dataset? [NEA]
Actually we don’t need to do the annotation task. [EA] Who
will do that? [C] [NEA] Some university students.

The enhanced language sequence L̂ serves as the input to
the PLM. We first fine-tune the PLM with classification head
using cross-entropy loss with the TTM binary label. Once
the model is fine-tuned, we freeze its parameters and use it to
extract the language features, denoted as eCC, from the second
last layer, i.e., eCC = PLM(L̂). The dimension of eCC is 768
in RoBERTa settings.

2.2. Visual Social Context Branch

For the long-term visual social context (VSC), the input is the
video V = {Iτ}Tτ=0, where τ is the offset timestamp from
the start of the video and I is the image frame. We propose
extracting the face and body information for each participant
to represent the visual social context. Since face and body
detection and tracking is not the major focus of the paper,
we directly use the body and face bounding box information
provided in the dataset. For each participant p, we extract the
following information for all frames in V .
The compact representation of the face: The face crop
for participant p at time τ denoted as F p

τ is passed through
a face encoder (e.g., MagFace [12]), and the highest qual-
ity embedding is selected as face embedding epF. For ex-
ample, in the case of MagFace, it corresponds to the one
with the largest magnitude (Euclidean norm), i.e. epF =
argmaxτ ||MagFace(F p

τ )||2.
The position of the body: We concatenate the 4 coordi-
nates of each body box Kp

τ (padding zero if one bbox
is missing) and pass the coordinate sequence through a
linear layer to obtain a location embedding, i.e. epK =
fLinear(Concat{Kp

τ }Tτ=0).
The compact features of the body: For each body image
crop Bp

τ , it is processed through a shared body encoder to
get a feature vector bp

τ . The feature vectors are concatenated
and projected with a linear layer to obtain body embedding
epB = fLinear(Concat{bp

τ}Tτ=0).
For each participant p, the face embedding, the loca-

tion embedding, and the body embedding are concatenated
to form a joint embedding epjoint = Concat(epF, e

p
K, e

p
B).

Those embeddings are then averaged across all partici-
pants to obtain the final visual context embedding, i.e.
eVSC = 1

P

∑
p(e

p
joint) (see Fig. 1), where P is total num-



ber of people in the scene. In our experiments, epK and epB
have the same shape of 128 and epF has the shape of 512.
Hence, epjoint has the shape of 768.

2.3. Multi-modal Feature Fusion

We derive two separate embedding vectors from distinct
branches: the conversational context branch eCC, and the
visual social context branch eVSC. These vectors are then pro-
cessed through a multi-modal self-attention layer and subse-
quently, a classification head, leading to the TTM prediction.
The network is trained using cross-entropy loss.

3. EXPERIMENTS

3.1. Datasets and Implementation Details

3.1.1. Datasets

We conduct experiments on the Ego4D social interaction
benchmark [13], a subset of a large-scale egocentric dataset [7].
The social interaction subset is based on audio-video diariza-
tion and comprises 389 training clips (around 32.4 hours), 50
validation clips (around 4.2 hours), and 133 test clips (11.1
hours). Since the test subset is not publicly available and
hence we cannot get the audio transcriptions, we report re-
sults on the validation set. Each utterance U in the dataset not
belonging to the egocentric agent is assigned a binary TTM
label. Following [7], it yields a total of 26, 791 training and
2, 469 validation utterances. We allocate 90% of the train-
ing utterances for model training and the remaining 10% for
hyperparameter tuning.

3.1.2. Implementation Details

Model settings Our model combines conversational and vi-
sual context to determine the TTM label. We set the tempo-
ral receptive field to be 10s. For the conversational context
branch, we use RoBERTa [10] to extract the conversational
context embedding. In the visual context branch, we employ
MagFace [12] as the face encoder, and a ResNet-18 [14] as
the body encoder.

Training details The pre-trained RoBERTa is fine-tuned
for 5 epochs with a newly-initiated classification head. We
then fix RoBERTa and use the output features before the
classification head as the conversational embeddings eCC.
The rest of the model, including the body encoder, the linear
projection layers for body position and body embedding, the
self-attention fusion layer and the final classification layer, is
trained using the Adam optimizer [15] with a learning rate of
5× 10−5 for a total of 50 epochs on 8 Nvidia V100 GPUs.

3.2. Model Performance

We adhere to the Ego4D benchmark [13] for evaluation,
which uses mean average precision (mAP) and treats TTM as

Method mAP(%)
Single-task training

Random Guess 50.77⋆

Ego4D-TTM [13] 52.85
TalkNet [16] 57.88⋆

EgoT2-TS [8] 58.91†

SICNet (Ours) 68.98
Multi-task training

Multi-task [17] 61.91†

Late Fusion [18] 64.29†

EgoT2-g [8] 64.49†

EgoT2-s [8] 66.54†

Table 1. Comparison of SICNet with other approaches. ⋆ de-
notes that the numbers are obtained by reproducing the origi-
nal code. † denotes the numbers are obtained from [8].

a two-label classification problem.

3.2.1. Baseline

We compare the proposed SICNet with the following baseline
methods. Random Guess: It directly outputs the two-label
classification as a Bernoulli trial. Ego4D-TTM [13]: It uses
ResNet-18 for face features and ResNet-SE to obtain audio
embeddings. Audio and video embeddings are then concate-
nated and passed through a fully-connected layer to predict
TTM. TalkNet [16]: Different from Ego4D-TTM, it utilizes
two cross-attention layers followed by a self-attention layer to
combine the video feature and the audio feature. EgoT2 [8]:
It refines the outputs of various models optimized on separate
tasks. EgoT2-TS is a TTM task specific model. EgoT2-s and
EgoT2-g denote task-specific and task-general translations
respectively, both requiring multi-task annotations (such as
Looking-At-Me, Audio-Video Diarization). Multi-task [17]:
It uses hard parameter sharing multi-task learning. Late
Fusion [17]: It concatenates auxiliary task feature with the
primary task feature and finetunes a few layers for the final
prediction.

Branches mAP(%)CC VSC
✓ ✗ 67.17
✗ ✓ 63.72
✓ ✓ 68.98

Table 2. Ablation studies on different components. CC: Con-
versational Context, VSC: Visual Social Context.

3.2.2. Performance and Discussion

The performance of the proposed SICNet and all baseline
methods are presented in Tab. 1. SICNet surpasses all base-
line models especially for its single-task training competitors,



Location Body Face mAP(%)
✓ ✓ ✗ 59.35
✓ ✗ ✓ 60.56
✗ ✓ ✓ 61.29
✓ ✓ ✓ 63.72

Table 3. Ablation studies on different components of VSC.

demonstrating its superior performance. The discrepancy
arises because the baseline models only leverage short-term
audio-visual information struggling to glean higher-order
information directly from audio-visual signals due to their
limited temporal context.

In contrast, the proposed SICNet employs PLMs for the
Conversational Context branch and summarizes long-term
video features based on participant behaviors. It helps derive
semantic information from long-term audio and video.

3.3. Ablation Studies

3.3.1. Different Context Information

We train various configurations of the SICNet, each exclud-
ing one or more branches, to ascertain each branch’s contribu-
tion to the final performance. The results are summarized in
Tab. 2. The full model, encompassing the long-term CC and
VSC branches, delivers the optimal performance, indicating
the significance of all branches. The superior performance of
the CC branch in isolation compared to the models without it
highlights the crucial role of conversational context in TTM.
Tab. 2 demonstrates that VSC is able to complement CC and
improves mAP by 1.8%.

3.3.2. Different Components in VSC

We further examine the efficacy of each component in the
VSC branch, as shown in Tab. 3. In this analysis, we don’t
use CC branch and systematically evaluate the contribution
of each VSC component by removing one at a time. Results
show that the face embedding from the MagFace encoder is
the most valuable among all VSC features, as its exclusion
leads to the most significant performance decrease (4.37%).
On the other hand, the location embedding derived from
bounding box coordinates appears to have the least impact.

Length of CC (s) mAP(%)
cur (current utterance only) 59.46

5 63.18
10 67.17
15 66.65

Table 4. The impact of different length of conversational con-
text.

3.3.3. Conversational Context Branch

We further examine how different components in the CC
branch affecting the final performance (Tab. 5). We first ex-
plore using different context lengths (T ) cutting at [cur, 5,
10, 15] seconds from the end of the speech in the CC branch,
where cur means only the current utterance is used. The
result is presented in Tab. 4. Our findings indicate that the CC
branch tends to generate the most effective embedding when
the context length is approximately 10s. Contexts that are
significantly longer tend to introduce excessive and irrelevant
historical information.

We assess the impact of language transcription quality
by comparing dataset-provided transcriptions with the gen-
erated ones using Whisper [11] in Tab. 5. The transcriptions
provided by the dataset are significantly inferior to those
produced by Whisper because ∼ 58% of utterances lack tran-
scriptions in the dataset. Final performance also reflects the
difference, since the model trained with Whisper transcrip-
tions outperforms the model trained with dataset-provided
transcriptions by 3.25% on mAP.

Furthermore, we also probe the utilization of the four spe-
cial tokens we introduced into the conversation context. As
Tab. 5 illustrates, incorporating these special tokens into the
dialogue history contributes to ∼ 5% improvement in perfor-
mance.

Special Tokens Transcription Source mAP(%)
✗ Dataset Provided 58.83
✓ Dataset Provided 63.92
✓ Whisper 67.17

Table 5. Performance of CC branch alone on the TTM task
with different transcription quality, and w/wo the special to-
kens.

4. CONCLUSION

In this paper, we aim to tackle the Talking-to-Me identifi-
cation problem, which involves identifying which conversa-
tions are directed towards the egocentric agent. Addressing
the TTM problem necessitates understanding the long-term
conversation as well as the interaction among individuals.
To address this, we introduce the SICNet, which effectively
models the long-term visual and conversational contexts and
merges the both information through multi-modal feature fu-
sion. Our multi-modal SICNet sets a robust state-of-the-art
on the Ego4D benchmark. However, considering the over-
all TTM prediction performance, we are still some distance
away from fully resolving the TTM problem. We believe
that the development of an improved language model (i.e.
GPT-4 [19]) integrated with a more potent social contextual
model, can significantly enhance performance.
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