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Abstract—Smart city transportation infrastructure will soon
demand the development of reliable underground IoT (IoUT)
communication. In this paper, we develop a novel analytical
model, MAME (Material Aware Measurement Enhanced), to
capture signal propagation properties in wireless IoUT networks
to achieve reliable data transport. A driving motivation is
monitoring underground infrastructure systems (e.g., pipelines
and storm drains) for early detection of anomalies and failures
to guide human investigation and intervention. We analyze the
feasibility of successfully receiving wireless data packets from
underground (UG) sensor nodes through multiple material layers
and under diverse environmental conditions. Our proposed ap-
proach integrates physics-based modeling and empirical studies
with small-scale testbeds (in our lab and outdoors) with multiple
channel setups and physical layer attributes. We derive a novel
MAME approach to model signal propagation in both 802.11-
based WiFi and LoRaWAN networks. The resulting MAME
model is shown to capture communication behavior in WiFi
and LoRaWAN networks accurately. The MAME model is used
to augment the popular NS3 simulator to explore scaled-up
underground networks and varying channel conditions (e.g., soil
moisture level). Such a combined analytical-empirical approach
will enable the communication control plane and application
layer to better predict channel conditions for improved IoUT
network design.

Index Terms—Underground infrastructures, wireless sensor
network, reliable communication

I. INTRODUCTION

The rise in urban populations have created a need for
better management of buried assets and critical infrastructure,
e.g., water and gas pipelines, optical fiber trunks, stormwater
systems, and more. These underground systems are aging and
fragile, causing resilience concerns, and increase the need
for real-time monitoring to ensure infrastructure health and
rapidly detect undesirable events (e.g., damaged lines, water
leaks, pollutant flows). Decision support for maintenance
and time-critical alerts requires adequate instrumentation of
sensing infrastructure that can obtain and communicate data
from geo-distributed locations to servers for analyses [1].

Infrastructure resilience for roads and highways is critical
for maintaining flawless transportation, especially in case of
emergency situations, i.e., natural disasters. The understanding
of the underground infrastructure status can add to road safety,
commuting reliability, damage prevention of the structures,
and early prediction of congestion from elevated-risk ar-
eas. Consider municipal stormwater networks that transport
rainwater and nuisance flows (e.g., excess irrigation) from
cities to receiving waters (e.g., rivers, bays, ocean). These
systems are comprised of numerous physical components

distributed regionally (in catchment areas). Urban activities,
such as commercial, household, and industrial processes, yield
a variety of harmful pollutants (pesticides, oils, and greases)
and create water-quality problems [2]. Current approaches are
time-consuming and ineffective: monitoring consists of citizen
reports, manual site visits, and human grab sampling [2]–[4].
The availability of low-cost and low-power sensor devices for
monitoring physical phenomena (such as fluid flow, pressure,
temperature, etc.) is creating the possibility of obtaining
information in near real-time. However, communicating this
data in time for analysis remains challenging.

A key issue in Underground IoT (IoUT) systems is the
lack of reliable wireless communication [5] infrastructure
in underground environments that consists of heterogeneous
materials including soil, concrete, metal, water, air, etc. [6].
Today, reliable data transport for underground communica-
tions largely relies on expensive, hard-to-deploy, and error-
prone wired networks, which are more vulnerable to network
outages during renovation and maintenance. Existing efforts in
wireless sensors for smart agriculture that involve low-depth
sensor deployments in a single medium (soil) or customized
deployments with non-traditional radios (in §II) are unsuitable
for deployments at scale in infrastructure networks. What is
missing at a fundamental level is a comprehensive approach
to model IoUT communications and channel characteristics,
especially in complex real-world infrastructure settings.

In this paper, we tackle the limitations of the existing
channel models that fail to capture complex underground
communications properly. Multiple varied propagation char-
acteristics based on medium-specific and exogenous factors,
such as the type of soil, moisture level of soil, and type of con-
crete, topographical features, and weather-related conditions,
including evapo-transpiration factors, play a role. We develop
a modeling methodology that couples a physics-informed
empirical approach through focused measurement studies in
the target deployment setting. Particularly, we present the
Material-Aware Measurement-Enhanced (MAME) approach,
which allows infrastructure providers to adopt a design mind-
set that would accommodate system-level sensing and moni-
toring. It allows for lower-cost retrofits for aging systems to
help monitor unexpected conditions and service degradation.
To the best of our knowledge, the MAME methodology is
the first of its kind to help model and instrument the next
generation of smart underground community infrastructures.

Contributions of this paper. We develop a Material-Aware
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Measurement-Informed channel modeling approach for IoUT
that can be adapted to different material layers, while their
properties and deployment factors can be found in typical
infrastructure settings. We make the following contributions:
• We present a generalized framework for IoUT communi-
cations and discuss the limitations of existing underground
sensing efforts and communication technologies (§II).
• To obtain a quantitative understanding of IoUT, we develop
indoor in-lab and outdoor testbeds using off-the-shelf hard-
ware and communication components and conduct multiple
measurement studies focused on communication quality (§III).
• We derive theoretical communication models that are
Material-Aware (MA model), starting from classical analytical
models used for air-based above-ground communications. We
enhance the MA model to create the MAME (Material-
Aware Measurement-Enhanced) channel models to capture
deployment and access features for wireless (LoRa, WiFi)
networks (§IV).
• We integrate our proposed channel models in the well-
known packet-level simulator NS-3 to enable larger-scale
evaluations of emerging IoT sensor networks (§V).

II. MAME: AN INTEGRATED MATERIAL AND
MEASUREMENT AWARE APPROACH

Studies have pointed to communication reliability issues in
underground IoT infrastructures such as water pipelines [7]–
[9]–multiple wireless communication methods based on elec-
tromagnetic, acoustic, and magneto-inductive wave-based sig-
nals report unreliable data transport. Small-scale and cus-
tomized physical layer measurements [10] to capture RSSI
and Packet Drop Rates) have explored small Tx-Rx distances
under 1 m. Recent studies with custom low-frequency radio
(50-200MHz) [11], [12], have explored the design of path
loss models in soil [11], [13], under varying soil conditions.
Conceptual frameworks, e.g., [14], that map IoT building
blocks with protocols must be extended to capture long-range
low-power transmission through highly attenuating channels.

With the arrival of new longer wavelength modules, such
as LoRa, LoRaWAN, and LPWAN, with new modulation
techniques [15], the possibility of underground signal transfer
has seen new opportunities. Recent efforts in smart agricul-
ture [16] have shown that LoRa signals possess a remarkable
immunity to multipath fading and interference and hence can
propagate longer distances (> 50m) in Under Ground/Above
Ground (UG/AG) settings with satisfactory signal strength for
shallow soil depth (15 cm). Experiments in diverse soil set-
tings indicate that transmission and environmental parameters
(e.g., frequency and spreading factors, moisture level) can
significantly impact communication quality.

In contrast to the above efforts, our work on IoUT for
built infrastructure (storm drains, pipeline networks) aims
to use off-the-shelf radio technologies and IoT communi-
cation protocols available, such as LoRa/WiFi, to handle
complex layering of materials (concrete, varying types of soil)
through which signals must propagate in such deployments.
We argue that a comprehensive framework for UG/AG WSN

Fig. 1. Our proposed IoUT sensor network consists of end-nodes, gateways,
edge servers, cloud servers, and applications.

for infrastructure monitoring would require the design of
reconfigurable channel models that consider multiple material
layers and a variety of environmental factors. Key challenges
in developing such models include the lack of feasible off-
the-shelf modules for UG/AG test beds that can accommodate
varying carrier wavelengths. A better understanding of signal
propagation for varying bandwidths through soils is also
required. Finally, a lack of tools to effectively conduct real-
time measurement, packet level monitoring, and computation
in challenged settings with high error rates makes it difficult
to assess the feasibility of wireless deployments in UG/AG
systems. Changing environmental factors such as weather, RF
interference, and obstacles (large structures, moving vehicles)
result in varying signal strengths. Designing a network control
plane requires intelligent methods that frequently learn about
multiple communication attributes and adjust the network state
information for the end nodes accordingly.

To address the above challenges, we propose an integrated
model for wireless communication for subsurface nodes buried
inside the underground infrastructures, which combines the
physical properties of the material layers with empirical
measurement studies that capture the deployment setting. We
begin by establishing a quantitative model for communica-
tion properties, e.g., signal attenuation, through multilayer
channels comprising different infrastructure materials. We
leverage infrastructure manuals and literature on soil and
concrete properties, antenna theory references, and in-person
site survey-based data as building blocks toward a conceptual
IoUT communication model and network architecture.

Physical Site Surveys. Through a series of in-person site
visits to storm drain sites facilitated by municipal public works
agencies, we were able to understand the settings and limita-
tions to network feasibility for the existing infrastructures. Ini-
tial measurement studies and data pointed to the unreliability
of wireless signal transport–signal strengths of conventional
mobile LTE networks within the interior of storm drains were
found weak and unstable at most critical monitoring locations
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instrumented in the storm drain network for insights into the
soil depth (few meters) to concrete pipe thicknesses (around
1 foot). As our driving use case, we consider networks of
devices 6–16 ft beneath the ground surface with a concrete
slab thickness of 6–12 inches. Additionally, we consider a
fixed attenuation due to the concrete slab and a variable
attenuation of the signal while passing through the soil. This
path loss in the soil will depend primarily on the distance
between the end node and the gateway. Soil material properties
and moisture conditions will also influence the attenuation.

We envision a hierarchical system architecture that consid-
ers geospatially distributed leaf sensor nodes at critical loca-
tions of the underground stromdrain network. As illustrated
in Fig. 1, the sensed data are sent wirelessly to the data
collection points placed above-ground, i.e., the gateway (GW)
nodes. TCP/IP networks (wireless or wired) communicate with
a local server and/or the cloud.

This paper studies the feasibility of IoUT communication
by studying signal propagation behavior at the lowest layer
of the network, i.e., the physical layer comprising soil and
concrete as channel materials. This work considers studies
in three phases–1) acquiring the necessary data about mate-
rials and their physical properties and performing empirical
studies and measurements on multiple small-scale testbeds
(controlled lab-based setting, public outdoor deployments), 2)
deriving a Material-Aware Measurement-Enhanced (MAME)
model combining existing communication theory modeling
methods with empirically-obtained measurements, and 3) per-
forming simulation-based studies to observe the effect of the
measurement-enhanced model for a scaled-up network. Our
work focuses on observable attributes from the off-the-shelf
hardware, including the received signal strength index (RSSI)
and average throughput in the channel.

III. MEASUREMENTS IN REAL TESTBEDS

Small-scale real-world testbeds were constructed in lab
setup for measuring two metrics for adhoc WiFi- i) RSSI and
ii) Throughput, as shown in Fig. 6. Experiments were designed
to observe the received signal strength and throughput after
passing through soil and concrete. A second testbed, shown
in Fig. 3, was built outdoors to measure RSSI for LoRaWAN.
Both testbeds are used to understand the signal propagation
behavior with varying distances. For throughput measurement,
only the in-lab set-up was used with a fixed distance. The
purpose of these experiments is to apply the findings towards
building up a model for larger real-world setups.

Testbed-RSSI-WiFi: The first in-lab setup (Fig. 2a) was
constructed on a test bench, with the channel structure laid
down in a horizontal alignment to mimic real-world UG to
AG channels. The UG channel environment was created using
a plastic box-enclosed channel filled with three kinds of soil–
sand, silt, and garden soil. Concrete bricks were added at
one end of the channel. The sender and receiver nodes were
set at the two ends of the channel. The whole setup was
covered with multiple layers of aluminum foils to create an
isolated environment from the surrounding wireless signals

(a) Testbed-RSSI-WiFi (b) Testbed-Throughput-WiFi

Fig. 2. In lab setup constructing channel with WiFi (2.4 GHz).

Fig. 3. Outdoor testbed setup using LoRa (915 MHz).

and to prevent test signal leakage inside the channel. For
the hardware, micro-computer modules Raspberry Pi-4 (RPi-
4) were used with in-built WiFi modules working at the 2.4
GHz frequency, operating in the ad-hoc WiFi mode, to ensure
packet exchange only inside the testing adhoc network.

The RSSI measurements were taken for four different
distances, with 200+ measurements for each distance (keeping
a concrete-to-soil layer thickness ratio 0.2). These concrete
thickness values (2-8 inches) were selected based on stor-
mdrain component manuals (the charts for vertical live load
tables of conduit, earth load, pressure distribution, and pipe
dimensions) [17]–[19]. This is shown in Table I.

TABLE I
MEASURED RSSI AND LOSS WITH VARYING DISTANCES: WIFI

Reading Average for 2.4 GHz from 200 Readings: TxP = 31 dBm
Soil/Conc. Distance (m) RSSI (dBm) Avg-Loss 2-medium

0.46 / 0.05 -40.50 ± 1.67 71.50
0.61 / 0.10 -43.12 ± 2.94 74.12
0.91 / 0.15 -45.64 ± 2.60 76.64
1.22 / 0.20 -45.15 ± 1.68 76.15

Testbed-Throughput-WiFi: The second in-lab set-up
(Fig. 2b) was designed to measure throughput using the
WiFi module (2.4 GHz). The channel had a 1.5 ft soil layer
and 4 inches of concrete bricks. The average throughput
was obtained from multiple measurements for a 3-node ad-
hoc WiFi network, where one AG node (running the server)
located at the top of the stack received packets from the two
UG client nodes. In this approach, among multiple readings,
the minimum throughput values were considered, as in the
lab environment, partial leakage of the signal through the
insulating layers (aluminum foils) was possible. Table II
presents the results.
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TABLE II
MEASURED THROUGHPUT FOR 3-NODE AD-HOC WIFI NETWORK -

(SOIL+CONCRETE MEDIUM AS COMPARED WITH AIR)

AVG Throughput for 2.4 GHz from Multiple Readings: TxP = 31 dBm
Distance (m) Client-1 Client-2 Server

soil+concrete(Mbps) 9.60 10.60 9.61, 16.70
air (Mbps) 53.60 56.20 57.80

Testbed-RSSI-LoRa: The outdoor testbed was constructed
in a sandpit using LoRaWAN modules, as shown in Fig. 3.
The selected frequency band was 915 MHz, and the commu-
nication mode was set to LoRaWAN to measure the end node
to gateway (GW) signal strength.

For the hardware, two RPi-3 (Model B) were used- one
working as the IoUT end node and the other as the GW.
The end node (sender) was attached to a Multitech xDot
LoRaWAN antenna board via a USB 2.0 port used as a
LoRaWAN interface. This xDot module transmitted packets
at the US 915MHz frequency band. The other RPi-3, working
as the GW, was attached with a RAKwireless RAK2245 Pi
HAT WisLink LPWAN Concentrator. This gateway collected
packets from the xDot module and forwarded the information
to the server. The IoUT node with the xDot module is
connected to the laptop via a USB to Transistor-Transistor
Logic (TTL) cable. The gateway was connected to the laptop
using SSH. The GW is connected to a local WLAN.

As for the software tools setup for this experiment, The
Things Network (TTN) was adopted as the server platform.
Minicom (a serial communication program that connects to
devices through serial ports) was used for AT commands (in
the CLI terminal to control the xDot) to read the RSSI values
of the received signals. Table III shows the measurement log
for RSSI of this LoRa testbed. The RSSI measurements were
taken for two setups- a) adding two 4-inch wide (2 inch thick
at center) concrete bricks between two IoT devices and b)
without the bricks. Measurements were taken for increasing
distances in the sand for both setups.

TABLE III
MEASURED RSSI AND LOSS WITH VARYING DISTANCES: LORAWAN
Reading Average for 915 MHz from Multiple Distances: TxP = 30 dBm

Dist. (m)
RSSI (dBm)
(with bricks)

Avg Loss
2-medium

(with bricks)

RSSI (dBm)
(without bricks)

Avg Loss
2-medium

(without bricks)
0.4 -42.00 ± 1.41 72.00 -52.00 ± 2.00 82.00
0.8 -48.33 ± 0.47 78.33 -49.00 ± 1.00 79.00
1.0 -52.33 ± 1.25 82.33 -59.00 ± 0.58 89.00
1.6 -78.33 ± 0.47 108.33 -67.67 ± 1.15 97.67
2.0 -95.00 ± 2.83 125.00 -80.67 ± 0.58 110.67
2.5 -91.67 ± 0.47 121.67 -81.00 ± 0.58 111.00
3.0 -84.00 ± 0.82 114.00 -84.00 ± 1.00 114.00

The general noise floor level for LoRa is considered to
be -90 dBm. Still, LoRa receivers can demodulate received
signals of -7.5 dB to -20 dB below the noise floor, which
means an average RSSI of -100 dB or even up to -129 dB
can be accepted for a system. This experiment’s SNR (Signal-
to-Noise Ratio) readings stayed within the window of +7
to +10 dB, which is satisfactorily above the minimum SNR
requirement. Hence, we can predict that a little bit farther

distance extension of the network would be possible in real-
world deployment, which couldn’t be deployed within the
scope of this study due to resource limitations.

IV. MODELING IOUT COMMUNICATIONS

A. Channel Modelling:

The channel modeling study started with the physics-based
intuition that the channel attenuation coefficients would be
specific for a specific site, and the model would maintain
equivalence among similar kinds of infrastructures. For com-
posite medium, like a combination of concrete and soil in
two layers, the existing model based only on soil and shallow
depth [11], [13] doesn’t fit. This model also depends on
figuring out the attenuation coefficients based on the detailed
soil grain properties and mineral composite details of the site
in consideration, which method is generally not feasible for
infrastructure-based channels. Even with that knowledge, the
predictions can deviate significantly from the actual measure-
ments due to the soil proportion variations among sites. Hence,
our modeling adopted an infrastructure-based approach.

This study started from the antenna theory [20]–[22], for
element level analysis using Friis propagation model (for
homogeneous medium) and took far-field signal propagation
into account. The Friis model for air is written as:

PRx(dB) =PTx(dB) +Gt(dBi) +Gr(dBi)+

20log(λ/(4πd))− 10log(L).
(1)

Here, λ is the wavelength. We assume both antenna gains
are 1, i.e., Gt(dBi)=Gr(dBi)=0, and system loss as zero
(L=1), which brings in an approximated model for air. The
model enhancement, to make it compatible with the non-air
mediums, starts by ingesting soil’s electric permittivity (ϵ) and
magnetic permeability (µ) properties inside the basic Friis
model’s wavelength factor (or light speed factor), which is
shown in the following equation, in terms of transmission
frequency, f :

PRx(dB) =PTx(dB) + 20log(Co/4π)

− 20log(fd)− 10log(ϵrµr).
(2)

Note that the attenuation will vary based on the last two terms
of the above equation for a specific channel structure with a
specific node topology. For an inhomogeneous medium, effec-
tive dielectric constant and effective magnetic susceptibility
are counted for the overall medium. Hence our preliminary
loss model (Loss = PTx − PRx = ΣLossmedium), is the
Material Aware (MA) model:

Loss(dB) =20log(4π/Co) + 20log(fd)+

10log(ϵr(eff)
µr(eff)

).
(3)

To observe the preliminary RSSI pattern with the MA
model, applied for an example real-life UG channel, we plot-
ted Fig. 4 with two boundary-frequencies commonly used in
the regular infrastructure networks (WiFi and LoRa). Here, the
lower-bound-frequency = 433 MHz, upper-bound-frequency
= 5.15 GHz, the concrete layer thickness = 1 ft, and the
soil-channel distance range is 5 m to 20 m. As a reference,
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Fig. 4. MA Model for RSSI (dBm) with distance (m) for (Soil+Concrete)
channel as compared with Air, for lower bound & upper bound carrier
frequencies: 433MHz & 5.15 GHz.

Fig. 5. MAME Model development for RSSI (dBm) with distance (m) for
(Soil+Concrete) channel- (a) WiFi: comparing Testbed values, MA-model,
and MAME Model (2.4 GHz), (b) LoRa: comparing Testbed values for with
brick, without brick, and MAME Model with brick (5.15 MHz).

air-propagation models from the basic Friis models are also
plotted for these two frequencies.

The findings from the MA-model show that the RSSI stays
above -100 dBm even beyond the transmitter and receiver
distance of 15 m. This finding points to the possibility of
successful data reception and at the same time encourages
further investigation considering the naiveness of this model.
Here soil parameter values were picked from a mid-window
range from a wide spectrum of values of soil properties
[23]–[26] as: ϵsr(eff)

=23.086 (from complex ϵsr=23+2j) and
µs
r(eff)

=1 (from complex µs
r=1 + 0.0005j). Similarly, for

concrete: ϵcr(eff)
=11.16 (from 10.75+3j) and µc

r(eff)
=1 (from

1+0.00015j) selecting from a wide range of possible values
[27]–[29]. An important note here is that all these four param-
eters, especially the ϵcr and µs

r values, are heavily influenced
by the chemical composition, moisture levels, minerals/metal
percentage in the soil and concrete, and chemical events taking
place inside the channel. Hence, these factors can lead to any
deviation from the model in the real-life reading. Site-specific
measurements can help us to fine-tune the models to higher-

accuracy models.
Material Aware-Measurement Enhanced Model-WiFi:

The preliminary MA model is tuned with our WiFi-testbed
parameters (with f and varying d) and compared with the
ground truth values (see Fig. 5a). A considerable gap with
a linear shift of the model from the ground truth (with
increasing distance) suggests some necessary corrections.
Hence, the naive MA model gets modified to the Material
Aware Measurement-Enhanced-model (MAME), for the
WiFi network, by adding a linear correction term, i.e., αd.
The MAME model is written as:

Loss(MAME)wifi =20log(4π/Co) + 20log(fd)

+ 10log(ϵr(eff)
µr(eff)

)− αd.
(4)

The best-fit coefficient value is: α = 10 for our MAME-WiFi
model (with a concrete-to-soil-thickness ratio of 0.2).

Material Aware-Measurement Enhanced Model-LoRa:
Progressing further from the MAME-WiFi model, an extended
model suitable for LoRaWAN was studied in our final model-
ing work. This LoRa-based model considered a fixed-depth
concrete layer (of 2”) and varying soil distance matching
with the parameter values of the LoRa-Testbed. In this model
(MAME-LoRa), ϵsr(eff)

value was changed to sand-type soil’s
permittivity.

From close investigation, some important findings were
established for this model: a) far-field (d > 3λ) RSSI pattern
differed from the near-field (approx. 1 m, for 915 MHz), b)
even inside the near-field region, the reactive and the radiative
fields can differ noticeably due to the channel properties of soil
or concrete. Hence, MAME-LoRa model considers distance-
based coefficient values for different ranges, where α=8 for
dconcrete=2”, 6 for dsoil<1m, 15 for dsoil>1m. In particular,
we write the MAME-LoRa model as:

Loss(MAME)lora =20log(4π) + 32log(d)

+ βlog(1/λmed) + αd.
(5)

Here, the values of β, λmed, and α are signatory for a spe-
cific channel structure combined with its material properties.
For MAME-Friis-LoRa model, regarding the outdoor testbed:
βconcrete=20 , βsoil=32, and λmed=Co/f

√
ϵr(eff)

µr(eff)
;

and ϵsr(eff)
=31, ϵcr(eff)

=11.9, and µs
r(eff)

= µc
r(eff)

= 1.
Last, we combine Eqs. (4) and (5) into the following

general-MAME-Friis model:

Loss(MAME)general =20log(4π) + γlog(d)

+ βlog(1/λmed)± αd,
(6)

where the coefficients, γ, β, and ±α are infrastructure-specific
and will stay within a range of values based on the network.
Hence, these coefficients can be learned for infrastructures
from real-life data. In all these three plots from the two
testbeds, we find knee-points at the junction of near and
far fields. With the LoRa-with-brick setup, the ground truth
reading behaves differently than the theoretically expected pat-
tern. The reason could be that, for that distance, a secondary
wavelet that early escapes to air, precedes the primary wavelet
with less propagation delay and a higher RSSI. The same
reason might be causing the RSSI to go up at a 2 m distance.
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Fig. 6. MA-model depicting influence of Bulk Density and VWC on RxPower
for a soil distance=30.27m and carrier frequency of 433 MHz: (a) Varying
bulk density for a fixed VWC of 5% and (b) Varying VWC for a fixed bulk
density of 0.96 gm/cc.

Additional tuning knobs, some considered in the next anal-
ysis, include the environmental factors and material properties
that can influence the signal attenuation, such as soil moisture,
soil particle diameter, sand/clay ratio, and soil density.

B. Environmental Factors:

In our 2nd phase of modelling, we analyzed the effect of
varying soil properties and environment on the signal strength.
Soil physics consists of varying range of soil types and mois-
ture levels. For simplification purposes, soil granularity and
its sand-clay portion property can be integrated into one pa-
rameter– bulk density. With further simplification and approx-
imations, this bulk density and the soil’s moisture status, i.e.,
soil volumetric water content (VWC), can be integrated into a
single medium property, the refractive index of the soil [30].
We chose the simplest bivariate model for the refractive index:
Ref index = (9.93× vwc) + (2.454× b density)− 1.208.

Figs. 6a and 6b show our analysis on the effect of the soil
density and moisture as we ingested this bivariate model into
our MA-model for 433 MHz carrier frequency, with a fixed
Tx-Rx distance of 30.27 m. For the soil density analysis, in
Fig. 6a, we skipped modelling for the concrete considering
that the concrete layer in this case will stay with a fixed loss
(an additional 25 to 35 dBm for the thickness range of 2”
to 10”). We modelled the medium as soil-only and varied
the bulk density from 0.46 gm/cc to 1.56 gm/cc, keeping
the moisture level constant (VWC=5%). After the loss in
the soil channel the RSSI level was found above -60 dBm,
which would result in a final RSSI of approx -95 dBm, when
combined with loss in concrete, at the receiving end.

For analyzing the effect of the water content level on the re-
ceived signal strength (shown in Fig. 6b), the communication
parameters (distance and frequency) were kept the same and
the VWC was varied from 5% to 30% keeping the soil’s bulk
density fixed at 0.96 gm/cc. The impact of VWC on RSSI
is found to be significant as RSSI drops significantly from
-45 dB to -50 dB, for a soil-only channel, with the increasing
VWC. With an additional layer of concrete, adding a loss of
25 dB, the RSSI lowest point stays around -75 dB.

V. SIMULATION STUDIES WITH MAME

We next study the feasibility of wireless data reception from
IoT nodes situated at farther distances in a real-life setting. We
used the industry-standard network simulator NS3 to simulate

the MAME models for scaled-up networks (WiFi and LoRa).
NS3 is designed for conventional wireless communication
through air. The physical layer libraries (propagation-loss-
model) of NS3 were modified with the material properties of
concrete and soil, with the permittivity values derived from
the MAME model. The average bulk density was taken as
2.74 gm/cc and the VWC as 0.5%. A concrete thickness of 5
inches, with a fixed loss, was considered.

Experiments were run with three network topologies–1)
point-to-point, 2) 1 Access Point & 5 end-nodes (for WiFi),
and 3) 2 GW & 10 end-nodes (for LoRa). The senders were
situated at different coordinate points so the Tx-Rx distance
gets a varying range. Keeping the use case in mind, low data
rates were considered. The simulation setup parameters for
WiFi and LoRa are elaborated in Table IV.

TABLE IV
NS3 SIMULATION SETUP PARAMETERS

WiFi 2.4 GHz and LoRa 868 MHz
Parameters WiFi (TxP 16dB) LoRa (TxP 14dB)
Topology 1 AP-5 ED 2 GW- 10 ED
Model MAME-WiFi MAME-LoRa
Packet size 1024 Bytes 19 Bytes
Packet interval 0.05-0.15 sec 1-5 sec
Channel length 0m-1.5m, 0m-3.1m 0-3m, 0-6m
Channel VWC N/A 0.05% to 30%

The result of a number of simulation experiments is sum-
marized in Fig. 7. In the physical layer metric measurement,
RSSI (in Figs. 7a and 7b), the output varied in a range of
-49.0 to -60.4 dBm for WiFi and within -68 to -177 dBm for
LoRa. These results closely followed the MAME model.

Fig. 7. NS3 simulation results: (a), (b)- RSSI implementing MAME model,
(c) RSSI- using MA model, (d) WiFi-Throughput using MAME model.

However, there is an upper bound in distance (2m for WiFi,
3m for LoRa), after which real-life data might deviate from
the model. One reason is that the MAME model consid-
ered secondary wavelet propagation of the signal, which is
distance-specific. For LoRa, the upper bound will be set at
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a distance from where signal strength becomes unusable for
demodulation below -120 dB. In our simulation, the LoRa
MAC layer module dropped 50% of the packets arriving from
nodes farther than 3m (below -129 dB). By setting the TxP at
a higher power level, a longer distance range can be achieved.

The next simulation experiment, shown in Fig. 7c measured
RSSI with varying VWC, using MA-model only (as we do
not have any testbed-based model for VWC yet), for 868
MHz, soil-only channel, and a fixed Tx-Rx distance of 30.27
m, in NS3. This simulation result shows much optimistic
values of RSSI, as we implemented the naive MA model in
this simulation experiment, as no testbed-measurement based
derived model is there yet.

Lastly, we studied throughput for WiFi networks (2.4 GHz)
in NS3, for a channel of 4 inches concrete and soil thickness
varying from 0m to 3.1m (Fig. 7d). The throughput for the
AP node was 1.603 Mbps (AVG). Although our in-lab testbed
throughput was 9.61 Mbps (AVG), it is acceptable, as our
RPi modules ran commands with a higher number of packets
per second and in some cases detected the maximum possible
throughput. We also predict that any secondary wavelet signals
leaked through the insulated walls might have also contributed
to this higher throughput in the real-life testbed. For through-
put, no pattern variation relating to VWC or distance was
found using the simulation. The reason might be the limited
dimension topology and the low data rate. Looking at the
packet reception rate, in the simulation experiment, the result
showed 98% to 100% packet reception whereas the testbed
had a packet reception rate of 100%.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we derived an underground infrastructure-
based channel model, MAME, to capture communication
properties, e.g., RSSI, using WiFi and LoRaWAN. The
MAME model was integrated into the NS3 simulator to under-
stand the network behavior (RSSI and throughput) for scaled-
up networks. One challenge was the absence of any existing
data set for infrastructure wireless deployment. Developing
such a model requires significant domain expert knowledge
to encompass the physics-based attributes (e.g., reflection
at interfaces, in-material absorptions, and other factors) and
engineering aspects (such as concrete thickness and materials).
Future work involves improving the MAME model with
bigger datasets from real-life deployments, considering multi-
path signal propagation, and multi-layer structures.
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