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Abstract—Federated learning is a popular distributed learning
approach for training a machine learning model without disclos-
ing raw data. It consists of a parameter server and a possibly
large collection of clients (e.g., in cross-device federated learning)
that may operate in congested and changing environments. In this
paper, we study federated learning in the presence of stochastic
and dynamic communication failures wherein the uplink between
the parameter server and client i is on with unknown probability
pti in round t. Furthermore, we allow the dynamics of pti to be
arbitrary.

We first demonstrate that when the pti’s vary across clients,
the most widely adopted federated learning algorithm, Federated
Average (FedAvg), experiences significant bias. To address this ob-
servation, we propose Federated Postponed Broadcast (FedPBC),
a simple variant of FedAvg. It differs from FedAvg in that the
parameter server postpones broadcasting the global model to the
clients with active uplinks till the end of each training round.
Despite uplink failures, we show that FedPBC converges to a
stationary point of the original non-convex objective. On the
technical front, postponing the global model broadcasts enables
implicit gossiping among the clients with active links in round t.
Despite the time-varying nature of pti , we can bound the pertur-
bation of the global model dynamics using techniques to control
gossip-type information mixing errors. Extensive experiments
have been conducted on real-world datasets over diversified
unreliable uplink patterns to corroborate our analysis.

Index Terms—Federated learning, communication failures,
gossiping, non-convex optimization, fault-tolerance.

I. INTRODUCTION

FEDERATED learning is a distributed machine learning

paradigm wherein a parameter server and a collection

of end/edge devices (referred to as clients) collaboratively

train a machine learning model without requiring clients to

disclose their local data [2], [3]. Instead of uploading raw data

to the parameter server, the clients work at the front line in

processing their local data and periodically report their updates

to the parameter server, which then effectively aggregates

A preliminary version of the paper [1] was presented at the IEEE 62nd
Conference on Decision and Control 2023, Singapore.

Ming Xiang, Stratis Ioannidis, Edmund Yeh, and Lili Su are
with the Department of ECE, Northeastern University, Boston, MA
02115 USA (email: {xiang.mi,l.su}@northeastern.edu;
{ioannidis,eyeh}@ece.neu.edu). Carlee Joe-Wong is with the
Department of ECE, Carnegie Mellon University, Pittsburgh, PA 15213 USA
(email: cjoewong@andrew.cmu.edu).

We gratefully acknowledge the support from the National Science Founda-
tion (NSF) under grants 2106891, 2107062, from the NSF CAREER award
under grant 2340482, and from ARO under contract W911NF-23-2-0014.

Fig. 1: A federated learning system with moving autonomous
vehicles as clients. The signal strength of the vehicles indicates the
communication conditions.

those updates to obtain a new model. The massive system

scale and the client heterogeneity in hardware, software, and

environments leads to either active [2], [3] or passive [4]–[6]

partial client participation, i.e., in each round, the parameter

server receives updates from a subset of clients only.

Federated learning systems are often deployed in congested

and uncontrollable environments with mobile clients such

as smartphones and other internet-of-thing devices. Client

mobility and environment complexity can result in unreliable

communication [3], [7], [8], which may even vary significantly

across time and devices. For example, the network connection

between a smartphone and a base station may be lost when

the smartphone is on a train passing through a tunnel. Pop-

ular transportation layer protocols either have an expensive

overhead (such as TCP) or are unreliable (such as UDP)

[8]. Previous research has demonstrated that unpredictable

fluctuations in both the speed and direction of mobile end

devices can lead to erratic capacity patterns in 5G links [9]–

[11].

Unreliable communication in federated learning systems

has not caught attention until recently. Ye et al. [8] as-

sume the communication failures are symmetric with fixed

underlying statistics. Time-varying communication constraints

are considered in [12], wherein the evolution of the feasible

client sets is assumed to follow a homogeneous Markov chain

with a steady-state distribution. Yet, as we shall see from

the example illustrated in Fig. 1, the assumption of time-

invariant communication dynamics easily breaks down when

clients are mobile and operate in complex environments. More

detailed discussions are reserved in Section II. It is tempting to
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address dynamic communication capabilities via asynchronous

distributed learning, wherein an active client contributes to the

global model only when its uplink is on. Unfortunately, to

the best of our knowledge, existing literature mostly assumes

bounded delay assumption of the uplink availability [13]–

[19], which are hard to hold in practical federated learning

systems [3], [20]. Often, clients in a federated learning system

communicate with the parameter server on their own schedule,

which is subject to communication constraints and can have

variations due to hardware or software heterogeneity.

In this paper, we study stochastic uplink failures wherein

the uplink between the parameter server and client i is active

with probability pti in round t. Furthermore, we allow pti to be

time-varying and its dynamics to be unknown and arbitrary.

An illustrative example that motivates our problem formulation

is shown in Fig. 1. Specifically, fast-moving vehicles quickly

pass through a base station’s coverage, resulting in frequent

handovers. Varying road conditions (e.g., tall buildings, tun-

nels), traffic densities, and unforeseeable extreme weather can

lead to complex dynamics of the connection probabilities. To

the best of our knowledge, understanding the convergence of

federated learning in the presence of such stochastic uplink

failures remains largely under-explored.

Contributions. Our contributions are three-fold:

• We identify simple instances with mild data heterogeneity

and show both analytically and numerically that when the

pti’s are not uniform, Federated Average (FedAvg) – the

most widely adopted federated learning algorithm – fails to

minimize the global objective even for simple convex loss

function.

• We propose Federated Postponed Broadcast (FedPBC),

which differs from FedAvg in that the parameter server

postpones broadcasting the global model to the clients with

active uplinks till the end of each training round.

– On the technical front, postponing the global model

broadcasts enables implicit gossiping among the clients

with active links. Hence, the perturbation caused by non-

uniform and time-varying pti can be bounded by lever-

aging the techniques of controlling information mixing

errors.

– We show in Theorem 1 that, in expectation, FedPBC

converges to a stationary point of the non-convex global

objective when pti g c for an absolute constant c.
The staleness of uplink availability is characterized (see

Proposition 2). Departing from existing literature, our

FedPBC does not require either balanced pti’ s, bounded

stochastic gradients, or almost surely bounded stochastic

gradient noise.

• We validate our analysis empirically on three real-world

datasets. Extensive experiments are conducted on both time-

varying and time-invariant Bernoulli, Markovian, and cyclic

uplink unreliable patterns.

II. RELATED WORK

In this section, we explore additional related work and

present an exhaustive discussion on relevant work mentioned

in Section I. The section is divided into two parts: client

unavailability and bias correction in distributed learning.

A. Client Unavailability

The communication unreliability addressed in this paper is

implicitly linked to client unavailability. The key commonality

is that, during failure occurrences, the parameter server cannot

receive responses from the involved clients. Prior literature

can roughly be categorized into two groups: known client

participation statistics [2], [4], [21]–[25] and unknown client

participation statistics [6], [12], [20], [26], [27].

Known client participation statistics. In the seminal works

of federated learning [2], [4], the parameter server proactively

determines “who to participate” via sampling the clients either

uniformly at random or proportionally to clients’ local data

volume. A more challenging yet practical scenario where the

parameter server loses such proactive selection capability is

considered in [3]–[5], [28]. To limit the negative impacts of

stragglers, the parameter server only waits for a few fastest

client responses before moving to the next round. To balance

the contribution of active and inactive clients, the parameter

server adjusts their aggregation weights according to the

corresponding response probabilities, which are assumed to be

known. On the other hand, some research aims to manipulate

client scheduling schemes to either improve communication

efficiency or to speed up training, where, at a high level, clients

are required to participate whenever the parameter server

requests. In contrast, clients are allowed to communicate on

their own schedules in our work. To name a few, Perazzone et

al. [21] analyze the convergence of FedAvg under time-varying

client participation rates. Nevertheless, they assume (1) the

participation rates pti’s are a known prior and (2) the parameter

server controls the participation rates to save communication

bandwidth. Chen et al. [24] study a client sampling scheme

under which the parameter server only samples the most

important updates. Toward this, the parameter server needs

to calculate and manipulate the participation rates. Cho et

al. [22] devise an adaptive client sampling scheme that non-

uniformly selects active clients in each round to accelerate

training. Unfortunately, the convergence is up to a non-

vanishing error. In another work, Cho et al. [23] study a cyclic

participation scheme to accelerate FedAvg training, where the

parameter server designs and controls the cyclic participation

pattern of the clients. Tang et al. [29] utilize the notion

of system-induced bias, where the local data set of active

clients does not represent the entire population due to time-

varying unbalanced communications. Albeit facing similar

time-varying communications, their approach requires, which

we do not, the parameter server to select the representative

clients strategically.

Unknown client participation statistics. Only a handful of

existing works fall under this line of research. Wang and Ji

[6] consider structured client unavailability. For the methods

in [6] to converge to stationary points, the response rates of the

clients need to be “balanced” in the sense that either (1) the

pti’s are deterministic and satisfy the regularized participation,
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i.e., there exists µ > 0 such that 1
P

∑P
Ä=1 p

t0+Ä
i = µ for

all clients at all t0 ∈ {0, P, 2P, · · · } where P is some

carefully chosen integer; or (2) pti’s are random and satisfy

E [pti] = µ for all clients and sufficiently many rounds. In

contrast, we do not require such probabilistic “balanceness”.

Ribero et al. [12] consider random client availability whose

underlying response rates are also heterogeneous and time-

varying with unknown dynamics. The key difference from

our focus is that the underlying dynamics of pti in [12] is

assumed to be Markovian with a unique stationary distribution,

which is hard to justify when the dynamics vary significantly.

Gu et al. [20] consider general client unavailability patterns

for both strongly convex and non-convex global objectives.

For non-convex objectives (which is our focus), they require

that the consecutive unavailability rounds of a client to be

deterministically upper bounded, which does not hold even

for the simple uniform and time-invariant response rates.

Moreover, they require the noise of the stochastic gradient

to be uniformly upper-bounded. Wang and Ji design a

lightweight algorithm in a concurrent work [27] to fix FedAvg

over non-uniform participation probabilities. However, their

algorithm needs a separate online estimation module to adapt

clients’ aggregation weights to their unavailable durations,

while we do not. In addition, they analyze only time-invariant

communication probabilities, which are subsumed by our time-

varying communication setup.

B. Bias Correction in Distributed Learning

As we will show in Section IV, FedAvg suffers significant

bias when the uplinks are non-uniformly available. However,

the term bias is not new and has different meanings under dif-

ferent contexts in the field of distributed learning. For example,

clients perform multiple local updates to save communication

in federated learning before communicating with the parameter

server. Yet, bias arises when clients are heterogeneous in the

number of local steps [30]. To correct the bias, Wang et al. [30]

propose FedNova [30], in which every client participates, and

the parameter server normalizes the contribution of different

clients by adjusting the aggregation weights according to their

numbers of local steps. In fully distributed settings (where no

parameter server exists), doubly-stochastic information mixing

matrices are critical in ensuring equal contribution among

clients. Generally, obtaining doubly-stochastic matrices can be

challenging. Push-sum techniques [31], [32] are widely used

to address bias that stems from the lack of doubly-stochastic

information mixing matrices. However, clients in our problem

are only allowed to communicate with the parameter server,

rendering direct applications of the techniques impossible. Our

setup is orthogonal to them.

III. PROBLEM FORMULATION

A federated learning system consists of one parameter

server and m clients that collaboratively minimize

min
x∈Rd

F (x) =
1

m

∑

i∈[m]

Fi (x) , (1)

where Fi (x) = EÀi∼Di
[ℓi (x; Ài)] is the local objective, Di is

the local distribution, Ài is a stochastic sample that client i has

access to, and ℓi is the local loss function. The loss function

can be non-convex.

We are interested in solving Eq. (1) over unreliable com-

munication uplinks between the parameter server and the

clients. In each round t, the communication uplink between the

parameter server and the client i is active with probability pti,
which could be simultaneously time-varying and is unknown

to both parameter server and clients. Let At be the set of

clients with active uplinks in round t.

Assumption 1 (Threat model). There exists a c ∈ (0, 1]
such that pti ≜ E[1{i∈At}] g c, where the events i ∈ At are

independent across clients i ∈ [m] and across rounds t ∈ [T ].

Intuitively, c can be interpreted as one of the system con-

figurations. For our algorithm to work, neither the parameter

server nor clients are required to know c.

Notations. We introduce the additional notations that we will

use throughout the paper. For a given vector v, ∥v∥2 defines

its l2 norm. For a given matrix A, ∥A∥F defines its Frobenius

norm, and ¼2(A) denotes its second largest eigenvalue when

A is a square matrix. Rd defines a d-dimensional vector space.

[m] ≜ {1, · · · ,m}. 1{E} is an indicator function of event E ,

i.e., 1{E} = 1 when the event E occurs; 1{E} = 0 otherwise.

F t denotes the sigma-algebra generated by all the randomness

up to round t. O(·) is the asymptotic upper bound of a function

growth, i.e., f(n) = O(g(n)) if there exist constants c0 > 0
and n0 ∈ N such that f(n) f c0g(n) for all n g n0.

IV. A CASE STUDY ON THE BIAS OF FEDAVG

The heterogeneities in federated learning systems with un-

reliable uplinks stem from both heterogeneous local data and

varying uplink activation probabilities, which together result in

a biased objective. In this section, we use a simple quadratic

counterexample (a similar setup as in [30]) to illustrate Fe-

dAvg fails to minimize the global objective in Eq. (1) when

pi’s vary across clients. We numerically observe a similar

bias phenomenon when testing other FedAvg-like algorithms

such as FedAvg with momentum and FedAvg with two-sided

learning rates. Let the local objective Fi (x) =
1
2 ∥x− ui∥22 ,

where ui ∈ R
d is an arbitrary vector. The corresponding

global objective is thus

F (x) =
1

m

m∑

i=1

Fi (x) =
1

2m

m∑

i=1

∥x− ui∥22 , (2)

with unique minimizer x⋆ = 1
m

∑m
i=1 ui.

Proposition 1. Choose x
0 = 0 and ¸t = ¸ ∈ (0, 1) for all

t. For a global objective as per Eq. (2) when pti = pi for

all t and under FedAvg with exact local gradients and local

computation steps s g 1, it holds that,

lim
T→∞

E
[
x
T
]

=

m∑

i=1

piui

[

1 +
∑m

j=2 (−1)
j+1 1

j

∑

S∈Bj

∏

z∈S pz

]

1−∏m
i=1 (1− pi)

, (3)
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Fig. 2: A visualization of the expected output of FedAvg algorithm
with two clients, whose u1 = 0, u2 = 100 and p1 = 0.5. We vary
p2 ∈ [0, 1] (shown as x-axis). Eq. (3) becomes limT→∞ E

[

xT
]

=
(150 · p2) / (p2 + 1). y-axis is the expected output of FedAvg. When
p2 = 0.5, FedAvg recovers the global minimizer (u1 + u2)/2 = 50.
It can be seen that the expected output of the FedAvg algorithm can
deviate far from the global minimizer when p1 ̸= p2.

where Bj ≜
{

S
∣
∣
∣S ¦ [m] \ {i} , |S| = j − 1

}

.

It can be checked that if there exist i, i′ ∈ [m] such that pi ̸=
pi′ , then limt→∞ E [xt] ̸= x

∗. In fact, the expected output

of FedAvg may be significantly away from x
⋆ depending on

pi’s and ui’s. As illustrated in the scalar example in Fig. 2,

overall, the global model in FedAvg deviates away from the

global optimum. It is easy to see that the bias only worsens

when the connection probabilities pi’s change over time.

On the one hand, when the probability pti’s are uniform, (3)

reduces to the global optimum x
⋆ =

∑m
i=1 ui/m. In other

words, FedAvg recovers the unbiased global optimum when

each client’s uplink is activated equally often. On the other

hand, when clients’ local data is i.i.d., e.g., ui = u for all

i ∈ [m], the expected output of FedAvg recovers the global

optimum u under even heterogeneous pti’s. This matches

the intuition that clients become interchangeable when their

local data distributions are homogeneous. We defer the proof

to Appendix A.

V. ALGORITHM: FEDERATED POSTPONED BROADCAST

(FEDPBC)

In this section, we propose FedPBC (Federated Postponed

Broadcast, formally described in Algorithm 1) - a simple

variant of FedAvg. Recall that At denotes all clients with

active communication links in global round t. The stochastic

gradient used by client i round t is denoted as ∇ℓi(x(t,k)
i ; Àti).

Compared to FedAvg, FedPBC postpones the global model

broadcasts to clients in At till the end of each training

round. Postponing the global model broadcast introduces some

staleness as the clients will start from different xt
i rather than

x
t. It turns out that such staleness helps in mitigating the bias

caused by non-uniform link activation probabilities. Moreover,

the expected staleness is bounded as shown in Proposition 2.

Theoretical analysis and numerical results can be found in

Sections VI and VII, respectively.

Implicit gossiping among clients in At. From line 11 to

line 13 of Algorithm 1, via the coordination of the parameter

server, the clients in At implicitly average their local updates

with each other, i.e., there is implicit gossiping among the

Algorithm 1: FedPBC

1 Input: T , x0, s, {¸t}t=0,··· ,T−1. The parameter server

and each client initialize parameter x0;

2 for t = 0, · · · , T − 1 do

/* On the clients. */

3 for i ∈ [m] do

4 x
(t,0)
i = x

t
i;

5 for k = 0, · · · , s− 1 do

6 x
(t,k+1)
i ← x

(t,k)
i − ¸t∇ℓi(x(t,k)

i ; Àti);
7 end

8 x
t⋆
i ← x

(t,s)
i ;

9 Report xt⋆
i to the parameter server;

10 end

/* On the parameter server. */

11 if At ̸= ∅ then x
t+1 ← 1

|At|
∑

i∈At x
t⋆
i ;

12 else x
t+1 ← x

t ;

13 for i ∈ At do xt+1
i ← x

t+1 ;

14 else x
t+1
i ← x

t
i;

15 end

clients in At at round t. Formally, we are able to construct a

mixing matrix W (t) as

W
(t)
ij =







1
|At| , if i, j ∈ At;

1, if i = j and {i /∈ At} ;
0, otherwise.

(4)

The matrix is by definition doubly-stochastic and W (t) = I

when At = ∅ or |At| = 1. We further note that this matrix

can be time-varying since the link activation probabilities pti’s
can be time-varying. As can be seen later, this mixing matrix

bridges the gap between local and global model heterogeneity

and establishes a consensus among clients. In matrix form, we

adopt the following notations.

X
(t) =

[
x
t
1, · · · ,xt

m

]
;

G
(t)
0 =

[

s∇ℓ1(x(t,0)
1 ), · · · , s∇ℓm(x(t,0)

m )
]

;

G
(t) =

[
s−1∑

r=0

∇ℓ1(x(t,r)
1 ), · · · ,

s−1∑

r=0

∇ℓm(x(t,r)
m )

]

;

∇F (t) =
[
∇F1(x

t
1), · · · ,∇Fm(xt

m)
]
.

Further, let

x̄
t ≜

1

m

m∑

i=1

x
t
i. (5)

Consequently, the consensus error, which measures the dis-

tance between the averaged model over all the clients and local
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models, can be written in matrix form as (6),

1

m

m∑

i=1

∥
∥x̄

t − x
t
i

∥
∥
2

2
≜

1

m
∥X(t) (I− J) ∥2F

=
1

m
∥
(

X
(t−1) − ¸G(t−1)

)

W (t−1) (I− J) ∥2F

=
¸2

m
∥

t−1∑

q=0

G
(q)





t−1∏

l=q

W (q) − J



 ∥2F, (6)

where the last equality follows from the fact that all clients

are initiated at the same weights.

VI. CONVERGENCE ANALYSIS

A. Assumptions

Before diving into our convergence results, we introduce

the regularity assumptions, which are commented towards the

end of this subsection.

Assumption 2 (Smoothness). Each local gradient function

∇ℓi(¹) is Li-Lipschitz, i.e.,

∥∇ℓi(x1)−∇ℓi(x2)∥2 f Li ∥x1 − x2∥2 f L ∥x1 − x2∥2 ,

for all x1,x2, and i ∈ [m], where L ≜ max
i∈[m]

Li.

Assumption 3 (Bounded Variance). Stochastic gradients at

each client node i ∈ [m] are unbiased estimates of the true

gradient of the local objectives, i.e.,

E
[
∇ℓi(xt

i) | F t
]
= ∇Fi(x

t
i),

and the variance of stochastic gradients at each client node

i ∈ [m] is uniformly bounded, i.e.,

E

[

∥∇ℓi(x)−∇Fi(x)∥22 | F t
]

f Ã2.

Assumption 4. There exists F ∗ ∈ R such that F (x) g F ∗

for all x ∈ R
d.

Assumption 5 (Bounded Inter-client Heterogeneity). We say

that local objective function Fi’s satisfy (´, ·)-bounded dis-

similarity condition for ´, · g 0 if

1

m

m∑

i=1

∥∇Fi(x)−∇F (x)∥22 f ´2 ∥∇F (x)∥22 + ·2. (7)

Assumptions, 2, 3 and 4 are standard in federated learning

analysis [33]–[35]. Assumption 5 captures the heterogene-

ity across different users. It is a more relaxed assumption,

e.g. than, bounded gradients [22], [26], where they assume
1
m

∑

i∈[m] ∥∇Fi(x)∥22 f ·2, also than [6], [19], where they

assume 1
m

∑

i∈[m] ∥∇Fi(x)−∇F (x)∥22 f ·2. When clients

have i.i.d. local datasets, it holds for Eq. (7) that ´ = · = 0
since Fi = Fj . Notably, we assume the unbiasedness in

Assumption 3 is imposed only at the beginning of each global

round.

B. Convergence Results

In this section, we state our key lemmas and our main

theorem. All remaining proofs are relegated to Appendix A.

Proposition 2 captures the expected staleness of local updates.

Proposition 2. Define the last active round of the link i as

Äi(t) ≜ {t′ | t′ < t, i ∈ At′}. Given pti such that pti g c,
where c is an absolute constant, we have E [t− Äi(t)] f 1

c .

Lemma 1 (Lemma 1 in [36]). For s g 1, suppose Assump-

tion 2 holds, we have for all x ∈ R
d :

∥
∥
∥
∥
∥

s−1∑

k=0

[

∇ℓi(x(t,k))−∇ℓi(xt)
]
∥
∥
∥
∥
∥
2

f »¸

(
s

2

)

Li

∥
∥∇ℓi(xt)

∥
∥
2
,

where » ≜ maxi
(1+¸Li)

s−1−s¸Li

(s2)(¸Li)
2

and monotonically non-

decreases with respect to ¸ > 0.

Remark 1. Lemma 1 comes from a concurrent work [36] and

characterizes the perturbation incurred by the multi-step local

computation. When s = 1, i.e., when a client performs only

one-step local computation, it holds that » = 0. For s g 2, we

have » g 1. Moreover, due to its monotonicity with respect

to ¸ in Lemma 1, » is bounded from above by an absolute

constant when the learning rate ¸ is upper bounded.

Lemma 2 (Descent Lemma). Suppose Assumptions 2, 3,

and 5 hold. Choose a learning rate ¸ such that ¸ f
1

108L2s3(´2+1)(1+»2L2) . When Lipschitz constant L g 1, it

holds that

E
[
F (x̄t+1)− F (x̄t) | F t

]
f −¸s

3

∥
∥∇F (x̄t)

∥
∥
2

2

+ ¸s
L2

m

m∑

i=1

∥
∥x

t
i − x̄

t
∥
∥
2

2
+ ¸2s26L

(
·2 + Ã2

) (
1 + »2L2

)
.

Proof of Lemma 2. By Assumption 2, we have

F (x̄t+1)− F (x̄t) f
〈
∇F (x̄t), x̄t+1 − x̄

t
〉
+

L

2

∥
∥x̄

t+1 − x̄
t
∥
∥
2

2

=
〈

∇F (x̄t),− ¸

m
G

(t)
1

〉

+
L¸2

2

∥
∥
∥
∥

1

m
G

(t)
1

∥
∥
∥
∥

2

2

.

Taking expectations with respect to the randomness in the

mini-batches at t-th rounds, we have

E
[
F (x̄t+1)− F (x̄t) | F t

]

f E

[
〈

∇F (x̄t),− ¸

m
G

(t)
1

〉

+
L¸2

2

∥
∥
∥
∥

1

m
G

(t)
1

∥
∥
∥
∥

2

2

| F t

]

.

For ease of notations, we abbreviate ∇ℓi(x(t,k)
i ) as ∇ℓ(t,k)i .
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(a) Bounding E[
〈
∇f(x̄t),− ¸

m∇G(t)
1
〉
| F t].

E

[〈

∇F (x̄t),− ¸

m
G

(t)
1

〉

| F t
]

= − ¸

m
E

[〈

∇F (x̄t),

m∑

i=1

s−1∑

k=0

∇ℓ(t,k)i

〉

| F t

]

= −s¸

m

〈

∇F (x̄t),∇F (t)
1

〉

︸ ︷︷ ︸

(A)

+ E

[

¸

m

〈

∇F (x̄t),
m∑

i=1

s∇ℓ(t,0)i −
s−1∑

k=0

∇ℓ(t,k)i

〉

| F t

]

︸ ︷︷ ︸

(B)

.

Term (A) can be bounded as

− s¸

〈

∇F (x̄t),
1

m
∇F (t)

1

〉

= −s¸

2

∥
∥∇F (x̄t)

∥
∥
2

2

+
s¸

2

∥
∥
∥
∥
∇F (x̄t)− 1

m
∇F (t)

1

∥
∥
∥
∥

2

2

− s¸

2

∥
∥
∥
∥

1

m
∇F (t)

1

∥
∥
∥
∥

2

2

f −s¸

2

∥
∥∇F (x̄t)

∥
∥
2

2
− s¸

2

∥
∥
∥
∥

1

m
∇F (t)

1

∥
∥
∥
∥

2

2

+
s¸L2

2m

m∑

i=1

∥
∥x̄

t − x
t
i

∥
∥
2

2
.

For term (B), we have

E

[

¸

m

〈

∇F (x̄t),

m∑

i=1

s∇ℓ(t,0)i −
s−1∑

k=0

∇ℓ(t,k)i

〉

| F t

]

=
¸

m

m∑

i=1

〈

∇F (x̄t),E

[

s∇ℓ(t,0)i −
s−1∑

k=0

∇ℓ(t,k)i | F t

]〉

(a)

f ¸2s2

2

∥
∥∇F (x̄t)

∥
∥
2

2

+
1

2ms2

m∑

i=1

E





∥
∥
∥
∥
∥
s∇ℓ(t,0)i −

s−1∑

k=0

∇ℓ(t,k)i

∥
∥
∥
∥
∥

2

2

∣
∣
∣ F t





︸ ︷︷ ︸

(B.1)

,

where inequality (a) holds because of Young’s inequality.

From Lemma 1, we bound term (B.1) as follows

1

2ms2

m∑

i=1

E





∥
∥
∥
∥
∥
s∇ℓ(t,0)i −

s−1∑

k=0

∇ℓ(t,k)i

∥
∥
∥
∥
∥

2

2

| F t





(b)

f 1

2ms2

m∑

i=1

E

[

»2¸2
(
s

2

)2

L2
∥
∥
∥∇ℓ(t,0)i

∥
∥
∥

2

2
| F t

]

=
»2¸2

(
s
2

)2
L2

2ms2

m∑

i=1

E

[∥
∥
∥∇ℓ(t,0)i −∇Fi(x

t
i) +∇Fi(x

t
i)
∥
∥
∥

2

2
| F t

]

(c)

f »2¸2L2Ã2 s
2

4
+

»2¸2s2L2

4m

m∑

i=1

∥
∥∇Fi(x

t
i)
∥
∥
2

2

f »2¸2s2L2L
2

m

m∑

i=1

∥
∥x

t
i − x̄

t
∥
∥
2

2
+ »2¸2s2L2(·2 + Ã2)

+ »2¸2s2L2
(
´2 + 1

) ∥
∥∇F (x̄t)

∥
∥
2

2
,

where inequality (b) follows from Lemma 1, inequality (c)
follows from Assumption 3, and the last inequality holds

because of Proposition 3. Combing the bounds of terms (A)
and (B), we get

E

[〈

∇F (x̄t),− ¸

m
G

(t)
1

〉

| F t
]

f −
[
s¸

2
− ¸2s2

2
− »2¸2s2L2

(
´2 + 1

)
]
∥
∥∇F (x̄t)

∥
∥
2

2

− s¸

2

∥
∥
∥
∥

1

m
∇F (t)

1

∥
∥
∥
∥

2

2

+ »2¸2s2L2(·2 + Ã2)

+

(
s¸L2

2m
+ »2¸2s2L2L

2

m

) m∑

i=1

∥
∥x̄

t − x
t
i

∥
∥
2

2
. (8)

(b) Bounding E

[∥
∥ 1
mG

(t)
1
∥
∥
2

2
| F t

]

. By adding and subtract-

ing, we get

∥
∥
∥
∥

1

m
G

(t)
1

∥
∥
∥
∥

2

2

=

∥
∥
∥
∥
∥

1

m

m∑

i=1

s−1∑

k=0

∇ℓ(t,k)i

∥
∥
∥
∥
∥

2

2

f 2

∥
∥
∥
∥
∥

1

m

m∑

i=1

s−1∑

k=0

(

∇ℓ(t,k)i −∇ℓ(t,0)i

)
∥
∥
∥
∥
∥

2

2
︸ ︷︷ ︸

(C)

+2

∥
∥
∥
∥
∥

s

m

m∑

i=1

∇ℓ(t,0)i

∥
∥
∥
∥
∥

2

2
︸ ︷︷ ︸

(D)

.

For term (C), by Lemma 1, we have

∥
∥
∥
∥
∥

1

m

m∑

i=1

s−1∑

k=0

(

∇ℓ(t,k)i −∇ℓ(t,0)i

)
∥
∥
∥
∥
∥

2

2

f »2¸2s4L2

4m

m∑

i=1

∥∇ℓ(t,0)i ∥22

f »2¸2s4L2

2m
(

m∑

i=1

∥
∥
∥∇ℓ(t,0)i −∇Fi(x

t
i)
∥
∥
∥

2

2
+

m∑

i=1

∥
∥∇Fi(x

t
i)
∥
∥
2

2
)

(d)

f »2¸2s4L2Ã2

2
+

»2¸2s4L2

2m

m∑

i=1

∥
∥∇Fi(x

t
i)
∥
∥
2

2
,

where inequality (d) holds because of Assumption 3. For term

(D), by Assumption 3, we likewise have

s2

m2
E

[

∥
m∑

i=1

∇ℓ(t,0)i ∥22
∣
∣
∣F t

]

f 2s2

m

(

Ã2 +

m∑

i=1

∥
∥∇Fi(x

t
i)
∥
∥
2

2

)

.

Combing the above upper bounds of (C) and (D) and applying

Proposition 3, we get

E

[∥
∥
∥
∥

1

m
G

(t)
1

∥
∥
∥
∥

2

2

| F t

]

f 2s2Ã2

(
2

m
+

»2¸2s2L2

2

)

+ 6s2L2

(

2 +
»2¸2s2L2

2

)
1

m

m∑

i=1

∥
∥x

t
i − x̄

t
∥
∥
2

2

+ 6s2
(
´2 + 1

)
(

2 +
»2¸2s2L2

2

)
∥
∥∇F (x̄t)

∥
∥
2

2

+ 6s2·2
(

2 +
»2¸2s2L2

2

)

. (9)
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(c) Putting them together. Combining (8) and (9), we get

E
[
F (x̄t+1)− F (x̄t) | F t

]
f »2¸2s2L2(·2 + Ã2)

− ¸s

2

∥
∥
∥
∥

1

m
∇F (t)

1

∥
∥
∥
∥

2

2

+
L¸2

2
6s2·2

(

2 +
»2L2

2

)

−
[
¸s

2
− ¸2s2

2
− »2¸2s2L2

(
´2 + 1

)
]
∥
∥∇F (x̄t)

∥
∥
2

2

+

(
s¸L2

2m
+ »2¸2s2

L4

m

) m∑

i=1

∥
∥x

t
i − x̄

t
∥
∥
2

2

+
L¸2

2
6s2L2

(

2 +
»2L2

2

)
1

m

m∑

i=1

∥
∥x

t
i − x̄

t
∥
∥
2

2

+
L¸2

2
6s2

(
´2 + 1

)
(

2 +
»2L2

2

)
∥
∥∇F (x̄t)

∥
∥
2

2

+
L¸2

2
2s2Ã2

(
2

m
+

»2L2

2

)

.

Assuming that ¸ f 1/[108Ls(´2 + 1)(1 + »2L2)], the

above displayed equation can be simplified as

E
[
F (x̄t+1)− F (x̄t) | F t

]
f −¸s

3

∥
∥∇F (x̄t)

∥
∥
2

2

+ ¸s
L2

m

m∑

i=1

∥
∥x

t
i − x̄

t
∥
∥
2

2
+ ¸2s26L

(
·2 + Ã2

) (
1 + L2»2

)
.

The consensus error term 1
m

∑m
i=1 ∥xt

i − x̄
t∥22 in Lemma 2

connects our analysis to the aforementioned W matrix. Let

M (t) ≜ E

[(

W (t)
)2
]

, J ≜
1

m
11

¦;

Ä(t) ≜ ¼2

(

M (t)
)

and Ä ≜ max
t

Ä(t).

Next, we borrow insights from the analysis of gossiping

algorithms in the following lemma.

Lemma 3 (Ergodicity). If pti g c for some constant c ∈ (0, 1).

• For each t g 1, it holds that Ä f 1− c4[1−(1−c)m]2

8 ;

• In the special case of uniform and time-invariant availabil-

ity, suppose it holds that |At| = k for all t g 0, the bound

can be further tightened as Ä f 1− c2

8 , where c ≜ k/m.

(Mixing rate, [37, Lemma 1]). For any matrix B ∈ R
d×m,

it holds that

EW

[

∥B
(

t∏

r=1

W (r) − J

)

∥2F

]

f Ät∥B∥2F, (10)

where EW [·] denotes an expectation taken with respect to

randomness in W (1), · · · ,W (t).

Proof of Lemma 3. For ease of exposition, we drop time

index t in this proof. We first get the explicit expression for

E
[
W 2

jj′ | A ≠ ∅
]
. Suppose that A ≠ ∅, we have

W 2
jj′ =

m∑

k=1

WjkWj′k

= WjjWj′j +Wjj′Wj′j′ +
∑

k∈[m]\{j,j′}
WjkWj′k.

When k ̸= j and k ̸= j′ by Eq. (4), we have

WjkWj′k =
1

|A|21{j∈A}1{j′∈A}1{k∈A}.

In addition, we have WjjWj′j = 1
|A|21{j∈A}1{j′∈A}, and

Wj′j′Wjj′ =
1

|A|21{j∈A}1{j′∈A}. Thus,

• For j ̸= j′, we have

W 2
jj′ =

m∑

k=1

WjkWj′k =
1

|A|1{j∈A}1{j′∈A};

• For j = j′, we have

W 2
jj =

1

|A|1{j∈A} +
(
1− 1{j∈A}

)
.

(a) The general case where pti g c. In the special case where

A = ∅, we simply have W = I by the algorithmic clauses.

Therefore, E [Wjj′ | A = ∅] g 0 holds for any pair of j, j′ ∈
[m]. It follows, by the law of total expectation and for all

j, j′ ∈ [m], that

E [Wjj′ ] = E [Wjj′ | A = ∅]P {A = ∅}
+ E [Wjj′ | A ̸= ∅]P {A ≠ ∅}

g E [Wjj′ | A ̸= ∅]P {A ≠ ∅} . (11)

• For j ̸= j′, it holds that

E
[
W 2

jj′ | A ̸= ∅
]
= E

[
1

|A|1{j∈A}1{j′∈A}

∣
∣
∣A ≠ ∅

]

(a)

g E

[
1

m
1{j∈A}1{j′∈A}

∣
∣
∣A ≠ ∅

]

=
pjpj′

m
g c2

m
,

where (a) holds because |A| f m ;

• For j = j′, it holds that

E
[
W 2

jj | A ≠ ∅
]
= E

[
1

|A|1{j∈A} +
(
1− 1{j∈A}

)
∣
∣
∣A ≠ ∅

]

g E

[
1

m

[
1{j∈A} +

(
1− 1{j∈A}

)]
∣
∣
∣A ≠ ∅

]

=
1

m
g c2

m
.

Recall that M = E [W ]. Next, we show that each element of

M is lower bounded.

Mjj′ g E
[
W 2

jj′ | A ̸= ∅
]
P {A ≠ ∅} g c2

m
[1− (1− c)

m
] .

We note that Ä(t) = ¼2(M), where ¼2 is the second largest

eigenvalue of matrix M . A Markov chain with M as the

transition matrix is ergodic as the chain is (1) irreducible:

Mjj′ g c2

m [1− (1− c)
m
] > 0 for j, j′ ∈ [m] and (2)

aperiodic (it has self-loops). In addition, W matrix is by

definition doubly-stochastic. Hence, M has a uniform sta-

tionary distribution Ã = 1
m1

¦. Furthermore, the irreducible

Markov chain is reversible since it holds for all the states that

ÃiMij = ÃjMji. The conductance of a reversible Markov

chain [38] with a transition matrix M can be bounded by

Φ(M) = min∑
i∈S

Ãif 1

2

Ãi

∑

i∈S,j /∈S Mij
∑

i∈S Ãi

g
(

c
m

)2
[1− (1− c)

m
] |S|

∣
∣S̄
∣
∣

|S|
m

=
c2 [1− (1− c)

m
]

m

∣
∣S̄
∣
∣ ,
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where
∣
∣S̄
∣
∣ = m − |S| g m

2 . From Cheeger’s inequality, we

know that 1−¼2

2 f Φ(M) f
√

2 (1− ¼2). Finally, we have

Φ(M) g c2 [1− (1− c)
m
]

m

∣
∣S̄
∣
∣ g c2 [1− (1− c)

m
]

2
.

Thus, Ä(t) = ¼2 f 1− Φ2(M)
2 f 1− c4[1−(1−c)m]2

8 .

(b) Select k clients uniformly at random. In each round, the

server picks k clients uniformly at random. Consequently,

different from the general case where |A| is a random variable,

it holds that |A| = k and A ̸= ∅. In addition, c ≜ k
m . After a

similar argument as in the first case, it holds that Mjj′ g c2

k .

The conductance of the reversible Markov chain with a tran-

sition matrix M can be bounded by Φ(M) g c2

k

∣
∣S̄
∣
∣ g c

2 .

Finally, we have Ä(t) = ¼2 f 1− Φ2(M)
2 f 1− c2

8 .

Inequality (10) from [37, Lemma 1] enables us to bound

the consensus error term 1
m

∑m
i=1 ∥xt

i − x̄
t∥22 and says that

the spectral norm Ä must be less than 1 to ensure a bounded

error, which is crucial for the objectives to reach a stationary

point. Fortunately, we show that, under our uplink availability

assumption, Ä < 1 in Lemma 3.

Lemma 4 (Consensus Error). Suppose Assumptions 2, 3,

and 5 hold. Choose a learning rate ¸ such that ¸ f
1−√

Ä

108L2s3(´2+1)(1+»2L2) . When Lipschitz constant L g 1, it

holds that

1

mT

T−1∑

t=0

E

[

∥X(t) (I− J) ∥2F
]

f 12ÄÃ2

(1−√Ä)2 ¸
2s2

+
54Ä·2

(1−√Ä)2 ¸
2s2 +

54(´2 + 1)Ä¸2s2

(1−√Ä)2
1

mT

T−1∑

t=0

∥∇F (x̄t)∥2F.

Proof of Lemma 4. Define ∆G
(r) ≜ G

(r) − G
(r)
0 and

Ar,t ≜
∏t

ℓ=r W
(ℓ) − J. The consensus error can be rewritten

as

∥X(t) (I− J) ∥2F = ∥(X(t−1) − ¸G(t−1))W (t−1) (I− J) ∥2F

= ∥ − ¸

t−1∑

q=0

G
(q)Aq,t−1∥2F f 3¸2 ∥

t−1∑

q=0

∆G
(q)Aq,t−1∥2F

︸ ︷︷ ︸

(A)

+ 3¸2 ∥
t−1∑

q=0

(

G
(q)
0 − s∇F (q)

)

Aq,t−1∥F
︸ ︷︷ ︸

(B)

+ 3¸2s2 ∥
t−1∑

q=0

∇F (q)Aq,t−1∥2F
︸ ︷︷ ︸

(C)

, (12)

where the second equality follows from the fact that all clients

are initiated at the same weights.

(a) Bounding E [(A)]. The term (A) in Eq. (12) arises from

multiple local steps. We have,

E [(A)]
(a)

f
t−1∑

q=0

Ät−q
E

[

∥∆G
(q)∥2F

]

+

t−1∑

q=0

t−1∑

p=0,p ̸=q

E

[

∥∆G
(p)Ap,t−1∥F∥∆G

(q)Aq,t−1∥F
]

(b)

f
t−1∑

q=0

Ät−q
E

[

∥∆G
(q)∥2F

]

+

t−1∑

q=0

t−1∑

p=0,p ̸=q

√
Ä2t−p−q

2
E

[

∥∆G
(p)∥2F + ∥∆G

(q)∥2F
]

,

where inequality (a) follows from (10), inequality (b) holds

because of Young’s inequality. Next, we bound the second

term. it follows that
t−1∑

q=0

t−1∑

p=0,p ̸=q

√
Ä2t−p−q

2
E

[

∥∆G
(p)∥2F + ∥∆G

(q)∥2F
]

f
t−1∑

q=0

t−1∑

p=0

√
Ä2t−p−q

2
E

[

∥∆G
(p)∥2F + ∥∆G

(q)∥2F
]

f
√
Ä

1−√Ä
t−1∑

q=0

√
Ä
t−q

E

[

∥∆G
(q)∥2F

]

.

In addition, since Ä < 1, it holds that Ät−q f √ÄÄ t−q

2 for any

q f t− 1. Thus, we have

E [(A)] f √Ä
t−1∑

q=0

Ä
t−q

2 E

[

∥∆G
(q)∥2F

]

+

√
Ä

1−√Ä
t−1∑

q=0

√
Ä
t−q

E

[

∥∆G
(q)∥2F

]

f 2
√
Ä

1−√Ä
t−1∑

q=0

√
Ä
t−q

E

[

∥
(

G
(q) −G

(q)
0

)

∥2F
]

. (13)

It remains to bound E
[
∥∆G

(q)∥2F
]
,

E

[

∥∆G
(q)∥2F

] (c)

f »2¸2s4L2
E

[

∥G(q)
0 − s∇F (q) + s∇F (q)∥2F

]

f 2»2¸2s4L2
E

[

∥G(q)
0 − s∇F (q)∥2F

]

+ 2»2s2¸2s4L2
E

[

∥∇F (q)∥2F
]

f 2»2s2¸2s4L2mÃ2 + 2»2s2¸2s4L2
E

[

∥∇F (q)∥2F
]

,

where inequality (c) follows from Lemma 1, adding and

subtracting. Thus,

E [(A)] f 2
√
Ä

1−√Ä
t−1∑

q=0

√
Ä
t−q

E

[

∥G(q) −G
(q)
0 ∥2F

]

f 4»2s2¸2s4L2mÃ2Ä
(
1−√Ä

)2

+
4»2s2¸2s4L2√Ä

1−√Ä
t−1∑

q=0

√
Ä
t−q

E

[

∥∇F (q)∥2F
]

.
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(b) Bounding E [(B)].

E [(B)] f
t−1∑

q=0

Ät−q
E

[

∥
(

G
(q)
0 − s∇F (q)

)

∥2F
]

f Äms2Ã2

1− Ä
.

(c) Bounding E [(C)]. Use a similar derivation as in (13), and

we get

E [(C)] f 2
√
Ä

1−√Ä
t−1∑

q=0

√
Ä
t−q

E

[

∥∇F (q)∥2F
]

.

Furthermore, we have

T−1∑

t=0

t−1∑

q=0

√
Ä
t−q

E

[

∥∇F (q)∥2F
]

=

T−2∑

t=0

E

[

∥∇F (t)∥2F
] T−1−t∑

q=1

√
Ä
q

f
√
Ä

(
1−√Ä

)

T−1∑

t=0

E

[

∥∇F (t)∥2F
]

.

(d) Putting them together.

1

mT

T−1∑

t=0

E

[

∥X(t) (I− J) ∥2F
]

f 3¸2s2Ã2 Ä
(
1 + »2¸2s4L2

)

(
1−√Ä

)2

+

(
»2¸2s4L2

2
+ 1

)
6¸2s2Ä

mT
(
1−√Ä

)2

T−1∑

t=0

E

[

∥∇F (t)∥2F
]

(d)

f 9Ä

(1−√Ä)2 ¸
2s2

1

mT

T−1∑

t=0

∥∇F (t)∥F +
6ÄÃ2

(1−√Ä)2 ¸
2s2,

where we assume that ¸ f 1
s2»L in inequality (d). Choosing

¸ f 1−√
Ä

6Ls and by Proposition 3, we have

1

mT

T−1∑

t=0

E

[

∥X(t) (I− J) ∥2F
]

f 12ÄÃ2

(1−√Ä)2 ¸
2s2

54(´2 + 1)Ä¸2s2

(1−√Ä)2
1

mT

T−1∑

t=0

∥∇F (x̄t)∥2F +
54Ä·2

(1−√Ä)2 ¸
2s2.

Our proof of Lemma 4 shares a similar sketch as that in

[37], yet with nontrivial adaptation to account for multiple

local updates and the fact the stochastic gradients at a client

within each round are not independent. Plugging Lemma 4

into Lemma 2, we obtain the main Theorem 1.

Theorem 1. Suppose Assumptions 2, 3, 4, and 5 hold. Choose

a learning rate ¸ such that ¸ f 1−√
Ä

108L2s3(´2+1)(1+»2L2) . When

Lipschitz constant L g 1, it holds that

1

T

T−1∑

t=0

E

[∥
∥∇F (x̄t)

∥
∥
2

2

]

f 6
(
F (x̄0)− F ⋆

)

¸sT

+ 54¸sL

(

»2L2 + 1 +
1

1−√Ä

)
(
Ã2 + ·2

)
.

Corollary 1. Suppose Assumptions Assumption 2, 3, 4,

and 5 hold. Choose ¸ = 1/
√
T , where T g

(108L2s3(´2 + 1)(1 + »2L2)/
(
1−√Ä

)
)2. When Lipschitz

constant L g 1, it holds that

1

T

T−1∑

t=0

E

[∥
∥∇F (x̄t)

∥
∥
2

2

]

f 6
(
F (x̄0)− F ⋆

)

s
√
T

+ 54
sL√
T

(

»2L2 + 1 +
1

1−√Ä

)
(
Ã2 + ·2

)
.

Remark 2. Here, we remark on Theorem 1:

(1) On the structures. The assumption that Lipschitz constant

L g 1 is for simplifying the upper bound of ¸ only, which,

notably, can be readily relaxed but at a cost of a much more

sophisticated learning rate condition. The second term stems

from noisy stochastic gradients (Assumption 3) and inter-client

gradient heterogeneity (Assumption 5).

(2) On stationary points of F . Theorem 1 says that x̄
t in

FedPBC converges to a stationary point of F (non-convex) at

a rate of 1/
√
T . In sharp contrast, Proposition 1 dictates that

the expected output of FedAvg converges to a point that could

be far away from the true optimum depending on the interplay

between pti’s and data heterogeneity.

(3) On the role of the probability lower bound c. A

larger c results in a smaller Ä and thus a tighter bound on
1
T

∑T−1
t=0 E [∥∇F (x̄t)∥2] . Next, we discuss a couple of special

cases in Big-O notation with respect to the number of clients

m, the number of local steps s, spectral norm Ä, stochastic

gradient variance Ã and bounded gradient dissimilarity ·.

• FedPBC reduces to FedAvg with full-client participation

when c = 1. Setting ¸ =
√

m/sT in Theorem 1, our

convergence rate O( 1√
msT

+
√

ms
T

(
Ã2 + ·2

)
) matches the

FedAvg literature (e.g., [30]).

• When it comes to FedAvg with uniform and time-invariant

participation, suppose k out of m clients are selected

uniformly at random each round. Setting ¸ =
√

k/sT
in Theorem 1, our convergence rate becomes O( 1√

ksT
+

1
1−√

Ä

√
ks
T

(
Ã2 + ·2

)
). Since Ä f 1 − c2/8 (in Lemma 3),

the rate becomes O( 1√
ksT

+ 1
c2

√
ks
T

(
Ã2 + ·2

)
), which

introduces a larger variance compared to the rate of FedAvg

with full participation, consistent with existing literature

(e.g., [39]).

(4) On convergence rate. Our convergence rate in Corollary 1

of O(1/
√
T ), where the Big-O notation is taken with respect

to the total global round T , matches the best possible rate

for any first-order algorithms that have access to only noisy

stochastic gradients of a smooth non-convex objective [40]. By

setting learning rate ¸ as in bulletpoint (3), we shall see linear

speedup with respect to the first term; however, the second

term ultimately dominates the first term, which is consistent

with FedAvg literature, see, e.g., [4]. We leave achieving

linear speedup as a future direction.

VII. NUMERICAL EXPERIMENTS

In this section, we evaluate FedPBC and multiple baseline

algorithms on a simple quadratic function and real-world

datasets.
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Fig. 3: ∥xPS − x
⋆∥

2
in logarithmic scale. The results are obtained

after an average of 3 random seeds. Plots are reported as mean ±
standard deviation. The shaded areas plot standard deviation.

A. Quadratic function

The first part is about a simple quadratic function as in

Eq. (2). Recall that, in each round t, client i responds to the

parameter server’s update request with probability pti.
Counterexample. Our numerical results can be found

in Fig. 3. We consider a federated learning system of m = 100
clients, each performing s = 100 steps local updates per

round, in a total of 2500 global rounds. The local objective

is Fi(xi) = 1
2 ∥xi − ui∥22 , where xi,ui ∈ R

100, ui ∼
N ((i/1000)1, 0.01I) , and x

0
i = 0 for all i ∈ [m]. The

learning rate ¸ = 0.0001. The uplinks of the first 50 clients

become open with probability p0, whereas the second half

with p1 – to be specified later. For ease of presentation, we

plot the distance to the optimum ∥xPS − x
⋆∥2 after the first 50

communication rounds in Fig. 3, where x
t
PS ≜ x

t in Algorithm

1. All results are obtained after 3 random seeds and reported

as mean ± standard deviation. Notably, all plots are on a

logarithmic scale, potentially magnifying visual fluctuations.

Notice that the distance to optimum ∥xPS − x
⋆∥2 does not

go strictly to 0. We presumably attribute this to pseudo-

randomness in computers to sample clients. Observe that two

algorithms attain a similar distance to optimum when p0 = p1.

Yet, FedPBC obtains a much lower error when p0 ̸= p1. In

addition, the error is on a similar scale (around 10−3) as in

the case of p0 = p1.

B. Real-world Datasets

In this section, we use three real-world datasets to validate

the performance of FedPBC on different uplink unreliable

patterns, and to compare with multiple baseline algorithms.

Detailed hardware and software specifications can be found

in Appendix B.

Dataset and data heterogeneity. The image classification task

is commonly adopted in evaluating the empirical performance

of a federated learning system [2], [20], [30], [34]. Following

existing literature [2], [20], [30], [34], we base our simulations

on SVHN [41], CIFAR-10 [42] and CINIC-10 [43]. All of

them include 10 classes of images of different categories.

For data heterogeneity, we partition all datasets and assign

data samples to clients according to a Dirichlet distribution

parameterized by ³ [44]. In particular, ³ = 0.1 in Table. I. A

smaller ³ entails a more non-i.i.d. local data distribution and

vice versa. Each client holds the same data volume; the exact

data volume may be dataset-dependent.

Federated learning system. We consider m = 100 clients,

wherein clients continue to compute locally albeit the failures

of unreliable communication uplinks. However, only clients

with active links are allowed to submit their local updates. We

use three customized convolutional neural networks for three

datasets, respectively. Next, we introduce our construction

of pti’s, which is then adopted to base the illustrations of

unreliable patterns.

The construction of pti’s. We define

pti ≜ pi ·
[
(1− µ) + µ · ϵt

]
, (14)

where pi ∈ (0, 1) is the time-invariant base probability, µ ∈
[0, 1] is time-invariant and is used to control the variations

of pti, and ϵt is time-dependent. Detailed specifications are

forthcoming.

• Construction of pi. Inspired by [20], [27], the time-invariant

base probability pi is jointly determined by the local data

distribution and a random variable R, which follows a

lognormal(µ0, Ã
2
0) distribution. It is immediately clear that

the coupling leads to non-independent pi’s, which violates

the assumption of independence in uplink communication

failures in our theoretical analysis. However, FedPBC main-

tains its outperformance under such a challenging scenario.

Define the number of classes in a dataset as C, the class

distribution at a client i as νi for i ∈ [m]. Since the local

datasets are partitioned according to Dirichlet(³), we have

νi ∼ Dirichlet(³). Sample R from lognormal(µ0, Ã
2
0) for

C times to obtain a positive vector r
′ ∈ R

C . Normalize

r
′ by dividing its l1 norm and get r ≜ r

′/∥r′∥1. Finally,

pi = ïr,νið. Intuitively, r is used to quantify the unbalanced

contribution of different classes. It is easy to see that for

any fixed µ0, a larger Ã0 leads to a more heterogeneous

contribution distribution. We set µ0 = 0 and Ã0 = 10 in

Table 1. By definition, pi is a valid probability because

0 = ï0,νið < ïr,νið
(a)

f ïr,1ð = 1,

where 1 is an all-one vector, (a) holds because each element

in νi is no greater than 1, and pi is strictly element-wise

positive.

• Construction of ϵt. [7, Figure 5] indicates that the number of

participants, i.e., clients with active communication uplinks,

depends on time and acts like a sine curve. Inspired by

this, we introduce a time-varying noise ϵt = sin [(2Ã/P ) · t],
where P = 40 defines the period and t is the current round

index. This is a similar setup as the Home Device unreliable

communication scheme in [12].

• Choice of µ. By definition, µ in (14) governs how severe

the fluctuations of the sine curve in pti’s are. Given a fixed

set of pi’s, µ determines both the lower and upper bounds

of pti’s.

Fig. 4a presents an example of generated r drawn from

a lognormal(0, 102), wherein class 0 and class 6 dominate

the entire distribution. Intuitively, if a client i holds most

of its images from classes other than 0 or 6, the generated

pi might be small and thus close to 0, possibly resulting in

the client not appearing during training rounds in simulations.

See Fig. 4b for details. To obtain meaningful results, we clip

pi ← max {¶, pi}, where ¶ is a cutting-off parameter to ensure

a lower bound on pi. In Table I, ¶ = 0.02. Notably, ¶ leads to
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TABLE I: The reported results are in the form of mean accuracy ± standard deviation and are obtained over 3 repetitions in different
random seeds. Results are averaged over the last 100 rounds. In each simulation, clients perform mini-batch stochastic gradient descent in 5
steps on a convolutional neural network (CNN) locally per round. The total global rounds for SVHN, CIFAR-10, CINIC-10 are 4000, 10000,
10000, respectively. Furthermore, we use customized CNNs for different datasets, respectively. Algorithms are categorized into two groups:
(1) ones not aided by memory or known statistics; (2) ones with memory (including MIFA and FedAvg with known pti’s). Moreover, we

highlight the best and the second best in yellow and in cyan , respectively, among algorithms not aided by memory or known statistics.

The other hyperparameters are specified in Appendix, and some of them are tuned using grid search.

Unreliable

Patterns

Datasets SVHN CIFAR-10 CINIC-10
Algorithms Train Test Train Test Train Test

Centralized 88.7% 87.7% 76.1% 73.6% 61.9% 59.3%

Bernoulli1

with time-invariant pi’s

FedPBC (ours) 84.4%± 0.008 84.3%± 0.008 68.4%± 0.011 66.3%± 0.013 50.3%± 0.005 49.7%± 0.004

FedAvg 75.9%± 0.024 75.2%± 0.024 59.9%± 0.026 58.7%± 0.025 38.1%± 0.031 37.8%± 0.029

FedAvg all 56.4%± 0.083 56.4%± 0.072 48.9%± 0.031 48.7%± 0.026 32.6%± 0.030 32.3%± 0.030

FedAU 83.1%± 0.015 83.0%± 0.015 67.4%± 0.019 65.9%± 0.019 45.8%± 0.022 45.4%± 0.022

F3AST 76.9%± 0.036 76.9%± 0.037 58.5%± 0.053 57.7%± 0.052 40.7%± 0.049 40.3%± 0.048

FedAvg known pi’s 77.8%± 0.029 77.2%± 0.032 61.1%± 0.036 60.1%± 0.035 39.2%± 0.029 38.8%± 0.029

MIFA (memory aided) 80.8%± 0.003 80.8%± 0.003 67.8%± 0.006 67.1%± 0.006 47.6%± 0.005 47.1%± 0.005

Bernoulli
with time-varying pti’s

FedPBC (ours) 84.0%± 0.009 84.0%± 0.009 67.1%± 0.011 65.0%± 0.015 49.7%± 0.004 49.1%± 0.003

FedAvg 73.7%± 0.041 72.7%± 0.042 57.3%± 0.034 56.2%± 0.033 35.9%± 0.038 35.6%± 0.037

FedAvg all 37.0%± 0.097 36.5%± 0.085 43.2%± 0.030 43.2%± 0.029 28.9%± 0.024 28.7%± 0.024

FedAU 80.5%± 0.023 80.3%± 0.022 64.9%± 0.018 63.5%± 0.018 44.8%± 0.017 43.4%± 0.018

F3AST 78.3%± 0.027 78.1%± 0.029 60.7%± 0.037 59.6%± 0.035 41.2%± 0.035 40.8%± 0.035

FedAvg known pti’s 76.9%± 0.035 76.3%± 0.036 62.4%± 0.021 61.2%± 0.022 46.9%± 0.016 46.4%± 0.016

MIFA (memory aided) 79.2%± 0.005 79.2%± 0.005 66.2%± 0.006 65.5%± 0.005 46.4%± 0.010 45.8%± 0.009

Homogeneous1

Markovian
with time-invariant pi’s

FedPBC (ours) 84.8%± 0.009 84.1%± 0.008 68.6%± 0.010 66.5%± 0.010 50.0%± 0.006 49.5%± 0.006

FedAvg 74.7%± 0.023 74.0%± 0.023 59.1%± 0.022 57.9%± 0.020 37.4%± 0.029 37.1%± 0.029

FedAvg all 55.1%± 0.073 55.1%± 0.063 48.3%± 0.039 48.0%± 0.034 31.6%± 0.032 31.4%± 0.031

FedAU 82.7%± 0.015 82.6%± 0.013 68.3%± 0.019 66.4%± 0.018 47.2%± 0.019 46.7%± 0.018

F3AST 75.5%± 0.043 75.5%± 0.048 60.3%± 0.035 59.3%± 0.034 43.0%± 0.028 42.5%± 0.027

FedAvg known pi’s 76.0%± 0.025 75.7%± 0.027 61.0%± 0.036 60.0%± 0.034 40.8%± 0.022 40.4%± 0.022

MIFA (memory aided) 81.7%± 0.006 81.1%± 0.004 66.8%± 0.006 65.9%± 0.006 46.9%± 0.007 46.4%± 0.007

Non-homogeneous
Markovian

with time-varying pti’s

FedPBC (ours) 83.9%± 0.010 83.8%± 0.008 67.2%± 0.009 64.9%± 0.006 49.7%± 0.004 49.1%± 0.004

FedAvg 72.7%± 0.034 72.2%± 0.035 59.0%± 0.027 58.0%± 0.027 36.7%± 0.031 36.3%± 0.030

FedAvg all 38.6%± 0.091 38.3%± 0.079 43.7%± 0.026 43.8%± 0.024 29.4%± 0.025 29.2%± 0.024

FedAU 80.2%± 0.020 80.2%± 0.020 66.4%± 0.018 65.1%± 0.018 45.3%± 0.022 44.8%± 0.021

F3AST 77.0%± 0.033 77.0%± 0.033 62.8%± 0.032 61.5%± 0.032 43.0%± 0.029 42.6%± 0.028

FedAvg known pti’s 76.3%± 0.045 76.3%± 0.045 60.0%± 0.040 59.0%± 0.038 45.1%± 0.032 44.5%± 0.031

MIFA (memory aided) 79.2%± 0.005 79.1%± 0.004 66.3%± 0.007 65.6%± 0.007 46.5%± 0.008 46.1%± 0.008

Cyclic1

without periodic reset

FedPBC (ours) 84.2%± 0.010 84.2%± 0.009 67.5%± 0.015 65.2%± 0.017 49.7%± 0.008 49.0%± 0.007

FedAvg 72.3%± 0.029 71.7%± 0.032 57.0%± 0.028 56.0%± 0.026 37.0%± 0.029 36.6%± 0.029

FedAvg all 56.4%± 0.078 56.4%± 0.070 48.5%± 0.026 48.1%± 0.024 32.2%± 0.028 31.9%± 0.027

FedAU 80.2%± 0.027 79.8%± 0.027 64.5%± 0.024 63.1%± 0.022 43.3%± 0.033 42.8%± 0.032

F3AST 71.5%± 0.042 71.7%± 0.044 58.3%± 0.026 57.3%± 0.028 40.0%± 0.028 39.7%± 0.028

FedAvg known pi’s
2 74.1%± 0.037 73.6%± 0.038 58.9%± 0.036 58.0%± 0.034 38.1%± 0.042 37.7%± 0.041

MIFA (memory aided) 70.9%± 0.033 70.9%± 0.033 59.1%± 0.021 58.7%± 0.022 42.3%± 0.039 41.8%± 0.038

Cyclic
with periodic reset

FedPBC (ours) 83.8%± 0.008 83.7%± 0.007 66.3%± 0.010 64.0%± 0.012 49.6%± 0.004 49.1%± 0.004

FedAvg 69.6%± 0.054 69.0%± 0.058 56.0%± 0.032 55.1%± 0.033 35.4%± 0.027 35.1%± 0.026

FedAvg all 34.2%± 0.074 33.6%± 0.065 42.5%± 0.026 42.4%± 0.026 28.7%± 0.023 28.5%± 0.023

FedAU 77.1%± 0.029 77.1%± 0.029 62.9%± 0.022 61.7%± 0.021 42.6%± 0.020 42.1%± 0.020

F3AST 75.4%± 0.035 75.3%± 0.037 62.3%± 0.041 61.0%± 0.040 42.7%± 0.041 42.2%± 0.040

FedAvg known pi’s
2 72.7%± 0.049 72.1%± 0.052 60.0%± 0.032 59.1%± 0.030 45.5%± 0.029 45.0%± 0.028

MIFA (memory aided) 77.6%± 0.014 77.3%± 0.014 64.8%± 0.006 64.3%± 0.006 45.6%± 0.010 45.2%± 0.010

the lower bound of pti being ¶ · (1− 2µ). Now, we are ready

to present unreliable schemes.

Unreliable schemes. In addition to a similar unreliable time-

invariant communication setup as in [27] for fair competition,

we study a more challenging scenario where pti’s change over

time. Specifically, we evaluate FedPBC and a set of baseline

algorithms on the following schemes:

1) Bernoulli. Client i submits its local updates to the parame-

ter server when the uplink becomes active with probability

pti. The first two columns of Table I demonstrate the results

when the probabilities are time-invariant pi’s and time-

varying pti’s, respectively. When pti is time-invariant, we

have pti = pi for all t g 0, where pi is the time-invariant

base probability in (14). In the latter, pti is defined as in (14)

and changes over time.

2) Markovian. The uplink connection probabilities pti’s might

be affected by external factors, leading to an unexpected

shutdown after it is on or, conversely, resuming fully oper-

ational after it is off. Specifically, the uplink availability is

dictated by a Markov chain of two states “ON” and “OFF”,

whose initial state is determined by a Bernoulli sampling.

Depending on whether the transition probabilities change

over time, we have a homogeneous Markov chain (the

third row of Table I) or a non-homogeneous Markov chain

(the fourth row). The detailed illustration of the transition

probabilities is deferred to Appendix B.

3) Cyclic. The communication uplink between the parameter

server and the clients can have a cyclic pattern, where

the client has a fixed working schedule and joins the

training diurnally or nocturnally [7], [23]. A random offset

at the beginning of the whole process is used to simulate

and reflect the initial shift due to each client’s device
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(a) An example of generated r’s based on lognormal(0, 102) distri-
bution and normalization described above. Each color corresponds to
one class. The first row visualizes the proportions of each class. The
second row presents the exact numbers (rounded up to 2 decimals).
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(b) Histograms of the constructed pi’s under R ∼ lognormal(0, 102)
and νi ∼ Dirichlet(0.1) with 100 clients and δ = 0.

Fig. 4: The construction of pi’s.

Link status

active

inactive
Global round t0

active

period

active

period

active

period · · ·

inactive period ≜ (1− pi) · cycle length

cycle length cycle length

random offset ∼ Uniform [0, (1− pi) · cycle length]

pi · cycle length

(fixed) (fixed)

(a) An illustration of cyclic without periodic reset, where the com-
munication link turns on and off in a cyclical fashion. The length of
a cycle is a predefined parameter. Before a link becomes active for
the first time, it will remain off for a period of time, whose length
is sampled from Uniform [0, (1− pi) · cycle length]. After the initial
stage, the link will alternatively be in the active state with a fixed
duration of the active period (pi · cycle length) or in the inactive state
with a fixed duration of the inactive period [(1− pi) · cycle length].
In other words, the duration of the interval between two consecutive
link switch-ons is always fixed in length.

Link status

active

inactive
Global round t0

active

period
active

period

active

period

cycle length cycle length

pi · cycle length

(stochastic)

random offset ∼ Uniform [0, (1− pi) · cycle length]

cycle length

(stochastic)

(b) An illustration of cyclic with periodic reset. Similar to Fig. 5a,
a link switches on and off in alternation. The key difference is that
a random offset will be redrawn from the same uniform distribution
at the beginning of each cycle. The resampling procedure is called a
reset, which entails a stochastic length of the interval between two
consecutive link switch-ons.

Fig. 5: Illustrations of the communication unreliable schemes eval-
uated in Section VII-B

heterogeneity [27]. Please refer to Fig. 5a for details.

However, it is also possible that each client’s schedule

to start training varies each day, which motivates us to

devise the second scheme with periodic reset in Fig. 5b.

The key difference is that the random offset will be reset

at the beginning of each cycle, not only at the first cycle.

Notice that the interval for a link to become active is now

stochastic, rather than fixed.

0 10 20 30 40 50 60 70 80
Global round t

0

1

pt i

0.9 0.5 0.1 0.01

0 10 20 30 40 50 60 70 80
0.9
0.5
0.1

0.01

(a) Bernoulli with time-invariant pti = pi’s in a total of 80 global
rounds. The first row shows the trajectories of time-invariant pti =
pi’s . The second row shows the status of the uplink sampled from
Bernoulli(pi).

0 10 20 30 40 50 60 70 80
Global round t

0

1

pt i

0 10 20 30 40 50 60 70 80
Global round t

0.9
0.5
0.1

0.01

Lin
k 

st
at

us

(b) Bernoulli with time-varying pti’s in a total of 80 global rounds.
The first row shows the trajectories of time-varying pti’s. The second
row shows the status of the uplink sampled from Bernoulli(pti).
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(c) The status of the uplink under homogeneous Markovian in a total
of 80 global rounds.
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(d) The status of the uplink under heterogeneous Markovian in a total
of 80 global rounds.
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(e) The status of the uplink under cyclic without periodic reset in a
total of 400 global rounds. The cycle length is 100.
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(f) The status of the uplink under cyclic with periodic reset in a total
of 400 global rounds. The cycle length is 100.

Fig. 6: Exemplary trajectories of pti’s and uplink status under
different unreliable communication schemes. Colored blocks indicate
that an uplink is active in the given round. We simulate the scenarios
where pi ∈ {0.01, 0.1, 0.5, 0.9}. The construction of pti based on pi
can be found in Section VII-B.

Fig. 6 shows an example of uplink statuses under the

unreliable communication schemes we evaluate. It is observed

that uplinks become less frequently active when probabilities

change from time-invariant (Fig. 6a) to time-varying (Fig. 6b).

In addition, the uplinks become even more sparsely active

when the schemes move to Markovian in Fig. 6c and 6d.

On the other hand, the cyclic unreliable scheme exhibits a

different pattern: the uplinks in Fig. 5a become active and

inactive in alternation after an initial random offset. Notice

that the uplink’s offline duration is always fixed. In contrast,

the duration remains random in Fig. 5b due to a reset at the

beginning of each cycle.

Baseline algorithms. We compare FedPBC with six baseline

algorithms, including FedAvg [2], FedAvg all, FedAvg known

pti’s [21], FedAU [27], F3AST [12], and MIFA [20]. Under

FedAvg all, the parameter server averages all clients’ local

updates, wherein the contributions of clients with inactive
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TABLE II: The first round to reach a targeted test accuracy under
Bernoulli with time-varying pti’s over 3 random seeds. We study the
first round to reach 1/4, 1/2, 3/4 and 1 of the best test accuracy of
each dataset in Table I, which is rounded up to the nearest 10% below
for ease of presentation. In addition, we sample the mean of test
accuracy every 150 global rounds to mitigate noisy progress. Some
algorithms may never attain the targeted accuracy due to their inferior
performance, where we use “–” as a placeholder. For example, the
best test accuracy of FedAvg all is 36. 5% under Bernoulli with time-
varying pti’s in Table I, below both 3/4 and 1 of the best accuracy.

Datasets
Quarters 1/4 1/2 3/4 1

Test accuracy 20% 40% 60% 80%

SVHN

FedPBC (ours) 150 300 450 1650
FedAvg 300 450 1050 –

FedAvg all 1950 – – –
FedAU 300 300 750 3450
F3AST 450 750 1200 3600

FedAvg known p
t
i’s 600 1050 1650 –

MIFA (memory aided) 300 600 1050 –

Test accuracy 15% 30% 45% 60%

CIFAR-10

FedPBC (ours) 150 150 450 3300
FedAvg 150 450 1050 9450

FedAvg all 150 1500 – –
FedAU 150 300 750 3900
F3AST 150 300 1200 4800

FedAvg known p
t
i’s 0 450 1800 4800

MIFA (memory aided) 150 150 600 3600

Test accuracy 10% 20% 30% 40%

CINIC-10

FedPBC (ours)

0

150 300 900
FedAvg 150 1050 6450

FedAvg all 600 – –
FedAU 150 300 2700
F3AST 300 1200 3000

FedAvg known p
t
i’s

0
300 1050 2850

MIFA (memory aided) 150 900 2700

communication links are deemed zeros. FedAvg known pti’s
requires the time-varying pti’s to be a known prior. We defer

the other algorithmic specific parameters to Appendix B.

Results. Table I presents the evaluation results. The first row

details the centralized learning results as a benchmark. We

can see that all federated learning algorithms suffer some

performance degradation, which is also commonly observed in

distributed learning when there are communication constraints.

Intuitively, this is the cost paid for not disclosing raw data to

the other clients. In summary, FedPBC outperforms all other

baseline algorithms not aided by memory on the SVHN and

CINIC-10 datasets. In a rare instance, FedPBC is surpassed

by FedAU on the CIFAR-10 dataset by a mere 0.2% in test

accuracy. The rationale merits additional scrutiny. Addition-

ally, FedAvg trails behind FedPBC by a substantial margin of

approximately 10% in test accuracy, confirming its inherent

bias.

It turns out that MIFA, aided by 100 units of old local

gradients, does not always achieve the best performance.

We conjecture it to the old gradients induced by a lower

participation rate. Fig. 4b shows that most probabilities fall

below 0.1 under our construction of pi’ s, which means

that an uplink could be inactive for a long time before

waking up again. Although clients in FedPBC start in each

global round from its own staled local model, the expected

staleness is upper bounded (see Proposition 2). It is not

surprising that F3AST acts inferior to FedPBC. At a high

level, F3AST caps At to a few representative clients for

local optimization, excluding the rest of the clients within

At. FedPBC surpasses FedAU in all scenarios in terms of

train accuracy. Although FedAU develops an online average

method to estimate the underlying connection probabilities, it

cannot tolerate complex dynamics. This can be observed in the

performance degradation when switching from cyclic without

periodic restart to cyclic with periodic restart. In the former, the

uplinks are activated alternately with a fixed interval after the

initial random offset, whereas in the latter, they are switched

on stochastically, making it much more challenging. In the

case of time-invariant pi’s, the outperformance of our FedPBC

may stem from its utilization of true gradient trajectories to

account for inactivities. This approach may result in better

compensation than the online estimate used in FedAU. Though

FedAvg with known probability uses the ground truth 1/pti to

mimic the empirical length of the uplink active interval, as

pointed out in [27], the empirical length can unfortunately

deviate far from the ground truth 1/pti.
To complement the numerical results in the main section, we

also study the impact of different system-design parameters,

including α, γ, δ, σ0, on learning performance. The results

are deferred to Appendix B.
Staleness. Table II demonstrates the first round to reach a

targeted test accuracy under Benoulli with time-varying pti’s.

Specifically, we study the round to reach the four quarters of

the best test accuracy, which is rounded to the nearest 10%

below for a neat presentation. It is readily seen that FedPBC

attains a similar round to reach 1/4 and 1/2 of the best test

accuracy as either FedAU or MIFA. When it is beyond 3/4

of the best accuracy, FedPBC in fact becomes the fastest

algorithm. Hence, we empirically conclude that the staleness

in FedPBC is mild and confirms its practicality.

VIII. CONCLUSION

In this paper, we study federated learning in the presence

of stochastic uplink communications that are allowed to be

simultaneously time-varying and unknown to all parties in the

distributed learning system. We show that, by using a simple

quadratic counterexample in Proposition 1, the seminal work

FedAvg is inherently biased from the global optimum under

non-i.i.d. local data. We propose FedPBC, which leverages

implicit gossiping by postponing the broadcast till the end of

each global round, is provable to reach a stationary point of

the global non-convex objective, and converges at the optimal

rate in the presence of smooth non-convex and stochastic

objective gradients. Extensive experiments have been pro-

vided over diversified unreliable patterns to corroborate our

analysis. Numerous directions are open for future research.

First, FedPBC requires clients to perform local computation

throughout training rounds, which may bring in extra com-

putation costs. It is interesting to study how FedPBC can be

applied to serve clients with limited computation resources. In

addition, our work only addresses unreliable uplink commu-

nication. So, unreliable bidirectional communication failures
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are another extension. We expect to incorporate different local

optimization methods, other than stochastic gradient descent,

and establish provable guarantees. Finally, it is also interesting

to explore achieving the desired linear speedup property.
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APPENDIX A

PROOFS

Proposition 3 is illustrated first as an intermediate result to

assist in the proofs.

Proposition 3. For any t ∈ [T − 1], it holds that
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Inequality (15) can be shown by Jensen’s inequality, where

we plug in Assumptions 2 and 5.

Proof of Proposition 1. At each client i ∈ At, for each local

step k = 0, · · · , s− 1, we have
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+
η
∑

i∈At ui

[

∑s−1
r=0 (1− η)

r
]

1{At ̸=∅}

|At|
=
[

1{At=∅} + (1− η)
s
1{At ̸=∅}

]

x
t

+ [1− (1− η)s]
1{At ̸=∅}
|At|

∑

i∈At

ui.

Taking expectation with respect to At, we get

E
[

x
t+1 | At

]

=
[

P
{

At = ∅
}

+ (1− η)
s
P
{

At ̸= ∅
}]

x
t

+ [1− (1− η)s]E

[
∑

i∈At ui

|At|
∣

∣

∣
At ̸= ∅

]

P
{

At ̸= ∅
}

=

(

m
∏

i=1

(1− pi) +

[

1−
m
∏

i=1

(1− pi)

]

(1− η)
s

)

x
t

+ [1− (1− η)s] [1−
m
∏

i=1

(1− pi)]E

[
∑

i∈At ui

|At|
∣

∣

∣
At ̸= ∅

]

.

Following from the fact that pti = pi for all t at all clients,

E[ 1
|At|

∑

i∈At ui|At ̸= ∅] = E[ 1
|A1|

∑

i∈A1 ui|A1 ̸= ∅] for all

t. Unrolling the above displayed equation until time 0 and

applying the full expectation up to time t+ 1, we have

E
[

x
t+1
]

=
(

1− at+1
)

E

[

E

[

1

|A1|
∑

i∈A1

ui

∣

∣

∣
A1 ̸= ∅

]]

,

(16)

where x
0 = 0, and

a ≜

m
∏

i=1

(1− pi) +

[

1−
m
∏

i=1

(1− pi)

]

(1− η)
s
.

Notably, a < 1, it holds that limt→∞(1 − at+1) = 1. Let

Xi = 1{i∈A1} for each i ∈ [m]. We have

E

[
∑

i∈A1 ui

|A1|
∣

∣

∣
A1 ̸= ∅

]

= E





∑m
i=1 Xiui
∑m

j=1 Xj

∣

∣

∣

m
∑

j=1

Xj ̸= 0





=

m
∑

i=1

uiE





Xi
∑m

j=1 Xj

∣

∣

∣

m
∑

j=1

Xj ̸= 0



 .

By the law of total expectation and the convention that 0
0 = 0,

we know that

E

[

Xi
∑m

j=1 Xj

]

= E

[

Xi
∑m

j=1 Xj

∣

∣

∣

m
∑

j=1

Xj ̸= 0

]

P

{

m
∑

j=1

Xj ̸= 0

}

+ 0

= E

[

Xi
∑m

j=1 Xj

∣

∣

∣

m
∑

j=1

Xj ̸= 0

]

P

{

m
∑

j=1

Xj ̸= 0

}

.

Hence,

E





Xi
∑M

j=1 Xj

∣

∣

∣

M
∑

j=1

Xj ̸= 0



 =
E

[

Xi∑
m
j=1

Xj

]

1−∏m
i=1(1− pi)

.

Additionally,

E

[

Xi
∑m

i=1 Xi

]

= P {Xi = 1}E
[

Xi
∑m

j=1 Xj

∣

∣

∣
Xi = 1

]

+ 0

= piE

[

1

1 +
∑

j∈[m]\{i} Xj

∣

∣

∣
Xi = 1

]

. (17)

Next, we show that

E

[

1

1 +
∑

j∈[m]\{i} Xj

∣

∣

∣
Xi = 1

]

= 1 +

m
∑

j=2

(−1)
j+1 1

j

∑

S∈Bi
j

∏

z∈S

pz, (18)

where Bi
j ≜

{

S
∣

∣

∣
S ¦ [m] \ {i} , |S| = j − 1

}

. Without loss of

generality, assume i = m. Define S̄ ≜ [m] \ S

E

[

1

1 +
∑

j∈[m]\{m} Xj

∣

∣

∣
Xm = 1

]

= E

[

1

1 +
∑

j∈[m−1] Xj

]

≜

m
∑

j=1

1

j
P
{∣

∣A1 \ {m}
∣

∣ = j − 1
}

=
m
∑

j=1

1

j

∑

S∈Bj

∏

x∈S̄

(1− px)
∏

z∈S

pz. (19)

Then, we show that (18) and (19) are equivalent. The degree

coefficient of polynomial 0 (i.e., when |S| = 0) relates only

to j ∈ {1}:
∏m−1

k=1 (1 − pk), where we select all the ones in

parentheses. Thus, the coefficient of the terms in the degree
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of polynomial 0 is 1. The degree coefficient of polynomial 1

(i.e., when |S| = 1). corresponds to j ∈ {1, 2}:

m−1
∏

k=1

(1− pk) (j = 1); (20)

1

2

m−1
∑

k=1

pk
∏

x∈[m−1]\{k}
(1− px) (j = 2). (21)

Take the coefficient of p1 as an example. In (20), to get

p1, we select p1 from (1 − p1) and all the ones from the

rest parentheses, which yields −1
(

1
0

)

. In addition, in (21),

the coefficient is 1
2

(

1
1

)

. They add up to −1 + 1
2 = − 1

2 .

For a general degree coefficient of polynomial K (i.e., when

|S| = K), by using a similar argument, the coefficient is

(−1)K
[

∑K
y=0

(−1)y

y+1

(

K
y

)

]

, which can be simplified as

(−1)
K

K
∑

y=0

(−1)y

y + 1

(

K

y

)

= (−1)
K

K
∑

y=0

(−1)y

y + 1

K!

y!(K − y)!

= (−1)
K 1

K + 1

K
∑

y=0

(−1)y
(K + 1)!

(y + 1)!(K − y)!

=
(−1)

K+1

K + 1

K
∑

y=0

(−1)y+1

(

K + 1

y + 1

)

=
(−1)

K+1

K + 1

[

(−1 + 1)K+1 − (−1)0
]

=
(−1)

K

K + 1
.

Combining the above yields (18). Finally, we plug Eq. (17) in

Eq. (16) and get

lim
t→∞

E
[

x
t+1
]

= lim
t→∞

E

[

m
∑

i=1

uiE

[

Xi
∑m

j=1 Xj

∣

∣

∣
A1 ̸= ∅

]]

=

m
∑

i=1

uipi

(

1 +
∑m

j=2 (−1)
j+1 1

j

∑

S∈Bj

∏

z∈S pz

)

1−∏m
i=1(1− pi)

,

where Bj ≜

{

S
∣

∣

∣
S ¦ [m] \ {i} , |S| = j − 1

}

.

Special cases.
a) When probabilities are uniform, i.e., pi = p for i ∈

[m]: The coefficient of each term in (3) becomes

p(1 +
∑m

j=2(−1)j+1 (
m−1

j−1
)

j
pj−1)

1− (1− p)m
(a)
=

p(1 +
∑m

j=2(−1)j+1 (
m

j )
m

pj−1)

1− (1− p)m

=
1

m
·
mp+

∑m

j=2(−1)j+1
(

m

j

)

pj

1− (1− p)m

(b)
=

1

m
·
mp+

∑m

j=2(−1)j+1
(

m

j

)

pj

mp+
∑m

j=2(−1)j+1
(

m

j

)

pj
=

1

m
,

where equality (a) holds because j
(

m
j

)

= m
(

m−1
j−1

)

, equality

(b) holds because

1− (1− p)m
(c)
=

m
∑

j=1

(−1)j+1

(

m

j

)

pj = mp+

m
∑

j=2

(−1)j+1

(

m

j

)

pj ,

where equality (c) holds because of binomial theorem.

Consequently, (3) reduces to the unbiased global optimum

lim
T→∞

E
[

x
T
]

=
1

m

m
∑

i=1

ui = x
⋆.

b) When clients local distributions are homogeneous,

e.g., ui = u for all i ∈ [m]: (3) reduces to

∑m
i=1 pi

[

1 +
∑m

j=2 (−1)
j+1 1

j

∑

S∈Bj

∏

z∈S pz

]

1−∏m
i=1 (1− pi)

u. (22)

Let us define Cj ≜

{

S′
∣

∣

∣
S′ ¦ [m], |S′| = j

}

. Next, we show

that
∑

S′∈Cj

∏

z′∈S′ pz′ =
∑m

i=1
pi

j

∑

S∈Bj

∏

z∈S pz . We start

from the R.H.S. Take the occurrence of A = px1
px2

. . . pxj
as

an example, where x1 < x2 < . . . < xj . Since it is equally

possible for px1
, px2

, . . . and pxj
to be the leading term (i.e.,

pi in (22)), we then have
(

j
1

)

many A terms in the R.H.S.
(

j
1

)

=
j will cancel the original coefficient 1

j
at each term. Hence,

the equality holds. Consequently, (22) simplifies to (23).

∑m
j=1 (−1)

j+1∑

S′∈Cj

∏

z′∈S′ pz′

1−∏m
i=1 (1− pi)

= 1, (23)

where the equality holds because of the expansion of the term
∏m

i=1(1− pi). Finally, we get

lim
T→∞

E
[

x
T
]

= u. (24)

(24) indicates that the global objective will recover each

client’s local optimums under even heterogeneous participation

probability pi’s when clients’ local data distributions are

homogeneous.

Proof of Proposition 2. In our work, the probabilities pti g
c. Therefore, define Ymin as the random variable of the

ordinary geometric distribution with success probability c.
We have E [Ymin] = 1/c. [45, Theorem 3.2] tells us that

E [t− τi(t)] f E [Ymin] = 1/c.

Proof of Theorem 1. In this proof, we combine all the above

intermediate results to show the final theorem.

(a) Taking expectation over the remaining randomness and a

telescoping sum.

1

T

T−1
∑

t=0

E
[

F (x̄t+1)− F (x̄t)
]

f −sη

3

1

T

T−1
∑

t=0

E

[

∥

∥∇F (x̄t)
∥

∥

2

2

]

+ 6Lη2s2
(

κ2L2 + 1
) (

σ2 + ζ2
)

+ ηs
L2

mT

T−1
∑

t=0

E

[

∥

∥

x
t
i − x̄

t
∥

∥

2

2

]

,

where inequality (a) holds because of Assumption 4.

(b) Plugging in Lemma 4 and Assumption 4.

F ⋆ − E
[

F (x̄0)
]

T

f 9η2s2L

[

κ2L2 + 1 + 16ηs2
ρsL

(

1−√
ρ
)2

]

(

σ2 + ζ2
)

− sη

3

(

1− 162η2s2
ρ
(

β2 + 1
)

L4

(

1−√
ρ
)2

)

1

T

T−1
∑

t=0

E

[

∥

∥∇F (x̄t)
∥

∥

2

2

]

.

(25)
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We know from η f 1−√
Ä

108L2s3(´2+1)(1+»2L2) f
1−√

Ä

18(´2+1)L2s
that

1− 162η2s2
ρ
(

β2 + 1
)

L4

(

1−√
ρ
)2

g 1− 162ρ
(

β2 + 1
)

L4

(

1−√
ρ
)2

(

1−√
ρ
)2

324 (β2 + 1)
2
L4

g 1

2
.

In addition, we also have κ2L2+1+16ηs3 ÄL

(1−√
Ä)

2 f κ2L2+

1 + 1
1−√

Ä
. Therefore, rearrange the terms in (25), it follows

that

1

T

T−1
∑

t=0

E

[

∥

∥∇F (x̄t)
∥

∥

2

2

]

f 6
(

F (x̄0)− F ⋆
)

ηsT

+ 54ηsL

(

κ2L2 + 1 +
1

1−√
ρ

)

(

σ2 + ζ2
)

.

APPENDIX B

EXPERIMENTAL SETUP

Hardware and Software Setups. The simulations are per-

formed on a private cluster with 64 CPUs, 500 GB RAM and

8 NVIDIA A5000 GPU cards. We code the experiments based

on PyTorch 1.13.1 [46] and Python 3.7.16. Our code is accessi-

ble at https://github.com/mingxiang12/FedPBC.

Neural Network and Hyper-parameter Specifications.

We initialize the customized CNNs using the Kaiming

initialization. A decaying learning rate schedule η =
η0/
√

(t/10) + 1 is adopted. The initial local learning

rate η0 and the global learning rate ηg are searched,

based on the best performance after 500 global rounds,

over two grids {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005} and

{0.5, 1, 1.5, 5, 10, 50}, respectively. We set β = 0.01, which

is tuned over a grid of {1, 0.5, 0.1, 0.05, 0.01, 0.005} × 10−2,

for F3AST [12].

Missing algorithm descriptions. In this section, we specify

the missing essential hyperparameters for specific algorithm

implementations. As recommended by [27], we choose K =
50 for FedAU without further specification. Note that K is an

algorithmic hyperparameter in FedAU. Adopting the setup in

[12], we set the communication constraint to be 10 clients for

F3AST.

Datasets. All the datasets we evaluate contain 10 classes of

images. Some data enhancement tricks that are standard in

training image classifiers are applied during training. Specifi-

cally, we apply random cropping to all datasets. Furthermore,

random horizontal flipping is applied to CIFAR-10 and CINIC-

10. SVHN [41] dataset contains 32×32 colored images of 10

different number digits. In total, there are 73257 train images

and 26032 test images. CIFAR-10 [42] dataset contains 32×32

colored images of 10 different objects. In total, there are 50000

train images and 10000 test images. CINIC-10 [43] dataset

contains 32×32 colored images of 10 different objects. In

total, there are 90000 train images and 90000 test images.

Transition probabilities
qt⋆i qtiConditions

qt⋆i · (1− pti) f pti 0.05 0.05 · 1−pt
i

pt
i

qt⋆i · (1− pti) > pti
pt
i

1−pt
i

1

TABLE III: The construction of qti and qt⋆i .

qt⋆i

qti

OFF ON1− qt⋆i 1− qti

Fig. 7: An illustration of the Markovian transition probabilities.

Constructions of Markov transition probabilities. Recall

that the link status in Markovian unreliable scheme is dic-

tated by a Markov chain, whose initial states are based on

Bernoulli(pti). Fig. 7 plots the Markov chain. Let qti and qt⋆i
define the transition probability from the “ON” state to the

“OFF” state and from the “OFF” state to the “ON” state,

respectively. In the experiments, we aim to construct qti and

qt⋆i so that a stationary distribution is met as

qti · pti = qt⋆i ·
(

1− pti
)

. (26)

Concretely, we first assume that qt⋆i = 0.05 is an external

choice. If qt⋆i · (1− pti) > pti, we adjust qti and qt⋆i to ensure

(26). Please find the details in Table III.

Ablation Experiments. In this part, we conduct ablation

experiments to study the impact of different parameters on

the performance of FedPBC and the other baseline algorithms.

Specifically, we evaluate all algorithms on the SVHN dataset

under the Bernoulli unreliable communication scheme with

time-varying pti’s. In any set of experiments, only one system

design parameter is changed, while the others remain the

same as in Table I. We report the mean test accuracy over

the last 100 rounds in bar plots in Fig. 8. Algorithms are

divided into two groups: those with additional memory or

known historical statistics (bars with backslashes) and those

without. It is observed that FedPBC outperforms the baseline

algorithms not aided by memory in almost all cases (except

when α = 1.0 by FedAU in Fig. 8a and σ0 = 1.0 by FedAU in

Fig. 8d.) The reason why FedPBC trails behind FedAU in the

above two cases is worth further investigation. Compared to

memory-aided algorithms, although MIFA occasionally dwarfs

FedPBC, the benefit margin is lower than 2% in test accuracy.

Impact of data heterogeneity α. In the presence of more

homogenous local data, i.e., a larger α, the bias phenomenon

gradually disappears as the local objectives become inter-

changeable, which is confirmed by Fig. 8a from the on-par

performance of almost all algorithms when α = 1.0.

Impact of fluctuation γ. The magnitude of the sine function

is defined as γ and thus governs the fluctuations of pti’s. It can

be seen that the test accuracies of all algorithms decrease as

γ increases. This is intuitive, as enlarged fluctuations impose

new challenges. It is observed that FedPBC outperforms all

algorithms that are not aided by memory.
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(a) The impact of data heterogeneity α.
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(c) The impact of a cutting-off lower bound δ.
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(d) The impact of contribution heterogeneity σ0.

Fig. 8: The test accuracies in the ablation experiments. In each plot, only one system design parameter is changed. The others remain the
same as in Table I. All experiments are evaluated on the SVHN dataset under Bernoulli with time-varying unreliable uplinks. The bars with
backslashes refer to the algorithms requiring extra memory or known historical statistics.

Impact of a cutting-off lower bound δ. Recall that pi’s
might be too small and close to 0 due to the unbalanced

class contributions in r. We show in Lemma 3 that a smaller

lower bound c of pti’s slows down convergence and incurs a

looser bound in Theorem 1. Notice that FedPBC remains the

best among the algorithms not aided by memory in terms of

test accuracy. At one challenging extreme (when δ = 0.001),

all algorithms experience significant drops in accuracy, in

particular MIFA. This confirms our conjecture that the old

gradient might lead to staled updates and affect performance.

Impact of contribution heterogeneity σ0. A smaller σ0

leads to a more even contribution of each class and thus

more homogeneous pi’s. Hence, it is not surprising to find

that many baseline algorithms attain accurate test predictions

when σ0 = 1.0. In contrast, FedPBC shadows all baseline

algorithms except MIFA in the highly heterogeneous scenario

where σ0 = 20.0.
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