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Abstract. Software obfuscation techniques are commonly employed to
resist malicious reverse engineering. However, recent studies indicate that
obfuscation introduces potential vulnerabilities susceptible to code-reuse
attacks because the number of code-reuse gadgets in obfuscated pro-
grams significantly increases. Understanding how different obfuscation
techniques contribute to the emergence of these code-reuse gadgets is
crucial for developing secure obfuscation schemes that minimize the risk
of code-reuse attacks, but no existing study has investigated this prob-
lem.
To address this knowledge gap, we present a comprehensive study on
the impact of software obfuscation on code-reuse gadgets in programs.
Firstly, we collect and analyze metrics data of gadgets obtained from
a benchmark of programs obfuscated using various techniques. By ex-
amining the statistical results, we establish quantitative and qualita-
tive relationships between each obfuscation technique and the resulting
gadgets. Our key findings reveal how obfuscation techniques introduce
significant code-reuse attack risks to a gadget set from different measure-
ment schemes. Secondly, we delve into the underlying mechanisms of each
obfuscation technique and elucidate why they contribute to generating
specific types of gadgets. Lastly, we propose a mitigation strategy that
combines low-risk obfuscation methods. Evaluation results demonstrate
that our mitigation strategy effectively reduces the risks associated with
code-reuse attacks without compromising obfuscation strength.
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1 Introduction

Software obfuscation has become increasingly important in defending against
malicious reverse engineering, with various obfuscation methods being designed
and implemented in both academic prototypes and industrial tools [12, 20, 24,
25,33]. Despite their widespread usage, the security aspects of these obfuscation
techniques have received limited attention. One significant risk arises from the
insertion of opaque code by obfuscators, which is often treated as a black box
due to its lack of comprehensibility from the users’ perspective. Previous research
has shown that obfuscation can increase the number of gadgets in obfuscated



binaries [18, 19]. However, the underlying mechanisms of obfuscation and the
reasons behind the surge of these gadgets have not been extensively explored.

In this paper, we conduct an in-depth examination of selected popular ob-
fuscation methods and their impacts on introducing code-reuse gadgets. We first
apply various obfuscation techniques to a program benchmark and measure dif-
ferent characteristics of the code-reuse gadgets within the obfuscated programs.
To compare, we focus on three aspects: the code-reuse gadget set’s quantity, type,
and risk. We assign scores to each obfuscation method based on these metrics
and generate a prioritized list. Consequently, we propose a mitigation strategy
that combines one low-risk obfuscation method with another for the protected
programs. Through evaluation, we demonstrate that this strategy significantly
reduces the number of exploitable code-reuse gadgets while maintaining the same
level of obfuscation complexity.

In our study, we obfuscate 900 programs from an obfuscation benchmark [3]
with four well-known obfuscators in academia and industry, namely Tigress [12],
Obfuscator LLVM [20], VMProtect [33] and Code Virtualizer [24]. These ob-
fuscators collectively implement a wide range of prevalent obfuscation methods.
Each program is built with a unique obfuscation configuration to facilitate our
incremental analysis. By comparing gadget metrics between the unobfuscated
programs and obfuscated programs employing a specific obfuscation technique,
we gain insights into the inner mechanisms of each obfuscation method and
their impacts on code-reuse gadgets. Our findings reveal that different obfus-
cation techniques pose varying levels of code-reuse attack risks to the original
program. To summarize, our contributions are as follows:

– First, we conduct a systematic study that sheds light on how obfuscation
techniques introduce code-reuse gadgets. Our study employs a combined
measurement scheme encompassing quantitative, qualitative, exploitable met-
rics and code-reuse attack risk assessment.

– Second, we conduct an in-depth analysis of each obfuscation method, un-
veiling the key factors that influence the presence of code-reuse gadgets and
gadget sets. We develop a comprehensive assessment mechanism that ranks
the obfuscation methods based on their code-reuse risks.

– Third, we propose a mitigation strategy to minimize the risk of code-reuse
attacks without compromising the complexity and strength of obfuscation.
Evaluation results demonstrate that employing low-risk obfuscation tech-
niques, or multiple instances of them on the original program, reduces the
code-reuse attack risk compared to high-risk obfuscation methods, all while
preserving the complexity of obfuscation.

2 Background

To provide a better understanding of our work, we begin by introducing the
background of code obfuscation techniques and the fundamentals of code-reuse
attacks.
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2.1 Code Obfuscation

Code obfuscation involves transforming a normal program into a semantically
equivalent but more complex form. This transformation makes it challenging to
comprehend the obfuscated code, and as a result, obfuscation techniques are
widely employed to protect proprietary code from reverse analysis by hackers.
Popular obfuscation tools, such as Tigress, Obfuscator-LLVM, VMProtect, and
Code Virtualizer, incorporate a range of obfuscation schemes, as shown in Ta-
ble 1.

Table 1: Obfuscation schemes in popular obfuscation tools.

Type Description

Control Flow Flattening Transform a program’s control flow into a flat dis-
patch structure inside a loop, where a variable de-
cides the program’s next step [22]. The code inside
the loop is in a linear style without any branches.

Instruction Substitution Replace one instruction with a more complex but
equivalent form, which may bring additional instruc-
tions to perform intermediate steps. For example,
x | y ⇒ (x ∧ y) | (x⊕ y)

Bogus Control Flow Insert dummy path conditions without changing the
original program semantics. Usually, the dummy
branch is randomly filled up with garbage codes.

Virtualization Create a custom virtual machine (VM) and then
translate the original program into the VM’s byte-
code, so the program’s behaviors hide in the compli-
cated VM execution. Virtualization has been recog-
nized as one of the most complex obfuscation meth-
ods [23,26].

Just-In-Time Dynamic Translate the program into a sequence of customized
intermediate representative instructions. This new
code part will be dynamically compiled into machine
code at run-time.

Self-Modification Insert special code patterns into the program, which
can change other parts with the same functionality
of the program during run-time.

Encode Components Replace integers, integer variables, integer arith-
metic, and string literal to more complicated and
complex expressions and opaque representations. It
looks similar to Instruction Substitution but has a
wider range of action objects.
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2.2 Code-Reuse Attack

In recent years, code-reuse attacks have emerged as a highly dangerous attack-
ing technique [9]. In such attacks, attackers search for short code snippets,
known as gadgets, within a normal program, which are combined to achieve
malicious objectives. This technique originated from traditional return-to-libc
attacks. Shacham demonstrated that a gadget set used in code-reuse attacks is
Turing-complete, which is theoretically capable of performing any malicious be-
havior [31]. Subsequent research has further extended code-reuse attacks from
various perspectives. For instance, gadgets can involve complex control flow
structures [4], and dispatch gadgets [16, 17], multiple architectures [8, 13], call-
preceded [9], and jump-preceded [11] gadgets have been introduced.

Practical code-reuse attacks typically aim to gain control of the victim’s
machine (root) or tamper the permissions of specific files. Table 2 lists commonly
triggered system calls during malicious activities. Furthermore, exploiting code-
reuse attacks necessitates the presence of at least one known memory write
vulnerability in the victim program, allowing the attacker to write the payload
to the stack. Attackers leverage these vulnerabilities as starting points for code-
reuse attacks, which can exist in the original, obfuscated, or library code. Several
existing tools [2, 5, 6, 10, 15, 27, 34] aid in the identification of these memory
vulnerabilities. However, the focus of this work does not include the process of
locating these memory vulnerabilities.

Table 2: The system calls commonly used in code-reuse attacks.
Syscall Description

execve Trigger a shell-like /bin/bash on the victim machine.

mmap
mremap

Map a file controlled by attackers as executable and then redirect
the execution to that tampered file.

mprotect Mark a page that includes content controlled by an attacker as
executable and then redirects the program counter toward that
tampered page.

fchown
fchmod

Change permissions of a file.

3 Code-Reuse Gadgets Introduced by Obfuscation

Characterizing the impact of obfuscation on code-reuse attack gadget sets presents
a considerable challenge. While modern obfuscation methods introduce a large
number of gadgets into the code-reuse attack gadget sets, there is a lack of prior
research that offers precise analysis and conclusions in this field. Therefore, a
detailed investigation of the gadgets introduced by obfuscation is necessary.
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In this section, we thoroughly examine the listed obfuscation methods and
analyze the principles and implementation details behind each. Subsequently, we
apply these methods to the programs within an obfuscation benchmark, gener-
ating code-reuse gadget sets for each program. We then observe and compare
the number and types of gadgets in each set before and after applying the obfus-
cation method. Furthermore, we conducted in-depth research on existing works
and discovered that they primarily focused on analyzing the number of gadgets
in the gadget set resulting from obfuscation. However, to better reflect the true
potential risk, combining this analysis with qualitative assessments of the gad-
get sets and the searching strategies employed by existing code-reuse generation
tools is essential. To provide a comprehensive measurement of the impact of ob-
fuscation, we implemented a standardized measurement system that examines
the code-reuse gadget sets before and after obfuscation. This system analyzes
the gadget sets from multiple perspectives, including quantitative assessment,
qualitative assessment, and identification of exploitable gadgets. This compre-
hensive analysis enables us to assess whether a gadget set carries a higher risk
of code-reuse attacks.

3.1 Benchmark and Obfuscation Selection

We carefully selected 100 C programs from an obfuscation benchmark [3], en-
suring diversity in program size, complexity, and functionality. When choosing
the benchmark and programs, we considered the aspects of Ground Truth and
Applicability. This benchmark encompasses a wide range of C programs and
includes scripts that allow us to obfuscate the programs using our selected ob-
fuscators. Notably, the “basic algorithm” and “small programs” sets within the
benchmark consist of simple and basic programs that align well with the ground
truth. Hence, we utilize them as the benchmark for our analysis.

We employed four popular obfuscation tools mentioned in the previous sec-
tion to conduct our study. We follow three criteria to pick the obfuscation vari-
ants to make the study comprehensive:

1. The variant is offered by at least one of the selected tools.
2. The variant can be successfully performed on all the benchmark programs

without errors or run-time crashes.
3. The variant can transform any snippets inside the program rather than only

specific ones.

We select seven obfuscation techniques introduced at Table 1 based on these
criteria. For virtualization, we performed both the source and binary code ob-
fuscation. We generated 900 distinct obfuscation variants for the benchmark
programs by integrating each chosen technique from the selected obfuscators.
Our analysis did not consider the programs as statically or dynamically linked
libraries. Generally, attackers can utilize gadgets included in library code when
mapping the program’s memory address at runtime.
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To examine the impact of each obfuscation method on code-reuse attack
gadget sets, we compared the different obfuscation variants against the original
binary without any obfuscation applied. We applied only one obfuscation method
to the original program strictly adhering to the default configurations at a time
and did not consider overlapping multiple obfuscation methods. For each original
program and obfuscation variant, we scanned the gadget set of each binary
and conducted a detailed analysis. We categorized all gadgets from each gadget
set into two groups: useful and useless gadgets. The classification was based
on whether existing code-reuse exploitation construction tools could utilize a
gadget. Useful gadgets refer to those utilized by existing exploitation tools to
form valid gadget chains for code-reuse attacks, while useless gadgets have never
been incorporated into gadget chains by any existing exploitation tools.

3.2 Gadget Measurement

Increment Rate. This quantitative metric assesses how the number of gadgets
increases as a result of different obfuscation methods. We identify and calculate
the new gadgets introduced by obfuscation that are not in the original binary.
A code-reuse gadget refers to a binary code sequence ending with a control-flow
transfer instruction such as ret, jmp, call, syscall, etc. The jmp instruction
can further be categorized into conditional and unconditional jumps. After ob-
fuscation, we count the number of gadgets and calculate the rate of increase for
each gadget set. It is important to note that gadgets which remain semantically
unchanged but are relocated to a new memory address after obfuscation are not
considered as increased.

Exploitability. To better assess the code-reuse attack risk of a gadget set,
we introduce the exploitable metric, which measures whether a gadget can be
considered useful or if it poses a code-reuse attack risk to the gadget set. This
metric determines the number of gadgets within a gadget set that automated
search tools can utilize. Generally, more exploitable gadgets in a gadget set
indicate a greater risk of code-reuse attacks.

To investigate existing code-reuse exploitation tools as well as their imple-
mentation details and search efficacy, we categorize them based on different
searching methods into three aspects, as shown in Table 3. To guarantee the
comprehensiveness of our exploitable metric, we select the code-reuse attacks
searching tools following three criteria:

1. The tool is publicly available and easily used in the original and obfuscated
programs.

2. The tool can generate valid chains that can perform at least one type of
attack shown in Table 2.

3. The tool can clearly show all gadgets in a human-readable format in the
attack chains.

6



Table 3: Methods of searching code-reuse attacks and representative tools.

Method Description

Pattern matching and hard-coded searching ROPGadget [28] and Ropper [29] both ap-
ply this strategy. They search for a bunch
of known gadget patterns and require hard-
coded rules based on built-in exploitation tem-
plates to chain gadgets together.

Symbolic execution and exploration Angrop [1] and ROPium [32] identifies gad-
gets via symbolic execution. They maintain an
intermediate representation of gadgets, which
matches the symbolic execution result with
the pre- defined semantic rules of the gadgets
and chains of those gadgets together based on
the attacker’s specifications.

Program Synthesis As the state-of-the-art exploitation technique,
SGC [30] synthesizes logical formulas to rep-
resent the gadget chains between the starting
and ending program states. Then it uses an
SMT solver to verify the gadget chain is fea-
sible.

We considered these criteria on each type of searching method in Table 3 and
selected the representative tools from each category: ROPGadget, Angrop, and
SGC. Then, we conducted analysis on the programs within the obfuscation
benchmark using these selected tools, examining the chaining results. By count-
ing the number of gadgets comprising the gadget chains found by each exist-
ing tool within each unobfuscated program, we identified the types of gadgets
contributing more effectively to the code-reuse exploitation process. Figure 1
illustrates representative gadget chains discovered by each type of existing au-
tomated search tool. We observed that many of these gadget chains included
gadgets performing assignments, such as those with pop and mov instructions.
Therefore, gadgets with these instructions are considered exploitable gadgets.

Expressivity and Quality. In measuring the quality and expressivity of a
gadget set, we selected a method proposed by Brown et al. [7]. For gadget set
expressivity, this method evaluates the power of gadget set expressivity based on
three aspects: practical ROP exploits, ASLR-proof practical ROP exploits, and
Turing completeness. At a specific level of expressivity, a gadget set must contain
at least one gadget that fulfills the required computational criteria for each of
these aspects. For example, achieving practical ROP exploits necessitates the
presence of gadgets that assign targeted values to specific registers, store values
to memory, and trigger system calls, among others.

Regarding gadget set quality, the metric from Brown et al. focuses on the
functionality of each gadget. This qualitative measurement assesses whether a
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Gadget 1: 0x483635:
mov qword ptr[rsi],rax
ret
Gadget 2: 0x4106fe:
pop rsi
ret
Gadget 3: 0x452f37:
pop rax
ret
Gadget 4: 0x447d19:
xor rax, rax
ret
Gadget 5: 0x478ca0:
add rax, 1
ret
Gadget 6: 0x401752:
pop rdi
ret
Gadget 7: 0x4106fe:
pop rsi
ret
Gadget 8: 0x40165f:
pop rdx
ret
Gadget 9: 0x401213:
syscall

(a) ROPGadget

Gadget 1: 0x4f235d:
pop rax
ret
Gadget 2: 0x628f79:
pop rcx
ret
Gadget 3: 0x4c02ab:
mov dword ptr[rcx-0x7f],rax
ret
Gadget 4: 0x4f235d:
pop rax
ret
Gadget 5: 0x628f79:
pop rcx
ret
Gadget 6: 0x4c02ab:
mov dword ptr[rcx-0x7f],rax
ret
Gadget 7: 0x5be23e:
pop rdi
ret
Gadget 8: 0x514f31:
pop rdx
ret
Gadget 9: 0x74f9ff:
pop rsi
ret
Gadget 10: 0x401213:
syscall

(b) Angrop

Gadget 1: 0x48b0c6:
pop rbx
pop rbp
pop r12
pop r13
ret
Gadget 2: 0x418f47:
mov rax,r12
pop rbx
pop rbp
pop r12
pop r13
ret
Gadget 3: 0x473cbe:
mov rdx,r12
mov rsi,rbp
mov rdi,rbx
call qword ptr[r13+0x38]

(c) SGC

Fig. 1: Gadget chains built by existing code-reuse chain searching tools.

gadget exhibits side effects, such as conditional branches, additional memory
or register operations, or stack pointer-related manipulations, which can affect
exploit construction. For example, consider the gadget {add eax, 1; ret;};
it contains no intermediate instructions and thus has no side effect. On the con-
trary, the gadgets {add esi, ecx; xor eax, eax; mov dword ptr[edx],r
si; ret;} have side effects. The instruction xor eax, eax; overwrites the
value in eax, impacting the result set up by the attacker. Thus, gadgets without
side effects and with single functionality are easier to exploit.

For our work, we employed the Gadget Set Analyzer (GSA) [7], a state-of-
the-art tool for measuring gadget set properties. GSA calculates the gadget set
expressivity by inspecting the first instruction of each gadget to determine if it
satisfies the computational criteria for any of the three aspects mentioned earlier.
The expressivity is then expressed as the total number of satisfied classes for each
aspect. If the expressivity of a gadget set increases in one or more aspects, it
is considered a potentially risky outcome. Regarding gadget set quality, GSA
assigns a score to each gadget based on the presence of intermediate instructions
that introduce side effects. The average quality score of the entire gadget set is
then computed. If the score of the transformed gadget set surpasses that of the
original gadget set, it indicates a potentially risky outcome.
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Overall Risk. Lastly, in our gadget set measurement, we combine the aforemen-
tioned three measurement standards to derive a summarized metric for assessing
the code-reuse attack risk of a gadget set resulting from different obfuscation
transformations. We propose a formula

RiskCRA =
N(Chain_Related)

N(Gadgets)
+ VExpressivity + VQuality

that considers several statistical values related to the measurement variables of
a gadget set. The risk value of the code-reuse attack gadget set is defined as the
sum of three components: the expressivity value (sum of all three aspects), the
quality value, and the ratio of the number of exploitable gadgets to the total
number of gadgets in the set. This formula enables us to measure the code-reuse
attack risk introduced by an obfuscation method to the gadget set.

4 Study Results

4.1 Gadget Quantity

We observed a substantial increase in the number of gadgets after obfuscation, as
depicted in Figure 2. A comparison of gadget sets between the original program
and obfuscated programs of various transformation types revealed an average
increase of approximately 43 times in the number of gadgets. ROPGadget was
used to calculate the gadget count due to its superior gadget-searching capabil-
ities among existing tools. This highlights the significant impact of obfuscation
methods on gadget sets’ quantity and composition, introducing numerous differ-
ent kinds of exploitable gadgets into the original programs.

4.2 Gadget Exploitability

We employed existing exploitation tools, as mentioned in Section 3, to search for
code-reuse gadget chains in both the original and obfuscated programs. Subse-
quently, we analyzed which gadgets were frequently used in the gadget chains.
Notably, for specific obfuscation methods, there was an apparent increase in the
number of commonly used gadgets in the chains. Successful code-reuse attacks
often involve triggering system-level calls such as execve, mprotect, fchown, and
mmap. Exploitation tools must find appropriate gadgets to assign parameter
values for these system calls. For instance, assuming the attacker intends to call
execve to spawn a shell, the x86-64 calling convention requires assigning the sys-
tem call number 0x3b to the rax register, followed by assigning values to rsi,
rdi and rdx as the arguments of execve.

By running existing tools for gadget chain searching on our test set, we col-
lected over 300 chains, most of which exhibited similar patterns frequently used
in gadget compositions mentioned in Section 3. The common exploit objective
was to trigger the execve system call and spawn a shell.
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Fig. 2: Comparison of the number of gadgets from the original program and
different types of obfuscated programs.

To gain a better understanding of the gadgets involved in the gadget chains,
we tallied the number of exploitable gadgets in each gadget set and calculated
their proportion within the set. This metric served as a crucial aspect for evaluat-
ing changes in gadget sets before and after obfuscation, as shown in Table 4. Most
obfuscation methods led to an increase in the number of exploitable gadgets, in-
dicating a worrisome sign for program protection against code-reuse attacks.

4.3 Gadget Quality

Our experiments revealed that specific obfuscation methods, particularly those
involving opaque predicates or complex expression modifications like Encode
Components, tended to increase the expressivity and quality value of a gadget set.
The complete results are presented in the second and third columns of Table 5.
Higher values in expressivity and quality indicate a greater range of gadget utility
but an elevated risk of code-reuse attacks.

4.4 Code-Reuse Attack Risk

Based on the metric formula we defined for measuring the risk of code-reuse
gadget sets and the results from our experiments, we ranked the risk value of
each obfuscation method from low to high. A higher value indicates a greater
risk posed by the respective obfuscation technique. The detailed risk values for
each method are displayed in the fourth column of Table 5.
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Table 4: The exploitable gadgets’ number and the rates included in each gadget
set of the original program and different obfuscated transformations. If the num-
ber of exploitable gadgets increases, this is considered a risk-increasing result.

Obfuscation #Exploitable Gadgets Rates

Original 36.25 30.5%
Instructions Substitution 41.47 31.4%
Control Flow Flattening 87.37 28.2%
Bogus Control Flow 101.25 16.1%
Virtualization-Source 58.45 38.9%
Virtualization-Binary 44625.36 27.6%
Self-Modification 2769.68 26.7%
Jit-Dynamic 2768.30 26.2%
Encode Components 2731.88 26.9%

Table 5: The second and third columns represent each gadget set’s average ex-
pressivity and quality values for the original program and different obfuscated
transformations. An obfuscation method that increases the expressivity value
and decreases the quality value signifies an increase in risk. The fourth column
presents the code-reuse attack risk value for each obfuscation method.

Obfuscation Expressivity Quality Risk Value

Original (4.125 / 6.125 / 2.175) 1.399 14.129
Instructions Substitution (4.125 / 6.500 / 2.275) 1.322 14.536
Control Flow Flattening (4.125 / 6.275 / 2.125) 1.263 14.070
Bogus Control Flow (4.725 / 7.250 / 4.475) 1.068 17.679
Virtualization-Source (4.950 / 8.450 / 3.025) 1.274 18.088
Virtualization-Binary (44.950 / 78.450 / 53.025) 9.883 186.584
Self-Modification (7.750 / 26.525 / 12.150) 1.786 48.460
Jit-Dynamic (7.950 / 27.8 / 12.775) 1.798 50.585
Encode Components (7.975 / 27.025 / 12.50) 1.809 49.578

5 The Anatomy of the Obfuscations and Gadgets

In light of the experimental results, this section offers an in-depth exploration
and analysis of the varying gadget sets that correspond to each type of obfus-
cation method. We conducted a meticulous differential analysis of the binary
code and the associated gadget sets, comparing singularly obfuscated variants
against their original program counterparts. In addition, our investigation delves
deeper into the implementation mechanisms of selected obfuscation techniques
to comprehend the ways in which these techniques reshape the composition of
gadget sets and the resulting impact on program security.
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5.1 Instructions Substitution

Implementation Details. Instructions Substitution replaces binary operators
with more complex sequences of instructions that have equivalent functionalities,
such as arithmetic or Boolean operators. In Obfuscator-LLVM, this obfuscation
technique supports integer operations including addition and subtraction, along
with Boolean operators such as AND, OR, and XOR. For any given operator,
there exist multiple equivalent expressions. The detailed implementation rules
are shown in Table 6. The random selection of one of these equivalent expres-
sions introduces a desirable diversity in the resulting binary instruction sub-
stitution. Moreover, instructions substitution significantly complicates the task
of automatically searching for specific machine instruction patterns which are
commonly used in symmetric ciphers such as XOR more difficult [20].

Table 6: The implementation rules of Instructions Substitution in Obfuscator-
LLVM. X, Y, Z, and K are all integers.

Operator Modified Equivalent Instructions

x = y + z

x = y - (-z)
x = -(-y + (-z))
x = y + k; x += z; x -= k;
x = y - k; x += z; x += k;

x = y - z
x = y + (-z)
x = y + k; x -= z; a -= k;
x = y - k; x -= z; x += k;

x = y & z x = (y ^!z) & y

x = y | z x = (y & z) | (y ^z)

x = y ^z x = (!y & z) | (y & !z)

Root Causes and Discussion. Instructions Substitution resulted in an in-
crease of nearly 30% in new gadget generation compared to the original pro-
gram. Those freshly introduced gadgets barely affected the number of exploitable
gadgets but slightly increased the value of gadget quality and expressivity. We
observed that a majority of the newly introduced gadgets are tied to arith-
metic or logic operators. It introduces novel operators at the assembly level as
it replaces one binary operator with a sequence of instructions. For instance,
an obfuscated program that substitutes the expression {x = y + z} with {x =
-(-y + (-z))}. This operation not only utilizes addition but also subtraction
to accomplish the operation. As a result, a new gadget {add al, 0x3d ; sbb
al, 0x30 ; ret} is added to the gadget set. Gadgets of this nature can signif-
icantly increase the expressivity of the gadget set, but they do not contribute to
the generation of gadget chains.
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5.2 Control Flow Flattening

Implementation Details. Control Flow Flattening manipulated the principal
structure of the source code into a format that conceals the targets of branches.
Initially, each function was broken up into basic blocks. These blocks, regardless
of their original nesting levels, are then arrayed in parallel within a switch-case
statement. Each basic block resides in a distinct case structure, and the entire
switch structure is encapsulated within a loop statement. The order of control
flow is guaranteed by a control variable, which is assigned at the termination
of each basic block as the predicates of the finishing the loop and selection of
switch statement. Fig. 3b illustrates the obfuscated program that has applied
the control flow flattening method to the original program shown in Fig. 3a. As
can be observed, all basic blocks from the original program are at the same level
in the obfuscated program, thus effectively concealing the loop structure of the
original program.
Root Causes and Discussion. As demonstrated in Section 4, Control Flow
Flattening contributed to a 213% increase in the introduction of new gadgets
compared to the original program. Those newly introduced gadgets subtly im-
pact the gadget set’s exploitable gadgets, quality, and expressivity. The count of
exploitable gadgets doubles, whereas the values of expressivity and quality re-
main unchanged or even decrease. We observed a substantial number of gadgets
ending with a direct jump being introduced into the gadget set, these gadgets ac-
count for almost all of the newly introduced gadgets, even serving as the ending
instructions for the exploitable gadget. The situation is directly related to the
implementation mechanism of this transformation. Control Flow Flattening gen-
erally employs a Switch-Case structure to flatten an entire function’s control
flow graph. At the assembly level, a Switch-Case statement usually relies on a
jump table and fills in the case names. It requires direct jumps with conditions
to decide the control flow’s direction. Consequently, the gadget set with this
transformation introduces many gadgets ending with a direct jump. However,
drawing upon our experience and corroborated by the state-of-the-art exploita-
tion tools, we find that these newly introduced gadgets cannot be harnessed for
constructing gadget chains for code-reuse attacks.

5.3 Bogus Control Flow

Implementation Details. Bogus Control Flow involves the insertion of spuri-
ous control flows within a function to reconstruct its corresponding control flow
graph. The outcome is a chaotic control flow graph encompassing three irrelevant
types of branches, all of which are shielded by opaque predicates. (1). The dead
branch that is never engaged; (2). The superfluous branches that are invariably
engaged; (3). The branches that are sporadically engaged. The first type involves
the inclusion of a counterfeit block (which could be arbitrary code) within a ba-
sic block, giving the impression that it might be executed later, but in reality,
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1 int main()
2 {
3 int a = 1;
4 int b = 0;
5
6 while(a <= 50){
7 b += a;
8 a ++;
9 }

10 }

(a)

1 int main()
2 {
3 int Var = 1;
4 while(Var != 0){
5 switch(Var){
6 case 1:{
7 int a = 1, b = 0;
8 Var = 2;
9 break;

10 }
11 case 2:{
12 if(a <= 50){
13 Var = 3;
14 } else{
15 Var = 0;
16 }
17 break;
18 }
19 case 3:{
20 b += a;
21 a ++;
22 Var = 2;
23 break;
24 }
25 }
26 }
27 }

(b)

Fig. 3: The sample programs before and after using Control Flow Flattening.

it is never executed. The second type involves the insertion of a true predicate
midway through a basic block, creating the illusion that the original block is
only intermittently executed. The third type involves the insertion of a variable
predicate which occasionally directs the execution left or right, with the resulting
paths being identical regardless of the direction chosen by the predicate.

Root Causes and Discussion. Bogus Control Flow resulted in a 538% increase
in new gadgets compared to the original program. Those newly introduced gad-
gets augment the count of exploitable gadgets as well as the value of expressivity.
However, most of those gadgets end with direct jumps, which cannot be used to
generate a gadget chain and thus have no impact on the quality value. Further-
more, this transformation also brings tons of Control Flow Graph (CFG) nodes
to the original CFG. These spurious CFG nodes necessitate a significant number
of direct jumps with conditions to facilitate their integration into the original
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CFG. Consequently, the gadgets introduced via Bogus Control Flow scarcely
contribute to increasing the code-reuse attack risk.

5.4 Virtualization

Implementation Details. Virtualization involves the conversion of selected
portions of code into bytecode, defined by a specialized virtual instruction set
architecture. The bytecode is then emulated by an embedded interpreter on the
actual machine during runtime. More specifically, the original code of a program
is initially transformed into bytecode as per a custom virtual instruction set.
Subsequently, the bytecode interpreter carries out execution following a Fetch-
Decode-Dispatch procedure. The fetch step involves the retrieval of the next
bytecode instruction, the decode step is responsible for decoding the instruction
and its operands (if any), and the dispatch sets up the execution environment
and calls the correct handlers.
Root Causes and Discussion. The Virtualization offered by Tigress led to the
introduction of nearly 50% more new gadgets than the original program, mean-
while, the quality and the expressivity of the gadget sets remained unaltered.
Given that Tigress implements the transformation at the source code level, we
carefully examined the obfuscated source code and found that the bytecode and
handlers are appended to the source code prior to compilation. Figure 4 pro-
vides an example of the bytecode in the obfuscated source file. Subsequently,
a switch-case based dispatch structure is utilized to interpret the bytecode
and map the bytecode to corresponding handlers. Aside from introducing a few
gadgets with direct jumps following the dispatch process, this transformation in
Tigress neither alters the control flow of the original program nor complicates
the operation of individual instruction. As a result, no gadgets with practical
functions are introduced.

For comparison, we also performed binary-level virtualization on the same
benchmark using Code Virtualizer [24], a commercial software obfuscation prod-
uct developed by Oreans Technologies. The binary-level virtualization brings
tons of new gadgets, resulting in an increase of 1500 times more new gadgets than
the original program. This tremendous increase is attributable to the binary-
level virtualization embedding the entire virtual machine, its handler set, and
the translated bytecode from the original code into the obfuscated program.
Those components are equivalent to adding a complete virtual machine program
to the original program, which greatly boosts the number of gadgets as well as
the expressivity and quality values of the gadget sets. Therefore, binary-level vir-
tualization poses greater code-reuse attack risks compared to source-code-level
virtualization.

5.5 Just-In-Time Dynamic

Implementation Details. Tigress incorporated the Just-In-Time (JIT) dy-
namic techniques for obfuscation, which is implemented atop the MyJit library [21].
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1 enum ops {
2 Return = 249, Store = 242, Formal = 183,
3 Plus = 178, Goto = 62, Load = 89, Local = 126
4 };
5
6 unsigned char bytecode[31] = {
7 Formal,1,0,0,0,Load,Formal,0,0,0,0,Load,Plus,
8 Local,0,0,0,0,Store,Goto,4,0,0,0,Local,8,0,0,0,
9 Load,Return };

Fig. 4: The bytecode in Tigress-obfuscated source file.

This transformation converts a function F into a new function F ′ by integrating
a sequence of intermediate code instructions. Upon execution of F ′, it dynami-
cally compiles function F into machine code. Essentially, this technique generates
machine code during run-time and then executes it. Figure 5 illustrates an ex-
ample of an obfuscated program, which we utilize to describe the JIT dynamic
procedure. Initially, the program constructs a new instance of the JIT compiler
by invoking jit_init() on line 6. It then adds the intermediate code by calling
jit_add_op(). Next, the JIT compiler translates the intermediate code into ac-
tual machine code by calling jit_generation_code(). Ultimately, the control
flow is redirected to the code generated just now and the execution begins.
Root Causes and Discussion. JIT Dynamic results in a hundredfold increase
in new gadgets compared to the original program, marking a substantial rise.
The value of expressivity and quality also experience a significant rise. The im-
plementation of JIT Dynamic id is dependent on a third-party library, with
several functions in the library being called during the compilation and execu-
tion phases. This is equivalent to adding another new program into the original
one, analogous to binary-level virtualization, thereby increasing the code-reuse
attack surface of the original program. As a consequence, the gadget set con-
tains a larger quantity of gadgets that can be used to construct gadget chains
after transformation. Additionally, the gadget set exhibits higher expressivity
and includes a greater number of gadgets with side effects.

5.6 Self-Modification

Implementation Details. Self-Modification aims to render functions self modi-
fying during runtime. Typically, Self-Modification can be achieved by encrypting,
encoding, or embedding certain parts of the code pattern into the original pro-
gram, or by altering the program’s execution path when it’s running. Tigress
amalgamates self-modification templates with two different types of transforma-
tions. One is the binary arithmetic expressions and comparisons, which inserts
a binary code template at the top of the function and uses the template for
modification. The other combines code virtualization and flattening, proving
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1 int obf_target(int x, int y) {
2 ...
3 //First, initialization
4 static int (*_obf_target)(int x , int y) ;
5 int result;
6 p = jit_init();
7 jit_add_prolog(p, & _obf_target, 0);
8 jit_add_op();
9 jit_add_op();

10 ...
11 //Second, compilation
12 jit_generate_code(p);
13 ...
14 //Third, execution
15 result = (*_obf_target)(x, y);
16 return (result);
17 }

Fig. 5: JIT Dynamic implementation example in Tigress.

particularly effective after the introduction of indirect branches. Those indirect
branches are transformed into other byte sequences that correspond to the di-
rect jumps during runtime. This modification effectively thwarts deobfuscation
methods that solely search for indirect branches, which have been removed from
the original code.
Root Causes and Discussion. Self-Modification also results in an increase of
new gadgets by a factor of 100 compared to the original program, with the value
of quality and expressivity of the gadget set also increasing. This transformation
inserts abundance of pre-defined code patterns into the obfuscated source code.
Although these patterns are randomly employed during compilation, they remain
attached, thereby enhancing the diversity of the original code and bringing more
gadgets and higher risks.

5.7 Encode Components

Implementation Details. Encode Components comprises three components:
encode literals, encode arithmetic, and encode data. The encode literals obfus-
cates integer literals (such as 100) and string literals (such as "100"), replacing
them with opaque expressions or a function that is generated during runtime.
The encode arithmetic substitutes integer arithmetic with more intricate and
convoluted expressions based on certain fixed patterns. This means that for each
operator, there are numerous possible encoding styles within this transformation,
which are selected randomly. For example, figure 6 shows how an expression
of integer addition can be replaced with a random Mixed Boolean-Arithmetic
(MBA) expression of higher complexities, yielding the same arithmetic results.
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1 int main(int x, int y) {
2 int x = 0;
3 int y = 5;
4 int z = x + y;
5 return 0;
6 }

(a) Before

1 int main(int x, int y) {
2 int x ;
3 int y ;
4 int z ;
5 x = 0;
6 y = 5;
7 z = ((x | y) << 1)
8 - (x ^ y);
9 return (0);

10 }

(b) After

Fig. 6: Encode Arithmetic Transformation.

The encode data targets integer variables, altering them to a non-standard data
representation with the aim of concealing a variable’s real value until it needs to
be displayed. Moreover, if a variable is encoded, all variables associated with it
will also be encoded. For instance, a random integer variable v can be replaced
with v′ = a * v + b. Figure 7 demonstrates the difference before and after this
transformation. It can be observed that the real values of variable x and z are
both obscured.

1 int main(int x, int y) {
2 int x = 5;
3 int z = x;
4 return 0;
5 }

(a) Before

1 int main(int x, int y) {
2 int x ;
3 int z ;
4 ...
5 x = 1583543192U;
6 z = (int )(1509654933U
7 * x - 2053070707U);
8 ...
9 }

(b) After

Fig. 7: Encode Data Transformation.

Root Causes and Discussion. Encode Components results in the introduc-
tion of new gadgets at a rate 100 times greater than the original program, also
escalating the quality and expressivity values of the gadget set. This transforma-
tion is analogous to Instructions Substitution in general, but its implementation
is more advanced. Our observation of the obfuscated source code revealed the
inclusion of some Just-In-Time (JIT) techniques, indicating that the entire JIT
library is attached to the obfuscated binary post-compilation. This explains why
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Encode Components generates more chain-related gadgets and exhibits higher
expressivity and quality values, even though it operates on the same transfor-
mation principle as Instructions Substitution.

6 Mitigation
In light of the code-reuse attack risk associated with each obfuscation scheme, we
propose mitigation strategies in this section to counter-measure and minimize the
risk without significantly compromising the obfuscation strengths. Our proposed
solution is to limit the use of obfuscation schemes associated with high-risk
values as much as possible while increasing the use of those with low-risk values.
Additionally, to ensure the effectiveness of obfuscation while maintaining the
complexity of obfuscated programs, we recommend repeated application of one
low-risk obfuscation scheme or a combined use of multiple low-risk schemes.

6.1 Strategy

To this end, we designed a set of experiments to verify the correctness of our
proposed solution. We first categorized the obfuscation schemes into two groups
based on the risk values ranking obtained from Table 5. One group consists of
low-risk value schemes: Instructions Substitution, Control Flow Flattening, Bogus
Control Flow, Virtualization(source); The other group includes high-risk value
schemes: Jit-Dynamic, Self-Modification, Encode Components.

For the low-risk value group, we applied each obfuscation method to the same
source program once, twice, and three times respectively, and then combined the
three methods from Obfuscator-LLVM on the source program as another variant.
We determined the number of times an obfuscation method was applied to the
source code by adjusting the command-line parameters. For the high-risk value
group, obfuscation methods were applied individually.

6.2 Evaluation

To gauge how effective our mitigation strategy restrains the growth of the code-
reuse attack risk, we applied our metrics to the obfuscated programs shown in
Table 7 column one. By calculating the risk values for each obfuscation variant,
we evaluated the outcomes of our mitigation strategy.

The evaluation results revealed that our mitigation strategy is highly effective
at diminishing the code-reuse attack risk. Applying low-risk obfuscation methods
multiple times to the same original program can effectively curb the growth of
the risk values of the gadget set compared to those high-risk methods, which
typically have risk values nearing 50.

While focusing on the code-reuse attack risk value, we also assessed the effect
of applying one obfuscation method multiple times. We used IDA Pro [14] to
analyze the CFG of each variant binary based on the number of CFG nodes and
verified whether the obfuscated variant could maintain the same obfuscation
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Table 7: The gadget-set-related data for each type of obfuscation method with
low-risk and high-risk values. The number after the method name indicates how
often this method has been applied to the original program.

Obfuscation #Gadgets #Exploitable Expressivity Quality Risk Value

Original Program 106 36.25 (4.125 / 6.125 / 2.175) 1.399 14.129

Instructions Substitution (1) 136 41.47 (4.125 / 6.500 / 2.275) 1.322 14.536
Instructions Substitution (2) 290 44.00 (4.125 / 6.500 / 2.275) 1.093 14.144
Instructions Substitution (3) 650 114.00 (4.750 / 14.500 / 7.500) 1.028 27.953

Control Flow Flattening (1) 332 87.37 (4.125 / 6.275 / 2.125) 1.263 14.070
Control Flow Flattening (2) 455 91.50 (4.500 / 8.525 / 3.000) 1.341 17.567
Control Flow Flattening (3) 460 87.50 (4.500 / 6.500 / 2.075) 1.269 14.534

Bogus Control Flow (1) 677 101.25 (4.725 / 7.250 / 4.475) 1.068 17.679
Bogus Control Flow (2) 2,469 229.21 (5.025 / 8.500 / 6.075) 0.946 20.638
Bogus Control Flow (3) 8,573 427.27 (5.125 / 15.500 / 7.275) 0.943 28.892

Virtualization-source 151 58.45 (4.950 / 8.450 / 3.025) 1.274 18.088
Virtualization-Binary 161,831 44,625.36 (44.950 / 78.450 / 53.025) 9.883 186.584
Jit-Dynamic 10,533 2768.30 (7.950 / 27.8 / 12.775) 1.798 50.585
Self-Modification 10,325 2769.68 (7.750 / 26.525 / 12.150) 1.786 48.460
Encode Components 10,140 2731.88 (7.975 / 27.025 / 12.50) 1.809 49.578

complexity. A program with more CFG nodes can be considered as one with
higher obfuscation complexity. The results indicated that applying the low-risk
obfuscation method (Control Flow Flattening used as an example here) multiple
times does not diminish the complexity of the obfuscation results. The number
of CFG nodes is 35, 37, and 36, respectively, corresponding to applying the
obfuscation method once, twice, and three times. The original program only has
7 CFG nodes. Therefore, after multiple obfuscation iterations, the obfuscated
program possesses more CFG nodes and a complex control flow, thereby better
protecting it against reverse engineering. Meanwhile, the code-reuse attack risk
values are 14.070, 17.567, and 14.534, respectively, corresponding to applying
the obfuscation once, twice, and three times to the original program. These risk
values are not as high as those of other high-risk obfuscation methods, indicating
the efficacy of our mitigation strategy.

We also conducted a comparison between applying a high-risk obfuscation
method once and applying a low-risk obfuscation method multiple times. We
selected the Jit-Dynamic, which has the highest risk value among all methods
as the representative of the high-risk value group, and Bogus Control Flow as
the representative of the low-risk value group. The comparison results showed
that, despite each CFG node of the Jit-Dynamic obfuscated program having
numerous instructions, it only has three nodes on its CFG. On the contrary, a
program obfuscated three times with the Bogus Control Flow method has over
1,000 CFG nodes. The low-risk obfuscation method evidently contributes more
obfuscation complexity than the high-risk method. Moreover, using the low-risk
obfuscation method multiple times results in a code-reuse attack risk value of
14.534, which is significantly less than the risk value of 50.585 associated with
applying a high-risk obfuscation method once.
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From the results of our evaluation, we noticed that our mitigation strat-
egy not only curbs the growth trend of code-reuse attack risk on obfuscated
programs but also significantly increases the complexity and intensity of them.
Therefore, we conclude that when applying obfuscation techniques, it is prefer-
able to choose a method with low-risk value and apply it multiple times to the
original programs, while avoiding high-risk value methods.

7 Related Work

Concerning code-reuse attacks in obfuscated programs, our research demon-
strated each obfuscation method’s key factors that influence the presence of
code-reuse gadgets and gadget sets. One recent work Gadget-Planner [35], also
sheds light on code-reuse attacks on obfuscated code, but our work differs from it.
Gadget-Planner simply compares the gadget chains before and after obfuscation
and then focuses on building more complex attack chains from the obfuscated
programs. However, the key point of our work is to investigate the underlying
causes behind the variations in gadget chains introduced by different obfusca-
tion methods. Our work fully exposes the attack risk by measuring the quantity,
quality, and expressivity of gadget sets.

Comparatively, other similar works [18,19] focus solely on the number of gad-
gets within the gadget set, using the increase in gadget count to imply potential
attack risks. Our analytical approach is more comprehensive and employs a rea-
sonable risk metric, extending beyond a simple quantitative analysis. Our work
ranks the risk levels associated with different obfuscation methods and reveals
the root cause of each method. Additionally, we offer solutions to mitigate these
risks, making it a complete and comprehensive research endeavor.

8 Conclusion

Software obfuscation techniques have become increasingly popular for protect-
ing the logic of programs by introducing complex data and control flow struc-
tures that make the code difficult to comprehend. However, existing research
predominantly focuses on cracking and reversing obfuscated programs, neglect-
ing the potential security risks associated with these obfuscations. To address
this gap, our study provides a comprehensive analysis of popular obfuscation
techniques, specifically examining their impacts on code-reuse attack vulnera-
bilities. We have developed a measurement framework to assess the code-reuse
attack risks introduced by different obfuscation methods. Our analysis reveals
that each obfuscation method introduces varying levels of code-reuse attack risks,
underscoring the need for a meticulous selection of obfuscation techniques. To
mitigate these risks, we propose a mitigation strategy that combines low-risk
obfuscation methods, effectively reducing the code-reuse attack vulnerabilities
while maintaining strong obfuscation. In conclusion, our research highlights the
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importance of considering the code-reuse attack risks associated with obfusca-
tion techniques and provides valuable insights for developing secure obfuscation
schemes. By adopting our proposed mitigation strategy, users can enhance the
security of their software while maintaining robust obfuscation protection.
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