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Abstract— The modeling of nonlinear dynamics based on
Koopman operator theory, originally applicable only to au-
tonomous systems with no control, is extended to non-
autonomous control system without approximation of the input
matrix. Prevailing methods using a least square estimate of the
input matrix may result in an erroneous input matrix, misin-
forming the controller. Here, a new method for constructing a
Koopman model that yields the exact input matrix is presented.
A set of state variables are introduced so that the control inputs
are linearly involved in the dynamics of actuators. With these
variables, a lifted linear model with the exact input matrix,
called a Control-Coherent Koopman Model, is constructed by
superposing control input terms, which are linear in local
actuator dynamics, to the Koopman operator of the associated
autonomous nonlinear system. As an example, the proposed
method is applied to multi degree-of-freedom robotic arms,
which are controlled with Model Predictive Control (MPC). It is
demonstrated that the prevailing Dynamic Mode Decomposition
with Control (DMDc) using an approximate input matrix does
not provide a satisfactory result, while the Control-Coherent
Koopman Model performs well with the correct input matrix,
even performing better than the bilinear formulation of the
Koopman operator.

Index Terms— Koopman lifting linearization, Koopman op-
erator for control systems, Model predictive control.

I. INTRODUCTION

Koopman Operator theory has the potential to be a break-
through in representation of complex nonlinear dynamics.
A globally linear, unified representation facilitates control
synthesis and analysis. Powerful linear systems theory and
techniques can be applied to complex nonlinear systems. It
has already had significant impacts upon various branches
of control theory and applications, ranging from system
identification [1], Model Predictive Control [2], and robust
control [3] to soft robot modeling and control [4], vehicle
control [5], and active robot learning [6].

Despite promising reports, a fundamental problem has
not yet been solved. Is Koopman operator theory applicable
to non-autonomous systems with control? The Koopman
Operator theory is originally applicable only to autonomous
systems having no exogenous input [7], [8]. Almost all
control systems are non-autonomous with control, to which
the Koopman theory does not apply in the strict sense.
Criticisms of the Koopman Operator approach often pertain
to this limitation.

The Koopman research community has been attempting
to remove this limitation. An ad hoc method is to simply
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approximate the control input term to a linear term with
constant coefficients, 2z = Az + Bu, where z is the lifted
state and wu is the input. Matrices A and B are obtained
from least square estimation. The commonly used method
referred to as Dynamic Mode Decomposition with Control
(DMDc) is in this category [9]. Assuming a constant input
matrix B is difficult to justify because the coefficients
are state dependent in many nonlinear systems. Although
state variables can be lifted for global linearization, control
variables cannot, because the number of independent input
variables is physically determined.

The second method is to treat control inputs as part of the
independent state variables and apply the standard Koopman
Operator to the augmented state variables, [z7, u”]T [10].
This entails a prescribed differential equation governing the
time evolution of control w. This method cannot be used
for designing a controller from a model because the control
is determined before the Koopman model is obtained. This
formulation results in a causality violation in most control
design settings.

A more rigorous and more accurate method is to use a
bilinear formulation. Due to the state-dependent nature of
control input terms, it is difficult to approximate it to linear
terms. Instead, these can be more accurately approximated
to bilinear terms, where the control input terms are modeled
as products of state variables and control variables [11]. This
bilinear approximation provides a more accurate approxi-
mation, but the resultant bilinear Koopman model is more
complex compared to the completely linear Koopman model.
More recently, another approximation method and its error
bound have been presented, where the input matrix is still
not globally constant [12].

Here, we present a method for constructing a Koopman op-
erator for a class of control systems without approximation of
the input matrix. Integrity and coherency of the input matrix
are crucial for proper control design. An input matrix that
is determined merely by curve fitting to data may not have
the right structure, which may misinform control design. The
proposed method guarantees the coherent, correct structure
by construction. No curve fitting to a linear or bilinear
parametric model is used. The method is based on causality
of physical system modeling applied to actuator power-
train dynamics. The new method will fill the theoretical
and technical gap between the Koopman operator theory
and what is needed in control engineering. The method is
applicable to a vast number of control systems.

The outline of the manuscript is the following: Section II
presents the preliminaries and problem formulation; Section
IIT delves into the developement of the Control-Coherent



Koopman (CCK) approach, the main contribution of this
paper. Section IV illustrates how the CCK approach can
be implemented to the dynamics of a robotic manipulator.
Finally, Section V presents numerical results. In particular,
we will show the effectiveness of our proposed method
in controlling a two-degree-of-freedom robotic manipulator.
We compare the tracking performance of the CCK model
against the standard DMDc and a more rigorous bilinear
model as described in [11], where our approach is able to
outperform both DMDc and the bilinear model in all the
tracked trajectories.

II. BACKGROUND AND PROBLEM
FORMULATION

Consider a discrete-time, nonlinear dynamical system
given by
Tiy1 = flae, ue) (1)

where z; € X C R" is the independent state, u; € U C R”
is the input, and f is a continuously differentiable function,
defined in compact sets X and {/. The autonomous system
associated to (1) is

T = F(xy) 2

where u; = 0 and the function F' is a self-map, F' : X — X.

Let {g;(x¢)}32, be observables that span a Hilbert space
‘H. Assume that the observables compositional with the self-
map F are involved in the Hilbert space,

goFeH, i=12 . 3)

Then, the following Koopman operator A exists:
ze41 = Az “4)

where z; = [g1(7), g2(x¢),---]T is the infinite-dimensional
state lifted with {g;}$2, [71, [13].

The Koopman operator can be obtained with various
methods. The most prevailing is the extended dynamic mode
decomposition (EDMD), which is based on least square
estimate and singular value decomposition. A more rigor-
ous method is to obtain the Koopman operator from inner
products of the observables and their composition with the
self-map, state transition function F. Post-multiply 2} to
both sides of (4) and integrate them over the dynamic range
of the independent state yields

Q=AR &)

where

Q= (s11.21) = /X G(F@) g;@) dz  (6)

R={z,2t) = /Xgl(:c) -g;(z) dz @)

The Koopman operator is the solution to the linear equa-
tion (5). This method directly encodes the state transition
function F' with a given set of observables {g;}32,, called
Koopman Direct Encoding [13].

Finding an effective set of observables is a challenge.
Among others, the use of deep learning is an effective data-
driven method for finding observables that can approximate
the Koopman operator with a lower dimensional model [14]—
[17]. Those methods established in the Koopman operator
theory are for autonomous systems with no control input.
The objective of this paper is to develop a Koopman lifted
linearization method for the non-autonomous system (1) in
the following form:

zt41 = Azp + Buy 8)

which is linear in control u; with a constant input matrix.
In the DMDc method, the A and B matrices are given by

N
(A, B) = argmin Y _ |24 (i) — Az_(i) — Bu_(i)|* (9)
AB 5

where the A and B matrices are fitted to data
{z4(x(?)),z—(x(2)),u—(i) | ¢ = 1,--- ,N} consisting of
before (z—, w_) and after (z;) each transition. In this
formulation, the approximate input matrix B is determined
simply by minimizing the squared error. Note that the non-
linear dynamics with regard to the state z; can be globally
linearized by lifting the state. However, it does not apply
to the input w. This may cause an incoherent input matrix
B, although the curve fitting shows a good agreement. The
method proposed can solve these problems.

ITII. CONTROL-COHERENT KOOPMAN
MODELING

Control systems are activated with actuators that drive
some state variables directly in response to control input.
We divide the state space into the one associated to a set of
state variables p; € P C R™ that is driven directly with the
input u; and the rest of the state variables ¢, € X, C R"™™
that are not directly driven by u; but indirectly through p;.

bt
T+ =
t M
Definition 1 (Actuation Subsystem): The dynamical

system (1) is said to have an actuation subsystem if the state
equation (1) can be divided into the following two:

(10)

(1)
(12)

Per1 = fp(@t, ug)

qit+1 = fq(mt)

where f, : X = X, and f, : X x U — P are continuously
differentiable, and w; is involved in each component f, ;,

8fp,i
8’1145

In the following derivation, we are interested in an actuator
subsystem that is nonlinear in state, x;, but is linear in input,
Ut.

Definition 2 (Linear Actuation): If the actuation subsys-
tem involved in the dynamical system (1) is in the following
form

£0,i=1,--,m (13)

DPt+1 = h(l’f) =+ Bput (14)



the system is said to be linear in actuation.

Remark 1: As will be discussed further in the following
examples, actuation subsystems are linear in control in most
electro-mechanical systems. A DC motor and a brushless DC
motor, for example, have equations of motion given by:

16 = Tom — Tioad (15)

where ¢ is rotor displacement, I is the rotor inertia, 7, is
the torque generated by the actuator, and 7;,44 is the load
torque as the actuator is engaged with a load. Treating 7,,, as
input yields an actuator subsystem that is linear in actuation.

Remark 2: The actuation subsystem must have indepen-
dent state variables p. This requirement can be met in several
ways. For example, if the power train connecting an actuator
to its load has a compliance, the local actuator subsystem
and the main system driven via the power train can possess
independent state variables, p and g. These independent state
variables are dynamically coupled through, for example, the
power train having a coupling impedance.

A Control-Coherent Koopman Model (8) can be con-
structed for a dynamical system with an actuation subsystem
that is linear in actuation.

Proposition (Control-Coherent Koopman Model): If the
dynamical system (1) has an actuation subsystem that is
linear in actuation in the form of (14), and if observables
{gi}32, satisfying conditions (3) exist and they include
the state variables of the actuation subsystem, p, in the
observables, then the Control-Coherent Koopman Model of
(1) is given by (8) where A is the Koopman operator of the
associated autonomous system given by (12) and (16)

Dit1 = h(xt) (16)

which is valid in the compact set X, and the input matrix B
is given by
_ | Bp
B= [ ’ } |

Proof: By construction we can show that the Control
Coherent Koopman model (8) exists. Without loss of gen-
erality, we assume that the first m observables are the state
variables of the actuation subsystem.

Dt
2+ =
' M
T T
where p; = [g1, -+, gm]" and Y = [gm+1, Gmr2, 0] -

Then the Koopman operator for the autonomous system
(12) and (16) exists and can be expressed as

-l &l
Yt+1 Ayp  Ayy] Lyt

where the matrix and vectors are divided into blocks associ-
ated to the state of the actuator dynamics and the rest of the
observables, y. Substituting P41 = P41 — Bpuy into (19)
and moving the term Bj,u, to the right-hand side yields

[ptH} _ {App Apy] [pt} + {Bp} uy
Yi+1 Ayp  Ayy] |yt 0 )

7)

(18)

19)

(20)

This is the Control-Coherent Koopman Model of the non-
autonomous, nonlinear dynamical system (1).

Remark 3: The Koopman operator given by (19) must be
valid in the compact set X'. Especially, the dynamic range of
p must include all the states of p that can be driven by the
input Bju;.

Remark 4: The above state equation (20) manifests that
the actuator input u; drives the actuator subsystem state to
pry+1 and that all others in y are affected through p,;; at
the next cycle, t 4+ 2. This causal sequence agrees with our
observation and the causality analysis of physical modeling
theory [18]. The causality dictates that the impact of the input
u; is captured and confined within the actuator dynamics
in the first cycle, t — ¢t + 1, before being transmitted to
the dynamics of y; in the second cycle, t + 1 — t + 2.
If the actuator state p; is eliminated, it implies that this
transmission delay is eliminated. As a result, (11) becomes
algebraic and the input is directly involved in (12), which
prevents the application of the Koopman operator. The actu-
ation subsystem must possess independent state variables.

If the linearity in actuation (14) is satisfied globally, in
other words, the original dynamical system (1) is linear in
control, the problem is straightforward. In most nonlinear
dynamical systems, however, linearity in control occurs only
for actuator subsystems. Modeling the actuation subsystem
with independent state variables is essential to fill the gap be-
tween the original Koopman operator theory for autonomous
systems and real-world control systems.

IV. APPLICATION TO ROBOT ARM DYNAMICS

The Control-Coherent Koopman Modeling method is ap-
plicable to a broad spectrum of nonlinear dynamical systems.
In this section, we will demonstrate how the method is
applied to practical problems.

Consider the equations of motion (EoM) of an N degree-
of-freedom (DoF) robot in joint coordinates 6 € RYN [19].

H(0)0 + C(0,0)0 + G() = 7 (21)

where H(0) is an N x N inertia matrix, C(6,0)6 is the
Coriolis and centrifugal terms, G(6) is the gravity vector,
and 7; € RY is the joint torque vector. If we define ¢ and ¢
to be independent state variables, the state equation can be
given by

d [0
dt |6

0

] - [H(H)‘lfj — H(H)! (oé+G(9)) (22)

In most robotics literature, joint torques 7; are treated as
control input. In consequence, the state equation is not linear
in control: the joint torques are multiplied by the inverse of
the state-dependent inertia matrix, H(0)~!. The Koopman
operator theory cannot be applied to this form of dynamical
system.

Here, we apply the Control-Coherent Koopman Modeling
based on actuator dynamics. Joint torques 7; pertain to the
dynamics of actuators driving individual joints. As shown in
Fig. 1, let ¢; be the rotor displacement of the actuator driving



the i*" joint, 7,,,; the actuator torque, b; the damping constant,
and I; the rotor inertia. Then, the following equation of
motion is obtained,

. 1

d)z - Z
where 7j54q,; 1 the load torque from the ith joint. Note that
the local dynamics of this actuator are linear in control. This
is true for most electro-mechanical robotic systems, because
the inertia of each actuator’s moving part, e.g. a motor rotor,
has a constant inertia.

1. . 1
Trmi — Tibi¢i - Ti’rload,ia 1<i<N (23)

ﬁ/ TJi

< 6

w:) a ’Joint Axis

Stiffness k;
Gearing 1: r;
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Tm,i

Fig. 1: Dynamic modeling of the i joint actuator with
torsional compliance at the power train.

As shown in Fig. 1, the power train of each joint actua-
tor, comprising a gearing and transmission mechanism, in-
evitably possesses some torsional compliance [20]. Suppose
that a gear reducer of gear ratio 1 : r; connects the actuator
shaft and the joint axis with a torsional stiffness k;, then the
joint torque 7;; and the load torque 70q4,; are related as

Tji = TiTload,i = Tiki(ps — 1i6;) (24)

where § = [017927 T aaN]T and ¢ = [d)lad)?a T 7¢N]T
With the compliance at the gearing, ¢; and 6; become
independent generalized coordinates. In discrete time, the
independent state variables x; = [pf, al }T
actuators and the arm linkage, respectively.

_[¢
Pt = [¢t]

_ |9
qt = 0,

Using (24) in (22), the state equation of the arm linkage
can be approximated to the following form in discrete time.

are those of the

(25a)

(25b)

0t+1 = 9t + At@t (263)

fi1 = 6,4+ ALH(0,)"! [rk(gbt —r0,) — Ch, — G| (26b)

where r = diag(ry, - ,7rn) and k = diag(ky, - -, kn).
Using (24) in (23) yields

bri1 = ¢r + Aty (27a)

bri1 = ¢ — AT [bd)t +k(¢r —r0) + 7| (27)

where I = diag([y,---,Iy) and b = diag(by,--- ,bn).
The control input term 7., = [T1,- - ,Tmn]  are linearly
involved in the actuator dynamics. Moving the linear control
term to the left-hand side, the second equation becomes.

Gr1 = ¢ — AT by + k(¢ — ret)} (28)
where Q;t—i-l = (yz.st-ﬁ-l - At]:717-m-

The Koopman operator A is computed for the autonomous
system, (26) and (28). Using the resultant A matrix, the
Control-Coherent Koopman Model (20) can be obtained by
moving the control term AtI~'7,, to the right-hand side.

It should be noted that the actuator dynamics (27) is linear
in this model. Therefore, unlike the arm linkage dynamics
(26), which must be lifted with many observables for lin-
earization, the actuator dynamics (27) does not need to lift,
since it is already linear. This implies that the upper block
matrices in (20), A,p, Apy, can be replaced by the parameters
involved in (27) and that the coefficients associated to the
observables for lifting linearization are all zero.

Pt+1 _ App Apy 0---0 Dbt Bp 29
[ytﬂ} [Ayp Ayy Yt Lo 29

V. NUMERICAL SIMULATION: A TWO-LINK
ROBOT ARM

The proposed Control Coherent Koopman (CCK) model-
ing method is implemented on a two-link robot shown in
Fig. 2, and Model Predictive Control (MPC) is applied to
the CCK model. The first link measures 1 m and weighs
5 kg, while the second link is 0.8 m and 4 kg. The arm
moves in a horizontal plane with no gravity. The order of
the arm dynamics is four for the two links, and that of
the actuator dynamics is four. Two-hundred Radial Basis
Functions (RBFs) are used as observables in addition to
the actuator-augmented state, where the center locations of
RBFs are determined with the k-means clustering method.
The A matrix of the CCK model, Acck, is obtained with
data containing both the autonomous (u; = 0) and non-
autonomous (u; # 0) response of the system. The input
matrix of the CCK model, Bocg, is determined from the
effective actuator rotor inertia as in (23) and arranged as in
(29).

Fig. 2 shows the three trajectories used for evaluating
the MPC control performance and their corresponding con-
figuration rage. Fig.3a shows the MPC tracking accuracy
of CCK. The tracking performance is satisfactory for all
the three circular trajectories. In contrast, Fig.3b shows the
tracking performance of DMDc which is only able to track
the smallest circle.

Following [11], a bilinear model is constructed by using
the same data and the same observables (with the same
centers and dilation factors) as in the CCK and DMDc
models. Namely, the A matrix has the same dimensions
as Acox and Apprpe. Fig.3c shows the bilinear control
performance. Although it tracks all the three trajectories, the
tracking accuracy of the bilinear case is inferior compared
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Fig. 3: MPC control comparison of (a) Control-Coherent Koopman, (b) DMDc, and (c) Bilinear [11] model for circular
trajectories with different radii. Tracking performance is summarized in Table I.

to CCK, despite having a richer model. As the trajectory
increases and the bilinear component of the model varies
more significantly, the bilinear model yields significantly
inferior results compared to CCK. See Table I.
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Fig. 2: Configuration range for a two-degree-of-freedom
robotic arm following three circular trajectories.

The three plots in Fig. 4 show the error histograms of one-
step ahead state prediction of CCK, DMDc, and the bilinear
model, respectively. Note that the prediction error histogram
is essentially the same for the three methods. Nonetheless,
the MPC ! tracking performance is strikingly different as
summarized in Table 1.

ITo prevent erratic behaviors in the DMDc simulation, a bound on the
magnitude of the control effort, set at 20 N/m, is incorporated into the
MPC optimization.

TABLE I: Mean tracking error comparison between CCK,
DMDc and Bilinear [11] model for trajectories with different

radii

Radius [cm] CCK Mean | DMDc Mean Bilinear [11]
Error [cm] Error [cm] Mean Error [cm]
5 0.76 1.06 0.95
25 1.75 13.53 1.78
40 1.70 37.74 2.33

Looking into the poor performance of the standard DMDc
as compared against CCK, the main difference between
the two approaches comes from how the input matrix is
constructed. While the input matrix of CCK has non-zero
elements only in the block of actuator dynamics (29), DMDc
produces non-zero elements in both blocks. The Bpaspe
allows the control input, i.e. actuator torques, to change
the joint angles directly and instantaneously, which is not
coherent with the physical model. In the discretized model,
the torques can only influence the transition of the velocities.
When the MPC generates control signals based on the
Bpurpe and applies them to the plant, it performs poorly.

- - - Reference
——DMDc Mean Error = 37.7403 cm
—— (Apmpe, Beok) Mean Error = 0.8210 cm
1.4
1.2
= %
o 1 ]
=S I
0.8
0.6

0 02 04 06 08 1
x [m]
Fig. 5: MPC control comparison of DMDc and a hybrid of
Apmpe and Book.



CCK Error Mean = 4.55682x107°

——DMDc Error Mean = 4.55665x 103

‘ Bilinear [11] Error Mean = 4.58093x10~%
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Fig. 4: Histogram comparison shows almost identical prediction

DMDec, and (c) Bilinear Koopman [11].

Although the discrepancy in prediction accuracy seems
insignificant between the two, when applied to the MPC
problem, it has a profound effect on the tracking perfor-
mance. This is further confirmed with the additional numer-
ical experiment in Fig. 5. Here, MPC is run with the A
matrix from DMDc (Aparpe) but with the input matrix from
Control-Coherent Koopman (Bcck ). The improvement on
the tracking performance is significant as seen in the figure.
This highlights the importance of using the coherent input
matrix (Boox) rather than merely fitting training data. The
MPC controller must not be misinformed with a questionable
input matrix.
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