
Scalable Quantum-Inspired Optimization through Dynamic Qubit Compression

Co Tran*1- Quoc-Bao Tran*2, Hy Truong Son3, Thang N Dinh2†

1University of Texas at Austin
2Virginia Commonwealth University

3University of Alabama at Birmingham
co.quoc.tran.2@gmail.com, tranq3@vcu.edu, thy@uab.edu, tndinh@vcu.edu

Abstract

Hard combinatorial optimization problems, often mapped to
Ising models, promise potential solutions with quantum advan-
tage but are constrained by limited qubit counts in near-term
devices. We present an innovative quantum-inspired frame-
work that dynamically compresses large Ising models to fit
available quantum hardware of different sizes. Thus, we aim
to bridge the gap between large-scale optimization and cur-
rent hardware capabilities. Our method leverages a physics-
inspired GNN architecture to capture complex interactions in
Ising models and accurately predict alignments among neigh-
boring spins (aka qubits) at ground states. By progressively
merging such aligned spins, we can reduce the model size
while preserving the underlying optimization structure. It also
provides a natural trade-off between the solution quality and
size reduction, meeting different hardware constraints of quan-
tum computing devices. Extensive numerical studies on Ising
instances of diverse topologies show that our method can re-
duce instance size at multiple levels with virtually no losses in
solution quality on the latest D-wave quantum annealers.

Introduction
Combinatorial optimization problems are ubiquitous in vari-
ous domains, including portfolio optimization (Mugel et al.
2021; Grozea et al. 2021), car manufacturing scheduling
(Yarkoni et al. 2021), and RNA folding (Fox, Branson, and
Walker 2021; Fox et al. 2022). These problems often involve
finding the optimal solution among a vast number of possi-
bilities, making them computationally challenging. Many of
these problems can be mapped to Ising models (Lucas 2014),
which encode the optimization objective in terms of interact-
ing spins. However, a significant number of these problems
fall into the NP-hard complexity class (Gary and Johnson
1979), meaning they are intractable for classical computers
as the problem size grows. This intractability has motivated
the exploration of alternative computing paradigms, such as
quantum annealing (Kadowaki and Nishimori 1998a; Zhou
and Zhang 2022), which leverages quantum mechanics to po-
tentially solve these problems more efficiently than classical
methods.

Recent years have witnessed remarkable advances in quan-
tum computing, bringing us closer to the realm of ”quantum
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supremacy” (Preskill 2018), where quantum processors solve
problems intractable for classical computers. Notable mile-
stones include Google’s Sycamore processor demonstrating
supremacy in a sampling task (Arute et al. 2019) and China’s
Jiuzhang photonic quantum computer achieving quantum ad-
vantage for Gaussian boson sampling (Zhong et al. 2020).
Beyond these proof-of-concept demonstrations, there have
been efforts to showcase quantum utility on more practical
problems. Quantum annealing, implemented in D-Wave’s
systems (Boothby et al. 2020), has demonstrated quantum
advantages for certain types of problems (King et al. 2021;
Tasseff et al. 2022, 2024; King et al. 2024). Gate-based al-
gorithms such as the Quantum Approximate Optimization
Algorithm (QAOA) (Bauza and Lidar 2024) and Variational
Quantum Eigensolver (VQE) (Peruzzo et al. 2014) offer al-
ternative routes for tackling optimization challenges. Addi-
tionally, quantum-inspired specialized hardware, including
optical Ising machines (Honjo et al. 2021), digital anneal-
ers, and FPGA-based solvers (Patel et al. 2020), provide
complementary approaches to address complex optimization
problems.

Despite the rapid progress in quantum computing, qubit
count remains a significant limiting factor for solving practi-
cal optimization problems. Current state-of-the-art quantum
annealers, such as D-Wave’s Advantage platform, offer over
5000 qubits (Boothby et al. 2020). However, many real-world
applications require even more qubits. For example, perform-
ing MIMO channel decoding with a 60Tx60R setup on a
64-QAM configuration would necessitate about 11,000 phys-
ical qubits (Tabi et al. 2021), exceeding the capabilities of
existing hardware. The challenge is further compounded by
limited qubit connectivity, which necessitates complex mi-
nor embedding techniques (Choi 2008, 2011), significantly
increasing the number of physical qubits required. These
hardware constraints substantially limit the size and com-
plexity of problems that can be directly solved on quantum
processors with a clear advantage over classical methods.

While waiting for quantum hardware advances, a paral-
lel challenge emerges: efficiently reducing Ising models to
fit limited qubit capacities. Current reduction techniques,
ranging from classical roof duality (Hammer, Hansen, and
Simeone 1984; Boros and Hammer 2002) and extended roof
duality (Rother et al. 2007) to recent graph-based approaches
(Thai et al. 2022), show promise but face significant limi-
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tations. These methods, constrained by the need for an ex-
act reduction, can compress only a fraction of problem in-
stances—with the best-performing algorithms reducing less
than half of tested cases, achieving an average compression of
about 20% among instances (Thai et al. 2022). This variabil-
ity in effectiveness highlights a notable gap: the absence of a
universal, tunable reduction method to compress Ising models
to arbitrary sizes. Such flexibility could accommodate diverse
quantum hardware constraints and potentially enhance the
applicability of quantum annealing across a broader spectrum
of real-world optimization problems.

We present a novel framework that leverages Graph Neu-
ral Networks (GNNs) to dynamically compress large Ising
models for quantum annealing. Our approach automates the
discovery of combinatorial rules for qubit reduction by train-
ing a GNN to predict ground-state qubit alignments and iden-
tify optimal contraction candidates. This data-driven method
enables progressive spin merging while preserving solution
integrity, offering a tunable trade-off between compression
ratio and solution quality. Unlike previous compression tech-
niques that relied on manual heuristics (Thai et al. 2022), our
GNN-based approach captures complex patterns in both local
and global spin interactions, identifying compressible qubit
groups that elude detection by conventional methods. In con-
trast to GNN-based methods to directly solve Ising models
and combinatorial optimization problems (Dai et al. 2017;
Li, Chen, and Koltun 2018; Gasse et al. 2019; Joshi, Laurent,
and Bresson 2019; Schuetz, Brubaker, and Katzgraber 2021;
Schuetz et al. 2022), these methods face challenges, includ-
ing sensitivity to graph structure and connectivity, and poor
performance on sparse graphs (Pan et al. 2021). Moreover, by
acting as a preprocessing phase for quantum computing, our
approaches preserve the potential for a quantum advantage.

Our contributions. We summarize below our contributions
• We present GRANITE, a GNN-based framework that

dynamically compresses large Ising models, automating
the discovery of qubit reduction rules. This method ef-
ficiently predicts ground state alignments and identifies
optimal contractions, offering tunable trade-offs between
model size and solution quality, and accommodating di-
verse quantum hardware constraints. The compression
preserves the Ising structure and can work with any quan-
tum technology that solves Ising models, including both
quantum annealers and gate-based quantum computers via
Quantum Approximate Optimization Algorithm (QAOA).

• Our extensive testing reveals substantial multi-level size
reductions across various Ising topologies while preserv-
ing solution accuracy.

• By significantly reducing qubit requirements, our ap-
proach expands the scope of tractable problems for cur-
rent quantum annealers, potentially accelerating practical
quantum advantage in optimization tasks. This work pro-
vides a powerful tool for exploring the quantum-classical
computational boundary, addressing a critical challenge
in near-term quantum computing.

This work addresses directly the qubit limitation challenge,
offering a powerful, flexible tool for researchers and practi-
tioners in quantum optimization.

Related work
Ising Models and Combinatorial Optimization. Ising
models, which naturally lend themselves to graph representa-
tions, have been a focal point in statistical physics and com-
binatorial optimization (Carleo et al. 2019; Tanaka, Tomiya,
and Hashimoto 2023). These models are particularly chal-
lenging due to their NP-hardness and have applications across
various domains, including computer science and machine
learning.

Traditional Approaches to Solving Ising Models. Solving
computationally difficult Ising models has traditionally relied
on heuristic algorithms and physics-inspired techniques. Sim-
ulated Annealing (SA) (Kirkpatrick, Gelatt Jr, and Vecchi
1983) has been a cornerstone approach. More recently, Ising
machines based on algorithms such as SimCIM (simulated
coherent Ising machine) (Tiunov, Ulanov, and Lvovsky 2019;
King et al. 2018) and simulated bifurcation (SB) (Goto et al.
2021; Oshiyama and Ohzeki 2022) have shown impressive
results in finding ground states of Ising models.

Machine Learning Approaches for Ising Models. Ma-
chine learning techniques have been increasingly applied to
Ising problems. Variational Autoregressive Networks (VANs)
(Wu, Wang, and Zhang 2019) and Variational Classical An-
nealing (VCA) (Hibat-Allah et al. 2021, 2020) have shown
promise. VCA, in particular, outperforms traditional SA but
faces scalability issues, being limited to problems with up to
32 spin variables in challenging scenarios like the Wishart
Planted Ensemble (WPE) (Hamze et al. 2020). Reinforce-
ment learning approaches (Angelini and Ricci-Tersenghi
2023; Panchenko 2013) offer an alternative by directly opti-
mizing for ground state configurations.

Graph Neural Networks for Ising Models. Graph Neural
Networks (GNNs) have emerged as a promising approach
for solving Ising models and related combinatorial optimiza-
tion problems (Dai et al. 2017; Li, Chen, and Koltun 2018;
Gasse et al. 2019; Joshi, Laurent, and Bresson 2019; Schuetz,
Brubaker, and Katzgraber 2021; Schuetz et al. 2022). Some
GNN-based methods have demonstrated the ability to han-
dle large-scale instances with millions of variables (Schuetz,
Brubaker, and Katzgraber 2021). However, these approaches
face challenges, including sensitivity to graph structure and
connectivity, and poor performance on sparse graphs (Pan
et al. 2021). Recent works have questioned the effectiveness
of GNNs compared to classical heuristic algorithms for cer-
tain problems (Boettcher 2022; Angelini and Ricci-Tersenghi
2022). Our proposed approach, unlike existing GNN-based
methods that attempt to solve Ising models directly, focuses
on using GNNs to compress Ising models. This novel perspec-
tive aims to address the scalability issues faced by current
methods while maintaining the ability to capture complex
interactions in the Ising system.

Background
Ising Models and NP-hard Problems
Ising models, originally developed in statistical physics, have
become a powerful framework for representing combinatorial
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Figure 1: GRANITE: Graph Neural Ising Transformer for Efficient Quantum Optimization. The model comprises three
key components: a, A GNN that learns edge (euv) and node (hv) representations, capturing the Ising model’s structure and
interactions. b, A prediction layer using logistic regression with softmax to calculate weighted binary cross-entropy, assigning
confidence scores to potential actions. c, A link contraction process that executes the highest-confidence merge or flip-merge
operation. During inference, the contracted graph is iteratively fed back into GRANITE until the desired reduction ratio is
achieved, enabling the transformation of large-scale Ising problems into quantum-compatible formats.

optimization problems (Lucas 2014). An Ising model consists
of binary variables (spins) si → ↑1,+1, with energy given
by the Hamiltonian:

H = ↑
∑

i,j

Jijsisj ↑
∑

i

hisi (1)

where Jij represents the coupling strength between spins i
and j, and hi is the external field acting on spin i. Many
NP-hard problems can be reformulated as Quadratic Un-
constrained Binary Optimization (QUBO) problems (Glover,
Kochenberger, and Du 2018), which are closely related to
Ising models. The QUBO formulation uses binary variables
xi → 0, 1:

min
x

∑

i,j

Qijxixj +
∑

i

cixi (2)

QUBO can be mapped to Ising models through the transfor-
mation: si = 2xi ↑ 1. NP-hard problems are characterized
by exponential time complexity for exact classical algorithms
(Gary and Johnson 1979). This intractability for large in-
stances has motivated the exploration of quantum annealing
as an alternative computing paradigm (Kadowaki and Nishi-
mori 1998a). By mapping NP-hard problems to Ising models,
researchers aim to leverage quantum effects to explore com-
plex solution spaces more efficiently, potentially overcoming
limitations of classical computing such as exponential state
space growth and local optima traps.

Quantum Annealing
Quantum annealing (QA) is a metaheuristic for solving opti-
mization problems that leverages quantum mechanical effects
such as tunneling and superposition (Kadowaki and Nishi-
mori 1998b; Farhi et al. 2000; Santoro and Tosatti 2006). It
is particularly well-suited for solving problems formulated
as Ising models or Quadratic Unconstrained Binary Opti-
mization (QUBO) problems, as discussed in the previous
section.

The quantum annealing process is based on adiabatic quan-
tum computation. The system is initialized in the ground state
of an easily prepared Hamiltonian, typically the transverse
field Hamiltonian, and then evolves according to:

Hsystem(s) = ↑A(s)

2

( n∑

i

ω
x

i

)
+

B(s)

2

(
Hproblem

)
(3)

where s → [0, 1] is the anneal fraction, ωx

i
is the Pauli x-

matrix for the i-th qubit, and Hproblem is the problem Hamilto-
nian, equivalent to the Ising model Hamiltonian from eq. (1).
A(s) and B(s) define the anneal schedule, with A(s) de-
creasing and B(s) increasing as s goes from 0 to 1 (Hauke
et al. 2020).

Quantum annealing harnesses quantum effects like super-
position to tackle optimization problems more efficiently than
classical methods. By exploring multiple states simultane-
ously and ”tunneling” through energy barriers, it can poten-
tially find better solutions that classical algorithms might
miss. Recent studies have demonstrated a quantum advantage
for certain problem classes (Harris et al. 2018; King et al.
2022, 2024), highlighting the potential of QA as a powerful
tool for solving Ising model-based optimization problems.

Despite the promise of quantum annealing, current systems
face several challenges including the key challenge of lim-
ited qubit counts. The latest quantum annealer from D-Wave
features fewer than 6000 flux qubits arranged, in a Pegasus
topology (Boothby et al. 2020). As quantum annealing tech-
nology continues to advance, it promises to tackle increas-
ingly complex optimization problems that are intractable for
classical computers.

Method
Qubit Alignment at Ground States
Ising models, fundamental in statistical physics and optimiza-
tion, can be elegantly represented as graphs. This representa-



tion not only captures the model’s structure but also enables
powerful reduction techniques.

Graph representation. Consider an Ising Hamiltonian
(h, J) over spins s1 to sn. We construct an undirected
weighted graph GH = (V,E) where V = {0, 1, . . . , n}
and E = {(i, j) | Jij ↓= 0} ↔ {(0, i) | hi ↓= 0} (Fig. 1a).
The auxiliary vertex 0 represents linear biases, unifying the
treatment of linear and quadratic interactions. Edge weights
encapsulate both interaction types:

w(i, j) =

{
Jij if i ↓= j

hj if i = 0
(4)

Our choice for representation simplifies the analysis by treat-
ing all interactions uniformly as edge weights.

Qubits alignment. Ground states, configurations with min-
imum energy, reveal crucial structural information. We clas-
sify each edge (i, j) based on the behavior of connected spins
across all ground states:

• Alignment: si and sj always have the same value.
• Anti-alignment: si and sj always have different values.
• Neutral: si and sj alignment varies among ground states.

This classification enables targeted graph reductions that
preserve ground-state properties. For an aligned edge (i, j),
we have si = sj in all ground-states, thus, we can replace
si = sj and remove si from the Ising. Equivalently, we
perform a merge operation on the graph. This operation com-
bines two nodes that always have the same value in ground
states, effectively reducing the number of variables in our
system. The merge operation removes one node and redirects
its connections to the remaining node. Formally, we define
the merge operation M(i, j) as:

M(i, j) :V → = V \ {j},
E

→ = {(k, l) → E | k, l ↓= j} ↔ {(i, k) | (j, k) → E}
w(i, k) = w(i, k) + w(j, k)

Anti-aligned edge (i, j) means si = ↑sj in all ground-
states, thus, we can replace si with ↑sj and remove si, com-
pletely. In the graph, the two nodes i and j undergo a two-step
flip-merge operation. This operation first flips the sign of all
interactions involving one node (to account for the constant
difference in spin values), then merges the nodes.

The flip-merge operation FM(i, j) consists of:

1. Flip: Negate weights of edges incident to j:
w(j, k) = ↑w(j, k) ↗(k, j) → E.

2. Merge: Apply M(i, j) as defined above.

Finally, neutral edges allow either merge or flip-merge,
offering flexibility in reduction strategy.

These operations can significantly simplify Ising Hamilto-
nians while maintaining their essential properties. Iterative
application potentially reduces problem complexity, guiding
the development of efficient solution methods or revealing
underlying system structure.

Hardness of Predicting Qubit Alignment. Predicting the
alignment of qubits in Ising Hamiltonian is, however, in-
tractable.
Theorem 1. The problem of classifying a single edge in an
Ising model as alignment or non-alignment is Co-NP-hard.
Consequently, there is no polynomial-time algorithm for this
problem unless P = NP.

The proof is done by a polynomial-time reduction from a
Co-NP-complete problem of determining whether all truth
assignments of a 3-SAT formula satisfy xi = xj (or alter-
natively, xi ↓= xj) for some pair of variables xi and xj .
Given an instance of this problem with a 3-SAT formula
ε(x1, . . . , xn), we construct an Ising model H by mapping
each variable xk to a spin sk. The question of whether all
truth assignments of ε satisfy xi = xj is then equivalent
to asking whether si and sj are aligned in all ground states
of H . Thus, if we could efficiently classify the edge (i, j)
as alignment or non-alignment, we could solve the original
Co-NP-complete problem in polynomial time. This reduc-
tion, combined with the fact that the problem is clearly in
Co-NP (a counterexample of non-alignment can be verified
in polynomial time), establishes that edge classification is Co-
NP-complete. A complete proof with detailed construction
of the Hamiltonian and analysis is provided in the Supple-
mentary Information.

The Co-NP-completeness of edge classification in Ising
models underscores its computational intractability, with ex-
act solutions requiring exhaustive examination of all spin
configurations to identify the complete set of ground states.
While this approach remains viable for small instances, it
becomes infeasible as system size grows, limiting its appli-
cability in practical scenarios. This computational barrier
motivates the exploration of alternative strategies, particu-
larly in the realm of machine learning.

Graph Neural Ising Transformer for Efficient
Quantum Optimization (GRANITE)
Graph Neural Networks (GNNs) emerge as a promising can-
didate, offering a unique ability to capture the intricate spa-
tial relationships and interactions inherent in Ising models.
By leveraging the graph structure of the Ising Hamiltonian,
GNNs can potentially learn to approximate edge classifica-
tions without explicit enumeration of ground states, opening
avenues for scalable analysis of larger systems. This approach
not only promises computational efficiency but also the po-
tential to uncover hidden patterns and heuristics in edge be-
havior across diverse Ising instances, potentially leading to
new insights into the structure of complex spin systems.

The Graph Neural Ising Transformer for Efficient Quan-
tum Optimization (GRANITE) leverages Graph Neural Net-
works (GNNs) to navigate the complex landscape of Ising
model reduction (Fig. 1). GRANITE iteratively predicts opti-
mal graph contraction operations—merge or flip-merge—for
each edge in the Ising model’s graph representation. In each
iteration, the GNN processes the current graph structure,
learning edge and node representations that capture local and
global spin interactions. These representations feed into a
prediction layer, which assigns confidence scores to potential



merge and flip-merge operations for each edge. The edge
with the highest confidence score is selected, and its associ-
ated operation is performed, reducing the graph by one node.
This process repeats until the Ising model is sufficiently small
to be handled by quantum hardware, effectively bridging the
gap between large-scale classical problems and limited-size
quantum processors. The GRANITE workflow can be sum-
marized as follows:

Algorithm 1: GRANITE - Graph Neural Ising Transformer
Require:

1: Ising model graph G = (V,E)
2: Desired reduction ratio ϑ

3: Number of GNN layers L
Ensure: Reduced Ising model graph G

→

4: Initialize the GNN model with specified hyperparameters
5: while size(G) > ϑ↘ (initial size of G) do
6: for ϖ = 1 to L do
7: Compute node representation h

(ω)
v , ↗v → V.

8: Compute edge representation e
(ω)
uv , ↗(u, v) → E.

9: end for
10: for each edge (u, v) → E do
11: zuv = h

(L)
u ≃ h

(L)
v ≃ e

(L)
uv

12: ŷuv = ω(⇐w, zuv⇒)
13: Cuv = ↑(ŷuv log(ŷuv)+(1↑ ŷuv) log(1↑ ŷuv))
14: end for
15: (û, v̂) = argmax(u,v)↑E Cuv

16: if ŷûv̂ < 0.5 then ϱ Regular merge
17: G = Merge(G, û, v̂)
18: else ϱ Flip then merge
19: G = Flip(G, û)
20: G = Merge(G, û, v̂)
21: end if
22: end while
23: return G

The key advantage of leveraging GNNs in this process
is their ability to learn complex graph structures and cap-
ture both local and global information, enabling accurate
identification of non-separable qubit groups. By exploiting
the representational power of GNNs, our approach aims to
improve upon the greedy merging strategies employed in
previous methods to lead to more effective Qubits reduction
and facilitate the solution of larger optimization problems on
quantum annealing hardware.

GNN Model. We start with the representation of Ising
Model with Hamiltonian graph GH = (V,E) where V is the
set of nodes and E ⇑ V ↘V is the set of edges. We construct
the initial node and edge features are defined as:

H
(0) = {h(0)

v
→ Rdh | v → V },

E
(0) = {e(0)

uv
→ Rde | (u, v) → E},

respectively, in which dh and de are the corresponding num-
bers of input node and edge features. For each node v, h(0)

v

is initialized with degree, weighted degree, and the abso-
lute weighted degree. The edge features e(0)uv for edge (u, v)
contain the edge weights and the absolute edge weights.

The GNN model is designed to learn the representations of
both nodes and edges simultaneously across multiple layers
via the message passing scheme. This model takes into ac-
count not only the features of nodes and edges but also their
interactions, ensuring that both nodes and edges evolve over
time as the network processes information. Let H(ω) denote
the set of node representations h(ω)

v and E
(ω) denote the set of

edge representations e(ω)uv at layer ϖ. At layer ϖ, the message
passing scheme updates each node representation based on
the neighboring nodes’ representations at the previous layer
ϖ↑ 1; meanwhile, each edge representation is updated based
on the edge’s two corresponding nodes. Formally, we have:

h
(ω)
v

= MLP1



h
(ω↓1)
v

≃
∑

u↑N (v)

h
(ω↓1)
u

≃
∑

u↑N (v)

e
(ω↓1)
v,u



 ,

e
(ω)
uv

= MLP2

(
h
(ω↓1)
u

≃ h
(ω↓1)
v

≃ e
(ω↓1)
uv

)
,

where MLP(·) denotes a Multilayer Perceptron1, N (v) de-
notes the set of neighboring nodes of v, and ≃ denotes the
operation of vector concatenation. For effective computa-
tion of combinatorial properties in the underlying graph, our
MLP uses simple ReLU activation functions after each hid-
den linear transformation layer and a simple linear (identity)
activation for the output layer.

An important step in our reduction framework is to pre-
dict for if each edge (u, v) is aligned or anti-alignment, i.e.,
whether it should be merged or flip-merged, respectively.
We leverage a logistic regression model for this task. Let L
denote the number of layers of message passing, we concate-
nate the node and edge representations of the last layer into a
feature vector zuv

zuv = h
(L)
u

≃ h
(L)
v

≃ e
(L)
uv

.

The logistic regression model predicts the probability on each
edge (i.e. edge confidence) as:

ŷuv = ω(⇐w, zuv⇒), (5)

where ω(·) denotes the sigmoid function, w is a learnable
vector with equal length as the concatenated edge vector zuv ,
and ⇐·, ·⇒ denotes the inner product.

Hybrid Loss Function for Iterative Contraction
To simplify the Ising Hamiltonian, our method iteratively
contracts one edge per iteration. The process involves com-
bining a binary cross-entropy (BCE) loss for edge classifi-
cation (alignment or anti-alignment) with confidence-based
weighting to prioritize the most certain predictions.

Consider a graph with N edges, represented by the set
L = {l1, l2, . . . , lN}, where each edge li has a logit ŷi cor-
responding to the ith edge (u, v) and a ground-truth label
yi → {0, 1} indicating alignment or anti-alignment, respec-
tively. Neutral links are excluded from the loss computation
since their processing (merge or flip-merge) preserves Ising
optimality.

1The two MLPs encoding for nodes and edges do not share
parameters and are denoted as MLP1 and MLP2, respectively.



The confidence-based weight for each edge li is computed
directly from ŷi as:

ci =
exp

(
|ŷi ↑ 0.5|/T

)
∑

N

j=1 exp
(
|ŷj ↑ 0.5|/T

) ,

where T is a temperature hyper-parameter. The absolute dif-
ference |ŷi ↑ 0.5| measures the confidence of the prediction,
with larger values indicating greater certainty. The softmax
normalization ensures a smooth, differentiable prioritization
of edges for contraction.

The weighting mechanism introduces a trade-off parame-
ter, ς → [0, 1], to combine the confidence-based weights ci
with uniform weights 2. The final weight for each edge is:

wi = ς · ci + (1↑ ς).

The hybrid loss function is defined as:

L =
N∑

i=1

wi ·
(
↑yi log(ŷi)↑ (1↑ yi) log(1↑ ŷi)

)
.

This interpolation enables different loss formulations:

• ς = 0: The loss reduces to standard binary cross-entropy
(BCE), treating all edges equally.

• ς = 1: The loss relies entirely on the confidence-based
softmax weights, emphasizing high-confidence edges.

This formulation provides a flexible mechanism to adapt
the loss to varying levels of confidence in predictions, bal-
ancing attention on certain and uncertain edges for effective
edge contraction.

Experiments

We conducted extensive experiments to evaluate GRANITE’s
effectiveness in compressing Ising models while maintain-
ing solution quality. Our evaluation focused on the trade-off
between compression levels and solution accuracy across
various graph topologies and sizes. The experiments were
performed on D-Wave’s Advantage Quantum Processing Unit
(QPU), featuring the advanced Pegasus topology (P16) with
5,640 qubits.

Experimental Setup

Figure 2: GRANITE vs. random, the random merge and flip-
merge of edge for n = 200 across three different topologies.

Dataset. We generate random Ising Hamiltonians repre-
sented as graphs with the spins as nodes and edges following
three graph topologies Erdős-Rényi (ER), Barabási-Albert
(BA), and Watts-Strogatz (WS) models. Nodes have zero
linear biases, i.e., hi = 0 for all i and the edge weight Jij
sampled uniformly randomly in the range (↑5, 5).

The dataset includes 97,500 graphs (325 distinct configura-
tions ! 100 instances ! 3 topologies), split into 80% training
and 20% validation sets.For each type of topology, the num-
ber of nodes ranges from 2 to 26 (25 distinct sizes), while
the average node degree varies from 1 to n ↑ 1 (sum up
to 325 instances). For each combination of node count and
average degree, we generate 100 unique graphs, resulting in
a total dataset of 97,500 graphs (325 ↘ 100 instances ↘ 3
types of topologies). We split training at a ratio of 80%/20%
for training/validation respectively. The evaluation set con-
tains 20,000 graphs to assess the effectiveness of unseen
graphs. The ground state labels for each edge were computed
using exhaustive search, indicating whether the edge could
be Alignment (category A), Anti-alignment (category C), or
required further processing Neutral (category B).

Hyperparameters. We employ the Adam optimizer with a
learning rate of 0.001. The maximum number of iterations is
set to 300, with the best model saved based on the lowest loss
performance on the validation set. The size of the MLP layers
is relatively small, depending on the size of H(0) and E

(0),
which in this case yields 2 and 2, respectively. By default,
the GRANITE consists of three GNN layers and use a hybrid
loss function with ς = 0.5.

Environment. We conducted experiments on the D-Wave
Advantage 4.1 Quantum Processing Unit (QPU), utilizing
the advanced Pegasus topology with 5,640 qubits and an

2An alternative formulation for ci can be defined as ci =
(ŷi→0.5)p∑N

j=1((ŷj→0.5)p
, where even integer p → 2 is a parameter con-

trolling the sensitivity of the confidence scores.



Topology Reduction (%) n
25 50 100 200 400

Erdős-Rényi

0.0%
Original Ising 100.00 ± 0.00 100.00 ± 0.00 99.68 ± 0.19 96.77 ± 0.45 NaN

12.5% 98.21 ± 1.09 98.67 ± 0.44 96.70 ± 0.55 94.87 ± 0.37 89.36 ± 0.37
25.0% 96.03 ± 1.44 97.12 ± 0.76 94.26 ± 0.56 93.38 ± 0.54 88.58 ± 0.80
50.0% 94.58 ± 1.64 94.19 ± 1.42 91.23 ± 1.00 91.56 ± 0.63 88.02 ± 0.63
75.0% 93.20 ± 1.55 92.26 ± 1.40 89.60 ± 0.97 91.07 ± 0.82 88.17 ± 0.79

Barabási-Albert

0.0%
Original Ising 100.00 ± 0.00 100.00 ± 0.00 99.93 ± 0.07 97.25 ± 0.25 89.11 ± 0.48

12.5% 97.69 ± 1.22 97.54 ± 0.91 97.79 ± 0.65 94.71 ± 0.80 88.53 ± 1.11
25.0% 97.12 ± 1.38 95.63 ± 1.24 97.09 ± 0.75 92.69 ± 1.08 87.84 ± 1.11
50.0% 94.88 ± 1.59 93.00 ± 1.45 94.87 ± 1.14 92.66 ± 0.92 88.76 ± 0.60
75.0% 92.43 ± 1.88 91.89 ± 1.21 93.37 ± 1.28 92.30 ± 0.87 88.72 ± 0.96

Watts-Strogatz

0.0%
Original Ising 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.14 ± 0.14 96.57 ± 0.26

12.5% 98.06 ± 1.13 98.85 ± 0.52 99.08 ± 0.40 96.73 ± 0.59 91.96 ± 0.72
25.0% 95.95 ± 1.30 96.86 ± 0.90 97.40 ± 0.52 96.28 ± 0.56 90.73 ± 1.28
50.0% 93.39 ± 1.08 96.26 ± 1.07 95.13 ± 0.83 94.69 ± 0.41 90.63 ± 0.94
75.0% 91.69 ± 1.31 94.69 ± 1.22 92.74 ± 1.26 92.23 ± 0.53 91.03 ± 0.88

Table 1: Solution optimality on D-Wave quantum annealers after and before compressing Ising models with GRANITE.

Topology Edge reduction (%) n
25 50 100 200 400

Erdős-Rényi

0.0% 47.6 qubits 133.2 qubits 414.3 qubits 1362.1 qubits > 5760 qubits
Original Ising 100% 100% 100% 100% 100%

12.5% 82.1% 71.8% 67.3% 59.8% < 46.7%
25.0% 68.3% 56.3% 49.3% 42.0% < 32.2%
50.0% 45.0% 33.1% 27.4% 22.1% < 16.3%
75.0% 24.2% 17.0% 12.3% 9.1% < 5.3%

Barabási-Albert

0.0% 39.7 qubits 110.0 qubits 327.6 qubits 1008.8 qubits 3621.2 qubits
Original Ising 100% 100% 100% 100% 100%

12.5% 82.9% 79.7% 79.5% 76.3% 68.5%
25.0% 74.1% 63.0% 60.4% 58.0% 48.9%
50.0% 46.3% 39.0% 35.1% 29.8% 22.2%
75.0% 28.5% 20.3% 16.2% 12.7% 7.4%

Watts-Strogatz

0.0% 43.2 qubits 89.9 qubits 223.7 qubits 578.2 qubits 1544.5 qubits
Original Ising 100% 100% 100% 100% 100%

12.5% 84.7% 88.7% 84.8% 85.3% 87.2%
25.0% 72.0% 74.0% 72.5% 70.6% 70.7%
50.0% 46.5% 48.7% 47.0% 44.4% 43.0%
75.0% 25.2% 24.5% 20.1% 18.6% 16.5%

Table 2: Qubit reduction on D-Wave quantum annealers before and after compressing Ising models with GRANITE

BCE MSE Hybrid Softmax
ER 86.90 ± 1.08 75.68 ± 3.85 91.07 ± 0.82 89.68 ± 1.07
BA 89.05 ± 1.35 92.07 ± 0.69 92.30 ± 0.87 78.89 ± 2.44
WS 92.58 ± 0.30 94.02 ± 0.60 92.23 ± 0.53 92.60 ± 0.51

Table 3: Optimality across different loss functions for n=200,
edge reduction 75%.

annealing time of 40 ns. The minor-embedding of the Ising
Hamiltonians are found with minorminer (Cai, Macready,
and Roy 2014). Optimal solutions for each Ising instance

is found using the Gurobi Optimizer (Gurobi Optimization,
LLC 2024).

Evaluation metrics We report two metrics that measure
the solution quality and the qubit reduction levels. The solu-
tion quality is measured using optimality, the ratio between
the best energy found using D-wave quantum annealer, de-
noted by Ebest, and the minimum energy found using Gurobi,
denoted by Emin. Formally, the optimality is computed as

Optimality(%) = 1↑ |Ebest ↑ Emin|
|Emin|

, (6)



# Layers ER BA WS
1 76.64 ± 0.86 82.95 ± 0.72 85.73 ± 1.05
2 88.09 ± 0.45 86.47 ± 1.07 91.56 ± 1.03
3 91.07 ± 0.82 92.30 ± 0.87 92.23 ± 0.53
4 81.07 ± 1.27 86.47 ± 0.91 85.79 ± 1.39
5 84.48 ± 1.49 90.72 ± 0.85 90.94 ± 0.63

Table 4: Optimality with different number of GNN layers at
n = 200 and reduction rate = 75%.

to accommodate for the case when Ebest > 0 (and Emin < 0).
When optimal solutions are found, the optimality will be one.

The qubit reduction is measured as

reduction = 1↑
qcompressed

qoriginal
,

where qcompressed represents the number of physical qubits
after compression and qoriginal represents the original number
of physical qubits before compression.

Experiment results
Solution quality. Our experimental results demonstrate
GRANITE’s effectiveness in compressing Ising models while
maintaining high solution quality across different graph types
and sizes. Tables 1 and 2 present optimality and qubit reduc-
tions for different compression ratios (12.5%, 25%, 50%,
75%) across graph of sizes n = {25, 50, 100, 200, 400}. The
solution quality remains high across all graph types, even at
aggressive compression levels. For instance, with 75% edge
reduction on graphs with n = 200, we maintain optimal-
ity above 91% for all three topologies. We observe a slight
degradation in solution quality as graph size increases.

Qubit Reduction. For the largest Ising instances (n =
400), the Ising Hamiltonian exceeds the hardware constraint
and cannot be solved on the D-Wave quantum annealer for
Erdős-Rényi model while taking 3621 and 1545 qubits on
average for Barabási-Albert, and Watts-Strogatz instances.
At 75% edge reduction, the remaining physical qubit ratios
reach as low as 5.3% (Erdős-Rényi), 7.4% (Barabási-Albert),
and 16.5% (Watts-Strogatz) of the original number of qubits.

Comparison with Baselines. There is a clear performance
gap between GRANITE and random reduction strategies as
shown in Figure 2. While GRANITE maintains optimality
above 91% across all topologies, random baseline approaches
achieve significantly lower performance, under 40% for all
network topologies. This stark contrast demonstrates that
GRANITE’s learned compression strategies significantly out-
perform random reduction approaches. Moreover, as the first
method to offer variable compression ratios, GRANITE pro-
vides a unique advantage over existing approaches, which
typically achieve less than 20% reduction on average.

Ablation Studies. We conducted comprehensive ablation
studies to evaluate the impact of two key architectural choices:
loss function and the number of GNN layers. For loss func-
tions, we compared Binary Cross-Entropy (BCE), Mean
Squared Error (MSE), our proposed hybrid loss, and softmax-
based weighting. The results in Table 3 demonstrate that our

hybrid loss function achieves better performance on both
Erdős-Rényi (91.07%) and Barabási-Albert (92.30%) graphs,
while performing competitively on Watts-Strogatz topology
(92.23%). GNN depth analysis, shown in Table 4, reveals
that a three-layer architecture consistently achieves optimal
performance across all graph types, with peak optimality
of 91.07% (ER), 92.30% (BA), and 92.23% (WS). Deeper
GNN architecture with 4 and 5 layers shows performance
degradation, suggesting that three layers provide sufficient
representational capacity while avoiding overfitting. These
findings guided our choice of hybrid loss and three-layer
architecture for the final GRANITE model.

These results demonstrate that our GRANITE model ef-
fectively compresses Ising Hamiltonians while maintaining
high solution quality. The model achieves substantial qubit
reduction, particularly for larger graphs, which is crucial
for making quantum annealing more accessible for solving
complex optimization problems.

The consistent performance across different graph types
suggests that our approach is robust and generalizable to
various network structures. This is particularly important as
real-world optimization problems often involve diverse graph
topologies.

Conclusion and Future Work
While extensive efforts have been made to tackle combinato-
rial optimization problems from various angles, particularly
in solver development, the approach of dynamic qubit com-
pression has remained largely unexplored. This paper intro-
duces GRANITE, an automated, fast system that iteratively
compresses large Ising models while maintaining solution ac-
curacy. GRANITE’s has demonstrated effective compression
of large-scale graphs across different random graph models,
resulting in significant physical qubit reduction on D-Wave
quantum annealing machines. The potential of GRANITE
opens up new avenues for solving large-scale optimization
problems on quantum hardware with limited qubit counts.
Future work will focus on investigating the effectiveness
of our qubit compression GRANITE model on real-world
large graphs and exploring potential applications in various
domains.

Future work will focus on investigating the effectiveness
of our qubit compression model on real-world large graphs
and exploring potential applications in various domains. Ad-
ditionally, adapting GRANITE to other quantum comput-
ing technologies while addressing hardware-specific noise
challenges presents an important direction for extending its
impact across different quantum computing paradigms.
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Proofs of Theorem 1
We study the computational complexity of determining spin
equivalence in ground states of Ising Hamiltonians. Our main
result shows that this problem is Co-NP-hard through a re-
duction from a satisfiability variant that we prove to be Co-
NP-complete.

Definition 1 (TAUTOLOGY). The TAUTOLOGY problem
takes as input a Boolean formula φ and determines whether
φ evaluates to true under all possible truth assignments. This
problem is Co-NP-complete as its complement, SAT, is NP-
complete.

Definition 2 (All-SAT-EQUAL). The All-SAT-EQUAL prob-
lem takes as input a Boolean formula ε in Conjunctive Nor-
mal Form (CNF) and two variables xi and xj , and determines
whether all satisfying assignments of ε satisfy xi = xj .

Lemma 1. All-SAT-EQUAL is Co-NP-complete.

Proof. For membership in Co-NP, observe that its comple-
ment (existence of a satisfying assignment where xi ↓= xj) is
in NP, as such an assignment can be verified in polynomial
time.

For hardness, we reduce from TAUTOLOGY. Given for-
mula φ, construct ε = φ ⇓ (xi ⇔ xj). In CNF, this bicondi-
tional is represented as (xi ↖ ¬xj) ⇓ (¬xi ↖ xj). Then φ is
a tautology if and only if all satisfying assignments of ε sat-
isfy xi = xj . The reduction is polynomial-time, establishing
Co-NP-hardness.

To establish our main result, we first prove a folklore result
that provides a binary quadratic encoding of 3-SAT clauses.

Lemma 2 (3-SAT Clause Encoding). For a SAT clause Ci

with literals x1, x2, x3 → {0, 1}, define:

Q(Ci) = xc

(
2↑ (x1 + x2 + x3)

)

+ (x1x2 + x2x3 + x3x1)↑ (x1 + x2 + x3) + 1,

where xc → {0, 1} is an auxiliary variable. Then
minQ(Ci) = 0 if and only if Ci is satisfied, and
minQ(Ci) = 1 otherwise.

Proof. Let s = x1 + x2 + x3. For Boolean variables, the
term x1x2 + x2x3 + x3x1 equals s when s = 3, equals 0
when s = 1, and equals 1 when s = 2. Thus:

Q(Ci) =






2xc + 1 if s = 0
xc(2↑ s) if s = 1 or 2
xc(↑1) + 1 if s = 3

When s = 0 (unsatisfied clause), minQ(Ci) = 1 with
xc = 0. When s = 1 or 2 (satisfied clause), xc(2 ↑ s) ↙ 0,
so minQ(Ci) = 0 with xc = 0. When s = 3 (satisfied
clause), minQ(Ci) = 0 with xc = 1.

We now state and prove our main result on the Co-NP-
hardness of determining whether two spins si = sj are equal
in all ground states of an Ising Hamiltonian.

Proof. We reduce from All-SAT-EQUAL. Given an instance
(ε, xi, xj), construct a global QUBO function:

Q(ε) =
∑

k

Q(Ck)

where the sum is over all clauses Ck in ε. By the previous
lemma, minQ(ε) = 0 if and only if ε is satisfied.

Transform Q(ε) to an Ising Hamiltonian H by substituting
xk = 1+sk

2 for each variable xk. This mapping preserves
the equivalence between satisfying assignments and ground
states. The linear relationship between variables ensures xi =
xj if and only if si = sj .

Each clause requires one auxiliary variable xc, and the
transformation preserves polynomial size with integer co-
efficients. Therefore, determining whether si = sj in all
ground states of H is equivalent to determining whether
xi = xj in all satisfying assignments of ε, establishing Co-
NP-hardness.

This result has implications for the computational com-
plexity of analyzing ground state properties in Ising systems,
suggesting that even seemingly simple questions about spin
equivalence can be computationally intractable.


