
Probe-Me-Not: Protecting Pre-trained

Encoders from Malicious Probing

Ruyi Ding, Tong Zhou, Lili Su, Aidong Adam Ding, Xiaolin Xu, Yunsi Fei
Northeastern University, Boston, MA 02115, USA

{ding.ruy, zhou.tong1, l.su, a.ding, x.xu, y.fei}@northeastern.edu

Abstract—Adapting pre-trained deep learning models to cus-
tomized tasks has become a popular choice for developers to cope
with limited computational resources and data volume. More
specifically, probing–training a downstream head on a pre-trained
encoder–has been widely adopted in transfer learning, which
helps to prevent overfitting and catastrophic forgetting. However,
such generalizability of pre-trained encoders raises concerns
about the potential misuse of probing for harmful intentions,
such as discriminatory speculation and warfare applications.
In this work, we introduce EncoderLock, a novel applicability
authorization method designed to protect pre-trained encoders
from malicious probing, i.e., yielding poor performance on
specified prohibited domains while maintaining their utility in
authorized ones. Achieving this balance is challenging because of
the opposite optimization objectives and the variety of downstream
heads that adversaries can utilize adaptively. To address these
challenges, EncoderLock employs two techniques: domain-aware
weight selection and updating to restrict applications on prohibited
domains/tasks, and self-challenging training scheme that iteratively
strengthens resistance against any potential downstream classifiers
that adversaries may apply. Moreover, recognizing the potential
lack of data from prohibited domains in practical scenarios,
we introduce three EncoderLock variants with different levels
of data accessibility: supervised (prohibited domain data with
labels), unsupervised (prohibited domain data without labels),
and zero-shot (no data or labels available). Extensive experiments
across fifteen domains and three model architectures demonstrate
EncoderLock’s effectiveness over baseline methods using non-
transferable learning. Additionally, we verify EncoderLock’s
effectiveness and practicality with a real-world pre-trained
Vision Transformer (ViT) encoder from Facebook. These results
underscore the valuable contributions EncoderLock brings to the
development of responsible AI.

I. INTRODUCTION

As the complexity of learning tasks increases, leveraging

pre-trained models becomes a popular strategy for developers

to train their customized models efficiently. Among various

transfer learning methods, model probing has emerged as one

of the most common and lightweight strategies to utilize pre-

learned knowledge effectively [1]–[3]. It involves freezing the

encoder parts of pre-trained models while fine-tuning only the

downstream heads. The encoders often include early layers

of pre-trained models with more complex structures, which is

responsible for extracting useful information from raw data

to latent representations, on which downstream heads perform

specific tasks such as classification and generation [4], [5].

Probing offers several advantages, including resource effi-

ciency, because of its low requirements on data and computa-

tional resources, and semantic consistency, as it helps avoid

catastrophic forgetting–the performance reduction due to the

encoder’s loss of pre-learned knowledge after extensive fine-

tuning [6]–[8]. Furthermore, probing allows the pre-trained

encoder to be used as a black-box, either as local private

models [9]–[11] or cloud services through APIs [12]–[14],

ensuring better intellectual property protection [15]. Nowadays,

many companies, such as Clarifai [12] and OpenAI [13], offer

commercial encoder APIs, allowing users to input data and

obtain latent feature vectors, which can then be used for various

downstream real-world applications.

However, the general availability of the pre-trained encoder

for probing also raises concerns about malicious probing,

i.e., users can probe the encoder for unethical or harmful

tasks [16]. Examples include building classification heads for

discriminatory speculation [17], [18] or autonomous weapons

in warfare applications [19]. To address these concerns, model

owners have set strict policies regarding the utilization of pre-

trained encoders. For instance, OpenAI explicitly prohibits

users from employing their encoder services for “any illegal,

harmful, or abusive activity”. However, relying solely on

policies, without concrete technological barriers, is insufficient

to prevent model misuse. Considering malicious probing not

only poses ethical risks but also represents a serious form

of infringement on the intellectual property of model owners,

design-time countermeasures are urgently needed for protecting

the encoders with applicability authorization [20].

Proactively preventing pre-trained encoders from malicious

probing presents three challenges. Challenge 1: Integrity of

Pre-trained Encoder. The protection strategy should maintain

the encoder’s functionality on authorized domains (those

for which the encoder is designed), while restricting misuse

on prohibited domains (those not allowed due to malicious

intent). Furthermore, it is advisable to have a small impact on

admissible domains (those are gray-listed and not explicitly

considered during encoder design). Challenge 2: Robustness to

Malicious Probing. Malicious users can customize downstream

heads with various configurations (e.g., hyper-parameters and

classifier architectures). The protection method must be robust

against these diverse setups. Challenge 3: Accessibility to

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.24928
www.ndss-symposium.org

E
m

b
ed

d
in

g
sAuthorized

Domain

Prohibited

Domain

Acc. 95%

Acc. 80%

Authorized

Domain

Prohibited

Domain

Probing

Acc. 94%

Acc. 10%

Pre-trained Encoder

Probing

Supervised EncoderLock

Data + Label from

prohibited domain

Unsupervised EncoderLock

Only Data from

prohibited domain

Zero-shot EncoderLock

NO data but descriptions of

prohibited domain

E
m

b
ed

d
in

g
s

Locked Encoder
Changed weights

Unprotected Encoder

`

Fig. 1. Applicability Authorization with EncoderLock: Fixed pre-trained
encoders accept user inputs and return representations. Users can utilize them
for various customized tasks by probing with downstream heads. EncoderLock
aims to prevent malicious probing to pre-defined prohibited domains, which
may have different levels of data accessibility, marked by different colors.

Prohibited Domains. Effective protection requires pre-defined

prohibited domains, while a lack of samples from these domains

can significantly impact its performance. A few studies design

protection against direct applicability on prohibited tasks–

malicious users can do inference but no further fine-tuning [20],

[21]. They introduced a training strategy considering solely a

given prohibited dataset with clear labels and an authorized

dataset, called Non-Transferable Learning (NTL). Unfortunately,

NTL doesn’t apply to pre-trained encoders–as malicious users

can further probe encoders with downstream heads using

prohibited data. Therefore, we propose EncoderLock, a new

applicability authorization strategy for pre-trained encoders.

EncoderLock is based on our new three-level threat model

for model applicability authorization for pre-trained encoders,

following a paradigm akin to that used in representation

learning, as illustrated in Fig. 1: a) Level 1 Label-enriched:

The provider has a labeled dataset of the prohibited domain,

b) Level 2 Label-free: The provider only has an unlabeled

dataset, c) Level 3 Theme-only: The provider has no data

but knows the theme they wish to exclude the encoder from

processing. These levels represent real-world model providers

with different data accessibility. Throughout the paper, we will

use this color coding to represent these data accessibility levels.

EncoderLock proposes the following solutions to address

all three challenges against malicious probing. First, we

propose domain-aware weight selection and updating, which

identifies critical weights to the target domain and adjusts

them, successfully restricting the model’s transferability to the

target domain while minimizing its effect on other authorized

domains (addressing Challenge 1). To ensure the robustness

of EncoderLock against customized malicious downstream

heads (addressing Challenge 2), we introduce a minimax

optimization–self-challenging training, which refines the en-

coder’s feature space iteratively by continuously adjusting

auxiliary downstream heads. Together, these strategies con-

stitute supervised EncoderLock , which effectively addresses

the Level 1 scenario. To address Challenge 3, we extend two

EncoderLock variants for stricter accessibility to the prohibited

domain. For Level 2 where only an unlabeled target dataset is

available, we introduce unsupervised EncoderLock , including

a novel regularization term based on contrastive loss in the

feature space, which deliberately obfuscates features in the

target dataset. For Level 3, we propose zero-shot EncoderLock ,

which leverages an AI agent and a text-to-image generative

model to build a reliable pathway from semantic description to

an unlabeled synthetic dataset. To ensure the synthetic dataset

is representative of the target domain and comprehensive, we

propose a prompt refining method utilizing the AI agent.

Our Contributions: We propose EncoderLock, a novel

and proactive protection on the pre-trained encoder against

malicious probing. The contributions of this work include:

1) EncoderLock provides a robust applicability authorization

framework to owners of pre-trained encoders. It maintains

the encoder’s performance on authorized domains with the

domain-aware weight selection algorithm and offers robust

defense against diverse customized probing through a self-

challenging training scheme.

2) We propose a three-level threat model following the practical

data availability of representation learning. Correspondingly,

we present three variants of EncoderLock with novel

techniques to address different levels of target domain data

accessibility, tackling realistic comprehensive scenarios.

3) We conduct extensive experiments to evaluate EncoderLock

across twelve domains and three encoder architectures,

including a large, real-world Vision Transformer [22].

Our results demonstrate the effectiveness of all three

EncoderLock variants. Specifically, we assess EncoderLock

in a real applicability authorization scenario, preventing

a pre-trained encoder from being misused for military

purposes while keeping its generalizability to civilian ones.

II. BACKGROUND

A. Pre-trained Encoders and Model Probing

Pre-trained models are widely used in computer vision [23]–

[25], representation learning [26]–[29], and natural language

processing [30]–[32], which embed pre-learned knowledge as

the model initialization to reduce the complexity in training new

tasks. Taking transfer learning in vision tasks as an example,

there are three common strategies:

Full Fine-tuning: Full fine-tuning leverages the entire pre-

trained model as the training initialization and fine-tunes it

with the target dataset. It often has good performance but has

the risk of stability and catastrophic forgetting [6], [33].

Prompting: Rather than finetune the model parameters,

prompting redirects the pre-trained model via modification

on the inputs (i.e., visual prompt). Prompting is efficient but

performance experiences a larger degradation [34]–[37].

Model Probing: Probing freezes the early layers of the pre-

trained model (e.g., deep convolutional layers or self-attention

layers [38], [39]) as the fixed pre-trained encoder and fine-tunes

the downstream classifier. It has a small training cost and high

stability of the training process [40]–[42].

2

In this work, we focus on model probing as it is more

efficient and stable than fully fine-tuning and has better

performance than prompting. Probing also supports pre-trained

encoders from different training schemes, which can be

categorized into three types: supervised, unsupervised, and self-

supervised. For supervised learning, the model (i.e., encoder

and downstream head) is trained directly using labeled training

data and a loss function (e.g., cross-entropy loss) [43]. Unsuper-

vised learning aims to learn from unlabeled data, using methods

such as Gaussian Mixtures Model (GMM) [44], Variational

Autoencoder (VAE) [45], and Generative Adversarial Network

(GAN) [46]. Self-supervised learning aims to train an encoder

to predict one part of data given another part of the input [47]–

[49]. It leverages the inherent data characteristics and shows

increasing robustness and generalizability of the encoder [50].

Specifically, given the input (e.g., an image), one will use

data augmentation operations (e.g., cropping, color jitter, and

adding random noise) to build augmented images. The training

objective is to make the encoder generate similar embeddings

for augmented images from the same input, denoted as positive

pairs; while ensuring the discrepancy of embeddings from

different images, denoted as negative pairs. The training of

a self-supervised encoder utilizes contrastive loss [47], [48],

which increases the similarity between positive pairs but

decreases those of negative pairs. Our design of EncoderLock

considers various data accessibility of prohibited domains,

which aligns with the training process of pre-trained encoders–

with or without labeled datasets.

B. Applicability Authorization

Recently, applicability authorization, a new IP protection

scheme, has been proposed to address the rising concerns of IP

infringement on DNN models [20], [21], [51], [52]. Traditional

model IP protection aims to protect the rights of owners of

DNN models with two typical defense strategies: ownership

verification and usage authorization. Ownership verification is

designed to trace the illegal behavior of IP infringement using

methods such as embedding watermarks during the training

procedure or recording fingerprints of the model owner [53]–

[55]. In contrast, usage authorization aims to restrict user access

to the model, ensuring that only verified, trusted users can

access with assigned authorization keys [56], [57]. Instead of

protecting the model parameters or hyper-parameters directly

like traditional methods, applicability authorization focuses

on the unauthorized transfer of the pre-trained models [51].

Specifically, it aims to prevent malicious transfer learning

through which an attacker can abuse the pre-trained model for

prohibited data or tasks, i.e., non-transfer-learning. In this work,

we further propose EncoderLock to address the challenges of

applicability authorization of pre-trained encoders to safeguard

them from unauthorized probing.

C. Non-Transferable Learning (NTL)

Wang et al. [20] introduced NTL for applicability authoriza-
tion of an entire model without any fine-tuning. In particular,

NTL leverages a negative regularization term on the model’s
target domain performance:

LNTL = LS +RT (1)

where LS is the Kullback–Leibler (KL) divergence/loss on

the source dataset, aiming to retain the model’s performance

on the source domain. Model non-transferability comes from

the regularization term, defined as RT = −min(´, ³ · LT ·
Ldis) [20], where LT is the KL loss on the target dataset, Ldis

measures the feature space distance between the source and

target domains (using Maximum Mean Discrepancy), and ³
and ´ are scaling factors. Another prior work [21] proposes

an additional CUTI-domain for regularization on private style

features with the RT as −LT . In addition, previous works also

proposed ‘source-only’ NTL for cases when there is no target

data available. As the term ‘source-only’ indicates, this strategy

leverages generative models (i.e., GAN) to create a synthetic

dataset, which serves as the boundary from the source domain

to prohibit the model’s transferability to all other domains.

D. Limitations of Prior Works

Prior works focus on the case when the attacker uses

the trained model directly but cannot fine-tune it [20], [21].

However, with the increasing popularity and low cost of probing

the pre-trained (fixed) encoder, the applicability authorization

(model non-transferability) can be bypassed in a few probing

epochs. Moreover, previous methods predominantly add a

regularization term solely based on the model outputs. Although

[20] introduces a feature space distance as a regularization

between the source and target domains, they cannot ensure

restriction as the class discrepancy might still be large on the

feature space. Furthermore, previous methods only consider

the case of supervised NTL, i.e., the defender has access

to one labeled target dataset and one labeled source dataset.

Our Challenge 3 is closer to the practical scenario where the

defender lacks knowledge about the prohibited target. Pre-

trained encoders and model probing bring new challenges

in data availability for applicability authorization. Our work

EncoderLock aims to address them accordingly.

III. THREAT MODEL

In this work, we tackle applicability authorization for pre-

trained encoders, aiming to prevent malicious users from

probing the encoder for harmful tasks (i.e., unethical, illegal, or

abusive activities). In this paper, we focus on vision encoders

and image classification as the downstream task.

A. Malicious Users

The attackers are users with malicious intent to breach the

usage policy of fixed pre-trained encoders with probing [58].

Objective. Their objective is to exploit pre-trained encoders for

tasks that are not allowed, specifically, accurately classifying

samples from prohibited domains. Other forms of DNN IP

infringement of the pre-trained encoder, e.g., model stealing

attacks, are out of the scope of this paper.

Capabilities. Capabilities of the malicious users include:

3

Unsupervised EncoderLock

Section IV. D

ÿÿ

ÿĀ ����Āÿ�
Update critical weights

rotate

clip

jitter

rotate

clip

jitter

Augmentations

The start of Round �
for EncoderLock

Supervised EncoderLock

Section IV. C

ÿÿ
ÿĀ ���

Update critical weights

�Ā
þ�Ā�

þ�ÿ

þ�Ā�+1

Self-challenging

Copy

Zero-shot EncoderLock

Section IV. E

����Āÿ�
Update critical weights

rotate

clip

jitter

Augmentations

Theme AI agent Text-to-image ÿĀ′
Refine prompts

ÿÿ
ÿĀ′

Encoder ��

Critical weights set �r−1 �ÿ�Ā

Gradient flow

layer

w
ei

g
h

t | ∇�ÿ�,�∇�Ā�,� | ïî ⋱ îï
Weight importance score Update critical

weights set to �r
Select top

N weights

ÿÿ
 ýÿ
 ÿĀ

ýĀ

Synthetic

Dataset

Domain-aware Weight Selection

Section IV. B

Fig. 2. Overview of the proposed EncoderLock framework and paper organization. The procedure in Round r includes: 1.domain-aware critical weight

selection algorithm: take data batches BS and BT from the authorized source dataset DS and the prohibited target dataset DT , respectively, and calculate
the weight importance with gradients of loss LS and LT and choose critical weights to update for the round r as Nr , note here specific losses depend on
different levels of accessibility of the target domain; 2. EncoderLock weight update algorithm (with three variants for the three levels of target domain dataset),
utilizing the supervised EncoderLock loss Lel, unsupervised contrastive loss Lcont

el
and the generated synthetic dataset D′

T
, respectively.

• They can probe a pre-trained encoder using inputs from

prohibited target domains and utilize the representations to

train a local downstream classifier for inference. Although

they query the encoder (as a service or local private model), it

is a black-box with both structure and parameters unknown.

• Users can build their own downstream classifiers, customiz-

ing the classifier’s hyper-parameters and fine-tuning the

parameters with any learning rates and optimizers.

• Following the common setting of probing, we assume that

the attacker has a small amount of data from the prohibited

domain for fine-tuning (e.g., 10% from the target domain).

B. Model Owner

Model owners aim to safeguard the pre-trained encoder

against malicious probing proactively. Following the common

definition of transfer learning, the dataset on which the encoder

is trained is defined as the source domain (authorized

domain), and the dataset that the (malicious) downstream

classifier is trained for is the target domain (prohibited

domain). Moreover, we define data domains other than these

two as admissible domains, indicating that the usage of the

encoder on these domains is allowed but their performance is

not guaranteed like the source domain.

Protection Objective. The major goal includes: restricting

the pre-trained encoder from being probed for the prohibited

domain; preserving its performance on the authorized domain.

Capabilities. The capabilities of the model owner include:

• The model owner has full control of the encoder to adjust the

architecture, hyper-parameters, and parameters, and manage

training strategies for the encoder before deploying it.

• The owner has no access to the user’s dataset after deploy-

ment to detect if the probing samples belong to the prohibited

domain, and has no knowledge about the probing process or

downstream heads.

• The owner may have different levels of accessibility to the

prohibited domain, from high to low: a) Level 1: The owner

has a labeled target dataset; b) Level 2: The owner obtains

the target dataset, but it is unlabeled; c) Level 3: The owner

only has an abstract concept about the prohibited target

domain (i.e., a text description), which is called a ‘theme’. We

propose three variants of EncoderLock to address different

levels of accessibility, respectively.

IV. PROPOSED FRAMEWORK: ENCODERLOCK

In this work, we propose a new applicability authorization

strategy for a pre-trained encoder against malicious probing,

which we call EncoderLock. Fig. 2 depicts an overview of

the framework, which consists of two major steps - domain-

aware weight selection algorithm and specific weight updating

algorithms catering to the different levels of accessibility of the

target domain. By managing the weights, EncoderLock restricts

the encoder from being probed on the prohibited target domain

to extract useful information, while ensuring that the encoder

correctly responds to authorized (source) inputs. Existing

literature mostly focuses on protecting pre-trained models from

being transferred [20], [21], while our EncoderLock targets

pre-trained encoders, with several unprecedented challenges

outlined in Section IV-A.

4

A. Design Objectives and Challenges for EncoderLock

In addition to the traditional design objective of controlling

the transferability of pre-trained models to prohibited target

domains [20], EncoderLock faces three additional challenges

that need to be effectively addressed.

Challenge 1. Preservation of Integrity: The integrity of

the encoder lies in maintaining the pre-learned knowledge

about the authorized domains. One question is raised: how

can EncoderLock make minimal modifications to the encoder

to restrict it on the prohibited domain while preserving the

integrity on the source domain?

Challenge 2. Robustness to malicious probing: When

malicious users adjust the downstream heads for the prohibited

domain with any learning rate and optimizer, how to success-

fully ‘lock’ the encoder against malicious probing?

Challenge 3. Different target domain data accessibility: In

reality, as the defender (model owner) may have various levels

of knowledge about the target domain, how should Encoder-

Lock be designed for practical scenarios including unlabeled

datasets or even no samples from prohibited domains?

B. Domain-aware Weight Selection

To address Challenge 1, we propose domain-aware weight

selection to selectively update weights that are critical only

for the target domain, thereby minimizing EncoderLock’s

negative impact on the integrity of the pre-trained encoder.

Our strategy is motivated by two observations of DNN

models: 1) Weight importance varies across different domains.

Different sets of critical weights in the same model may

respond to different domains, which can be measured by the

weight’s gradient magnitude. This notion has been exploited

in achieving domain-specific pruning [59], effective fault

injections on DNN parameters [60]–[62], and watermarking

embedding [54]. Fig. 3 demonstrates one example of different

weight importance for different domains. The model is a multi-

layer perceptron network trained on MNIST (source domain),

and the distribution of the weight gradients is shown in red

color. When this model runs inference for another dataset

USPS (target domain), the weights gradient profile is shown in

blue color, distinctly different from that on MNIST. 2) Over-

parametrization—DNNs often have more weights than required,

with a large portion being insignificant. This characteristic is

widely utilized in model compression for efficiency [63]–[65],

where only critical weights are retained while others are pruned.

Our Domain-aware Weight Selection (DWS) algorithm is

described in Function 1. The search process runs iteratively.

In the rth round, it uses datasets from the source and target

domains, DS and DT , to search for and update the critical

weight set Nr. It is important to note that the composition of

DT depends on the level of data accessibility. For supervised

EncoderLock (Level-1), inputs from the target dataset have

labels, and the loss LT is calculated using cross-entropy, similar

to LS . In the unsupervised and zero-shot EncoderLock (Level-

2 and Level-3), the target dataset consists of unlabeled or

synthetic images, and we propose using a contrastive loss

for these unlabeled inputs, presented in Eq.(6). The weight

Ou
tp

ut
 N

eu
ron

 In
de

x

Input Neuron Index

Gradient Value

MNIST USPS

Fig. 3. Visualization of weight importance in a pre-trained model—The
X-Y plane represents the weight matrix of a selected dense layer in a model
trained on MNIST and probed for USPS. The color and height indicate each
weight’s importance to the output (the higher and darker, the more important).

Function 1 Domain-aware Weight Selection

Input: Source domain DS , Target domain DT , Pre-trained encoder
parameters φ, Number of new critical weights N , Set of critical
weights for the previous round Nr−1

Output: Set of critical weights Nr

1: function DWS(DS , DT , φ, Nr−1, N)
2: Sample a training batch BT from DT

3: Sample a training batch BS from DS

/* Compute gradients for both batches */
4: ∇LT ← ComputeGradients(φ, BT)
5: ∇LS ← ComputeGradients(φ, BS)

/* Compute scores and select critical weights */

6: Compute score for ith weight in lth layer:

∣

∣

∣

∣

∇L
l,i

T

∇L
l,i

S

∣

∣

∣

∣

7: Select top N weights: argmaxN

∣

∣

∣

∣

∇L
l,i

T

∇L
l,i

S

∣

∣

∣

∣

8: Nr ← Nr−1 ∪ {selected weights}
9: return Nr

10: end function

importance score is defined as the magnitude ratio of gradients

for the ith weight in layer l between the target and source

domains |∇Ll,i
T /∇Ll,i

S |. This score is used to identify weights

that are critical to target domains but less crucial to the source.

The search process is iterated across R rounds, with

N weights selected in each round, resulting in a total of

N × R weights to update. The values of N and R are two

hyperparameters that control the number of altered weights

and will be discussed further in Section VI-A. Such design

allows us to process the datasets in batches and implement the

self-challenging training scheme (see Section IV-C2).

In Section IV-C to IV-E, we further discuss more details

about how to update the selected weights and how to achieve

robustness against downstream fine-tuning (Challenge 2). The

method varies across different levels of accessibility to the

target domain, as shown in three branches of Fig. 2.

C. Supervised EncoderLock

Level 1 EncoderLock is supervised, with a labeled target
domain dataset. Specifically, given the source domain DS and
target domain DT , with (xS , yS) ∈ DS and (xT , yT) ∈ DT

5

as the corresponding datasets, let fφ denote the pre-trained
encoder, and CθS and CθT denote the auxiliary downstream
task classifiers for the source and target domains, respectively.
Our objective is to find an optimal encoder ϕ∗ that minimizes
LS but maximizes LT , which are expressed as:

LS = L(CθS (fφ(xS)), yS), LT = L(CθT (fφ(xT)), yT) (2)

where L is the classification loss function (i.e., cross-entropy

loss) and is used to compute gradient in Algorithm 1 for

weight selection. To restrict the impact on the encoder’s

generalizability, we require ∥ϕ∗−ϕ∥0 f M (:=N ×R), where

∥ · ∥0 is ℓ0 norm and M signifies the weight change budget.

The fundamental supervised EncoderLock consists of three

steps: 1) Domain-aware weight selection, 2) Non-transferability

updating, and 3) Self-challenging downstream model training.

We run these three steps iteratively for R rounds or until

the accuracy of the auxiliary downstream classifier reaches

the early stopping criterion. For the three different levels of

target domain data accessibility, the weight search and update

algorithms are similar, but with different loss functions. But

the supervised EncoderLock, with its loss design for the output

space, requires an additional self-challenging training step to

ensure its robustness. We next discuss the other two design

steps for supervised EncoderLock in detail.
1) Weight Updating for Non-transferability: With critical

weights selected to update, we design a loss function in the
form of Equation (1), focusing on the regularization term RT to
mitigate the malicious probing for the target domain. Previous
regularization terms [20], [21] only consider the target domain,
which leads to unstable performance especially when LS and
LT are at different orders of magnitude. In particular, when
LS is very small (i.e., near zero), the introduction of RT will
cause a strong impact on LS . Therefore, we propose a new
log-ratio regularization term considering both LS and LT :

Lel = LS +RT , where RT = log(1 + α
LS

LT

) (3)

Such logarithmic regularization term gently penalizes the loss
ratio between the source and target, with ³ moderating the
balance between preserving the source domain accuracy and
enforcing the target domain non-transferability. Consequently,
the optimization objective for the encoder is defined as:

φ∗ = argmin
φ

Lel(φ, θS , θT) s.t. ∥φ∗ − φ∥0 fM ∀θS , θT (4)

2) Self-challenging Training Scheme: To update the encoder

weights in supervised EncoderLock following Equation (4), we

consider the auxiliary downstream classifier to compute LT .

However, malicious users have full control of the downstream

classifier, including adjusting the architecture and choosing the

optimization method, and can fine-tune the model parameters

based on the extracted features. Consequently, the performance

of the pre-trained encoder and the classifier on the target

domain can be improved. Relying solely on a fixed-weight

target classifier could lead to vulnerability, where supervised

EncoderLock may only be non-transferable for given auxiliary

classifiers but not for others the malicious user opts for.
To improve robustness against any potential malicious prob-

ing for supervised EncoderLock, we propose a self-challenging
training scheme with a minimax problem formulation as:

φ∗ = argmin
φ

max
θT

Lel(φ, θS , θT) s.t. ∥φ∗ − φ∥0 fM (5)

Algorithm 1 Self-challenging Training Scheme

Input: Pre-trained encoder with φ, Source domain DS , Target training
dataset Dtrain

T , Target validation dataset Dvalid
T , Number of critical

weights N , Number of rounds R, Desired target accuracy αgoal.
Output: Encoder with supervised EncoderLock φ∗

1: for r = 1 to R do
/* Initialize critical weights set for the first round*/

2: if r == 1 then
3: Initialize set Nr−1 ← ∅
4: end if

/* Begin Domain-aware Weight Selection */
5: Nr = DWS(DS , DT , φ, Nr−1, N)

/* Minimax optimization for enhancing robustness */
6: φ∗ ← optimize weights in Nr to minimize Lel (4)
7: Initialize an auxiliary downstream CT (·; θT)
8: Fine-tune CT using Dtrain

T with encoder φ∗

9: Compute accuracy αT of CT on Dvalid
T

/* Stop Criterion */
10: if αT < αgoal or ∥φ∗ − φ∥0 > N ×R then
11: return φ∗

12: end if
13: end for

Feature Space

Source Domain Samples Target Domain Samples

Class: Dogs

Class: Birds

Class: Anti-aircraft

Class: Combat vehicles

Fig. 4. Design motivation of unsupervised EncoderLock

Specifically, during the iterations of updating critical weights

in the encoder part, we also adjust the target downstream

models iteratively. It is noted that the training objective of the

target downstream models will be adversarial to EncoderLock’s

applicability objective—the fine-tuning aims to extract useful

features in the embeddings to enhance the target domain

performance. The retrained downstream model adjusts itself fre-

quently to create a challenging target downstream classifier that

will increase Lel (decreasing LT), prompting the supervised

EncoderLock to adjust more critical weights on the encoder

part. Algorithm 1 outlines this self-challenging training process.

To ensure the randomness of the target downstream classifiers,

every iteration we retrain it from scratch (with a random

initialization). The iterative training proceeds until the target

downstream classifier’s accuracy drops below a predefined

threshold or reaches the maximum number of altered weights

M . The self-challenging training scheme ensures a gradual and

smooth reduction in the encoder’s transferability, forcing the

encoder part to extract features that are less useful for the target

domain, thereby leading to more robust performance even when

the attacker probes the downstream model adaptively.

D. Unsupervised EncoderLock

In this section, we address Level-2 accessibility of the

target domain via unsupervised EncoderLock. This scenario

is practically relevant when the goal is to prevent transferring

to arbitrary sets of images while getting their labels is either

6

infeasible or expensive. Our method leverages the technique

from self-supervised representation learning [47], [48], which

builds a highly distinguishable feature space without labeling.

The design idea for unsupervised EncoderLock is as follows:

for the latent embeddings of samples from the source domain,

we aim to ensure their high discrepancy between classes; while

for those from the prohibited target domain, our objective is to

obfuscate the latent clusters boundary so that the embeddings

would not contain much information about the class. As shown

in Fig. 4, an expected encoder will automatically cluster the

samples from the source domain but blur the class boundaries

of the target domain. Due to such direct manipulation towards

the encoder’s feature space, the unsupervised EncoderLock

is always robust to different downstream heads and doesn’t

require further self-challenging training.
Towards this goal, we introduce a self-supervised regulariza-

tion term RT to be used in Equation (3). Specifically, given
a batch of samples from the target domain, we leverage data
augmentation, including random crop, color jitter, or Gaussian
blur [66], [67], to create a set of positive pairs and a set
of negative pairs. Any pair with a sample and an augmented
sample from the same original image is defined as positive, and
we denote their feature space as (zi, z̃i), where zi is defined as
the normalized embedding of the sample xi using the encoder
f . Any pair with augmented samples from different original
images is defined as negative, denoted as (zi, z̃j)i ̸=j . We
define the contrastive loss function Lcont as:

Lcont := −
1

NB

NB
∑

i=1

log(
sim(zi, z̃i)

∑NB

j=1
sim(zi, z̃j)

) (6)

where NB is the batch size, and sim(·, ·) computes the cosine

similarity between the normalized embeddings. We select pairs

from S to compute Lcont
S , and from T to compute Lcont

T . They

are used to compute gradients in Algorithm1.
The presented loss function aims to increase the similarity

between any positive pairs but reduce what between negative
pairs, effectively pushing the encoder to learn representations
that clearly distinguish similar samples from dissimilar ones
within feature space. We follow the regularization framework
in Eq. (3) and penalize ratios between contrastive losses:

Rcont
T = log(1 + α

Lcont
S

Lcont
T

)

For the unsupervised EncoderLock, self-challenging training

is not necessary because this loss function directly penalizes

the discrepancy of the feature space for the target dataset.

Therefore, as shown in Fig. 2, the procedure of unsupervised

EncoderLock in one round includes: 1) Domain-aware weight

selection with Lcont; 2) Update Encoder’s Non-transferability

with Rcont
T , without retraining the challenging classifier.

E. Zero-shot EncoderLock

In this section, we address Level-3 accessibility of the target

domain for EncoderLock, where the model owner even has no

target samples. This represents the most practical and relevant

scenario, as the definition of harmful content is often vague in

real-world applications. For instance, in most cases, a DNN

product’s user guidelines regulate prohibited content using text

descriptions of unethical or sensitive material. How to turn such

AI agent: Let’s start by testing a few initial
prompts for the stable diffusion model. These

prompts will focus on <military vehicles=

Similarity matrix between prompts:

(antique cannon, futuristic tank, 0.3), …

AI agent: The prompts Antique Cannon and

Futuristic Tank has a high similarity in the

latent space. Let’s refine them to Artillery

System and Combat Vehicles.

Antique Cannon

Stealth Bomber

Futuristic Tank

…
Drone Carrier

Nuclear Submarine

Artillery System

Stealth Bomber

Combat Vehicles

…
Drone Carrier

Nuclear Submarine

Similarity matrix between prompts:

(antique cannon, futuristic tank, 0.02), …

AI agent: All generated images with refined

prompts have low similarity. This dataset can

represent the theme <military vehicle=

Fig. 5. Building synthetic datasets for zero-shot EncoderLock

vague scope description into representative and comprehensive

target domain dataset is a challenge. We define the basic

knowledge about the target domain as a theme, which can

be in the form of a text description, keywords, or reference

figures. Using the target theme, zero-shot EncoderLock aims

to generate a synthetic dataset for applicability authorization

without relying on real-world samples or labels.

Fig. 5 presents the framework of zero-shot EncoderLock,

illustrating the process of generating a synthetic dataset for

“military vehicles”. Section V-D will showcase the full results.

First, we employ a large language model (e.g., GPT-4 [68])

as an AI agent to generate text inputs, known as prompts,

for the given theme. These prompts are then fed into pre-

trained text-to-image models (e.g., CLIP [69] and Stable

Diffusion [70]) to generate the synthetic dataset. To ensure the

synthetic dataset comprehensively covers the target domain,

we introduce a prompt refining framework. Using a pre-trained

vision encoder, we extract latent features from the synthetic

images and compute pairwise similarity scores between the

initial prompts. This similarity matrix serves as feedback to

the AI agent, enabling it to analyze the scores, identify similar

prompts, and refine them accordingly. For example, as shown

in Fig. 5, Antique Cannon and Futuristic Tank exhibit high

similarity due to their shared barrel feature. Consequently,

the AI agent revises these prompts to be Artillery System

and Combat Vehicles. The refinement process continues until

all prompt pairs demonstrate low similarity or the similarity

stops decreasing. Finally, we employ the synthetic dataset

generated in the last round for unsupervised EncoderLock

training, resulting in an encoder with restricted transferability

to the target “theme.”

V. EXPERIMENTS

A. Experiment Setup

Baselines: As the first of its kind work addressing malicious

probing of pre-trained encoders, there is no prior work for direct

comparison with our EncoderLock. The closest related work is

the SOTA non-transferable learning, including NTL [20] and

CUTI [21]. For such baseline work, we adopt the pre-trained

7

TABLE I
DATASETS USED IN EVALUATION OF ENCODERLOCK

Dataset Abbr. Type Feat. Supervised Unsupervised Zero-shot

MNIST [71] MT digits
Datasets that are used in
the baselines [20], [21].
All samples are resized
into (32, 32, 3) and the la-
bel space is 10.

√ √
-

USPS [72] UP digits
√ √

-
SVHN [73] SN digits

√ √
-

MNIST-M [74] MM digits
√ √

-
Synthetic Digits [75] SD digits

√ √
-

CIFAR-10 [76] CF image
√

- -
STL-10 [77] ST image

√
- -

EMNIST [78] EM char. 47-class characters
√

- -

CIFAR-100 [76] CF100 image 100-class images
√

- -

ImageNette [79] - image High resolution im-
ages with the shape of
(224, 224, 3).

√ √ √
ImageWoof [79] - image

√ √ √

Military Vehicle [80]1 - image
√ √ √

model, freeze the encoder part, and train a new downstream

head on the prohibited target domain to evaluate the baseline

model’s resistance against malicious probing.

Datasets: Table I lists the twelve datasets for our evaluation.

In addition to the five digits datasets used in the previous

work [20], [21], we also assess datasets with larger label spaces,

i.e., EMNIST (47 classes) and CIFAR-100 (100 classes). By

utilizing text-to-image generators, zero-shot EncoderLock is

evaluated with more complex datasets. We test ImageNette [79]

as the source dataset and the military vehicle dataset [80] as

the prohibited target2 following a practical scenario. Further,

we evaluate the influence of EncoderLock on three admissible

domains–ordinary vehicles3, weapons4, and animals5.

Models: Our method is assessed using three prevalent DNN

architectures: VGG-11 [81], ResNet-18 [82], and Vision

Transformer (ViT) [22]. We leverage the supervised pre-

trained models for VGG-11 and ResNet-186 and fine-tune

them on various authorized domains (source). The early

convolutional layers (residual blocks) of VGG-11 and ResNet-

18 are considered encoders, while the output dense layer(s) are

used as downstream heads for probing. ViTs utilize a vision

encoder structure that is trained with self-supervised learning.

Hyperparameters: Hyperparameters for supervised and unsu-

pervised EncoderLock can be found in Appendix A.

Metric: The metric to quantify the encoder’s resistance to

malicious probing is the relative accuracy drop in both the

target and the source domains, defined as acco−accm
acco

, where

acco is the probing accuracy of the original encoder, and accm
is the one when modified with protection methods. A higher

accuracy drop indicates a strong restriction on given domains.

We expect the accuracy drop in the source domain to be low

for preserving the model integrity, while the accuracy drop

in the target domain to be high for robustness to malicious

probing. In Section V-E, we further introduce the Performance

Protection Index (PPI) to evaluate the restriction on prohibited

domains and the influence on authorized or admissible domains

simultaneously for comparison.

Platform: Our implementation uses PyTorch 1.5.0 on Ubuntu

18.04.6 with NVIDIA TITAN RTX.

Training cost: With this experimental setup, training Encoder-

2https://www.kaggle.com/datasets/amanrajbose/millitary-vechiles
3https://www.kaggle.com/datasets/marquis03/vehicle-classification
4https://huggingface.co/datasets/Kaludi/data-csgo-weapon-classification
5https://www.kaggle.com/datasets/alessiocorrado99/animals10/code
6https://pytorch.org/vision/stable/models.html

Fig. 6. Accuracy drop across distinct source and target domains—It
assesses the transferability of VGG-11 encoder with CF (Left) and MT (Right)
as the source. Each data point illustrates the simultaneous impact on accuracies
on the source and target domain with supervised EncoderLock.

Lock requires between 0.1 and 6 GPU hours, depending on the

encoder architecture and dataset size. Detailed training costs

for various configurations are provided in Appendix D.

B. Evaluating the Supervised EncoderLock

Table II demonstrates the performance of supervised Encoder-

Lock across the datasets of digits for VGG-11 and ResNet-

18. We compare the accuracy after probing the encoder with

corresponding default downstream classification heads, before

and after applying supervised EncoderLock, report the relative

accuracy drop on the source domain (columns DropS) and

the average accuracy drop on the target domains (DropT),

and also present the average percentage of weight change

(column ∆W). The experimental results of VGG-11 reveal

that EncoderLock exhibits a steep reduction (up to 78.70%)

in performance on the target domains while ensuring minimal

degradation on the source domain (highlighted in bold, up

to 3.53%). Moreover, the accuracy degradation on ResNet-18

shows even a better restriction on the prohibited domain, from

71.73% to 86.02%. In contrast, the degradation of ResNet-

18 encoder with EncoderLock on the authorized domain is

minimized from 0.28% to 1.65%. Moreover, with less than

0.08% of the weights changed on average, the supervised

EncoderLock preserves a higher generalizability of the pre-

trained encoder to the admissible domains and avoids the

catastrophic forgetting of the encoder’s pre-learned knowledge.

It will be further discussed in Section V-E as a comparison

between different EncoderLock and baseline methods.

In addition to the accuracy drop, we find that the complexity

of the datasets (domains) affects the EncoderLock’s perfor-

mance. For instance, on VGG-11, we observe that restricting

transferring from a complex domain (e.g., SN, MM, and SD,

comprising RGB-colored digit images) to a simple domain (e.g.,

MT and UP, including grayscale images) is more challenging.

Specifically, the supervised EncoderLock requires more weights

to be changed, and yields a smaller target accuracy drop and

a larger source accuracy drop, when the source domain is

SN which is a more realistic, 3-channeled digits dataset (the

Street View House Number) A similar phenomenon is also

observed in ReseNet-18 supervised EncoderLock, with the

highest average weight modification at 0.041%. Moreover,

the similarity between the source and target domains also

8

TABLE II
SUPERVISED ENCODERLOCK PERFORMANCE: THE ENCODER TRANSFERABILITY—PRE AND POST-ENCODERLOCK ACCURACY ARE REPORTED,

DESIGNATED AS ‘BEFORE(%) ⇒ AFTER (%)’. BOLD VALUES SHOW ACCURACIES ON THE SOURCE DOMAIN

Source \ Target MT UP SN MM SD ∆W DropS DropT

VGG-11: 133M Parameters

MT 99.53 ⇒ 99.32 96.35 ⇒ 8.47 43.74 ⇒ 18.98 68.24 ⇒ 18.05 69.65 ⇒ 13.67 0.63‰ 0.21% ↓ 78.70% ↓
UP 97.70 ⇒ 11.35 97.91 ⇒ 94.94 58.23 ⇒ 16.86 65.24 ⇒ 15.43 87.10 ⇒ 16.93 0.43‰ 2.97% ↓ 76.16% ↓
SN 95.30 ⇒ 19.72 92.68 ⇒ 15.89 94.04 ⇒ 90.51 71.51 ⇒ 32.17 96.96 ⇒ 15.66 2.50‰ 3.53% ↓ 76.62% ↓

MM 98.85 ⇒ 12.71 94.67 ⇒ 17.99 53.80 ⇒ 23.80 94.24 ⇒ 92.71 85.89 ⇒ 28.20 0.99‰ 1.53%↓ 75.28% ↓
SD 97.13 ⇒ 20.19 93.57 ⇒ 18.68 90.40 ⇒ 41.42 71.53 ⇒ 40.91 99.83 ⇒ 98.89 1.78‰ 0.94% ↓ 64.13% ↓

ResNet-18: 11.4M Parameters

MT 99.48 ⇒ 99.12 93.77 ⇒ 13.16 41.47 ⇒ 19.67 70.02 ⇒ 20.77 72.48 ⇒ 16.69 0.31 ‰ 0.28% ↓ 71.73% ↓
UP 95.10 ⇒ 13.89 96.11 ⇒ 95.69 33.72 ⇒ 11.36 55.79 ⇒ 9.04 61.76 ⇒ 16.53 0.29 ‰ 0.44% ↓ 76.98% ↓
SN 94.65 ⇒ 9.53 88.04 ⇒ 15.65 91.06 ⇒ 90.12 66.52 ⇒ 11.36 95.08 ⇒ 10.45 0.41 ‰ 1.03% ↓ 86.02% ↓

MM 98.82 ⇒ 24.05 92.33 ⇒ 12.81 48.18 ⇒ 7.01 91.49 ⇒ 90.39 78.03 ⇒ 18.53 0.13 ‰ 1.20% ↓ 80.87% ↓
SD 96.76 ⇒ 10.39 91.68 ⇒ 8.47 86.74 ⇒ 30.70 68.56 ⇒ 9.95 99.42 ⇒ 97.77 0.18 ‰ 1.65% ↓ 82.53% ↓

TABLE III
UNSUPERVISED ENCODERLOCK PERFORMANCE ON ENCODER (VGG-11) TRANSFERABILITY

Source \ Target MT UP SN MM SD ∆W DropS DropT

MT 99.53 ⇒ 99.22 96.35 ⇒ 16.84 43.74 ⇒ 19.61 68.24 ⇒ 12.26 69.65 ⇒ 17.90 0.12‰ 0.31% ↓ 73.51% ↓
UP 97.70 ⇒ 45.02 97.91 ⇒ 96.44 58.23 ⇒ 9.59 65.24 ⇒ 13.88 87.10 ⇒ 12.66 0.22‰ 1.50% ↓ 75.41% ↓
SN 95.30 ⇒ 20.74 92.68 ⇒ 17.09 94.04 ⇒ 94.33 71.51 ⇒ 50.85 96.96 ⇒ 94.01 0.21‰ 0.31% ↑ 47.93% ↓

MM 98.85 ⇒ 40.26 94.67 ⇒ 30.74 53.80 ⇒ 33.97 94.24 ⇒ 93.30 85.89 ⇒ 55.79 0.15‰ 0.99%↓ 49.68% ↓
SD 97.13 ⇒ 76.68 93.57 ⇒ 86.75 90.40 ⇒ 75.31 71.53 ⇒ 27.23 99.83 ⇒ 99.44 0.20‰ 0.39% ↓ 26.74% ↓

affects the supervised EncoderLock’s performance, e.g., the

non-transferability of SD→SN is the worst as they are similar.

Unlike prior research [20], [21] that only examines the

applicability authorization between domains that share the same

label space (e.g., 0∼9 digits), during malicious probing, one

could aspire to transfer the queried features from the encoder

to domains with distinctly different label spaces. Thus, we also

evaluate the performance of supervised EncoderLock on VGG-

11 under various circumstances: a) transition between distinct

task types (CF to MT); b) variation in the size of the label

space for similar tasks (CF to CF100); c) changes in both the

task type and the label space size (CF to EM). The results are

presented in Fig. 6. Overall, supervised EncoderLock achieves

good performance across all these transfer tasks, manifesting a

much higher drop in the target domain than the source. Similar

to experiments on digit datasets, the more distinct the target

dataset is from the source dataset, the better performance.

For instance, supervised EncoderLock performs well when

transferring across different tasks, i.e., transitioning from digits

to images (CF) and vice versa; while it results in a lower

performance when transferring from CF to CF100 as these

two share a large number of similar features. Notably, when

MT is the source domain and CF100 is the target domain,

EncoderLock can significantly reduce the accuracy on CF100

to 1.19%, closely resembling random guessing across the 100
classes, i.e., the encoder fails to extract features. While for

transferring between MT and EM (both digits), the accuracy

only drops to 32.04%. We posit that a pre-trained encoder

tends to capture more intricate features when applied on similar

domains, while there will be more distinct features when the

source and target domains diverge significantly. We characterize

the similarity between datasets using MMD in Appendix B.

0 Rounds 10 Rounds 30 Rounds 50 Rounds
S

o
u
rc

e:
 M

T
T

ar
g
et

:
M

M

Fig. 7. Unsupervised EncoderLock-Latent Space Change via Rounds

C. Evaluating the Unsupervised EncoderLock

The unsupervised EncoderLock addresses the challenge when

the model owner has no access to the true labels of samples

from the target domain. To demonstrate the effectiveness of

the proposed contrastive loss in Eq. (6), we conduct the

same evaluation on digits datasets with results on VGG-11

shown in Table III and ResNet-18 in Appendix C Table VII.

The unsupervised EncoderLock also successfully restricts the

encoder’s transferability to the target domain and maintains the

encoder’s integrity on the source domain, with a small number

of weight changes.

Compared with supervised EncoderLock, the unsupervised

EncoderLock demonstrates better performance in preserving

accuracy within the source domain, but worse performance in

reducing the target accuracy. This is due to the proposed Rcont
T ,

utilizing contrastive loss, necessitates a more discriminative

latent space for the source domain by reducing Lcont
S . To further

illustrate, in Fig. 7 we visualize the change of the latent space

9

from both the source (MT) and target (MM) domains using

t-SNE [83]. With more rounds of unsupervised EncoderLock

(indicating more training epochs and more weight updates), the

source domain remains class-discriminative, while the target

domain becomes less discriminative. However, some small

clusters of classes can still be observed, which leads to a

higher accuracy when we fine-tune a downstream classifier on

such a latent space on the target domain.

D. Evaluating the Zero-shot EncoderLock

For zero-shot EncoderLock, we utilize the GPT-4 API as the

AI agent to interpret the semantic meaning of the prohibited

theme7 with a pre-trained stable diffusion model for text-to-

image generation8 to create synthetic datasets. To show the

effectiveness of the AI agent and prompts refining (Fig. 5), we

test the zero-shot EncoderLock under three scenarios: 1) The

prompts are created manually (without AI agents); 2) An AI

agent generates prompts randomly; 3) The AI agent generates

prompts and refines them. We utilize 10 prompts to the

generative model for 1,000 fake images as the prohibited dataset.

Prompts and synthetic images can be found in Appendix K.

We evaluate one-shot EncoderLock’s performance on the

source domain (ImageNette [79]) and the target domain (a

real military vehicle dataset [80]) with a pre-trained encoder

using ResNet-18. Furthermore, we select three admissible

domains to evaluate EncoderLock’s impact on other domains,

neither source nor target. Considering the semantics of ‘military

vehicles’, we utilize two admissible datasets with closer

semantic meaning and one unrelated. 1). Ordinary vehicles: A

10-class normal vehicle classification dataset related to the

prohibited domain in ‘vehicle’, i.e., sedan, SUV, and bus.

2). Weapons: An 11-class game-based weapon classification

dataset, related to the prohibited domain in ‘military’, i.e.,

AK-47, Famas, and UPS. 3). Animals: A 10-class animal

classification dataset with no obvious semantic meaning with

the prohibited domain, i.e., chicken, cat, and butterfly.

Fig. 8 shows the performance of different EncoderLock

variants on authorized, prohibited, and three admissible do-

mains. We present the testing accuracy degradation on each

domain versus the percentage of critical weights modified. The

original pre-trained encoder has an average accuracy 96.59%
on the authorized domain and 60.55% on the prohibited domain.

Supervised EncoderLock shows the strongest performance

restriction on the prohibited domain (11.48%) and meanwhile

preserving a high accuracy on the authorized domain (94.17%).

The primary reason behind the efficacy of the supervised

EncoderLock is its well-defined prohibited domain. This clarity

allows for targeted modifications of critical weights. As a result,

EncoderLock can enhance specific aspects of the encoder’s

performance while maintaining its overall generalization ca-

pability. Unsupervised EncoderLock demonstrates the second

highest performance with a label-free prohibited domain by

restricting the target performance to 18.34% and keeping

7https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
8https://huggingface.co/CompVis/stable-diffusion-v1-4

the accuracy on the source at 93.43%. The introduction of

contrastive loss penalizes more general features than the

supervised loss, causing a larger degradation on the authorized

and admissible domains. Zero-shot EncoderLock works on

the most challenging accessibility to the prohibited domain.

Without any data from it, using prompts from military fans

(manual prompts in Appendix K) shows similar to the one-time

initial prompt from the AI agent. The prompts and generated

synthetic images are not general enough to describe the entire

prohibited domain, thereby leading to the smallest restriction

on the military vehicle dataset. (Manual: 41.81%, AI initial:

38.61%) When we refine the AI prompts for more general

features of the prohibited domain with the presented refinement

algorithm, there is a noticeable increase in the EncoderLock

restriction ability (23.69%). However, such prompts cause

the largest accuracy degradation on the authorized domain

(92.86%), as its wide restriction on the encoder’s features. In

addition to the relevance of prompts, the synthetic dataset’s

quality also affects the strength of EncoderLock. Specifically,

a high-quality synthetic dataset, generated after large number

of inference iterations and bearing small noise, enhances the

defense capability of EncoderLock. More detailed results are

shown in Appendix F.

Other than the performance of authorized and prohibited

domains, our evaluation on the admissible domains indicates

the impact of EncoderLock on the generalizability to unknown

data. In particular, all five EncoderLock’s restrictions on the

prohibited ‘military vehicles’ show higher penalties on the

‘weapon’ dataset. On the other hand, the impact on the encoders’

performance on ordinary vehicles is small, similar to what from

the animal dataset. We will further present a deep analysis

of this phenomenon in Section V-F, where we show the

encoder’s attention shifting from the attack module of the

military vehicles, i.e., the barrel. As a result, it has a lower

effect on distinguishing between various types of vehicles but

has a significant impact on different types of firearms.

In Fig. 8, we also present the probing performance of

EncoderLock when the portion of critical weights to change

varies. In particular, the pre-trained encoder’s performance

keeps dropping on the prohibited domain but its performance

degradation on the authorized and admissible domain shows

a ‘degradation peak’ at the point of changing half of critical

weights. This phenomenon is likely due to the integrity of

EncoderLock’s critical weights updating process affected by

the random sampling. A complete updating process with either

supervised loss (4) or unsupervised loss (6) ensures the encoder

cannot perform well on the target domain but still effective

on the source domain, as shown the good performance when

changing 100% critical weights. However, only updating half

of them will break the encoder’s integrity on the source domain

and the admissible domain as it breaks the network connectivity

between critical weights, leading to unstable EncoderLock.

Such phenomenon also shows in the standard deviation on the

curves in Fig. 8, where when only changing half of critical

weights, the EncoderLock performance has the largest variance.

10

Fig. 8. Comparison among different EncoderLock–on authorized, prohibited, and admissible domains. We randomly select a percentage of domain-aware
weights as the X-axis, as the optimization process of domain-aware weights. The authorized and prohibited domains are run 5 times with error bars plotted.

E. Comparison with Prior Methods

We compare EncoderLock with SOTA baselines: NTL [20]
and CUTI [21] in protection against malicious probing. Specif-
ically, we probe the encoder on the target dataset with fine-
tuned downstream heads. Moreover, we propose a new stable
metric–Protection Performance Index (PPI)–to measure the
performance in restricting on the target domain (DT) relative
to what in retention on the base domain (DB), defined as:

PPI(DT ,DB) =
accTo /accTm
accBo /accBm

(7)

PPI measures the ratio of change in performance before and

after applying protection for a prohibited target domain with an

authorized or admissible base domain. A higher PPI indicates

better non-transferability and resistance to malicious probing.

In Fig. 9, we compare the PPI of supervised and unsupervised

EncoderLock with the baselines in five pairs of authorized

and prohibited domains when probing the downstream heads

by epochs. Our proposed supervised EncoderLock shows the

best non-transferability performance, while the unsupervised

EncoderLock also demonstrates good performance overall. In

addition, we also present the PPI between admissible domains

and prohibited domains in Fig. 10. The PPI of supervised and

unsupervised EncoderLock is still better than the baselines.

However, the advantage is not obvious due to the prohibited and

admissible domains are highly similar as they are all digital

datasets. Therefore, critical weights on prohibited domains

often overlap with those in admissible ones, causing a higher

accuracy drop as the weights are not optimized during the

updating process of the EncoderLock. A good example can

be found in Fig. 8, where we analyze the admissible domain

with distinct semantic meaning (i.e., animals versus military

vehicle), EncoderLock can preserve the encoder generalizability

to semantic unrelated domains. Additional numerical results

can be found in Appendix H.

When we fine-tune the downstream classifier on the encoder

trained using NTL and CUTI, the encoder performance on the

source domain may decrease considerably, or its performance

on the target domain may still be high. This indicates that

previous methods are not suitable for the scenario of malicious

probing. To explain this phenomenon, we visualize the source

(MM) and target (UP) domains on the latent space with different

trained encoders in Fig. 11, where the colors represent the

true labels of the testing dataset. The self-challenging scheme

employed in supervised EncoderLock effectively preserves

a higher discrepancy within the source domain, while very

little class-related information is discernible within the target

domain. The unsupervised EncoderLock, despite lacking class

information, still successfully reduces class distinguishability

on the target domain. In contrast, NTL [20] penalizes the

Maximum Mean Discrepancy between the source and target

latent spaces, showcasing the distribution difference between

these domains, but samples from the same class still cluster

together in the target domain. Therefore, its transferability

can be resumed via fine-tuning. CUTI [21] only considers

target performance during training and shows the worst non-

transferability–its target domain is clearly clustered by classes.

F. Interpretation of EncoderLock

To further understand the changes in the encoders generated

by different variants of EncoderLock, we use the encoders

trained from Section V-D and visualize their decision-making

process with Gradient-weighted Class Activation Mapping

(GradCAM) [84], as illustrated in Fig. 12. Specifically, the

GradCAM attribution is computed for the last convolutional

layer in the encoder (ResNet-18) and is upsampled to act as

a mask added to the original input (the cool-warm heatmap

in Fig. 12). The highlighted red part indicates the feature that

the encoder focuses on to make its prediction. We observe

that the original pre-trained encoder focuses on the English

Springer correctly, and it performs well on the military dataset

(tanks) as its focus is moved to the main gun barrel of the tank.

However, the supervised EncoderLock, which has less effect

on the source domain data, switches the encoder’s focus to the

tank track, leading the fine-tuned downstream classifier to make

a wrong prediction as ‘Armored combat support vehicles’. The

unsupervised EncoderLock, aiming to blur the entire feature

space’s class-discrepancy, generates a more vague interpretation

of the decision process—the focus is mainly on the vehicle but

not on specific features of tank. In Appendix J, we also visualize

the GradCAM results on three different admissible domains.

The findings indicate that the attack module of military weapons

also experiences a loss of focus in the model, resulting in a

significant impact of EncoderLock on the weapon dataset.

We also visualize the GradCAM of zero-shot EncoderLock

with different types of prompts. The manual prompts show less

effectiveness in the model’s non-transferability, still focusing

on some useful features such as the tank roof and gun barrel.

The AI-agent-generated prompts (with or without refinement)

11

Fig. 9. Comparison on Authorized PPI–between EncoderLock with NTL [20] and CUTI [21] on different pairs of authorized and prohibited domains. The

higher the better. Probing for multiple epochs can’t increase the performance on prohibited domains but keeps its performance on authorized domains.

Fig. 10. Comparison on Admissible PPI–between EncoderLock with NTL [20] and CUTI [21] on different pairs of admissible and prohibited domains. The

higher the better. EncoderLock shows the minimal impact on admissible domains while restricting the encoder’s performance on prohibited domains.

Supervised

EncoderLock

Unsupervised

EncoderLock
NTL CUTI

S
o

u
rc

e:
 M

M
T

ar
g

et
:

U
P

Fig. 11. Latent Feature Visualization–Feature Space of Different Methods

have a strong effect on the source domain, especially the green

part (bash in the source figure), considering ‘green’ is likely

related to the camouflage. With the proposed prompt refinement

process, the synthetic dataset obfuscates most of the useful

features of the military theme, leading to a very vague focus on

the target domain. The interpretation of EncoderLock further

reinforces its effectiveness: the supervised EncoderLock has

the highest performance as it has the ground truth labels, and

therefore able to move away the encoder’s focus on specific

features; while the unsupervised and zero-shot EncoderLock

directly cause the latent feature space to be less informative,

leading to all input features having similar importance.

G. Real-world Case Study

Previous evaluations mainly focus on small encoders ex-

tracted from supervised-trained DNN models with basic

architectures (e.g., VGG-11 and ResNet-18). To demonstrate

that EncoderLock is practical in protecting real-world encoders,

we apply it to a public encoder based on Vision Transformer

(ViT) released by Facebook [22]. This encoder is a transformer

pre-trained on a large collection of images (ImageNet-1k [85]

with a resolution of 224×224) in a self-supervised fashion.

The input images are presented to the model as a sequence

of fixed-size patches (the patch size is 16×16). ViT learns an

inner representation of images that can extract features useful

for downstream tasks with probing heads (downstream models).

As reported, the training process requires approximately 2.6

days with a computational power of 16 GPUs. The pre-trained

encoder represents a valid IP, and our proposed EncoderLock

for applicability authorization aims to protect the IP.

We first evaluate the performance of the supervised Encoder-

Lock, considering ImageNette [79] and CIFAR-100 [69] as the

source domains and the military dataset and Imagewoof dataset

as the target domains. The ImageWoof dataset is a selected

subset of ImageNet with different types of dogs. Note that to fit

the input resolution of ViT, the CIFAR-100 inputs are resized

to 224×224. We also evaluate the ViT with EncoderLock on

some simple datasets, as shown in Appendix E. In Fig. 13,

we visualize the accuracy after fine-tuning the downstream

classifier on the source and target domains, respectively, versus

the number of weight changes. We observe that for the pre-

trained ViT, the supervised EncoderLock still works effectively

in restricting the target domain performance and preserving the

source domain performance. In addition, the largest accuracy

drop often happens in the early epochs (early sets of domain-

specific weights). This demonstrates the effectiveness of the

proposed domain-aware weight selection algorithm when the

most important (target-domain sensitive) weights are selected.

Similarly, we apply unsupervised and zero-shot EncoderLock

on the same ViT encoder between the ImageNette (i.e., autho-

rized) and military (i.e., prohibited) datasets, and the results

12

Pre-trained Encoder Supervised Unsupervised Zero-shot (Manual) Zero-shot (Initial) Zero-shot (Refined)Original Image

A
u

th
o

ri
ze

d

(E
n

g
li

sh
 s

p
ri

n
g

er
)

P
ro

h
ib

it
ed

 (
T

a
n

k
s)

Fig. 12. Interpretation of Different EncoderLock using GradCAM [84]–the red parts highlight the focus of encoder to make decisions.

supervised unsupervised zero-shot

supervised supervised
supervised

Fig. 13. Evaluation on a Pre-trained ViT: Top row - source (target) accuracy
versus number of changed weights for different levels of EncoderLock; Bottom
row: performance of supervised EncoderLock on different datasets.

are shown in Fig. 13. All three variations of EncoderLock

effectively limit the encoder’s performance on the prohib-

ited domain. Notably, supervised (21.56%) and unsupervised

(18.15%) EncoderLock provide stronger protection than the

zero-shot version (29.26%), due to their higher accessibility

during training. And supervised EncoderLock outperforms in

maintaining the accuracy in the authorized domain, as the

more accurate penalization on the labeled prohibited domain.

In conclusion, all three variants of EncoderLock demonstrate

effectiveness for safeguarding real-world pre-trained encoders.

VI. DISCUSSIONS

A. Ablation Studies of EncoderLock

1) EncoderLock on Probing with Various Architectures:

As shown in Challenge 2, the attacker takes full control of

the downstream classifier and can optimize it for malicious

probing. In this section, we further evaluate the protection

performance of EncoderLock with various downstream head

structures. Taking supervised EncoderLock on VGG-11 as an

example, we delve into diverse depths and widths for the linear

probing heads, including varying numbers of layers and hidden

dimensions (no hidden layer when there is only one layer in

the classifier). The detailed results of these experiments are

presented in Table IV, which shows that one can leverage the

features from our pre-trained encoders to achieve impressive

performance (> 99%) on the source task but only achieve up to

17.89% on the target task, across a comprehensive collection of

W
ei

g
h

ts
 (
10−3)

W
ei

g
h

ts
 (
10−3)

W
ei

g
h

ts
 (
10−3)

Fig. 14. Ablation studies–a) regularizer weights for supervised EncoderLock
α; b) regularizer weights for unsupervised EncoderLock ;c) changed weights
number per round(N); The probing accuracy on the source and target domains
are reported on the left y-axis and the changed weight percentage is on the
right y-axis. Original accuracy on source and target are 99.53% and 94.91% .

configurations of the downstream classifiers. This demonstrates

the effectiveness of the self-challenging training scheme.

2) EncoderLock on Probing with More Prohibited Data: We

consider a real-world attacker who can be adaptive in attacking

the encoders. In our initial malicious probing scenario, we

assume an attacker uses a small amount of data (10%) to

attempt redirecting the pre-trained encoder. However, once the

attacker becomes aware of the defense mechanism, s/he can

probe the downstream head with a larger amount of prohibited

data. We assess the resistance of EncoderLock against such

possible attacks in Appendix G. Thanks to self-challenging

training in supervised EncoderLock and the manipulation of the

latent feature space in unsupervised EncoderLock, our approach

demonstrates strong resistance to malicious probing, even when

the attacker gains access to entire prohibited datasets.

3) EncoderLock with Various Hyperparameters: we employ

the transfer scenario from MT to UP as an example.

Regularization Term (³): The regularization term in Eqn. (3)

plays an important role in balancing the model integrity on

the source domain and preventing malicious probing on the

target domain. We vary the weight ³ and Fig. 14 (a) (b)

show the effect of the regularization term for supervised and

unsupervised EncoderLock, respectively. It is worth noting that

the regularization term ensures that all ³ values sustain the

original performance on the source domain, due to the log-scale

term. Comparing different ³, we choose ³ = 103 for supervised

EncoderLock and ³ = 1 for unsupervised EncoderLock.

Number of Critical Weights to Update per Round (N):

Fig. 14 (c) inspects the repercussions of varying the number

of critical weights (N) selected in each round, in the range of

13

TABLE IV
PERFORMANCE OF THE SUPERVISED ENCODERLOCK ON VARIOUS CLASSIFIER CONFIGURATIONS—SOURCE(MT) TO TARGET(UP).

Layers 1 2 3 4

Hidden dim. / 256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 4096

size (M) 0.25 6.42 12.85 25.7 51.4 102.8 6.49 13.11 26.75 55.59 119.59 6.56 13.38 27.8 59.8 136.37

Accel
S

(%) 99.12 99.09 99.21 99.20 99.29 99.20 99.32 99.29 99.24 99.27 99.36 99.29 99.29 99.26 99.19 99.30

Accel
T

(%) 17.89 17.89 17.89 13.15 17.89 17.89 9.87 17.89 17.89 17.89 17.89 13.15 17.89 8.47 17.89 17.89

1 to 200. When N is too small, the training of EncoderLock is

slow and can not converge even with the maximum number of

rounds (R = 100). A larger N will cause more weight change

for EncoderLock, reducing the encoder’s generalizability. Our

selection of N can be found in Table V.

B. Security Analysis of EncoderLock

The security of an encoder protected with EncoderLock

can be assessed by setting an accuracy threshold (accth) on

the prohibited domain, with the accuracy drop of it on the

authorized domain below a certain constraint (ϵ). For example,

accth can be defined by the accuracy of a train-from-scratch

model, and the ϵ is set at 2%, as outlined in Appendix I. In

this case, the encoder is deemed secure because an attacker

lacks incentive for malicious probing, with its performance no

better than direct training.

C. Future Works

In this work, we have demonstrated the effectiveness of

EncoderLock for different levels of domain data accessibility.

However, EncoderLock still requires the EaaS provider to

clearly specify the prohibited domain, meaning that the provider

should know what the encoder is allowed to do and what

should be prohibited. This causes inconvenience in automatic

detection and restriction on any unknown ‘theme’ of harmful

tasks. One potential avenue for future work is to incorporate

EncoderLock with toxicity content detection utilizing large

language models [86], [87] to automatically identify and restrict

prohibited domains without relying on explicit specifications

from the model owner. This approach would further enhance

the flexibility and adaptability of EncoderLock. Furthermore,

while we have showcased the effectiveness of EncoderLock

in image classification tasks, pre-trained encoders are useful

for many other applications, such as image generation and

semantic segmentation. Extending EncoderLock to these dif-

ferent tasks may unlock additional potential in controlling the

encoder’s transferability. The main challenge will be how to

combine different forms of loss terms (i.e., generation loss or

segmentation loss) with the loss for a pre-trained encoder.

VII. CONCLUSIONS

In this work, we address a new security issue arising during

the probing process of pre-trained encoders: restricting the

applicability to harmful prohibited domains. We recognize a

realistic challenge about the data accessibility to prohibited

domains and propose supervised, unsupervised, and zero-shot

EncoderLock for different levels of knowledge of prohibited

domains. We propose novel and effective domain-aware weight

selection and self-challenging training to maintain the encoder’s

integrity while protecting it against malicious probing. Our

evaluation has validated the efficacy of EncoderLock in resisting

malicious probing across various domains and encoders.

ACKNOWLEDGMENT

This work was supported in part by National Science Foun-

dation under grants CNS-2212010, SaTC-1929300, IUCRC-

1916762, CNS-2239672, CNS-2326597, and CCF-2340482.

REFERENCES

[1] Y. Belinkov, “Probing classifiers: Promises, shortcomings, and advances,”
Computational Linguistics, 2022.

[2] R. Cao, “Putting representations to use,” Synthese, p. 151, 2022.
[3] J. C. White, T. Pimentel, N. Saphra, and R. Cotterell, “A non-linear

structural probe,” arXiv preprint arXiv:2105.10185, 2021.
[4] K. He, X. Chen et al., “Masked autoencoders are scalable vision learners,”

in PCVPR, 2022, pp. 16 000–16 009.
[5] P. H. Le-Khac, G. Healy, and A. F. Smeaton, “Contrastive representation

learning: A framework and review,” Ieee Access, vol. 8, 2020.
[6] X. Chen, S. Wang et al., “Catastrophic forgetting meets negative transfer:

Batch spectral shrinkage for safe transfer learning,” NeurIPS, 2019.
[7] A. Chronopoulou, C. Baziotis, and A. Potamianos, “An embarrassingly

simple approach for transfer learning from pretrained language models,”
arXiv preprint arXiv:1902.10547, 2019.

[8] M. Iman, H. R. Arabnia, and K. Rasheed, “A review of deep transfer
learning and recent advancements,” Technologies, 2023.

[9] Y. Dong, W.-j. Lu et al., “Puma: Secure inference of llama-7b in five
minutes,” arXiv preprint arXiv:2307.12533, 2023.

[10] K. Gupta, N. Jawalkar et al., “Sigma: secure gpt inference with function
secret sharing,” Cryptology ePrint Archive, 2023.

[11] R. Liu et al., “Secdeep: Secure and performant on-device deep learning
inference framework for mobile and iot devices,” in IoTDI, 2021.

[12] Clarifai, “general-image-embedding3,” 2020. [Online]. Available:
https://clarifai.com/clarifai/main/models/general-image-embedding

[13] OpenAI, “Openai’s embeddings api,” 2020, accessed: 4 October 2024.
[Online]. Available: https://platform.openai.com/docs/guides/embeddings

[14] W. Qu, J. Jia, and N. Z. Gong, “Reaas: Enabling adversarially robust
downstream classifiers via robust encoder as a service,” in NDSS, 2023.

[15] Y. Tan, G. Long et al., “Federated learning from pre-trained models: A
contrastive learning approach,” NeurIPS, vol. 35, 2022.

[16] B. Cheatham, K. Javanmardian, and H. Samandari, “Confronting the
risks of artificial intelligence,” McKinsey Quarterly, pp. 1–9, 2019.

[17] International Women’s Day, “Gender and ai: Addressing bias in artificial
intelligence,” https://www.internationalwomensday.com/Missions/14458/
Gender-and-AI-Addressing-bias-in-artificial-intelligence, 2024.

[18] The White House Office of Science and Technology Policy, “Ai bill of
rights: Algorithmic discrimination protections,” www.whitehouse.gov/
ostp/ai-bill-of-rights/algorithmic-discrimination-protections-2/, 2024.

[19] B. Marr, “Is artificial intelligence dangerous? 6 ai risks everyone should
know about,” Forbes. Retrieved May, vol. 13, p. 2022, 2018.

[20] L. Wang et al., “Non-transferable learning: A new approach for model
ownership verification and applicability authorization,” in ICLR, 2022.

[21] L. Wang, M. Wang, D. Zhang, and H. Fu, “Model barrier: A compact un-
transferable isolation domain for model intellectual property protection,”
in CVPR, 2023, pp. 20 475–20 484.

[22] M. Caron et al., “Emerging properties in self-supervised vision trans-
formers,” in ICCV, 2021, pp. 9650–9660.

[23] P. Marcelino, “Transfer learning from pre-trained models,” Towards data

science, vol. 10, no. 330, p. 23, 2018.
[24] S. Parisi et al., “The unsurprising effectiveness of pre-trained vision

models for control,” in ICML. PMLR, 2022, pp. 17 359–17 371.

14

[25] L. Yuan, D. Chen et al., “Florence: A new foundation model for computer
vision,” arXiv preprint arXiv:2111.11432, 2021.

[26] Y. Bengio et al., “Representation learning: A review and new perspectives,”
IEEE transactions on pattern analysis and machine intelligence, 2013.

[27] Y. Shen, C. Guo et al., “Financial feature embedding with knowledge
representation learning for financial statement fraud detection,” Procedia

Computer Science, vol. 187, pp. 420–425, 2021.
[28] H.-C. Yi et al., “Graph representation learning in bioinformatics: trends,

methods and applications,” Briefings in Bioinformatics, 2022.
[29] G. Zhong, L.-N. Wang, X. Ling, and J. Dong, “An overview on data

representation learning: From traditional feature learning to recent deep
learning,” The Journal of Finance and Data Science, 2016.

[30] X. Han, Z. Zhang et al., “Pre-trained models: Past, present and future,”
AI Open, vol. 2, pp. 225–250, 2021.

[31] X. Qiu, T. Sun et al., “Pre-trained models for natural language processing:
A survey,” Science China technological sciences, 2020.

[32] H. Wang, J. Li et al., “Pre-trained language models and their applications,”
Engineering, 2022.

[33] N. Tajbakhsh, J. Y. Shin et al., “Convolutional neural networks for
medical image analysis: Full training or fine tuning?” IEEE transactions

on medical imaging, vol. 35, no. 5, pp. 1299–1312, 2016.
[34] H. Bahng et al., “Exploring visual prompts for adapting large-scale

models,” arXiv preprint arXiv:2203.17274, 2022.
[35] Y. Gan, Y. Bai et al., “Decorate the newcomers: Visual domain prompt

for continual test time adaptation,” in AAAI, 2023.
[36] M. Jia, L. Tang et al., “Visual prompt tuning,” in ECCV. Springer,

2022, pp. 709–727.
[37] L. Yang, Y. Wang et al., “Fine-grained visual prompting,” NeurIPS,

vol. 36, 2024.
[38] J.-B. Cordonnier, A. Loukas, and M. Jaggi, “On the relationship between

self-attention and convolutional layers,” arXiv:1911.03584, 2019.
[39] K. Han, Y. Wang et al., “A survey on vision transformer,” IEEE

transactions on pattern analysis and machine intelligence, vol. 45, no. 1,
pp. 87–110, 2022.

[40] M. Gao, Q. Wang et al., “Tuning pre-trained model via moment probing,”
in ICCV, 2023, pp. 11 803–11 813.

[41] A. Ravichander, Y. Belinkov, and E. Hovy, “Probing the probing
paradigm: Does probing accuracy entail task relevance?” arXiv preprint

arXiv:2005.00719, 2020.
[42] Z.-F. Wu, C. Mao et al., “Structured model probing: Empowering efficient

transfer learning by structured regularization,” in CVPR, 2024.
[43] P. Cunningham, M. Cord, and S. J. Delany, “Supervised learning,” in

Machine learning techniques for multimedia. Springer, 2008, pp. 21–49.
[44] D. A. Reynolds et al., “Gaussian mixture models.” Encyclopedia of

biometrics, vol. 741, no. 659-663, 2009.
[45] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv

preprint arXiv:1312.6114, 2013.
[46] I. Goodfellow, J. Pouget-Abadie et al., “Generative adversarial networks,”

Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
[47] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework

for contrastive learning of visual representations,” in ICML, 2020.
[48] K. He, H. Fan et al., “Momentum contrast for unsupervised visual

representation learning,” in CVPR, 2020, pp. 9729–9738.
[49] A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon,

“A survey on contrastive self-supervised learning,” Technologies, vol. 9,
no. 1, p. 2, 2020.

[50] D. Hendrycks et al., “Using self-supervised learning can improve model
robustness and uncertainty,” NeurIPS, vol. 32, 2019.

[51] T. Zhou, S. Ren, and X. Xu, “Archlock: Locking dnn transferability at
the architecture level with a zero-cost binary predictor,” in The Twelfth

International Conference on Learning Representations, 2024.
[52] R. Ding, L. Su, A. A. Ding, and Y. Fei, “Non-transferable pruning,” in

European Conference on Computer Vision. Springer, 2025, pp. 375–393.
[53] H. Jia, C. A. Choquette-Choo, V. Chandrasekaran, and N. Papernot,

“Entangled watermarks as a defense against model extraction,” in USENIX

Security 21, 2021, pp. 1937–1954.
[54] P. Yang, Y. Lao, and P. Li, “Robust watermarking for deep neural networks

via bi-level optimization,” in ICCV, 2021, pp. 14 841–14 850.
[55] J. Zhang, Z. Gu et al., “Protecting intellectual property of deep neural

networks with watermarking,” in ASIACCS, 2018, pp. 159–172.
[56] M. Alam et al., “Deep-lock: Secure authorization for deep neural

networks,” arXiv preprint arXiv:2008.05966, 2020.
[57] A. Chakraborty, A. Mondai, and A. Srivastava, “Hardware-assisted

intellectual property protection of deep learning models,” in DAC, 2020.

[58] J. Gu, J. Kuen et al., “Self-supervised relationship probing,” NeurIPS,
vol. 33, pp. 1841–1853, 2020.

[59] B. Liu et al., “Transtailor: Pruning the pre-trained model for improved
transfer learning,” in AAAI, vol. 35, no. 10, 2021.

[60] Y. Liu, L. Wei, B. Luo, and Q. Xu, “Fault injection attack on deep neural
network,” in ICCAD. IEEE, 2017, pp. 131–138.

[61] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural network
with progressive bit search,” in ICCV, 2019, pp. 1211–1220.

[62] P. Zhao, S. Wang, C. Gongye, Y. Wang, Y. Fei, and X. Lin, “Fault
sneaking attack: A stealthy framework for misleading deep neural
networks,” in DAC, 2019, pp. 1–6.

[63] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” arXiv preprint arXiv:1803.03635, 2018.

[64] Z. Liu, M. Sun et al., “Rethinking the value of network pruning,” arXiv

preprint arXiv:1810.05270, 2018.
[65] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy

of pruning for model compression,” arXiv preprint arXiv:1710.01878,
2017.

[66] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmenta-
tion for deep learning,” Journal of big data, 2019.

[67] A. Mikołajczyk et al., “Data augmentation for improving deep learning
in image classification problem,” in IIPhDW. IEEE, 2018, pp. 117–122.

[68] J. Achiam et al., “Gpt-4 technical report,” arXiv preprint

arXiv:2303.08774, 2023.
[69] A. Radford, J. W. Kim et al., “Learning transferable visual models from

natural language supervision,” in ICML. PMLR, 2021, pp. 8748–8763.
[70] R. Rombach, A. Blattmann et al., “High-resolution image synthesis with

latent diffusion models,” 2021.
[71] Y. LeCun, L. Bottou et al., “Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, vol. 86, no. 11, 1998.
[72] J. J. Hull, “A database for handwritten text recognition research,” IEEE

Transactions on pattern analysis and machine intelligence, vol. 16, no. 5,
pp. 550–554, 1994.

[73] Y. Netzer, T. Wang et al., “Reading digits in natural images with
unsupervised feature learning,” in NIPS workshop on deep learning

and unsupervised feature learning, vol. 2011, no. 2. Granada, 2011.
[74] Y. Ganin, E. Ustinova et al., “Domain-adversarial training of neural

networks,” The journal of machine learning research, 2016.
[75] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by

backpropagation,” in ICML. PMLR, 2015, pp. 1180–1189.
[76] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features

from tiny images,” 2009.
[77] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in

unsupervised feature learning,” in AISTATS, 2011, pp. 215–223.
[78] G. Cohen, S. Afshar et al., “Emnist: Extending mnist to handwritten

letters,” in IJCNN. IEEE, 2017, pp. 2921–2926.
[79] J. Howard, “imagenette.” [Online]. Available: https://github.com/fastai/

imagenette/
[80] A. Bose, “Military vehicles dataset,” https://www.kaggle.com/datasets/

amanrajbose/millitary-vechiles, n.d., accessed: 2023-04-23.
[81] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” in ICLR, 2019.
[82] K. He, X. Zhang et al., “Deep residual learning for image recognition,”

in CVPR, 2016, pp. 770–778.
[83] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal

of machine learning research, vol. 9, no. 11, 2008.
[84] R. R. Selvaraju, M. Cogswell et al., “Grad-cam: Visual explanations

from deep networks via gradient-based localization,” in ICCV, 2017.
[85] J. Deng, W. Dong et al., “Imagenet: A large-scale hierarchical image

database,” in CVPR. IEEE, 2009, pp. 248–255.
[86] M. Phute, A. Helbling et al., “Llm self defense: By self examination,

llms know they are being tricked,” in ICLR, 2023.
[87] Y.-S. Wang and Y. Chang, “Toxicity detection with generative prompt-

based inference,” arXiv preprint arXiv:2205.12390, 2022.
[88] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

ICLR, 2015.
[89] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint

arXiv:1212.5701, 2012.
[90] L. Prechelt, “Early stopping-but when?” in Neural Networks: Tricks of

the trade. Springer, 2002, pp. 55–69.
[91] Y. Li, Z. Zhang et al., “Modeldiff: Testing-based dnn similarity

comparison for model reuse detection,” in ISSTA, 2021, pp. 139–151.
[92] J. Howard and S. Gugger, “Fastai: A layered api for deep learning,”

Information, vol. 11, no. 2, p. 108, 2020.

15

APPENDIX A

HYPERPARAMETER CONFIGURATION OF ENCODERLOCK

TABLE V
HYPERPARAMETERS USED IN THE EXPERIMENT

Hyperparameters N R α LR

Supervised EncoderLock 100 100 1, 000 0.01
Unsupervised EncoderLock 200 100 10 0.01

In this section, we provide the hyper-parameters config-

uration in this work. During training EncoderLock, we use

1, 000 samples from the training dataset. During fine-tuning of

the downstream classifiers, we use 10% of the training data

and evaluate with the entire testing data (usually 20% of the

data). The fine-tuning process uses the Adam optimizer [88]

with adaptive learning rate scheduling [89] and an early

stopping criterion [90] (patience=10). For the default supervised

EncoderLock configuration, we use N = 100, R = 100,

and ³ = 103. For the default unsupervised EncoderLock

configuration, we use N = 200, R = 100, and ³ = 101.

Hyperparameters are evaluated in Section VI-A.

APPENDIX B

DATASET SIMILARITY

TABLE VI
DATASETS’ FEATURE SPACE COSINE SIMILARITY

MT UP MM SN SD EM CF10 STL10 CF100

MT 0.999 0.707 0.577 0.452 0.706 0.942 0.404 0.303 0.448
UP 0.712 0.999 0.551 0.652 0.892 0.786 0.395 0.276 0.425

MM 0.579 0.570 0.993 0.570 0.606 0.590 0.505 0.549 0.5151
SN 0.467 0.650 0.570 0.998 0.777 0.521 0.522 0.455 0.548
SD 0.712 0.891 0.587 0.768 0.999 0.791 0.452 0.345 0.483
EM 0.938 0.780 0.553 0.514 0.794 0.999 0.404 0.296 0.432

CF10 0.408 0.398 0.499 0.519 0.454 0.405 0.996 0.831 0.972
STL10 0.302 0.280 0.566 0.459 0.347 0.301 0.836 0.993 0.788
CF100 0.450 0.428 0.507 0.557 0.470 0.438 0.971 0.801 0.995

Evaluating the transferability of our EncoderLock inherently

involves understanding the similarities between datasets, as this

not only influences encoder transfer learning performance but

also reflects the intrinsic characteristics of the data domains.

Quantifying domain similarity is challenging, yet crucial for

a comprehensive evaluation. To address this, we adopt an

approach inspired by previous work [91], utilizing cosine

similarity as a metric to compare the features of input samples

across different domains. We employ a widely-used feature

extractor, a PyTorch pre-trained VGG-16 model, to extract

latent features from pairs of data domains and calculate their

cosine similarity. The results, presented in Table VI, corroborate

the observations made in Section V-B regarding the high

similarity between the MT domain and the UP and EM

domains—highlighted in bold within the table. This supports

the notion that similarities in feature space significantly impact

the transferability of EncoderLock.

APPENDIX C

UNSUPERVISED ENCODERLOCK ON RESNET-18

In this section, we present the additional results using

ResNet-18 for the unsupervised EncoderLock in Table VII.

TABLE VII
UNSUPERVISED ENCODERLOCK’S PERFORMANCE ON ENCODER

(RESNET-18) TRANSFERABILITY

Source \ Target MT UP SN MM SD ∆W DropS DropT

MT 99.48 ⇒ 98.87 93.77 ⇒ 10.26 41.47 ⇒ 11.27 70.02 ⇒ 32.04 72.48 ⇒ 16.17 3.27 ‰ 0.61% ↓ 73.45% ↓
UP 95.10 ⇒ 37.66 96.11 ⇒ 94.95 33.72 ⇒ 18.15 55.79 ⇒ 18.67 61.76 ⇒ 15.18 2.91 ‰ 1.21% ↓ 62.13% ↓
SN 94.65 ⇒ 22.62 88.04 ⇒ 6.98 91.06 ⇒ 89.55 66.52 ⇒ 13.92 95.08 ⇒ 88.9 1.41 ‰ 1.66% ↓ 63.43% ↓

MM 98.82 ⇒ 17.94 92.33 ⇒ 17.14 48.18 ⇒ 18.18 91.49 ⇒ 90.97 78.03 ⇒ 43.83 1.19 ‰ 0.57% ↓ 67.34% ↓
SD 96.76 ⇒ 50.06 91.68 ⇒ 21.72 86.74 ⇒ 30.86 68.56 ⇒ 17.68 99.42 ⇒ 97.75 2.58 ‰ 1.67% ↓ 65.80% ↓

The unsupervised EncoderLock also shows promising result in

applicability authorization.

APPENDIX D

TRAINING COST OF ENCODERLOCK

Architecture Level Source Target SIZE DWS (s) DWU (s) SC (s)

ResNet-18 sup. MT UP 32 0.771± 0.147 5.85± 0.021 2.33± 1.59
ResNet-18 unsup./zero-shot MT UP 32 1.03± 0.086 45.8± 0.126 -

VGG-11 sup. MT UP 32 0.821± 0.275 8.66± 0.039 8.75± 9.11
VGG-11 unsup./zero-shot MT UP 32 1.34± 0.498 45.1± 0.122 -

ResNet-18 sup. ImageNette Military 224 1.45± 0.217 59.2± 2.23 53.1± 10.2
ResNet-18 unsup./zero-shot ImageNette Military 224 1.82± 0.286 455.2± 1.03 -

We present the training time costs of supervised, unsuper-

vised, and zero-shot EncoderLock on our platform equipped

with an RTX TITAN GPU. Note the zero-shot EncoderLock

has similar computational complexity as the unsupervised

version, because they employ the same training strategy. We

choose to examine two representative source-target domain

pairs: a smaller digits pair (MT and UP) with an input size of

32× 32× 3, and a more complex image pair (ImageNette and

Military) with an input size of 224 × 224 × 3. Additionally,

we assess the training costs associated with two different

encoder architectures, ResNet-18 and VGG-11. We break down

the training complexity into the three key steps described in

EncoderLock: domain-aware weight search (DWS), domain-

aware weight updating (DWU), and self-challenging training

(SC). The results demonstrate that the primary computational

burden lies in the DWU step, and for supervised EncoderLock,

the self-challenging phase is also costly, where the classifier

must be retrained to enhance robustness against adversarial

attacks. Furthermore, we find that DWS and DWU in unsuper-

vised and zero-shot EncoderLock incur higher computational

costs compared to the supervised version. This is attributed

to the contrastive learning-based loss function (6). When

comparing different input sizes, higher-resolution images lead

to substantially longer training time because of the larger

feature maps to compute during the forward pass of the encoder,

especially in the DWU process. Large models also require more

training time. It is worth noting that such training cost is a

one-time expense, and there is no performance impact on the

protected encoder during inference.

APPENDIX E

NUMERICAL RESULTS – SUPERVISED ENCODERLOCK (VIT)

Following a similar setting in Section V-G, we consider that

the model provider aims to prevent the pre-trained ViT encoder

on ImageNette from being transferred to a specified simple

unauthorized domain. In particular, we evaluate EncoderLock

on four target datasets: CF, ST, MT, and CF100. To fit the input

size of ViT, we resize the target input to 224× 224× 3 and

monitor the accuracy degradation on both the target datasets and

16

ImageNet [92], the source dataset. During training, we follow

the ViT fine-tuning instructions and use the last hidden state as

the extracted feature space and connect to a single-dense-layer

output classifier. From results shown in Table VIII, we find

that EncoderLock reaches the non-transferability design goal —

reducing the ViT performance on the target domain by 65.8%
but keeping the accuracy on the source domain with a small

accuracy drop of 2.15%. Our experimental results demonstrate

that EncoderLock is effective when applied to a large encoder

pre-trained on a large amount of samples.

TABLE VIII
ENCODERLOCK ON VIT–SOURCE TASK (IMAGENETTE [79])

Target Acc
org
S

Acc
org
T

Accel
S

Accel
T

DropS DropT

CF

87.26

74.99 86.83 36.70 0.49% ↓ 51.9% ↓
ST 73.50 86.80 10.53 0.53% ↓ 85.7% ↓
MT 92.06 85.20 47.56 2.36% ↓ 48.3% ↓

CF100 53.31 82.62 12.07 5.32% ↓ 77.4% ↓

APPENDIX F

IMPACT OF THE SYNTHETIC DATASET QUALITY ON

ZERO-SHOT ENCODERLOCK

In addition to prompt relevance, the generation quality of the

synthetic dataset significantly affects the performance of zero-

shot EncoderLock. We measure the quality with two metrics:

the noise level of the synthetic images and the generation quality

of the diffusion model. To ensure a fair comparison, we use

the same set of prompts (refined prompts from the prohibited

domain) for zero-shot EncoderLock and select an encoder

with the same degradation level on the authorized domain

as reported in Section V-D (greater than 92%). We report the

EncoderLock performance in the format of (accS
m
, accT

m
). Note

that the defense goal of EncoderLock is a higher accS
m

and

lower accT
m

.

target acc 23.69 % target acc 32.02% target acc 37.13% target acc 46.30%

protection performance

noise level

Fig. 15. Zero-shot EncoderLock performance with different noise levels

Fig. 15 shows an example image with different levels of

Gaussian noise. Introducing random noise into the images

reduces EncoderLock’s ability to restrict the prohibited domain.

We assess the impact of different noise levels, at Ã = 1,

Ã = 5, and Ã = 10, respectively. The zero-shot EncoderLock

performance degrades to (91.90%, 32.02%), (91.85%, 37.13%),

and (92.20%, 46.30%), where the performance on the noise-

free synthetic dataset is (92.86%, 23.69%). High level of noise

significantly reduces the synthetic quality, leading to poorer

performance of the zero-shot EncoderLock.

We regenerate the synthetic datasets with varying number

of inference iterations in the stable diffusion model. The

target acc 46.25% target acc 37.56% target acc 25.60% target acc 23.69%

Protection performance

generation inference iterations

Fig. 16. Zero-shot EncoderLock performance with different diffusion qualities

generation quality improves as we increase the iteration

count from 5, 10, 20, to 50 (the value used in the original

setting), as shown in Fig. 16. Consequently, the protection

performance improves from (92.71%, 46.25%) to (92.25%,

37.56%), (92.31%, 25.60%) and (92.86%, 23.69%). A higher-

quality synthetic dataset provides clearer potential features

of the prohibited domain, thus enhancing the restriction

performance. However, increasing the number of inference

iterations in the generator leads to higher computational costs.

Running 5 inference iterations achieves a speed of 8.2 items/s,

whereas 50 inference iterations reduce the speed to 0.8 items/s.

APPENDIX G

ENCODERLOCK PERFORMANCE ON VARIOUS DATA

Supervised EncoderLock

Unsupervised EncoderLock

Fig. 17. EncoderLock performance for various volumes of probing data.

We evaluate the scenario where an attacker probes the

encoder using varying amounts of probing data, ranging from

10% to the entire dataset, in both supervised and unsupervised

settings. The results are illustrated in Fig. 17. Notably, for

the prohibited target domain, the accuracy remains low even

when the attacker utilizes the full prohibited dataset, while the

protection slightly degrades with more data. For the authorized

source domain, the accuracy remains consistently high even

with a small amount of probing data. These results demonstrate

the robustness of both supervised and unsupervised versions

of EncoderLock against malicious probing attempts.

APPENDIX H

COMPARE WITH PREVIOUS WORK

In this section, we present more comparison results with

baselines. From Table IX, we compare the baseline methods

and the proposed supervised EncoderLock and unsupervised

17

EncoderLock between different pairs of digit datasets. The

observation is similar to our conclusion in Section V-E.

Specifically, under the condition of fine-tuning the downstream

model fine-tuning, the proposed methods outperform baselines.

TABLE IX
COMPARISON THE EFFECTIVENESS OF ENCODERLOCK ON THE TARGET

DOMAIN AND ITS PERFORMANCE ON OTHER DOMAINS WITH

BASELINES [20], [21]. IN THIS TABLE, BOLD TEXT INDICATES THE BEST

PERFORMANCE, UNDERLINED DENOTES THE SECOND-BEST PERFORMANCE.
THE GRAY ROW DENOTES ORIGINAL TRANSFER ACCURACY.

Methods \ Domain
Source Target Other Domains
MM UP MT SN SD

Original Accuracy 94.2% 94.7% 98.9% 53.8% 85.9%
NTL [20] 81.6% 77.3% 97.9% 30.4% 62.1%
CUTI [21] 66.6% 90.6% 96.0% 52.3% 82.0%

Supervised EncoderLock 93.5% 17.8% 98.8% 39.3% 69.1%
Unsupervised EncoderLock 93.3% 30.7% 98.9% 49.0% 78.4%

APPENDIX I

SECURITY ANALYSIS–TRAIN-FROM-SCRATCH ACCURACY

MTàUP UPàMT MMàUP

Number of Training/Probing Epochs Number of Training/Probing Epochs Number of Training/Probing Epochs

A
cc

u
ra

cy
 (

%
)

Fig. 18. EncoderLock’s Performance Versus Train-from-scratch

Here we apply the security assessment definition in Sec-

tion VI-B on three example pairs of domains: MT to UP,

UP to MT, and MM to UP for the supervised EncoderLock

on VGG-11. Their accuracy drops on the authorized domain

are 0.07%, 0.25%, and 0.17%, respectively, all below the

accuracy drop constraint (ϵ = 2%). Fig. 18 shows the probing

performance of the EncoderLock-protected and unprotected

encoders on the prohibited domain, compared to the accuracy

of the “train-from-scratch” model. It demonstrates that starting

from the EncoderLock-protected encoder allows the model to

achieve lower accuracy and faster convergence on the prohibited

domain, than a model trained from scratch. Therefore, the

protected encoder can be considered SECURE, as an attacker

would have no motivation to perform malicious probing. By

contrast, the original encoder is NOT SECURE, as the accuracy

(red) is always higher than train-from-scratch accuracy (gray)

as shown in Fig. 18.

APPENDIX J

ENCODERLOCK GRADCAM ON ADMISSIBLE DOMAINS

In this section, we present the additional results to visualize

the admissible domains with GradCAM in Fig. 19.

APPENDIX K

GENERATED PROMPTS & IMAGES

The (refined) prompts for generating synthetic datasets in

zero-shot EncoderLock. The theme is military vehicles.

Pre-trained Encoder Supervised Unsupervised Zero-shot (Manual) Zero-shot (Initial) Zero-shot (Refined)Original Image

A
d
m

is
si

b
le

 1

 (
S

ed
an

)

A
d
m

is
si

b
le

 2

 (
W

ea
p
o
n
)

A
d
m

is
si

b
le

 3

 (
h
en

)

Fig. 19. Interpretation of Different EncoderLock using GradCAM [84]–
the red parts highlight the focus of encoder to make decisions.

Manual Prompts. See Figure 20

• Armored Personnel Carrier
• Anti-tank Combat Vehicle
• Tactical Missile Vehicle
• Forward Command Vehicle
• Communication Support Vehicle

• Artillery Tractor
• Logistic Support Transport Vehicle
• Tank
• Self-propelled Artillery
• Multi-functional Infantry Vehicle

Initial Prompts: The synthetic images shown in Figure 21

• futuristic tank, stealth design
• antique cannon, ceremonial use
• amphibious assault vehicle, coastal

operations
• drone carrier truck, mobile base
• armored medical evacuation vehicle,

red cross
• cyberpunk hoverbike, scout unit

• nuclear-powered submarine, deep-
sea exploration

• stealth bomber, night operation
• battlefield command and control

center, high-tech
• anti-aircraft missile system, mobile

defense

Refined Prompts: The synthetic image shown in Figure 22

• Armored Ground Vehicle, Modern
Combat

• Artillery System, Classic Aesthetics
• Amphibious Assault Transport
• Drone Carrier, Tactical
• Field Support Unit, Healthcare

• Reconnaissance Craft, Urban Aerial
• Deep Sea Explorer, Nuclear Propul-

sion
• Stealth Surveillance Plane
• Command Center, High-Tech
• Missile Defense Network, Mobile

Self-propelled Artillery Artillery Tractor Logistic Support Transport Vehicle Armored Personnel

Carrier

Forward Command Vehicle

Anti-tank Combat Vehicle Communication Support Vehicle Tank Multi-functional Infantry Vehicle Tactical Missile Vehicle

Fig. 20. Manual Prompts and Generated Synthetic Dataset

Antique Cannon Battlefield Command and Control Center Stealth Bomber Futuristic Tank Cyberpunk Hoverbike

Armored Medical Evacuation Vehicle Anti-aircraft Missile System Amphibious Assault Vehicle Drone Carrier Truck Nuclear-powered Submarine

Fig. 21. AI agent Initial Prompts and Generated Synthetic Dataset

Amphibious Assault Transport Reconnaissance Craft Deep Sea Explorer Command Center Armored Ground Vehicle

Drone Carrier Field Support Unit Missile Defense Network Stealth Surveillance Plane Artillery System

Fig. 22. AI agent Refined Prompts and Generated Synthetic Dataset

18

APPENDIX L

ARTIFACT APPENDIX

Artifact DOI 10.5281/zenodo.14248909.

A. Description and Requirements

1) How to Access: Our artifacts include the source code to

run the training and evaluation process of EncoderLock.

2) Hardware Dependencies: A GPU is highly recommended

for testing the source code to ensure faster training and

evaluation.

3) Software Dependencies: The required software includes

Python 3.9 and PyTorch 1.12.

4) Datasets: Most of the datasets can be downloaded via

torchvision. We also provide links to download the real-

world datasets (i.e., ImageNette and Military Vehicle) in the

README file and the main manuscript.

B. Artifact Installation

The artifacts run in a Python 3.9 environment. We rec-

ommend installing the required packages in an Anaconda

environment using the environment.yml file.

C. Experiment Workflow

The experiment consists of three parts:

• Data and Model Preparation: To run the experiment,

we first need to prepare data from both the source domain

and the target domain (synthetic dataset for the zero-shot

EncoderLock). Additionally, we need a victim pre-trained

encoder that performs well on the source domain but is

vulnerable to malicious probing on the target domain.

• EncoderLock Training: In this stage, the user should

fine-tune the encoder using the proposed method to obtain

a modified encoder that resists malicious probing on the

target domain.

• EncoderLock Testing: In this stage, the user needs to test

the probing performance of the modified encoder on the

target domain to demonstrate that the model is protected

against probing.

D. Major Claims

We demonstrate the effectiveness of EncoderLock in protect-

ing against malicious probing. The main results are presented

in Table II and Table III. Specifically, you should observe that

while the source domain experiences a slight degradation in

testing accuracy, the target domain accuracy drops significantly

after implementing EncoderLock.

E. Evaluations

1) Experiment Cost: Training EncoderLock usually takes

from 0.1 to 6 GPU hours, varying depending on the GPU

platform and the dataset.

2) How To: Please follow the steps in the README.md file

included with the artifacts to run the evaluations.

3) Execution: We provide scripts to directly run all evalua-

tions; you can find them under the /tests/ directory.

4) Customization: Hyperparameters can be directly adjusted

in the execution scripts.

19

