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Abstract

We study the minimax rates of the label shift problem in non-parametric classification.
In addition to the unsupervised setting in which the learner only has access to unlabeled
examples from the target domain, we also consider the setting in which a small number of
labeled examples from the target domain is available to the learner. Our study reveals a
difference in the difficulty of the label shift problem in the two settings, and we attribute this
difference to the availability of data from the target domain to estimate the class conditional
distributions in the latter setting. We also show that a class proportion estimation approach
is minimax rate-optimal in the unsupervised setting.

Keywords: Binary classification, non-parametric classification, semi-supervised classifica-
tion, transfer learning

1. Introduction

A key feature of general intelligence is the transfer of knowledge from one task to another
similar but non-identical task. However, most machine learning (ML) methods are not
designed for such out-of-distribution (OOD) generalization. This limitation has led to
embarrassing performances of ML models in several high-profile applications (Angwin
et al., 2016; Dastin, 2018). Transfer learning attempts to improve the OOD generalization
performance of ML models and has attracted attention in a variety of application areas:
computer vision (Tzeng et al., 2017; Gong et al., 2012), speech recognition (Huang et al.,
2013) and genre classification (Choi et al., 2017). Transfer learning is also known as domain
adaptation, and we refer to Pan and Yang (2009); Weiss et al. (2016) for surveys of transfer
learning.

Despite its empirical success, there is limited knowledge of the fundamental limits of
transfer learning. In this paper, we study the fundamental limits of transfer learning for
label shift problem under a binary classification setup. We posit the learner has a (labeled)
training dataset from the source distribution/domain P and either a small labeled dataset
or an unlabeled dataset from the target domain Q. The learner knows P is similar, but not
identical to Q (the differences between P and Q will be made precise later). The learner’s

c©2022 Subha Maity, Yuekai Sun, and Moulinath Banerjee.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-1519.html.



Maity, Sun, and Banerjee

task is to combine this knowledge about the similarities between P and Q with data from P
for inference in Q.

At a high-level, there are two lines of theoretical work in transfer learning. The first line
of work focuses on obtaining bounds on the worst-case performance of ML models in similar
target domains (Ben-David et al., 2010; Mansour et al., 2009). Here similarity between
the source and target domain is measured by some notion of distance/divergence between
probability distributions. Although general, such bounds are usually pessimistic, especially
if the learner has access to some data from the target domain.

The second line of work focuses on problems in which the learner has some data from
the target domain. In order to leverage the data from the source domain, the learner must
make some assumptions on the similarities between the source and target domains. Such
assumptions usually take the form of invariances between the source and target domain.
To keep things simple, we assume it is possible to partition each sample Z from the source
and target domains into two parts: Z = (U, V ). We factorize the source (resp. target)
distributions as P (U, V ) = P (U | V )P (V ) (resp. Q(U, V ) = Q(U | V )Q(V )). By picking U
and V carefully, it is possible to obtain many common transfer learning settings.

If the conditional factor changes between the source and target domains (P (U | V ) 6=
Q(U | V )) while the marginal factor remains the same (P (V ) = Q(V )), then there is
conditional drift between the source and the target domains. A prominent example of
conditional drift is posterior drift (Cai and Wei, 2019; Maity et al., 2021), in which the
marginal distribution of the features X remains the same between the source and target
domains, but the conditional distribution of the label / response given the features changes.
On the other hand, if the marginal factor changes between the source and the target domains
(P (V ) 6= Q(V )) while the conditional factor remains the same (P (U | V ) = Q(U | V )),
then there is marginal drift between the source and target domains. Prominent examples
of marginal drift include covariate shift (Kpotufe and Martinet, 2018; Zhang et al., 2015)
(U = Y , V = X) and label shift (Storkey, 2009; Saerens et al., 2002; Lipton et al., 2018;
Schölkopf et al., 2012; Zhang et al., 2015) (U = X, V = Y ).

In this paper, we focus on the label shift problem: P (X | Y ) = Q(X | Y ) but P (Y ) 6=
Q(Y ). This problem arises in many application areas. For example, consider building a
pneumonia detector. While the symptoms of pneumonia may not change from month to
month, the prevalence of the disease in the population may increase in a month of pandemic
(e.g. January). There are two version of the label shift problem: the supervised version in
which the learner has labeled data from the target domain and the unsupervised version
in which the learner only has unlabeled data from the target domain. There has been a
flurry of recent work (e.g. Lipton et al. (2018); Azizzadenesheli et al. (2019); Garg et al.
(2020)) on methods for the label shift problem, especially the unsupervised version. Our
work complements this line of work by studying the fundamental limits of the label shift
problem in a non-parametric setting.

The organization of rest of the paper follows: we formulate the supervised and unsuper-
vised label shift problems and state the working assumption in Section 2. We study the
fundamental limits of the supervised and unsupervised label shift problems in Sections 3 and
4 respectively. In Sections 5 and 6, we present simulation studies that confirm our theoretical
results and prove the lower bound for the unsupervised label shift problem. Finally, we wrap
up with a brief discussion of the implications of our results in section 7.
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2. Setup

In this section, we forumulate the label shift problem and state the working assumptions.

2.1 Notations and definitions

For a random vector (X,Y ) ∈ [0, 1]d × {0, 1} with distribution P , we denote the marginal
distribution of X by PX and the marginal probability of the event {Y = 1} by πP . We
denote the support of P with supp(P ). We use 1 to denote the indicator function taking
the value in {0, 1}. We use the ∧∨ notation for min and max: a ∧ b , min(a, b) and
a ∨ b , max(a, b). Finally, λ(·) denotes the Lebesgue measure of a set in a Euclidean space,
and B(x, r) denotes the d-dimensional (closed) Euclidean ball of radius r > 0 with center

x ∈ R
d. For a generic probability distribution µ the notation X1, . . . , Xn

ind∼ µ implies that
X1, . . . Xn are independently distributed and each of them have distribution µ.

2.2 Label shift in nonparametric classification

Let P and Q be two distributions on [0, 1]d × {0, 1}. We consider P as the distribution of
the samples from the source domain and Q as that of the samples from the target domain.
In the supervised version of the label shift problem, the learner has labeled data from the
source and target domains:

DL ,
{
(XP

1 , Y
P
1 ), . . . (XP

nP
, Y P

nP
)
ind∼ P ;

(XQ
1 , Y

Q
1 ), . . . (XQ

nQ
, Y Q

nQ
)
ind∼ Q

}
∈ (X × Y)(nP+nQ) .

On the other hand, in the unsupervised version of the problem, the learner only has unlabeled
data from the target domain:

DU ,
{
(XP

1 , Y
P
1 ), . . . (XP

nP
, Y P

nP
)
ind∼ P ; XQ

1 , . . . X
Q
nQ

ind∼ QX

}

∈ (X × Y)nP ×X nQ .

In both versions of the problem, the class conditionals in the source and target domains
are identical: P (·|Y ) = Q(·|Y ). However, the (marginal) distributions of the labels differ:
πP 6= πQ.

Let G0 , P (· | Y = 0) and G1 , P (· | Y = 1) be the class conditionals. Note that
in light of the equivalence of class conditionals in the source and target domains, we can
(equivalently) define G0 , Q(· | Y = 0) and G1 , Q(· | Y = 1). The regression functions in
the source and target domains are

ηP (x) ,

{
P (Y = 1|X = x) if x ∈ supp(PX)
1
2 otherwise

ηQ(x) ,

{
Q(Y = 1|X = x) if x ∈ supp(QX)
1
2 otherwise

.

In both versions of the label shift problem, the goal of the learner is to correctly classify
samples from the target domain: learner wishes to learn a classifier f̂ : [0, 1]d → {0, 1}

3



Maity, Sun, and Banerjee

from the available data (DL in the supervised version and DU in the unsupervised version)
that minimizes the classification error rate in the target domain Q(Y 6= f̂(X)). The Bayes
classifier in the target domain is

f∗Q(x) =

{
0 if ηQ(x) ≤ 1

2 ,

1 otherwise;

i.e. f∗Q ∈ argminh∈HPQ(Y 6= h(X)), where H is the set of all measurable functions h :

[0, 1]d → {0, 1}. We consider the error rate of the Bayes classifier as a baseline and study
the excess risk of learned classifier f̂ :

EQ(f̂) = Q(Y 6= f̂(X))−Q(Y 6= f∗Q(X)).

The excess risk is a random quantity depending on the available data through the classifier
f̂ and is known to have the following representation (Gyorfi, 1978):

EQ(f̂) = 2EQ

[∣∣∣∣ηQ(X)− 1

2

∣∣∣∣1{f̂(X) 6= f∗Q(X)}
]
. (2.1)

To keep things simple, we assume that G0 and G1 are absolutely continuous with respect
to the Lebesgue measure on R

d. We also assume that the marginal distribution of the
features in the target domain QX = πQG1+(1−πQ)G0 satisfies the strong density condition.
This is a common assumption in non-parametric classification (see (Audibert and Tsybakov,
2007, Definition 2.2)).

Definition 1 (strong density condition) A distribution P defined on R
d satisfies the

strong density condition with parameters µ−, µ+, cµ, rµ > 0 if

1. P is absolutely continuous with respect to the Lebesgue measure on R
d;

2. its support is regular: supp(P ) is compact and λ [supp(P ) ∩B(x, r)] ≥ cµλ[B(x, r)] for
all 0 < r ≤ rµ and x ∈ supp(P );

3. µ− < dP
dλ (x) < µ+ for all x ∈ supp(P ).

We note that we only impose the strong density condition in the target domain because
that is the domain in which we wish to study the performance of the classifier. Let g0 and
g1 be the densities of G0 and G1 respectively (with respect to the Lesbegue measure on R

d).
In terms of g0 and g1, the regression function in the target domain is

ηQ(x) =

{
πQg1(x)

πQg1(x)+(1−πQ)g0(x)
if x ∈ supp(QX)

1
2 otherwise.

(2.2)

Inspecting (2.2), we see that the main difficulty in estimating ηQ is estimating the class
conditional densities g0 and g1. The symmetry in the problem suggests that errors in
estimating g0 and g1 affect the convergence rate of the excess risk equally. If the classes
are imbalanced, then the excess risk depends on the estimation error of the rarer class. To
measure class imbalance in our problem setup, we assume πP ∈ [εP , 1− εP ] for some εP > 0.
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As we shall see, εP affects the effective sample size from the source domain in the minimax
rate.

To quantify the hardness of estimating the class conditional densities g0 and g1, we
impose standard smoothness conditions on them. For any s = (s1, . . . , sd) ∈ N

d and
x = (x1, . . . , xd) ∈ supp(QX), define |s| , s1 + · · ·+ sd, s! , s1! . . . sd! and x

s = xs11 . . . xsdd .
Let Ds denote the differential operator

Ds =
∂s1+···+sd

∂xs11 . . . ∂xsdd
.

For any g : supp(QX) → R that is bβc-times continuously differentiable at a point x0 ∈
supp(QX), we denote by g

(β)
x0 its Taylor expansion of degree bβc at x0:

g(β)x0 (x) =
∑

|s|≤bβc

(x− x0)
s

s!
Dsg(x0).

Definition 2 (Hölder class) A function g : Ω → R is called (β, L, r0)-Hölder smooth
(β-Hölder smooth in short) if it is bβc-times continuously differentiable and satisfies

|g(x)− g(β)y (x)| ≤ L‖x− y‖β2 ∀x ∈ B(y, r0) ∩ Ω, y ∈ Ω.

We denote the set of all such functions as Σ(β, L, r0).

As we saw, the difficulty of the label shift problem depends on the hardness of estimating
the class conditionals g0 and g1, so we assume they are β-Hölder smooth. Prior studies on
the fundamental limits of covariate shift (Kpotufe and Martinet, 2018) and posterior drift
(Cai and Wei, 2019) have imposed similar smoothness conditions on the regression function
instead of the class conditionals. This is because in those problems the Bayes classifier
remains the same in the source and target domains:

{x ∈ [0, 1]d | ηP (x) ≤ 1
2} = {x ∈ [0, 1]d | ηQ(x) ≤ 1

2}.

As the hardness of the transfer learning problem now depends on the hardness of estimating
ηP , it is important in both covariate shift and posterior drift to quantify the hardness of
estimating ηP .

We further introduce the margin condition to quantify the difficulty of the classification
task in the target domain. It was introduced in Tsybakov et al. (2004) and adapted by
Audibert and Tsybakov (2007); Cai and Wei (2019); Kpotufe and Martinet (2018) to study
the convergence rate of the excess risk in binary classification problems. Intuitively, the
condition restricts the probability mass around the Bayes decision boundary (region of the
feature space such that ηQ(x) ≈ 1

2). In other words, it implies ηQ(X) is far from 1
2 with

appreciably high probability.

Definition 3 (margin condition for Q) The distribution Q satisfies the margin condi-
tion with parameter α, if there exist cα, Cα > 0, such that

for all 0 < t < cα, QX

(
0 <

∣∣∣∣ηQ(X)− 1

2

∣∣∣∣ ≤ t

)
≤ Cαt

α.
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We note that the condition becomes more stringent as α grows. We also note that if
QX satisfies the strong density assumption and β(1 ∧ α) > 1, then there is no distribution
Q such that the regression function ηQ crosses 1

2 in the interior of the support of QX (see
(Audibert and Tsybakov, 2007, Proposition 3.4)). This leads to a trivial Bayes decision rule.
In the rest of this paper, we rule out such settings by only considering target domains such
that αβ ≤ 1.

Combining all the preceding restrictions, we consider the class P of source and target
distribution pairs (P,Q) in our study of the label shift problem.

Definition 4 The distribution class P(µ−, µ+, cµ, rµ, εP , α, Cα, β, Cβ) (or P in short) is the
set of all distribution pairs (P,Q) which satisfies the following conditions:

1. P (·|Y ) = Q(·|Y ) (label shift);

2. QX satisfies the strong density condition with parameters µ = (µ−, µ+), cµ > 0, rµ > 0
(see Definition 1);

3. εP ≤ πP ≤ 1− εP for some εP > 0;

4. g0 and g1 are locally β-Hölder smooth (see Definition 2);

5. ηQ satisfies the margin condition (see Definition 3);

6. αβ ≤ 1, where α is the parameter of the margin condition and β is the Hölder
smoothness parameter.

The goal of the learner is to learn a decision rule f̂ from all the available data (including
data from both source and target domains) that has small excess risk in the target domain.
To study the difficulty of the label shift problem in both supervised and unsupervised
settings, we study their minimax risks as functions of the sample sizes in the source and
target domains nP , nQ.

3. Supervised label shift

In the supervised version of the label shift problem, the learner has access to a dataset DL,
which includes nP labeled samples from the source domain and nQ labeled samples from
the target domain. We assume the source and target distribution pair (P,Q) is in P (see
Definition (4)).

First, we present an information-theoretic lower bound on the convergence rate of the
excess risk in the supervised label shift problem. This is a lower bound on the performance
of all learning algorithms which accept data DL and return a classifier f : [0, 1]d → {0, 1}.
Formally, such a learning algorithm is a map A : SL → H, where SL , (X ×Y)nP+nQ is the
space of possible datasets in the supervised label shift problem (the subscript ‘L’ indicates
the data from the target domain is labeled) and H , {h : [0, 1]d → {0, 1}} is the set of all
possible classifiers on [0, 1]d.
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Theorem 5 (lower bound for the supervised label shift problem) There is c > 0
independent of nP , nQ and εP such that

inf
A:SL→H

{
sup

(P,Q)∈P
EDL

[
EQ(A(DL))

]}
≥ c

(
(nP εP + nQ)

− β
2β+d + n

−1/2
Q

)1+α
.

To show that the preceding lower bound is sharp, we consider a simple plug-in classifier
whose convergence rate matches the lower bound:

f̂(x) ,

{
1 if η̂Q(x) ≥ 1

2 ,

0 otherwise,
(3.1)

where η̂Q is a particular estimator of the regression function. This estimator is constructed
by plugging in an estimator of πQ and kernel-based estimators of g0 and g1 in (2.2):

η̂Q(x) =
π̂Qĝ1(x)

π̂Qĝ1(x) + (1− π̂Q)ĝ0(x)
. (3.2)

Here π̂Q is the fraction of samples from the target domain with label 1, and ĝ0 and ĝ1 are
kernel-based density estimators:

ĝy(x) =
1

ny

∑

x′∈Xy

1

hdy
K
(x− x′

hy

)
, y ∈ {0, 1}, (3.3)

where Xy = {x : (x, y′) ∈ DL, y
′ = y}, ny = |Xy|, and hy > 0 is a bandwidth parameter.

The kernel K in (3.3) is a β∗-valid kernel (Tsybakov, 2009, §1.2) for some β∗ ≥ β. Recall K
is a β∗-valid kernel iff

∫
K(x)dx = 1,

∫
xlK(x)dx = 0 for all l ∈ [β∗]. (3.4)

This choice of kernel is motivated by the Hölder smoothness assumption on g0 and g1. We
note that (3.3) uses samples from both source and target domains to estimate g0 and g1; this
does not cause bias in ĝ0 and ĝ1 because in the label shift problem, the class conditionals
are identical in the source and target domains.

Theorem 6 (upper bound for the supervised label shift problem) Let f̂ be the plug

in classifier defined above with bandwidths hy = n
−1/(2β+d)
y , y ∈ {0, 1}, where ny is the total

number of samples in DL that has label y. There is C > 0 independent of nP , nQ and εP
such that

sup
(P,Q)∈P

EDL

[
EQ(f̂)

]
≤ C

(
(εPnP + nQ)

− β
2β+d + n

−1/2
Q

)1+α
.

Remark 7 The bandwidths h0 and h1 and β∗ (in the choice of kernel) in Theorem 5 depend
on the smoothness parameter β. In practice, β is usually unknown, so h0, h1 and β∗ are
chosen by cross-validation.
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We defer the proofs of Theorems 5 and 6 to the supplement. Together, the two theorems
imply the minimax rate of the excess risk is:

inf
A:SL→H

{
sup

(P,Q)∈P
EDL

[
EQ(A(DL))

]}
�
(
(εPnP + nQ)

− β
2β+d + n

−1/2
Q

)1+α
. (3.5)

The minimax rate shows the benefits of transfer learning, especially when nP � nQ. In the
IID setting in which the learner has access to samples from the target domain but not the
source domain, the minimax rate simplifies to

inf
A:SL→H

{
sup

(P,Q)∈P
ED∼Q⊗nQ [EQ(A(D))]

}
� n

−β(1+α)
2β+d

Q

(recall β/(2β+ d) < 1/2). This agrees with known results on the hardness of non-parametric
classification in IID settings (Audibert and Tsybakov, 2007). This is also the minimax rate
of learners who ignore the data from the source domain, To see the benefits of transferring

knowledge from the source domain, let nP � nQ. As long as εPnP < n
1+ d

2β

Q − nQ ( d2β
can be large, so this does not conflict with nP � nQ), the minimax rate simplifies to
(εPnP + nQ)

−β(1+α)/(2β+d), which is faster than the minimax rate of learners who ignores
the data from the source domain. We wrap up this section with some technical remarks
about the minimax rate in (3.5).

Remark 8 The first term in (3.5) depends on the hardness of estimating the class conditional
densities g0 and g1. This term depends on the total sample size εPnP + nQ from the source
and target domains because samples from both domains are equally informative in estimating
g0 and g1. The astute reader may wonder why εP affects the total sample size but πQ does
not. This is because the hardest problem instance has πP close to zero and πQ = 1

2 . Thus
class imbalance in the target domain does not affect the minimax rate, while that in the
source domain heavily does. An intuitive explanation for πQ = 1

2 being the hardest case of
classification can be understood from the convergence rate of η̂Q:

r(n, π) =





√
(1− πQ)πQ

nQ
+
√
πQ

(
πPnP + πQnQ

)− β
2β+d

+
√
(1− πQ)

(
(1− πP )nP + (1− πQ)nQ

)− β
2β+d

.

Inspecting r(n, π) as a function of πQ one can see that the function achieves maximum rate
when πQ is close to 1

2 . We refer to the proof of the upper bound in Appendix B.3.1 (especially
the discussion around (B.6)) for more details.

Remark 9 The exponent of nP εP + nQ in (3.5) depends on the smoothness of g0 and g1;
similar exponents arise in the minimax rates of density estimation (Tsybakov, 2009) and
density ratio estimation (Kpotufe, 2017). The second term in the minimax rate depends on
the hardness of estimating πQ. Finally, the overall exponent on the outside depends on the
noise level, which we measure with the parameters of the margin condition. We wrap up a
few additional remarks about the minimax rate in the supervised label shift problem.
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Remark 10 If the learner only has access to the labels, but the access to the features from
the target domain are restricted, then it is possible to adapt the proofs of Theorems 6 and 5
to show that the minimax rate is

inf
A:SL→H

{
sup

(P,Q)∈Π
E

[
EQ(f̂)

]}
�
(
(εPnP )

− β
2β+d + n

−1/2
Q

)1+α
.

At a high-level, the absence of features from Q prevents us from using the samples from Q
for estimating the class conditional densities (but they are still useful for estimating πQ).

Remark 11 Unlike similar results on the fundamental limits of other transfer learning
settings (e.g. covariate shift (Kpotufe and Martinet, 2018), posterior drift (Cai and Wei,
2019), etc.), in the label shift problem, there is a sharp jump between the πP = πQ (P = Q)
regime and the πP 6= πQ (P 6= Q) regime. This is most clearly seen by considering the case
in which P is known and the only unknown quantity is πQ, which simplifies the problem to
a Bernoulli proportion estimation problem. In general, it is not possible to estimate πQ at
a rate faster than 1√

nQ
unless we know γ , |πP − πQ| ∼ o( 1√

nQ
). In this case, (because we

know P and hence we also know πP ), we can simply estimate πQ with π̂Q = πP , and the
worst-case risk of this estimator (over the problem class in which γ ∼ o( 1√

nQ
)) is o( 1√

nQ
).

Consider the other problem class in which γ ∼ Ω( 1√
nQ

). In this case, Le Cam’s method

shows that the minimax rate is at least 1√
nQ

(the two point construction uses two Bernoulli

distributions whose means are Θ( 1√
n
) apart).

Taking a step back to the full problem (in which P is unknown), the dependence of the
minimax rate on γ , |πP − πQ| is (by analogy to the simple case in which P is known)





1√
nQ

+
(
εPnP + nQ

)− β
2β+d , γ ∼ Ω( 1√

nQ
),

max{γ, 1√
nP

}+
(
εPnP + nQ

)− β
2β+d , γ ∼ o( 1√

nQ
).

We see that as soon as γ ∼ Ω( 1√
nQ

), the minimax rate no longer depends on γ. However,

the problem sub-class in which γ is small consists of source and target distributions that are
very similar, so this sub-class is uninteresting from a transfer learning perspective.

In similar studies of minimax rates for covariate shift (Kpotufe and Martinet, 2018) and
posterior drift (Cai and Wei, 2019), the minimax rate depends smoothly on a parameter
γ that quantifies the allowable difference between the source and target distributions in the
problem class, but this does not occur in the minimax rate for the label shift problem. The
Bayes decision rule is different in the source and target domains in the label shift setting, so
optimal prediction (in the target domain) entails estimating an additional correction term
to bridge the gap between the source and target domains. Estimating this correction term
basically boils down to estimating πQ, and the hardness of estimating πQ does not depend on
the difference between the source and target distributions measured in terms of γ , |πP −πQ|
(except in a very small problem sub-class in which transfer learning is irrelevant). Thus our
minimax rate for the label shift problem does not depend on γ.
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4. Unsupervised label shift

In the unsupervised version of the label shift problem, the learner has access to DU, which
consists of nP labeled samples from source domain and nQ unlabeled samples from the
target domain. For this version of the label shift problem, we impose an extra separation
condition between the class conditional distributions. As we shall see, a preliminary step in
solving the unsupervised label shift problem is estimating πQ = Q(Y = 1), and separation
between the class conditionals is necessary for its accurate estimation. We consider the
L2-distance D between probability densities:

D2(g0, g1) ,

∫

X

(
g1(x)− g0(x)

)2
dx . (4.1)

For some 0 < C < 1 we assume g0 and g1 satisfy D(g0, g1) ≥ C. In the rest of this section,
we work with the following class of source and target distribution pairs (P,Q):

P ′ , {(P,Q) ∈ P : D(g0, g1) ≥ C}

First, we present a lower bound for the convergence rate of the excess risk in the
unsupervised label shift problem. The lower bound is valid for any learning algorithm
A : SU → H, where SU , (X × Y)nP × X nQ is the space of possible datasets in the
unsupervised label shift problem (the subscript ‘U’ indicates samples from the target domain
are unlabeled) and H , {h : [0, 1]d → {0, 1}} is the set of classifiers on [0, 1]d.

Theorem 12 (lower bound for the unsupervised label shift problem) There is c >
0 independent of nP , nQ and εP such that

inf
A:SU→H

{
sup

(P,Q)∈P ′

EDU
[EQ (A (DU))]

}
≥ c
(
(εPnP )

− β
2β+d + n

−1/2
Q

)1+α
.

To show that the preceding lower bound is sharp, we design a classifier whose rate
of convergence matches the lower bound. As we alluded to earlier, a preliminary step
is estimating πQ. This is known as the class proportion estimation problem, and it is
challenging because the samples from the target domain are unlabeled (in the unsupervised
label shift problem). There are many ways to solve the class proportion estimation problem
(Lipton et al., 2018; Azizzadenesheli et al., 2019; Alexandari et al., 2020; Du Plessis and
Sugiyama, 2014; Iyer et al., 2014; Jain et al., 2016). To prove a matching upper bound, we
appeal to the method of Iyer et al. (2014), but it is possible to show similar upper bounds
with other methods (see Remark 16). Armed with an estimate of πQ, we consider the same
plug-in classifer as (3.2), except that the kernel-based estimators of g0 and g1 only depend
on the labeled samples from the source domain.

Theorem 13 (upper bound for the unsupervised label shift) There is C > 0 inde-
pendent of nP , nQ and εP such that

sup
(P,Q)∈P ′

EDU

[
EQ
(
f̂
)]

≤ C
(
(εPnP )

− β
2β+d + n

−1/2
Q

)1+α
.

10
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We defer the proofs of Theorems 12 and 13 to Section 6 and Appendix B. Theorems 12 and
13 together show that the minimax convergence rate of the excess risk in the unsupervised
version of the label shift problem is

inf
A:SU→H

{
sup

(P,Q)∈P ′

EDU
[EQ (A (DU))]

}
�
(
(εPnP )

− β
2β+d + n

−1/2
Q

)1+α
. (4.2)

Recall the minimax rate of IID non-parametric classification in the target domain

is n
−β(1+α)

2β+d

Q (Audibert and Tsybakov, 2007). Comparing the minimax rates of IID non-
parametric classification (in the target domain) and the unsupervised label shift problem, we
see that as long as there are enough samples in the target domain (so we are in the regime
of the preceding remark), then labeled samples from the source domain are as informative
as labeled samples from the target domain. An extremely important practical implication of
this observation is if labeled examples are hard to obtain in the target domain, then it is
possible to substitute them with labeled examples in a label shifted source domain.

Before moving on, we compare the minimax rates in the supervised (3.5) and unsupervised
(4.2) label shift problems. We see that the rates differ in the first term in the parentheses:
there is εPnP instead of εPnP + nQ in the minimax rate of the unsupervised version. Recall
this term depends on the hardness of estimating the class conditional densities g0 and g1.
In the supervised version, the samples from the target domain are labeled, so they can be
directly used to estimate g0 and g1. In the unsupervised version, the samples from the target
domain are unlabeled, so there is no direct way to use them to estimate g0 and g1. There
may be indirect ways to leverage the samples from the target domain (e.g. by imputing
their labels), but our results show that such tricks cannot improve the convergence rate of
the classifier. We wrap up with a few additional remarks about the minimax rate in the
unsupervised label shift problem.

Remark 14 If nP � nQ, then the minimax rate simplifies to

inf
A

sup
(P,Q)∈P ′

EDU
[EQ (A (DU))] �




(εPnP )

−β(1+α)
2β+d if εPnP � n

1+ d
2β

Q ,

n
− 1+α

2
Q if εPnP � n

1+ d
2β

Q .

Recalling the form of the plug-in classifier, we see that there are two main sources of errors
that contribute to the excess risk:

1. error in the estimation of the class probability πQ. This leads to the O(n
− 1+α

2
Q ) term

in the minimax rate.

2. error in the estimation of the class conditional densities g0 and g1. This leads to the

O((εPnP )
−β(1+α)

2β+d ) term in the minimax rate.

If εPnP � n
1+ d

2β

Q then the error in estimation of πQ dominates the excess risk. In this case,
improving the estimates of the class conditional densities (e.g. by increasing nP ) does not
improve the overall convergence rate.

11



Maity, Sun, and Banerjee

Remark 15 If εPnP � n
1+ d

2β

Q , then the minimax rate simplifies to

inf
A:SU→H

{
sup

(P,Q)∈P ′

EDU
[EQ (A (DU))]

}
� (εPnP )

−β(1+α)
2β+d ,

which is the minimax rate of IID non-parametric classification in the source domain. In
other words, given enough unlabeled samples from the target distribution, the error in the
non-parametric parts of the unsupervised label shift problem dominate. As this is also the
essential difficulty in the IID classification problem in the source domain, it is unsurprising
that the minimax rates coincide.

Remark 16 Reviewing the methods for class proportion estimation shows that most methods

converge at a n
−1/2
Q + δ(nP )-rate uniformly on P ′, where δ(nP ) is a term that captures the

dependence of the rate on nP . Inspecting the proof of Theorem 13 reveals that as long as
δ(nP ) . (εPnP )

−β/(2β+d) (which is satisfied by the method of Iyer et al. (2014)), the excess
risk of the resulting classifier attains the minimax rate (4.2). Thus, it is possible to prove
similar upper bounds with other methods for class proportion estimation as well (Lipton
et al., 2018; Azizzadenesheli et al., 2019; Alexandari et al., 2020; Du Plessis and Sugiyama,
2014; Jain et al., 2016).

5. Simulations

In this section, we present simulations that illustrate the effects of class imbalance in the
source domain. The labels in the source domain are distributed as Yi ∼ Ber(πP ), and
the labels in the target domain are distributed as Yi ∼ Ber(0.75). The class conditional
distributions (in both source and target domains) are

Xi | Yi ∼ Yi ∗ TN(0, 1,−2, 2)⊗3 + (1− Yi) ∗ TN(2, 1, 0, 4)⊗3 ,

where TN(µ, σ2, a, b) is the N(µ, σ2) distribution truncated to the interval [a, b]. We consider
three class imbalance settings: πP = 0.5 (solid line, solid circle as pointer), πP ∼ 1/

√
nP

(dashed line, star as pointer) and πP ∼ 1/nP (dotted line, plus as pointer). We defer other
details of the simulation setup to Appendix A.

Supervised label shift simulations In the supervised setting, we compare the excess
risks of the two following methods:

1. a minimax rate optimal plug-in classifier 1
{
η̂Q(x) ≥ 1

2

}
, where η̂Q is defined in (3.2).

This method is denoted as Cl-labeled.

2. a classical classifier designed for IID settings. This is the same classifier as the minimax
rate optimal plug-in classifier that only uses data from the target domain to estimate
the class conditional densities and class probabilities. We considered this classifier in
Section 3 when discussing the benefits of transfer learning. This method is denoted as
Cl-classical.

12
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Figure 1: Excess risks in the supervised label shift problem. We see that the minimax
optimal approach studied in section 3 is the only approach that learns effectively
from both source and target domains.

To estimate the class conditional densities, we use a 2-valid kernel (see (3.4)) with the

optimal bandwidth h0 = n
−1/7
0 and h1 = n

−1/7
1 (see Theorem 6).

We compare the efficacy of the two approaches in two settings. In the first setting
(Figure 1, left), nP � nQ (nP is growing and nQ is held fixed), so it is necessary to transfer
knowledge from source to target data to reduce the excess risk. As expected, the excess
risk of the classical classifier designed for IID settings remains constant as nP changes as it
ignores data from the source domain. On the other hand, the excess risk of the Cl-labeled
classifier, which transfers knowledge from source to target domain, decreases as nP increases
in the πP = 0.5 and πP ∼ 1√

nP
settings. This shows that Cl-labeled leverages data from

the source domain to improve classification accuracy in the target domain. We note that
effect of class imbalance in the source domain appears in the εPnP term in the minimax rate
(3.5). Recall this is the minimum expected per class sample size in the source domain. From
(3.5), we expect the convergence rate of the excess risk is slower in the πP ∼ 1√

nP
setting

than in the πP = 0.5 setting, and we see that this is indeed the case in Figure 1. We also
expect the excess risk to remain bounded away from zero in the πP ∼ 1

nP
setting because

the εPnP term remains bounded away from zero in the minimax rate.
In the second setting (Figure 1, right), we compare the classical classifier and Cl-labeled

in the nQ � nP (nQ is growing and nP is held fixed) setting. This is an easier setting
because it is possible to perform well (have small excess risk) in the target domain without
transferring knowledge from the source domain. We expect both approaches to perform well
in this setting, and Figure 1 confirms this.

Unsupervised label shift simulations In the unsupervised setting, we compare the
excess risks of the two following methods:

1. a minimax rate optimal plug-in classifier where η̂Q is estimated using kernel-based
density estimates of g1 and g0 and a distribution matching estimator of πQ Lipton
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Figure 2: Excess risks in the unsupervised label shift problem. We see that the minimax
optimal approach studied in section 4 (eventually) matches the performance of
the oracle classifier.

et al. (2018). This method is denoted as Cl-unlabeled. We use a different method
here to estimate πQ than in the proof of Theorem 13 to demonstrate the robustness of
our results to the choice of estimator (of πQ).

2. an oracle plugin classifier that uses the exact value of πQ. We denote this classifier by
Cl-oracle.

To estimate the class conditional densities, we use a 3-valid kernel (see (3.4)) with the

optimal bandwidths h0 =
(
n′0
)−1/7

, h1 =
(
n′1
)−1/7

(see theorem 13). We defer the other
details of the simulation setup to Appendix A.

We evaluate the efficacy of both approaches in the two preceding settings, nP � nQ (see
Figure 2, left) and nQ � nP (see Figure 2, right). In both settings, we fix πQ = 0.75 and
vary πP to study the effects of class imbalance. At a high-level, as long as nQ is large enough,
the distributional matching classifier matches the performance of the oracle classifier. This
is explained by the fact that if nQ is large enough, the distributional matching produces a
good enough estimator of πQ, so the error in the estimation of πQ is no longer the dominant
source of error in the excess risk.

We observe that there is always a small gap between the excess risk of the two methods
because the estimates of the class probability ratios are not consistent in the simulation
settings. Recall that the error incurred by distributional matching is O( 1

nP
) ∨O( 1

nQ
) (see

Lipton et al. (2018), Theorem 3). This implies that the estimates of the class probability
ratios never converge to their population counterparts in the simulation settings, because
one of nP and nQ is held fixed by design. Thus, the oracle classifier, which does not suffer
from errors in the estimates of the class probability ratios, is always a step ahead of the
minimax rate optimal classifier.
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6. Proof of Theorem 12

In this section, we prove Theorem 12. The proof of Theorem 5 is similar, and we defer the
details to the supplementary materials. At a high-level, the proof has two parts. The first part

shows that the minimax rate is at least (εPnP )
−β(1+α)

2β+d . This is due to the difficulty arising
from the non-parametric part of the label shift problem: estimating the class conditional

densities g0 and g1. The second part shows that the minimax rate is at least n
− 1+α

2
Q . This

stems from the difficulty of the parametric part of the label shift problem: estimating the
class probabilities in target domain πQ.

6.1 Difficulty of the non-parametric part

To study the difficulty of the non-parametric part of the label shift problem, we appeal to
the following proposition to obtain lower bounds in the non-parametric regression problems.

Proposition 17 (Theorem 2.5 in Tsybakov (2009)) Let {Πh}h∈H be a family of dis-
tributions indexed over a subset H of a semi-metric (F , ρ̄). Suppose there are h0, . . . hM ∈ H,
M ≥ 2, such that:

1. ρ̄(hi, hj) ≥ 2s > 0 for all 0 ≤ i < j ≤M,

2. Πhi � Πh0 for all i ∈ [M ], and the average KL-divergence to Πh0 satisfies

1

M

M∑

i=1

KL(Πhi | Πh0) ≤ κ logM for some 0 < κ <
1

8
.

Let Z ∼ Πh and f̂ : Z → F be any improper learner of h ∈ H. We have for any f̂ :

sup
h∈H

Πh

(
ρ̄(f̂(Z), h) ≥ s

)
≥ 3− 2

√
2

8
.

The crux of this part is construction of a family of distributions on the source and target
domains {Πi}Mi=1 that satisfies the assumptions of proposition 17. Before delving into the
technical details, we describe the intuition behind the construction.

We devote most of our efforts in this part to constructing the class conditional densities
because we wish to study (the difficulty of) the non-parametric part of the problem. We
partition the sample space [0, 1]d into small (hyper-)rectangles and divide the rectangles
into three groups. The class conditional densities differ on the second and third groups, but
they are identical on the first group. The sizes of the two groups are carefully adjusted to
satisfy the margin condition in definition 4 and minimize the KL divergence between the
Πi’s. Within each rectangle, the class conditional densities are smooth functions with a
rise/fall near center of the rectangle and half near the boundaries.

In the proof, we associate the rectangles with the vertices of a hypercube and judiciously
pick a subset of rectangles on which the class conditional densities differ, so that the Hamming
distance between the associated verticies of the hypercube is maximized. The lower bound
on the minimax rate then follows directly from proposition 17.
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We assume εPnP ≥ 1. Let r = cr(εPnP )
−1/(2β+d),m = bcmrαβ−dc, where α ≥ 0 is

the noise condition exponent and β > 0 is the Hölder smoothness exponent. Also, define
cr = (1/17), cm = 8× 17αβ−d and cw ∈ (0, 1) is a constant to be picked later. The preceding
constants satisfy

8 ≤ m <
1

2

⌊
1

r

⌋d
.

To see the first inequality, we observe that r ≤ 1/17 and recall αβ ≤ d. Thus

m = 8× (17r)αβ−d ≥ 8.

To see the second inequality, we observe that r−1 ≥ 16, which implies r−1 ≤ 17br−1c/16.
Thus

m = 8(17r)αβ
(

1

17r

)d
≤ 8 · 16−dbr−1cd ≤ 1

2
br−1cd.

We also have 2mw = 2mcwr
d ≤ 2cmcw < 1 for a suitable cw.

Construction of {Πi}Mi=1. Let r1 = 1/b1/(cwr)c if b1/(cwr)c is even, otherwise let
r1 = 1/ (b1/(cwr)c+ 1) . Let us consider the grid of points

Z = {(1/2 + i)r1 : i = 0, 1, . . . , 1/r1 − 1}d. (6.1)

We see that Z is a grid of equally spaced points of size r−d1 . For a z ∈ Z we consider the
hyper-cube

C(z) = {x ∈ [0, 1]d : ‖x− z‖∞ ≤ r1/2}.
Note that, volume of each of these hyper-cubes is rd1 . Let Z1,Z2 ⊂ Z be subsets of size m.
Moreover, we let Z1 and Z2 are disjoint. We define a bijection u : Z1 → Z2 which shall
be used to construct the conditional densities. We define Z0 = Z\(Z1 ∪ Z2). Note that,
Z has even number of points and |Z1| = |Z2|. Hence, Z0 has even number of points. We
further divide Z0 in two sets Z3,Z4 of equal sizes. We shall define a set of distributions
parametrized by σ ∈ {−1, 1}Z1 .
Conditional densities. For a > 0 we define a function va supported on on R which will be
used heavily for the construction of conditional densities. Define

ua(x) =





0 for x < 0
∫ x
0 e

− 1
at(1−t) dt

∫ 1
0 e

− 1
at(1−t) dt

for 0 ≤ x ≤ 1

1 for x > 1

and

va(x) =

{(
1− ua(x)

)1/α
for β < 1,(

1− ua(x)
)

for β ≥ 1.
(6.2)

According to lemma C.6 we choose a such that va ≡ v is (β,Cβ) Hölder smooth.
Therefore, the following functions are (β,Cβ)-Hölder smooth:

z ∈ Z, ηz(x) =
rβ

3
v

(
2‖x− z‖∞

r1

)
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and

z ∈ Z, ξz(x) = v

(
2‖x− z‖∞

br1
− 2

(
1

b
− 1

))
.

For a parameter σ the construction of conditional densities are given below.





gσ1 (x) =





1 + σ(z)
√
εP ηz(x) x ∈ C(z), z ∈ Z1,

1− σ(z)
√
εP ηf(z)(x) x ∈ C(f(z)), z ∈ Z1,

1 + ξz(x) x ∈ C(z), z ∈ Z3,

1− ξz(x) x ∈ C(z), z ∈ Z4,

gσ0 (x) =





1− σ(z)
√
εP ηz(x) x ∈ C(z), z ∈ Z1,

1 + σ(z)
√
εP ηf(z)(x) x ∈ C(f(z)), z ∈ Z1,

1− ξz(x) x ∈ C(z), z ∈ Z3,

1 + ξz(x) x ∈ C(z), z ∈ Z4.

(6.3)

We also define πσQ = 1/2 and πσP = 1/2. We then define the probabilities

Pσ(X ∈ A, Y = y) =

∫

A
[πσP g

σ
1 (x)1(y = 1) + (1− πσP )g

σ
0 (x)1(y = 0)]dx

and

Qσ(X ∈ A, Y = y) =

∫

A
[πσQg

σ
1 (x)1(y = 1) + (1− πσQ)g

σ
0 (x)1(y = 0)]dx. (6.4)

Given the source and target distributions we define the joint distribution of DU as

Πσ = P⊗nP
σ ⊗Q

⊗nQ

σ,X (6.5)

Here, εP ≤ πσP ≤ 1 − εP . Also, qX ≡ 1 for any x ∈ Ω. Hence, µ− ≤ qσX(x) ≤ µ+.
Furthermore, Ω = [0, 1]d is a regular set. Hence, qσX satisfies strong density assumption.

For such a construction, the marginals are

pσX(x) = qσX(x) =
1

2
gσ1 (x) +

1

2
gσ0 (x) = 1 (6.6)

Furthermore, the regression function ησQ is

ησQ(x) =
πσQg

σ
1 (x)

qσX(x)
=

1

2
gσ1 (x) (6.7)

We refer to lemma 20, where it is shown Qσ satisfies α-margin condition with constant
Cα. Also, the separation assumption ?? is verified in lemma 22.

Let F be the set of all classifier relevant to this classification problem. For σ ∈ {−1, 1}Z1

let fσ be the Bayes classifier corresponding to the probability distribution Qσ defined as
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fσ(x) = 1{ηQσ(x) ≥ 1/2}. For σ, σ′ ∈ {−1, 1}Z1 define ρ̄(σ, σ′) := Eσ(fσ′) and ρ(σ, σ′) =
card{z ∈ Z1 : σ(z) 6= σ′(z)} as the Hamming distance. Then

ρ̄(σ, σ′) = 2EQσ,X

[∣∣∣∣η
σ
Q(X)− 1

2

∣∣∣∣1 (fσ(X) 6= fσ′(X))

]

≥ c1r
d
1r
βρ(σ, σ′)

≥ c1c
d
wr

β+dρ(σ, σ′).

We recall Varshamov-Gilbert bound, which shall be used to construct the probability
class.

Lemma 18 (Varshamov-Gilbert bound) Letm ≥ 8. Then there exists a subset {σ0, . . . , σM} ⊂
{−1, 1}m such that σ0 = (1, . . . , 1),

ρH(σi, σj) ≥
m

8
, for all 0 ≤ i < j ≤M, and M ≥ 2m/8,

where, ρH is the hamming distance.

Let {σ0, . . . , σM} ⊂ {−1, 1}m be the choice obtained from the lemma 18. Note that for
such a choice ρ(σi, σj) ≥ m/8 whenever i 6= j.

Then

ρ̄(σi, σj) ≥ c1c
d
wr

β+dm

8

≥ c1c
d
wr

β+drαβ−d

≥ c′rβ(1+α)

= c′(εPnP )
−β(1+α)

2β+d

, 2s

Now we bound the Kulback-Leibler divergence between the joint distributions Πσi . Using
lemma 21 we get

KL(Πσi ||Πσj ) ≤ cdwK(d, α, β)ρ(σi, σj)

≤ cdwK(d, α, β)m

≤ 1

9
log2(M)

for suitable cw < 1.
Finally we appeal to proposition 17 (and Markov’s inequality) to obtain the minimax

rate

sup
(P,Q)∈Π

EEQ(f̂) ≥ sup
(P,Q)∈Π

sPΠ

(
EQ(f̂) ≥ s

)

≥ s sup
σ∈{−1,1}Z1

Πσ

(
EQσ(f̂) ≥ s

)

≥ s
3− 2

√
2

8

≥ C(εPnP )
−β(1+α)

2β+d .
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6.2 Difficulty of the parametric part

To study the difficulty of the parametric part, it is enough to construct two well-separated
hypotheses (versus the family of well-separated hypotheses required in our study of the
non-parametric part). We refer to the following theorem to establish lower bound. This
particular form of LeCam’s bound is taken from Tsybakov (2009), Chapter 2. The result
directly follows from Equation (2.5) and statement (iii) in Theorem 2.2.

Theorem 19 (LeCam’s bound) Let P be a set of distributions. For any pair P0, P1 ∈ P,

inf
θ̂

sup
P∈P

EP

[
d(θ̂, θ(P ))

]
≥ ∆

8
e−KL(P0||P1)

where ∆ = d
(
θ(P0), θ(P1)

)
.

The construction will closely follow the non-parametric part. Let σ ∈ {−1, 1}, cw <

1, r = n
−α/2
Q ,

r1 =

{
1/b1/(cwr)c if b1/(cwr)c is odd

1/ (b1/(cwr)c+ 1) if b1/(cwr)c is even

Thus 1
r1

is always an odd number. Define 2D + 1 = 1/r1. Let us consider the grid of points

Z = {zi = (1/2 + i)r1 : i = 0, 1, . . . , 2D}.

We again consider the function va ≡ v (as defined in (6.2)) which is (β,Cβ) Hölder
smooth. Hence the following functions are also (β,Cβ) Hölder smooth.

z ∈ Z, ηz(x) = v

(
2‖x− z‖∞

br1
− 2

(
1

b
− 1

))

. We also define C(z) =
{
x ∈ [0, 1]d :

∣∣x(1) − z(1)
∣∣ ≤ r1/2

}





gσ1 (x) =





1 x ∈ C(z0),

1 + ηzi(x) x ∈ C(zi), for i = 1, . . . , D,

1− ηzi(x) x ∈ C(zi), for i = D + 1, . . . , 2D,

gσ0 (x) =





1 x ∈ C(z0),

1− ηzi(x) x ∈ C(zi), for i = 1, . . . , D,

1 + ηzi(x) x ∈ C(zi), for i = D + 1, . . . , 2D

(6.8)

and πσP = 1/2, πσQ = 1/2 + σcQn
−1/2
Q . We construct Pσ, Qσ and define

Πσ = P⊗nP
X,σ ⊗Q

⊗nQ
σ (6.9)

in the similar way. As before, we have εP ≤ πσP ≤ 1− εP and qX ≡ 1. Hence, µ− ≤ qX ≤ µ+
and supported on [0, 1]d. This implies QX has strong density. Also, we refer to lemma 20 to
show Qσ satisfies α margin condition with constant Cα.
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For σ ∈ {−1, 1} let ησ and fσ be the regression function and Bayes classifier for Qσ,
respectively. Then

ρ̄(Π1,Π−1) = EQ1(f−1)

= 2EQ1,X

[∣∣ησQ(X)− 1/2
∣∣1{f1(X) 6= f−1(X)}

]

≥ 4cQn
−1/2
Q r1

≥ c′n
− 1+α

2
Q = 2s.

We refer to lemma C.4 in supplement to get the following bound

KL(Π1||Π−1) ≤ nQKL(U
(1)
Q ||U (−1)

Q )

≤ nQ(1/2 + cQn
−1/2
Q ) log


1/2 + cQn

−1/2
Q

1/2− cQn
−1/2
Q




+ (1/2− cQn
−1/2
Q ) log


1/2− cQn

−1/2
Q

1/2 + cQn
−1/2
Q




≤ nQ
2

4
3c2Qn

−1
Q

≤ c2Q

where UσQ ∼ Bernoulli(πσQ).
Using theorem 19 we conclude

sup
(P,Q)∈Π

E
[
EQ(f̂)

]
≥ cn

− 1+α
2

Q .

Finally, we combine the two bounds to get

sup
(P,Q)∈Π

E
[
EQ(f̂)

]
≥ cn

− 1+α
2

Q ∨ c(εPnP )−
β(1+α)
2β+d

≥ c′
(
(εPnP )

− β
2β+d + n

−1/2
Q

)1+α

.

Lemma 20 For any σ ∈ {−1, 1}Z1 Qσ as defined in 6.4 and 6.9 satisfies α-margin condition
with constant Cα.

Proof We prove the lemma for both 6.4 and 6.9.

Margin condition for non-parametric part We recall the marginal and regression
function as in 6.6 and 6.7, respectively. For such a regression function

∣∣ησQ(x)− 1/2
∣∣ =





√
εP ηz(x)/2 x ∈ C(z), z ∈ Z1,√
εP ηf(z)(x)/2 x ∈ C(f(z)), z ∈ Z1,

0 x ∈ C(z), z ∈ Z0.
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Let

t0 =

{√
εP r

β

6 (1− ua(1/2))
1/α β < 1

√
εP r

β

6 (1− ua(1/2)) β ≥ 1

For t ≤ t0, β < 1 and z ∈ Z1 ∪ Z2, we see that

∫ 1

1/2
e
− 1

a(s−s2)ds ≤
∫ 1

0
e
− 1

a(s−s2)ds

(
6t√
εP rβ

)α
. (6.10)

Hence,
QX
{
0 <

√
εP ηz(x) ≤ 2t

}

= QX

{
0 < 1− u

(
2‖x− z‖∞

r1

)
≤
(

6t√
εP rβ

)α}

= QX

{
0 <

∫ 1

2‖x−z‖∞
r1

e
− 1

a(s−s2)ds ≤
∫ 1

0
e
− 1

a(s−s2)ds

(
6t√
εP rβ

)α}

≤ QX

{
0 < e−

4
a

(
1− 2‖x− z‖∞

r1

)
≤
∫ 1

0
e
− 1

a(s−s2)ds

(
6t√
εP rβ

)α}

= QX

{
1− e4/a

∫ 1

0
e
− 1

a(s−s2)ds

(
6t√
εP rβ

)α
<

2‖x− z‖∞
r1

≤ 1

}

= rd1


1−

(
1− e4/a

∫ 1

0
e
− 1

a(s−s2)ds

(
6t√
εP rβ

)α)d



≤ Cε
−α/2
P cdw

rdtα

rαβ

where the third inequality is true because 2‖x−z‖∞
r1

≥ 1/2 (obtained from inequality 6.10).
Similarly, t ≤ t0, β ≥ 1 we have

QX
{
0 <

√
εP ηz(x) ≤ 2t

}
≤ Cbdε

−1/2
P cdw

rdt

rβ

≤ Cbdε
−1/2
P cdw

rdt

rβ
(
C ′t/rβ

)α−1

≤ C ′′ε−α/2P cdw
rdtα

rαβ

because α ≤ 1 for β ≥ 1. For z ∈ Z3 ∪ Z4

QX
{
0 <

√
εP ηz(x) ≤ 2t

}
≤ Ccdwb

d r
dtα

rαβ

Hence,

QX
{
0 <

∣∣∣∣η
σ
Q(x)−

1

2

∣∣∣∣ ≤ t
}
≤ Cε

−α/2
P cdw

rdtα

rαβ
2m+ (r−d1 − 2m)Cbdcdw

rdtα

rαβ

≤ Cαt
α.
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for small enough cw.

Let
√
εP r

β

6 (1− ua(1/2))
1/α ≤ t ≤ 1

3 . Then

QX

{
0 <

∣∣∣∣η
σ
Q(x)−

1

2

∣∣∣∣ ≤ t

}
≤ 2mrd1 + (r−d1 − 2m)(br1)

d

≤ 2cmc
d
wr

αβ + cdbr
d

≤
(
2cmc

d
w + cdb

)
rαβ

≤ Cα

(√
εP r

β

6
(1− ua(1/2))

1/α

)α

≤ Cαt
α

where the second last inequality is true for small cw and cb.

Margin condition for parametric part Let t ≤ 1
2 (1− ua(1/2))

1/α . For i ≥ 1

QX
{
0 <

√
εP ηzi(x) ≤ 2t

}
≤ Cbcwrt

α.

Hence, for t < cQn
−1/2
Q

QX

{
0 <

∣∣∣∣η
σ
Q(x)−

1

2

∣∣∣∣ ≤ t

}
≤ 4DCbcwrt

α

≤ Cαt
α.

for small enough cw. For cQn
−1/2
Q ≤ t ≤ 1

2 (1− ua(1/2))
1/α

QX

{
0 <

∣∣∣∣η
σ
Q(x)−

1

2

∣∣∣∣ ≤ t

}
≤ 4DCbcwrt

α + cαwr
α

≤ Cαt
α.

for small enough cw.

Lemma 21 Let
{
Πσ : σ ∈ {−1, 1}Z1

}
be the class of joint distributions defined in 6.5. For

σ, σ′ ∈ {−1, 1}Z1 we have

KL(Πσ||Πσ′) ≤ cdwK(d, α, β)ρ(σ, σ′).

Proof We recall from 6.6 QX,σ ∼ Uniform
(
[0, 1]d

)
doesn’t depend on σ. Hence,

KL
(
QX,σ||QX,σ′

)
= 0.

We refer to lemma C.4 in supplement to show

KL
(
Pσ||Pσ′

)
=

1

2

(
gσ0 ||gσ

′

0

)
+

1

2

(
gσ1 ||gσ

′

1

)

≤ εP c
d
wK

′(d, α, β)r2β+dρ(σ, σ′).
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Combining them we get

KL
(
Πσ||Πσ′

)
= nPKL

(
Pσ||Pσ′

)
+ nQKL

(
QX,σ||QX,σ′

)

≤ nP εP c
d
wK

′(d, α, β)r2β+dρ(σ, σ′)

≤ cdwK
′(d, α, β)c2β+dr (εPnP )(εPnP )

−1ρ(σ, σ′)

≤ cdwK(d, α, β)ρ(σ, σ′).

Lemma 22 For suitable choices of cw, b > 0 we have

∫

X
(gσ1 (x)− gσ0 (x))

2dx ≥ C2.

Proof Notice that,

ξz(x) = v

(
2‖x− z‖∞

br1
− 2

r1

(
1

b
− 1

))
= 1

whenever ‖x−z‖∞ ≤ r1(1−b) and in such regions the density differences are ≥ 1. Hence, the
integral of the difference squared is ≥ rd1(1− b)d for non-parametric case and ≥ r1(1− b) for
parametric case. Noticing that there are (1/rd1 − 2m) (non-parametric) and 2D (parametric)
many regions we get the following

∫

X

(
g0(x)− g1(x)

)2
dx ≥

{
(1− 2cmc

d
w)(1− b)d for non-parametric part,(

1− 1
2D+1

)
(1− b) for parametric part.

Here 1
2D+1 ∼ cwn

−α/2
Q . The constants cw, b can be suitably chosen to satisfy the condition

in lemma.

7. Summary and discussion

We studied the hardness of the label shift problem in two settings, one in which the learner
has access to labeled training examples from the target domain, and another in which the
learner only has unlabeled training examples from the target domain. We showed that
there is a difference between the hardness of the label shift problem in the two settings.
In the former setting (in which the learner has access to labeled training examples from

the target domain), the minimax rate is O
(
(εPnP + nQ)

−β/(2β+d) + n
−1/2
Q

)1+α
, while in

the latter setting, the minimax rate is O
(
(εPnP )

−β/(2β+d) + n
−1/2
Q

)1+α
. We attribute this

difference in rates is due to the availability of data from the target domain to estimate the
the class conditional distributions in the former setting.
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Although we studied the hardness of the label shift problem with non-parametric model
classes, we expect our results to generalize to more restrictive model classes. Inspecting the
minimax rates, we see that they consist of two terms: a term that depends on the hardness
of estimating the (ratio of) class conditional distributions, and a term that depends on the
hardness of estimating the ratio of class probabilities in the source and target domains. In
non-parametric classification, the hardness of estimating the class conditionals determines
the hardness of the non-parametric classification problem in the IID setting (Kpotufe, 2017).
This observation leads us to interpret the first term in the minimax rate as the hardness of
finding the optimal classifier, and we expect this term to change with the model class. Thus,
for more restrictive model classes, we expect the first term in the minimax rates to improve
(vanish faster) in a way that depends on the (reduced) complexity of the model class.

To wrap up, we mention two possible extensions of our work. First, it is natural to
consider the label shift problem in high dimension. To keep the problem tractable, we must
impose stronger parametric assumptions on the regression function. Such assumptions may
also be phrased as assumptions on the class conditional densities because the regression
function is (up to a monotone transform) the ratio of the class conditional densities. In
the supervised label shift problem, we expect the minimax rate to depend on the hardness
of estimating the regression function under the additional parametric assumptions. In
the unsupervised label shift problem, we expect the distributional matching approach to
provide good estimates of the class probability ratios (because the class probability ratios
are low-dimensional), so we also expect the minimax rate to depend on the hardness of
estimating the regression function.

Second, it is natural to consider the possibility of achieving the minimax rate with a
classifier that adapts to the smoothness of the regression function and the noise level in the
labels. Kpotufe and Martinet (2018) and Cai and Wei (2019) developed adaptive classifiers
that attain the minimax rate in the covariate shift and posterior drift problems with Lepski’s
method. We expect Lepski’s method will lead to an adaptive classifier in the label shift
problem as well. However, the main goal of this paper is investigating the hardness of the
label shift problem, and we defer such methodological questions to future work.
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Appendix A. Simulation details

The codes and simple demonstrations are provided in https://github.com/smaityumich/label-
shift.

Data generating process We start by describing the data generating process D(n, π).
Let µX denote the probability distribution of random variable X. For a < b we define the
TN(µ, σ2, a, b) as the N(µ, σ2) distribution truncated to the interval [a, b]. Given inputs
sample size n and class probability π for class 1, D(n, π) returns a pair (x,y) where,

• y is a n dimensional random vector with IID Ber(1, π) components.

• x = [x1, . . . , xn]
T is a n× 3 random matrix with independent rows. The distribution

of the i-th row is

xi | yi ∼ yi ∗ µ⊗3
TN(0,1,−2,2) + (1− yi) ∗ µ⊗3

TN(2,1,0,4).

We observe that the features are supported on the hypercube [−2, 4]4

Given the data generating procedure D(n, π) we generate the following synthetic data:

– (xP ,yP ) = D(nP , 0.5) is the data from source population.

– (xQ,yQ) = D(nQ, 0.75) is the data from target population.

– (xtest,ytest) = D(ntest, 0.75) is the data for evaluating the performance of the classifiers,
which shall also be referred as test data. Note the distribution of test data is same as
the target distribution.

Other classifiers Next we describe the classifiers that we shall consider for our comparative
study:

• Labeled-Classifier is a function that takes the data (xP ,yP ) from source, (xQ,yQ)
from target distribution and bandwidth parameters h0, h0 > 0 as inputs, and returns
the classifier

CL-labeled , Labeled-Classifier(xP ,yP ,xQ,yQ, h0, h1)

as defined in section 3, equation 3.1 and 3.3. Throughout our simulation study we use
β∗-valid kernel (definition 23, Tsybakov (2009), definition 1.2 and section 1.2.2) with
β∗ as 3. Since the densities are infinitely differentiable on the interior of support, we
expect to realize a rate of convergence with β = 3. In that regard, we fix the bandwidth

parameter h0 = n
− 1

10
0 , h1 = n

− 1
10

1 .

• Classical-Classifier is a function that takes the target data (xQ,yQ) and a band-
width parameter h > 0 as input and returns a classifier

CL-classical , Classical-Classifier(xQ,yQ, h)

where

CL-classical(x) = 1

{∑nQ

i=1 Y
Q
i Kh(x−XQ

i )∑nQ

i=1Kh(x−XQ
i )

≥ 1

2

}
.

We fix hQ = 1
2n

− 1
6

Q .

27



Maity, Sun, and Banerjee

• Unlabeled-Classifier takes the data (xP ,yP ) from source, xQ from target distri-
bution, a classifier g fitted on the source distribution and bandwidth parameters
h0, h1 > 0 as inputs, and returns the classifier

CL-unlabeled , Unlabeled-Classifier(xP , yP , xQ, g, h)

. It first estimates πQ using distribution matching approach Lipton et al. (2018);
Azizzadenesheli et al. (2019); Alexandari et al. (2020). For this particular simulation
study we use Lipton et al. (2018). The classifier g is a non-parametric classifier
Audibert and Tsybakov (2007) fitted on xP , yP with same kernel and bandwidths.
The final classifier is obtained by an appropriate re-weighting of the P -samples. We
fix h0 = (n′0)

−1/7, h1 = (n′1)
−1/7.

• Oracle-Classifier takes the source data xP , yP , and πQ and bandwidths h0, h1 > 0
as inputs, and returns a classifier

CL-oracle , Oracle-Classifier(xP , yP , w0, w1, h)

exactly same as in Unlabeled-Classifier with actual value πQ used for data gener-
ating purpose.Here, we use same kernel and bandwidths.

Appendix B. Proof of Theorem 6 and 13

B.1 Definitions

In this subsection we define β-valid kernel, convergence rates and parametric convergence
rates.

Definition 23 (β-valid kernel) Let K be a real-valued function on R
d, with support

[−1, 1]d. For fixed β > 0, the function K(·) is said to be a β-valid kernel if it satisfies∫
K = 1,

∫
|K|p < ∞ for any p ≥ 1,

∫
‖t‖β |K(t)|dt < ∞ and, in the case bβc ≥ 1, it

satisfies
∫
tsK(t)dt = 0 for any s = (s1, . . . , sd) ∈ N

d such that 1 ≤ |s| ≤ bβc.

We refer to Tsybakov (2009) section 1.2.2 for construction of such kernels for 1 dimensional
data. Kernel for d-dimensional data can be constructed as K ′(x1, . . . , xd) = K(x1) . . .K(xd).

The proof of upper bound is broken into some technical lemmas. These lemmas are
states in terms of general rate of convergence for parameter πQ and densities g0 and g1.
Formal definitions of these rates are given later. We denote the source-target sample size
pair (nP , nQ) by n, i.e. n ≡ (nP , nQ).

Definition 24 (Parameter estimation rate) For (P,Q) ∈ Π let θ̂n is an estimator of
the parameter θ = θ(P,Q) ∈ R. For non-increasing sequences (ϕn) and (ψn) of positive
numbers we say θ̂n converges to θ at a (ϕn, ψn)-rate uniformly on P if there exists positive
numbers c1, c2, cψ for any δ > 0

sup
(P,Q)∈P

P
(
|θ̂n − θ| > δ

)
≤ c1exp

(
− c2(δ/ϕn)

2
)
, δ ≤ cψψn.
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Definition 25 (Function estimation rate) For a pair (P,Q) ∈ P let p̂n be an estimator
for p ≡ p(P,Q) : X → R. Let (ϕn) be a sequence of non-increasing positive numbers. We say
p̂n converges pointwise to p at a ϕn-rate for (P,Q) if there exists positive constants c1, c2,∆
and cϕ such that for QX almost surely all x ∈ X we have

P
(
|p̂n(x)− p(x)| > δ

)
≤ c1exp

(
− c2(δ/ϕn)

2
)
, cϕϕn < δ < ∆.

We say p̂n converges pointwise to p at a ϕn-rate uniformly on P, if the above happens for all
(P,Q) ∈ P for some constants c1, c2,∆ and cϕ independent of (P,Q).

B.2 Required Lemmas

The proof of upper bound is broken into three main lemmas, which are presented in this
subsection.

Lemma 26 (Concentration of η̂Q) Let π̂
(n)
Q converges to πQ at a (ϕn, ψn)-rate and for

i ∈ {0, 1} let ĝ
(n)
i converges pointwise to gi at a τ

(i)
n rate, uniformly on P. Then there exists

positive constants c0, c1, c2 such that η̂Q converges pointwise to ηQ at a
(
c0(1−πQ+ψn)τ

(0)
n +

c1(πQ + ψn)τ
(1)
n + c2ϕn

)
-rate uniformly over P.

Proof We break the proof in several steps.
Step 1: Upper bound for η̂Q. Note that both η̂Q(x) and ηQ(x) can be expresses as

ηQ(x) =
πQg1(x)

πQg1(x) + (1− πQ)g0(x)

η̂Q(x) =
π̂Qĝ1(x)

π̂Qĝ1(x) + (1− π̂Q)ĝ0(x)
.

For the ease of notation, let us define u(x) = πQg1(x), v(x) = (1−πQ)g0(x), û(x) = π̂Qĝ1(x)
and v̂(x) = (1− π̂Q)ĝ0(x). Then

|η̂Q(x)− ηQ(x)| =
∣∣∣∣

û(x)

û(x) + v̂(x)
− u(x)

u(x) + v(x)

∣∣∣∣

=
|û(x)v(x)− u(x)v̂(x)|

(û(x) + v̂(x))(u(x) + v(x))

=
|û(x)v(x)− û(x)v̂(x) + û(x)v̂(x)− u(x)v̂(x)|

(û(x) + v̂(x))(u(x) + v(x))

=
|û(x)[v(x)− v̂(x)] + v̂(x)[û(x)− u(x)]|

(û(x) + v̂(x))(u(x) + v(x))

≤ û(x)|v(x)− v̂(x)|+ v̂(x)|û(x)− u(x)|
(û(x) + v̂(x))(u(x) + v(x))

≤|û(x)− u(x)|+ |v̂(x)− v(x)|
qX(x)

.

Step 2: Upper bound of û(x) and v̂(x). Since, π̂
(n)
Q ≡ π̂Q converges to πQ at a (ϕn, ψn)-rate,

there exists c
(π)
1 , c

(π)
2 , cπ > 0 such that for any δ > 0

sup
(P,Q)∈Π

P

(∣∣π̂(n)Q − πQ
∣∣ > δ

)
≤ c

(π)
1 exp

(
− c

(π)
2 (δ/ϕn)

2
)
, δ ≤ cπψn
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The above inequality can be rewritten as

sup
(P,Q)∈Π

P

(∣∣π̂(n)Q − πQ
∣∣ > δϕn/

√
c
(π)
2

)
≤ c

(π)
1 exp

(
− δ2

)
, δ ≤ cπψn

√
c
(π)
2 /ϕn. (B.1)

Fix i ∈ {0, 1}. Since, ĝ(n)i converges pointwise to gi at a τ
(i)
n -rate, there exists positive

constants c1,i, c2,i,∆i, cτ,i such that for any (P,Q) ∈ P for QX almost surely on X we have

P

(∣∣ĝ(n)i (x)− gi(x)
∣∣ > δ

)
≤ c1,iexp

(
− c2,i(δ/τ

(i)
n )2

)
cτ,iτ

(i)
n < δ < ∆i.

The above inequality can be rewritten as

P

(∣∣ĝ(n)i (x)− gi(x)
∣∣ > δτ (i)n /

√
c2,i

)
≤ c1,iexp

(
− δ2

)
, cτ,i < δ < ∆i/τ

(i)
n . (B.2)

Using union bound, for QX almost surely x ∈ X , with probability at least 1 − (c1,0 +

c1,1 + c
(π)
1 )e−δ

2
= 1− c′1e

−δ2 we have the following

∣∣π̂(n)Q − πQ
∣∣ ≤δϕn/

√
c
(π)
2 (B.3)

∣∣ĝ(n)0 (x)− g0(x)
∣∣ ≤δτ (0)n /

√
c2,0 (B.4)

∣∣ĝ(n)1 (x)− g1(x)
∣∣ ≤δτ (1)n /

√
c2,1 (B.5)

for cτ,0 ∨ cτ,1 < δ < (∆0/τ
(0)
n ) ∧ (∆1/τ

(1)
n ) ∧ (cπψn

√
c
(π)
2 /ϕn). From the above inequalities,

we get

|û(x)− u(x)| = |π̂(n)Q ĝ
(n)
1 (x)− πQg1(x)|

= |π̂(n)Q ĝ
(n)
1 (x)− π̂

(n)
Q g1(x) + π̂

(n)
Q g1(x)− πQg1(x)|

≤ π̂
(n)
Q |ĝ(n)1 (x)− g1(x)|+ g1(x)|π̂(n)Q − πQ|

≤
(
|π̂(n)Q − πQ|+ πQ

)
|ĝ(n)1 (x)− g1(x)|+ g1(x)|π̂(n)Q − πQ|

≤
(
πQ + δϕn/

√
c
(π)
2

)
δτ (1)n /

√
c2,1 + L∗δϕn/

√
c
(π)
2

≤
(
πQ + cπψn

)
δτ (1)n /

√
c2,1 + L∗δϕn/

√
c
(π)
2 ,

and similarly

|v̂(x)− v(x)| ≤
(
1− πQ + cπψn

)
δτ (0)n /

√
c2,0 + L∗δϕn/

√
c
(π)
2 .

Step 3: Concentration of ηQ. Under strong density assumption, for QX almost surely x ∈ X ,

with probability at least 1− c′1e
−δ2 we have

|η̂Q(x)− ηQ(x)| ≤
δ

µ+

[
(
πQ + cπψn

)
τ (1)n /

√
c2,1

+
(
1− πQ + cπψn

)
τ (0)n /

√
c2,0 + 2L∗ϕn/

√
c
(π)
2

]

=δrn
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for cτ,0 ∨ cτ,1 < δ < (∆0/τ
(0)
n )∧ (∆1/τ

(1)
n )∧ (cπψn

√
c
(π)
2 /ϕn). We can rewrite this as for QX

almost surely x ∈ X

sup
(P,Q)∈P

P

(
|η̂Q(x)− ηQ(x)| > δ

)
≤ c′1exp

(
− (δ/rn)

2
)

for
(
cτ,0∨cτ,1

)
rn < δ < rn

[
(∆0/τ

(0)
n )∧(∆1/τ

(1)
n )∧(cπψn

√
c
(π)
2 /ϕn)

]
. Let cr = cτ,0∨cτ,1. Since,

rn/τ
(0)
n ≥ 1/

√
c2,0, rn/τ

(1)
n ≥ 1/

√
c2,1 and rnψn/ϕn ≥ cπ

√
c
(π)
2 letting ∆ = (∆0/

√
c2,0) ∧

(∆1/
√
c2,1) ∧ (cπ

√
c
(π)
2 ) we get, for QX almost surely x ∈ X

sup
(P,Q)∈P

P

(
|η̂Q(x)− ηQ(x)| > δ

)
≤ c′1exp

(
− (δ/rn)

2
)
, crrn < δ < ∆.

Lemma 27 (Bound on EEQ(f̂)) Suppose an estimate η̂Q of the regression function ηQ
converges pointwise at a rn-rate uniformly on P. Then under α-margin condition there exists
a positive constant C such that

sup
(P,Q)∈P

E

[
EQ(f̂)

]
≤ Cr1+αn .

.

Proof Since, η̂Q converges pointwise to ηQ at a rn-rate, there exist positive constants
c1, c2,∆, cr such that for QX almost surely all x ∈ X

sup
(P,Q)∈P

P

(
|η̂Q(x)− ηQ(x)| > δ

)
≤ c1exp

(
− c2(δ/rn)

2
)
, crrn < δ < ∆.

Recall, under α-margin condition there exists cα > 0 such that

QX
(
|ηQ(x)− 1/2| > δ

)
≤ cαδ

α.

We replace cα by cα(∆/2)
−α ∨ 1 so that cα(∆/2)

α ≥ 1.

We define the following events.

A0 =
{
x ∈ R

d : 0 < |ηQ(x)− 1/2| < δ
}

and for j ≥ 1,

Aj =
{
x ∈ R

d : 2(j−1)δ < |ηQ(x)− 1/2| < 2jδ
}
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Now,

EQ(f̂) =2EX

(
|ηQ(X)− 1/2|1{f̂(X) 6=f∗(X)}

)

=2

∞∑

j=0

EX

(
|ηQ(X)− 1/2|1{f̂(X) 6=f∗(X)}1{X∈Aj}

)

≤2δEX

(
0 <

∣∣∣∣ηQ(X)− 1

2

∣∣∣∣ < δ

)

+ 2

∞∑

j=1

PX

(∣∣∣∣ηQ(X)− 1

2

∣∣∣∣1{f̂(X) 6=f∗(X)}1{X∈Aj}

)

Let δ = crrn. Then 2j−1δ ≥ ∆/2 if j ≥ log2(∆/δ).
On the event {f̂ 6= f∗} we have

∣∣ηQ − 1
2

∣∣ ≤ |η̂ − η| . So, for any 1 ≤ j < log2(∆/δ) we
get

2EXE

(∣∣∣∣ηQ(X)− 1

2

∣∣∣∣1{f̂(X) 6=f∗(X)}1{X∈Aj}

)

≤ 2j+1δEXE
(
1{|η̂Q(X)−ηQ(X)|≥2j−1δ}1{0<|ηQ(X)−1/2|<2jδ}

)

= 2j+1δEX

[
P

(
1{|η̂Q(X)−ηQ(X)|≥2j−1δ}

)
1{0<|ηQ(X)−1/2|<2jδ}

]

≤ 2j+1δexp
(
−(2j−1δ/rn)

2
)
PX(0 < |ηQ(X)− 1/2| < 2jδ)

≤ 2Cα2
j(1+α)δ1+αexp

(
−(2j−1δ/rn)

2
)
.

For j ≥ log2(∆/δ) we have P
(
|ηQ(x)− 1/2| ≥ 2j−1δ

)
= 1 and hence

P

(
2j−1δ < |ηQ(x)− 1/2| < 2jδ

)
= 0.

This means

2EXE

(∣∣∣∣ηQ(X)− 1

2

∣∣∣∣1{f̂(X) 6=f∗(X)}1{X∈Aj}

)

≤ 2j+1δEXE
(
1{|η̂Q(X)−ηQ(X)|≥2j−1δ}1{2j−1δ<|ηQ(X)−1/2|<2jδ}

)

= 2j+1δEX

[
P

(
1{|η̂Q(X)−ηQ(X)|≥2j−1δ}

)
1{2j−1δ<|ηQ(X)−1/2|<2jδ}

]

= 0.

Finally, we get

sup
P∈P

E

[
EQ(f̂)

]
≤ 2Cα


δ1+α +

∑

j≥1

2j(1+α)δ1+αexp
(
−(2j−1δ/rn)

2
)



≤ Cr1+αn .
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Now we provide a rate of convergence for the density estimator ĝ
(n1)
1 . Later we only provide

the statement for the rate of convergence for the density estimator ĝ
(n1)
0 . The proof will be

similar.

Lemma 28 (Rate of convergence for conditional density estimates) Let (P,Q) ∈
P. For i = 0, 1 let mi(n) ≡ mi(n, π) = E[ni]. Then for hi = n

−1/(2β+d)
i the density estimator

ĝ
(ni)
i converges pointwise to gi at a mi(n)

−β/(2β+d)-rate.

Proof We only prove the result for g1. The proof for g0 will be similar. Let n1 be the
number of sample points with label 1 (which is sum of independent Bernoulli variables). Let
v1(n) = Var(n1). Clearly, v1(n) ≤ m1(n).

Using Bernsteins’s inequality, for any t > 0 we get

P (|n1 −m1(n)| > t) ≤2exp

(
− t2/2

v1(n) + t/3

)

≤2exp

(
− t2/2

2v1(n)

)
for t ≤ 3v1(n),

≤2exp

(
− t2

4m1(n)

)
for t ≤ 3v1(n).

Letting t = δm1(n)
(2β+d/2)/(2β+d) we get

P

(
|n1 −m1(n)| > δm1(n)

2β+d/2
2β+d

)
≤ 2exp

(
−δ

2

4
m1(n)

2β
2β+d

)
,

for δ ≤ 3v1(n)

m1(n)
2β+d/2
2β+d

.

Using (Rigollet and Vert, 2009, Lemma 4.1) we get positive constants c1, c2, c
′,∆ such

that for QX almost sure all x ∈ X

sup
(P,Q)∈P

P

(∣∣ĝ(n1)
1 (x)− g1(x)

∣∣ > δ
∣∣∣n1
)
≤ c1exp

(
− c2n1h

d
1δ

2
)
, c′hβ1 < δ < ∆.

Letting h1 = n
− 1

2β+d

1 we get

sup
(P,Q)∈P

P

(∣∣ĝ(n1)
1 (x)− g1(x)

∣∣ > δ
∣∣∣n1
)
≤ c1exp

(
− c2n

2β
2β+d

1 δ2
)
, c′n

− β
2β+d

1 < δ < ∆.

Let n(0) = (n
(0)
P , n

(0)
Q ) such that ∆ ≤

(
3v1(n(0))

m1(n(0))
(2β+d/2)
(2β+d)

)
∧(1

2m1(n
(0))

d/2
2β+d

)
. We say

n ≥ n(0) if nP ≥ n
(0)
P and nQ ≥ n

(0)
Q . For any n ≥ n(0) we have δm(n)

2β+d/2
2β+d ≤ m(n)/2.
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Now, for n ≥ n(0), and QX almost surely all x ∈ X

P

(∣∣ĝ(n1)
1 (x)− g1(x)

∣∣ > δ
)

≤P

(∣∣ĝ(n1)
1 (x)− g1(x)

∣∣ > δ, |n1 −m1(n)| ≤ δm1(n)
2β+d/2
2β+d

)

+ P

(
|n1 −m1(n)| > δm1(n)

2β+d/2
2β+d

)

≤P

(∣∣ĝ(n1)
1 (x)− g1(x)

∣∣ > δ, |n1 −m1(n)| < m1(n)/2
)

+ 2exp

(
−δ

2

4
m1(n)

2β
2β+d

)

≤E

[
P

(∣∣ĝ(n1)
1 (x)− g1(x)

∣∣ > δ
∣∣∣n1
)
1m1(n)/2≤n1≤3m1(n)/2

]

+ 2exp

(
−δ

2

4
m1(n)

2β
2β+d

)

≤c1exp
(
−c2

(
m1(n)

2

) 2β
2β+d

δ2

)

+ 2exp

(
−δ

2

4
m1(n)

2β
2β+d

)
, for c′

(
m1(n)

2

)− β
2β+d

< δ < ∆.

Hence, there exists c′1, c
′
2, c

′,∆ such that for QX almost surely all x ∈ X

P

(
|ĝ(n1)

1 (x)− g1(x)| > δ
)
≤ c′1exp

(
−c′2m1(n)

2β
2β+d δ2

)
,

for c′m1(n)
− β

2β+d < δ < ∆.

B.3 Upper Bounds

B.3.1 Proof of Theorem 6

Proof Since, π̂
(n)
Q = 1

nQ

∑nQ

i=1 Y
(Q)
i using Bernstein’s inequality

P

(∣∣π̂(n)Q − πQ
∣∣ > t

)
≤ 2exp

(
− t2/2

πQ(1− πQ)/nQ + t/(3nQ)

)
.

Letting t ≤ 3πQ(1− πQ) we have

P

(∣∣π̂(n)Q − πQ
∣∣ > t

)
≤ 2exp

(
− nQt

2

4πQ(1− πQ)

)
.

Hence, π̂
(n)
Q converges to πQ at a ((πQ(1− πQ))/nQ)

1/2, πQ(1− πQ))-rate uniformly over P .

Since n1 =
∑nP

i=1 Y
(P )
i +

∑nQ

i=1 Y
(Q)
i from lemma 28 we see that ĝ

(n1)
1 converges pointwise

to g1 at a m(n)−β/(2β+d)-rate uniformly on P. Similarly, ĝ
(n1)
0 converges pointwise to g0 at
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a
(
nP + nQ −m(n)

)−β/(2β+d)
-rate. We refer to lemma 26 to conclude η̂Q converges to ηQ at

a rate

r(n, π) =





√
(1− πQ)πQ

nQ
+
√
πQ

(
πPnP + πQnQ

)− β
2β+d

+
√
(1− πQ)

(
(1− πP )nP + (1− πQ)nQ

)− β
2β+d

= (A) + (B) + (C) (B.6)

uniformly on P.
To complete the proof, we derive the worst possible rate over the function class. First,

we seek the worst rate with respect to πQ. Considering them term by term we see that
(A) ≤ 1

2
√
nQ
, (B) is an increasing function of πQ and hence

(B) ≤
(
πPnP + nQ

)− β
2β+d .

By similar logic we see that

(C) ≤
(
(1− πP )nP + nQ

)− β
2β+d .

Hence,

r(n, π) ≤ 1

2
√
nQ

+
(
πPnP + nQ

)− β
2β+d +

(
(1− πP )nP + nQ

)− β
2β+d

≤ 1
√
nQ

+
(
πPnP + nQ

)− β
2β+d +

(
(1− πP )nP + nQ

)− β
2β+d

.

But a concern regarding the above calculation is whether this dominating rate is achievable?
The following argument shows that it is achieved by πQ = 1/2.

r(n, π;πQ = 1/2) =
1

2
√
nQ

+
1√
2

(
πPnP + nQ/2

)− β
2β+d

+
1√
2

(
(1− πP )nP + nQ/2

)− β
2β+d

≥ 1

4
√
nQ

+
1

4

(
πPnP + nQ

)− β
2β+d

+
1

4

(
(1− πP )nP + nQ

)− β
2β+d

=
1

4

[
1

√
nQ

+
(
πPnP + nQ

)− β
2β+d

+
(
(1− πP )nP + nQ

)− β
2β+d

]

This explains why πQ = 1/2 exhibits the worst behavior.

Next, denoting f(πP ) =
(
πPnP + nQ

)− β
2β+d we note that

max
{
f(πP ), f(1− πP )

}
≤ f(πP ) + f(1− πP ) ≤ 2max

{
f(πP ), f(1− πP )

}
,
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which implies max
{
f(πP ), f(1−πP )

}
and f(πP )+f(1−πP ) have same rate of convergence.

Furthermore, using the fact that f is a decreasing function we get

max
{
f(πP ), f(1− πP )

}
= f(min{πP , 1− πP }) ≤ f(εP ),

where the last inequality is an equality in the worst possible case (πP = εP or 1− εP ). Hence,
we finally get the worst possible rate when πQ = 1/2 and πP = εP or 1− εP :

n
−1/2
Q +

(
εPnP + nQ

)− β
2β+d .

Finally, under α-margin condition lemma 27 we have

sup
(P,Q)∈P

EEQ(f̂) ≤ C
(
n
−1/2
Q + (εPnP + nQ)

− β
2β+d

)1+α
.

B.3.2 Proof of Theorem 13

Proof Let n1 =
∑nP

i=1 Y
(P )
i and n0 = nP − n1.

We use the method by Iyer et al. (2014) to estimate πQ with a Gaussian kernel Kc(x, y) =
Aexp(−c‖x − y‖22), where A > 0 is suitably chosen to satisfy

∫
X 2 Kc(x, y)dxdy = 1. This

ensures Kc to be a joint density on X 2. Furthermore, at the limit c→ ∞ the joint probability
distribution corresponding to Kc converges to an uniform distribution on the line x = y.
Since

(
g0(x)− g1(x)

)(
g0(y)− g1(y)

)
is a continuous function on a compact support X 2, this

is bounded. We apply bounded convergence theorem to conclude

lim
c→∞

∫

X 2

(
g0(x)− g1(x)

)(
g0(y)− g1(y)

)
Kc(x, y)dxdy =

∫

X

(
g0(x)− g1(x)

)2
dx.

From the Assumption ?? we have
∫

X

(
g0(x)− g1(x)

)2
dx ≥ C2 ,

which implies ∫

X 2

(
g0(x)− g1(x)

)(
g0(y)− g1(y)

)
Kc(x, y)dxdy ≥ C2

2
,

for a large enough c > 0. Denoting the corresponding feature vector (of the kernel Kc) as Φc
we see that Ā in Iyer et al. (2014), Equation (2) is merely

∫
Φc(x)(g1(x)− g0(x))dx. Hence

we have

Ā>Ā =

〈∫
Φc(x)(g1(x)− g0(x))dx,

∫
Φc(y)(g1(y)− g0(y))dy

〉

=

∫

X 2

〈Φc(x),Φc(y)〉
(
g0(x)− g1(x)

)(
g0(y)− g1(y)

)
dxdy

=

∫

X 2

Kc(x, y)
(
g0(x)− g1(x)

)(
g0(y)− g1(y)

)
dxdy ≥ C2

2
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Using the statement right after Lemma 2 in Iyer et al. (2014) we get

2(π̂Q − πQ)
2 ≤

R2
(
c2+2c+2
nQ

+ 2
n0

+ 2
n1

)(
1 +

√
log(4/δ)

)2

Ā>Ā− 8R2
(

1
n0

+ 1
n1

)√(
c2

n0
+ 1

n1

)
log(2/δ)

with probability at least 1 − δ. Here c = 1, R = maxx∈X ‖Φc‖, n0 is the number of
observations with Y = 0 in source and similarly n1. We note that the numbers R and

Ā>Ā ≥ C2
k
2 are fixed and n0, n1, nQ are growing. Hence, for sufficiently large n0, n1 and nQ

we get

|π̂Q − πQ| ≤ C ′
(√

1

nQ
+

1

n0
+

1

n1

)(
1 +

√
log(4/δ)

)

with probability at least 1− δ. In other words, there is a c > 0 such that for any n1 with
probability (conditioned over n1) ≥ 1− e−t

2
the following holds

|π̂Q − πQ| ≤ ct

√
1

nQ
+

1

n0
+

1

n1
.

Recall from the Bernstein inequality in 28 we have

πPnP − c′t
√
nPπP (1− πP ) ≤ n1 ≤ πPnP + c′t

√
nPπP (1− πP )

with probability≥ 1−e−t2 for t ≤ 2
√
nPπP (1− πP ) for some c′. Hence, for t ≤ 1

√
2c′nPπP (1− πP )

with probability ≥ 1− 2e−t
2
we have

|π̂Q − πQ|

≤ ct

√
1

nQ
+

1

n0
+

1

n1

≤ ct

√
1

nQ
+

1

(1− πP )nP − c′t
√
nPπP (1− πP )

+
1

πPnP − c′t
√
nPπP (1− πP )

≤ c1t

√
1

nQ
+

1

εPnP − c′t
√
εPnP

≤ c2t

√
1

nQ
+

1

εPnP

≤ c3

(
1

√
nQ

+
1√
nP εP

)

for suitably chosen constants. This implies π̂Q converges to πQ at a 1√
nQ

+ 1√
nP εP

rate.

From lemma 28 we see that ĝ
(n1)
1 converges pointwise to g1 at a (nPπP )

−β/(2β+d)-rate

and ĝ
(n0)
0 converges pointwise to g0 at a

(
nP (1 − πP )

)−β/(2β+d)
-rate. Rest of the proof is

same as in the proof of B.3.1.
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Appendix C. Additional detail for proof of lower bounds

C.1 Proof of Theorem 5

The proof has two parts. The first part shows that the minimax rate is at least (εPnP +
nQ)

−β(1+α)/(2β+d). This arises from the difficulties of estimating the non-parametric parts

g0 and g1. The second part shows that the minimax rate is at least n
−(1+α)/2
Q . This part is

relatively easy to work with and mainly stems from the estimation of parametric part πQ.

C.1.1 Difficulty of the non-parametric part

The crux of this part lies in construction of a family of distribution {Πi}Mi=1.

Let r = cr(εPnP + nQ)
−1/(2β+d),m = bcmrαβ−dc, where α ≥ 0 is the noise condition

exponent and β > 0 is the Hölder smoothness exponent.

Also, define cr = (1/17), cm = 8 × 17αβ−d and cw ∈ (0, 1) is a constant to be picked
later. The preceding constants satisfy

8 ≤ m <
1

2

⌊
1

r

⌋d
.

To see the first inequality, we observe that r ≤ 1/17 and recall αβ ≤ 1 ≤ d. Thus

m = 8× (17r)αβ−d ≥ 8.

To see the second inequality, we observe that r−1 ≥ 16, which implies r−1 ≤ 17br−1c/16.
Thus

m = 8(17r)αβ
(

1

17r

)d
≤ 8 · 16−dbr−1cd ≤ 1

2
br−1cd.

We also have 2mw = 2mcwr
d ≤ 2cmcw < 1 for a suitable cw.

Construction of {Πi}Mi=1. Let r1 = 1/b1/(cwr)c if b1/(cwr)c is even, otherwise let
r1 = 1/ (b1/(cwr)c+ 1) . Let us consider the grid of points

Z = {(1/2 + i)r1 : i = 0, 1, . . . , 1/r1 − 1}d. (C.1)

We see that Z is a grid of equally spaced points of size r−d1 . For a z ∈ Z we consider the
hyper-cube

C(z) = {x ∈ [0, 1]d : ‖x− z‖∞ ≤ r1/2}.

Note that, volume of each of these hyper-cubes is rd1 . Let Z1,Z2 ⊂ Z be subsets of size m.
Moreover, we let Z1 and Z2 are disjoint. We define a bijection u : Z1 → Z2 which shall
be used to construct the conditional densities. We define Z0 = Z\(Z1 ∪ Z2). Note that,
Z has even number of points and |Z1| = |Z2|. Hence, Z0 has even number of points. We
further divide Z0 in two sets Z3,Z4 of equal sizes. We shall define a set of distributions
parametrized by σ ∈ {−1, 1}Z1 .

Conditional densities. For a > 0 we define a function va supported on on R which will be
used heavily for the construction of conditional densities.
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Define

ua(x) =





0 for x < 0
∫ x
0 e

− 1
at(1−t) dt

∫ 1
0 e

− 1
at(1−t) dt

for 0 ≤ x ≤ 1

1 for x > 1

and

va(x) =

{(
1− ua(x)

)1/α
for β < 1,(

1− ua(x)
)

for β ≥ 1.
(C.2)

According to lemma 34 we choose a such that va ≡ v is (β,Cβ) Hölder smooth. Therefore,
the following functions are (β,Cβ)-Hölder smooth:

z ∈ Z, ηz(x) =
µ∆r

β

3
v

(
2‖x− z‖∞

r1

)

and

z ∈ Z, ξz(x) = v

(
2‖x− z‖∞

br1
− 2

r1

(
1

b
− 1

))
.

Here µ∆ < 1 is chosen later. For a parameter σ the construction of conditional densities are
given below.





gσ1 (x) =





1 + σ(z)
√
εP ηz(x) x ∈ C(z), z ∈ Z1,

1− σ(z)
√
εP ηf(z)(x) x ∈ C(f(z)), z ∈ Z1,

1 + ξz(x) x ∈ C(z), z ∈ Z3,

1− ξz(x) x ∈ C(z), z ∈ Z4,

gσ0 (x) =





1− σ(z)ηz(x) x ∈ C(z), z ∈ Z1,

1 + σ(z)ηf(z)(x) x ∈ C(f(z)), z ∈ Z1,

1− ξz(x) x ∈ C(z), z ∈ Z3,

1 + ξz(x) x ∈ C(z), z ∈ Z4.

(C.3)

We also define πσQ = 1/2 and πσP = 1− εP . We then define the probabilities

Pσ(X ∈ A, Y = y) =

∫

A
[πσP g

σ
1 (x)1(y = 1) + (1− πσP )g

σ
0 (x)1(y = 0)]dx

and

Qσ(X ∈ A, Y = y) =

∫

A
[πσQg

σ
1 (x)1(y = 1) + (1− πσQ)g

σ
0 (x)1(y = 0)]dx. (C.4)

Given the source and target distributions we define the joint distribution of DU as

Πσ = P⊗nP
σ ⊗Q

⊗nQ

σ,X (C.5)
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Here, εP ≤ πσP ≤ 1 − εP . Also, for any x ∈ Ω. Hence, µ− ≤ qσX(x) ≤ µ+ for a suitable
µ∆. Furthermore, Ω = [0, 1]d is a regular set. Hence, qσX satisfies strong density assumption.

For such a construction we refer to lemma 6.4, where it is shown Qσ satisfies α-margin
condition with constant Cα.

Let F be the set of all classifier relevant to this classification problem. For σ ∈ {−1, 1}Z1

let fσ be the Bayes classifier corresponding to the probability distribution Qσ defined as
fσ(x) = 1{ηQσ(x) ≥ 1/2}. For σ, σ′ ∈ {−1, 1}Z1 define ρ̄(σ, σ′) := Eσ(fσ′) and ρ(σ, σ′) =
card{z ∈ Z1 : σ(z) 6= σ′(z)} as the Hamming distance. Then

ρ̄(σ, σ′) = 2EQσ,X

[∣∣∣∣η
σ
Q(X)− 1

2

∣∣∣∣1 (fσ(X) 6= fσ′(X))

]

≥ c1r
d
1r
βρ(σ, σ′)

≥ c1c
d
wr

β+dρ(σ, σ′).

We recall Varshamov-Gilbert bound, which shall be used to construct the probability
class.

Let {σ0, . . . , σM} ⊂ {−1, 1}m be the choice obtained from the lemma 18. Note that for
such a choice ρ(σi, σj) ≥ m/8 whenever i 6= j.

Then

ρ̄(σi, σj) ≥ c1c
d
wr

β+dm

8

≥ c1c
d
wr

β+drαβ−d

≥ c′rβ(1+α)

= c′(εPnP )
−β(1+α)

2β+d

, 2s

Now we bound the Kulback-Leibler divergence between the joint distributions Πσi . Using
lemma 33 we get

KL(Πσi ||Πσj ) ≤ cdwK(d, α, β)ρ(σi, σj)

≤ cdwK(d, α, β)m

≤ 1

9
log2(M)

for suitable cw < 1.
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Finally we appeal to proposition 6.1 (and Markov’s inequality) to obtain the minimax
rate

sup
(P,Q)∈Π

EEQ(f̂) ≥ sup
(P,Q)∈Π

sPΠ

(
EQ(f̂) ≥ s

)

≥ s sup
σ∈{−1,1}Z1

Πσ

(
EQσ(f̂) ≥ s

)

≥ s
3− 2

√
2

8

≥ C(εPnP )
−β(1+α)

2β+d .

Proof of the parametric part will be exactly same as in the proof of theorem 4.1, where
we get the lower bound

sup
(P,Q)∈Π

E
[
EQ(f̂)

]
≥ cn

− 1+α
2

Q .

Finally, we combine the two bounds to get

sup
(P,Q)∈Π

E
[
EQ(f̂)

]
≥ cn

− 1+α
2

Q ∨ c(εPnP + nQ)
−β(1+α)

2β+d

≥ c′
(
(εPnP + nQ)

− β
2β+d +

1
√
nQ

)1+α

.

C.2 Additional Lemmas

Lemma 29 For any 0 ≤ x ≤ 1/3 we have

log

(
1 + x

1− x

)
≤ 3x.

Proof Note that for 0 ≤ x ≤ 1/3 we have x− 3x2 ≥ 0. Hence,

1 + x ≤ 1 + 2x− 3x2

≤ (1− x)(1 + 3x)

≤ (1− x)e3x.

Taking logarithm in both sides we have the result.

Lemma 30 Let |e| ≤ 1. For σ ∈ {−1, 1}Z1 let pσ be a probability density function

pσ(x) =





1 + σ(z)eηz(x) x ∈ C(z), z ∈ Z1,

1− σ(z)eηf(z)(x) x ∈ C(f(z)), z ∈ Z1,

1 + ξz(x) x ∈ C(z), z ∈ Z3,

1− ξz(x) x ∈ C(z), z ∈ Z4,

,
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as defined in C.3 and Section 6, in main document, equation 6.3. For σ, σ′ ∈ {−1, 1}Z1 let us
define the Hamming distance as ρ(σ, σ′) =

∑
z∈Z1

1{σ(z) 6=σ′(z)}. Then for σ, σ′ ∈ {−1, 1}Z1

KL(pσ||pσ′) ≤ e2cdwK(d, α, β)r2β+dρ(σ, σ′), (C.6)

for some constant K(d, α, β) only being dependent on d, α and beta.

Proof

KL(pσ||pσ′) =

∫
log

(
pσ(x)

pσ′(x)

)
pσ(x)dx

=
∑

z∈Z1

∫

C(z)
log

(
1 + σ(z)eηz(x)

1 + σ′(z)eηz(x)

)
(1 + σ(z)eηz(x))dx

+
∑

z∈Z1

∫

C(f(z))
log

(
1− σ(z)eηf(z)(x)

1− σ′(z)eηf(z)(x)

)
(1− σ(z)eηf(z)(x))dx

=
∑

z∈Z1

∫

C(z)
log

(
1 + σ(z)eηz(x)

1 + σ′(z)eηz(x)

)
(1 + σ(z)eηz(x))dx

+
∑

z∈Z1

∫

C(z)
log

(
1− σ(z)eηz(x)

1− σ′(z)eηz(x)

)
(1− σ(z)eηz(x))dx

=
∑

σ(z) 6=σ′(z)

∫

C(z)
log

(
1 + σ(z)eηz(x)

1 + σ′(z)eηz(x)

)
(1 + σ(z)eηz(x))dx

+
∑

σ(z) 6=σ′(z)

∫

C(z)
log

(
1− σ(z)eηz(x)

1− σ′(z)eηz(x)

)
(1− σ(z)eηz(x))dx

It’s easy to see that above expression is invariant with respect to the sign of b. So, we assume
b > 0.

KL(pσ||pσ′) =
∑

σ(z) 6=σ′(z)

∫

C(z)
log

(
1 + σ(z)eηz(x)

1− σ(z)eηz(x)

)
(1 + σ(z)eηz(x))dx

+
∑

σ(z) 6=σ′(z)

∫

C(z)
log

(
1− σ(z)eηz(x)

1 + σ(z)eηz(x)

)
(1− σ(z)eηz(x))dx

=
∑

σ(z) 6=σ′(z)

∫

C(z)
log

(
1 + σ(z)eηz(x)

1− σ(z)eηz(x)

)
2σ(z)eηz(x)dx

=ρ(σ, σ′)
∫

C(z)
log

(
1 + eηz(x)

1− eηz(x)

)
2eηz(x)dx

≤2

3
ρ(σ, σ′)

∫

C(z)
e2η2z(x)dx, using 29,

=K(d, α, β)e2r2βrd1ρ(σ, σ
′)

=K(d, α, β)e2cdwr
2β+dρ(σ, σ′).
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Lemma 31 Let P,Q be two probability distributions defined on Ω× {0, 1} defined as

P (X ∈ A, Y = y) =

∫

A
[πP p1(x)1(y = 1) + (1− πP )p0(x)1(y = 0)]dx

and

Q(X ∈ A, Y = y) =

∫

A
[πQq1(x)1(y = 1) + (1− πQ)q0(x)1(y = 0)]dx

for any y ∈ {0, 1} and Borel subset A of Ω, where 0 ≤ πP , πQ ≤ 1 and p0, p1, q0, q1 are
probability densities defined on Ω. Let U ∼ Ber(πP ) and V ∼ Ber(πQ). Then

KL(P ||Q) = KL(U ||V ) + πPKL(p1||q1) + (1− πP )KL(p0||q0).

Proof Let (X,Y ) be a generic pair following the distributions P and Q. Then the lemma
directly follows from the decomposition

KL(P ||Q) = KL(PY ||QY ) + EPY

[
KL(PX|Y ||QX|Y )

]
.

Lemma 32 For σ ∈ {−1, 1}Z1 let Qσ be the distribution defined in C.4. Then for any σ,
Qσ satisfies α-margin condition with constant Cα.

Proof

We recall the conditional densities C.3

gσ1 (x) =





1 + σ(z)
√
εP ηz(x) x ∈ C(z), z ∈ Z1,

1− σ(z)
√
εP ηf(z)(x) x ∈ C(f(z)), z ∈ Z1,

1 + ξz(x) x ∈ C(z), z ∈ Z3,

1− ξz(x) x ∈ C(z), z ∈ Z4,

and

gσ0 (x) =





1− σ(z)
√
εP ηz(x) x ∈ C(z), z ∈ Z1,

1 + σ(z)
√
εP ηf(z)(x) x ∈ C(f(z)), z ∈ Z1,

1− ξz(x) x ∈ C(z), z ∈ Z3,

1 + ξz(x) x ∈ C(z), z ∈ Z4,

From

ησQ(x)−
1

2
=

πQg
σ
1 (x)− (1− πσQ)g

σ
0 (x)

2πQgσ1 (x) + 2(1− πσQ)g
σ
0 (x)

=
gσ1 (x)− gσ0 (x)

2(gσ1 (x) + gσ0 (x))
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we get

ησQ(x)− 1/2 =





(1+
√
εP )σ(z)ηz(x)

2−(1−√
εP )σ(z)ηz(x)

x ∈ C(z), z ∈ Z1,
−(1+

√
εP )σ(z)ηf(z)(x)

2+(1−√
εP )σ(z)ηf(z)(x)

x ∈ C(f(z)), z ∈ Z1,

1
2ξz(x) x ∈ C(z), z ∈ Z3,

−1
2ξz(x) x ∈ C(z), z ∈ Z4.

Note that
∣∣ησQ(x)− 1/2

∣∣ ≥
{

1
4ηz(x) x ∈ C(z), z ∈ Z1 ∪ Z2,
1
4ξz(x) x ∈ C(z), z ∈ Z0.

Rest of the proof is similar as in the proof of lemma 6.4.

Lemma 33 Let Πσ be the probability distribution as defined in equation C.5. For σ, σ′ ∈
{−1, 1}Z1 we have

KL(Πσ||Πσ′) ≤ 2cdwK(d, α, β)c2β+dr ρ(σ, σ′).

Proof From lemmas 31 and 30 we get

KL(Qσ||Qσ′) =
1

2
KL(gσ1 ||gσ

′

1 ) +
1

2
KL(gσ0 ||gσ

′

0 )

≤ 1

2
(εP + 1)cdwK(d, α, β)r2β+dρ(σ, σ′)

≤ cdwK(d, α, β)r2β+dρ(σ, σ′)

and

KL(Pσ||Pσ′) = (1− εP )KL(g
σ
1 ||gσ

′

1 ) + εPKL(g
σ
0 ||gσ

′

0 )

≤ (εP (1− εP ) + εP )c
d
wK(d, α, β)r2β+dρ(σ, σ′)

≤ 2εP c
d
wK(d, α, β)r2β+dρ(σ, σ′).

Hence

KL(Πσ||Πσ′) = nPKL(Pσ||Pσ′) + nQKL(Qσ||Qσ′)

≤ 2(εPnP + nQ)c
d
wK(d, α, β)r2β+dρ(σ, σ′)

≤ 2cdwK(d, α, β)(εPnP + nQ)(εPnP + nQ)
− 2β+d

2β+d ρ(σ, σ′)

≤ 2cdwK(d, α, β)c2β+dr (εPnP + nQ)(εPnP + nQ)
− 2β+d

2β+d ρ(σ, σ′)

≤ 2cdwK(d, α, β)c2β+dr ρ(σ, σ′).

Lemma 34 For any pair (β,Cβ) of positive numbers there exists an M > 0 such that the
function va (defined in equation (C.2)) is β smooth with constant Cβ.
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Proof If β < 1 then ∣∣∣(1− ua)
1/α(x)−

(
(1− ua)

1/α
)
(y)
∣∣∣

≤ max
y≥0

d

dy

(
(1− ua)

1/α
)
(y)|x− x0|

≤ L

a
|x− x0|β .

If β ≥ 1 using Taylor’s approximation theorem we get

∣∣∣(1− ua)(x)− (1− ua)
(β)
x0

∣∣∣

≤ max
y≥0

(1− ua)
(bβc+1)(y)

(bβc+ 1)!
|x− x0|(bβc+1)

≤ L

a
|x− x0|β .

for some L > 0, if |x− x0| ≤ 1. Hence, for a suitable a, va is (β,Cβ , 1) smooth.
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