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Abstract—Adapting pre-trained deep learning models to cus-
tomized tasks has become a popular choice for developers to cope
with limited computational resources and data volume. More
specifically, probing—training a downstream head on a pre-trained
encoder-has been widely adopted in transfer learning, which
helps to prevent overfitting and catastrophic forgetting. However,
such generalizability of pre-trained encoders raises concerns
about the potential misuse of probing for harmful intentions,
such as discriminatory speculation and warfare applications.
In this work, we introduce EncoderLock, a novel applicability
authorization method designed to protect pre-trained encoders
from malicious probing, i.e., yielding poor performance on
specified prohibited domains while maintaining their utility in
authorized ones. Achieving this balance is challenging because of
the opposite optimization objectives and the variety of downstream
heads that adversaries can utilize adaptively. To address these
challenges, EncoderLock employs two techniques: domain-aware
weight selection and updating to restrict applications on prohibited
domains/tasks, and self-challenging training scheme that iteratively
strengthens resistance against any potential downstream classifiers
that adversaries may apply. Moreover, recognizing the potential
lack of data from prohibited domains in practical scenarios,
we introduce three EncoderLock variants with different levels
of data accessibility: supervised (prohibited domain data with
labels), unsupervised (prohibited domain data without labels),
and zero-shot (no data or labels available). Extensive experiments
across fifteen domains and three model architectures demonstrate
EncoderLock’s effectiveness over baseline methods using non-
transferable learning. Additionally, we verify EncoderLock’s
effectiveness and practicality with a real-world pre-trained
Vision Transformer (ViT) encoder from Facebook. These results
underscore the valuable contributions EncoderLock brings to the
development of responsible Al

I. INTRODUCTION

As the complexity of learning tasks increases, leveraging
pre-trained models becomes a popular strategy for developers
to train their customized models efficiently. Among various
transfer learning methods, model probing has emerged as one
of the most common and lightweight strategies to utilize pre-
learned knowledge effectively [1]-[3]. It involves freezing the
encoder parts of pre-trained models while fine-tuning only the
downstream heads. The encoders often include early layers
of pre-trained models with more complex structures, which is
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responsible for extracting useful information from raw data
to latent representations, on which downstream heads perform
specific tasks such as classification and generation [4], [5].

Probing offers several advantages, including resource effi-
ciency, because of its low requirements on data and computa-
tional resources, and semantic consistency, as it helps avoid
catastrophic forgetting—the performance reduction due to the
encoder’s loss of pre-learned knowledge after extensive fine-
tuning [6]—[8]. Furthermore, probing allows the pre-trained
encoder to be used as a black-box, either as local private
models [9]-[11] or cloud services through APIs [12]-[14],
ensuring better intellectual property protection [15]. Nowadays,
many companies, such as Clarifai [12] and OpenAl [13], offer
commercial encoder APIs, allowing users to input data and
obtain latent feature vectors, which can then be used for various
downstream real-world applications.

However, the general availability of the pre-trained encoder
for probing also raises concerns about malicious probing,
i.e., users can probe the encoder for unethical or harmful
tasks [16]. Examples include building classification heads for
discriminatory speculation [17], [18] or autonomous weapons
in warfare applications [19]. To address these concerns, model
owners have set strict policies regarding the utilization of pre-
trained encoders. For instance, OpenAl explicitly prohibits
users from employing their encoder services for “any illegal,
harmful, or abusive activity”. However, relying solely on
policies, without concrete technological barriers, is insufficient
to prevent model misuse. Considering malicious probing not
only poses ethical risks but also represents a serious form
of infringement on the intellectual property of model owners,
design-time countermeasures are urgently needed for protecting
the encoders with applicability authorization [20].

Proactively preventing pre-trained encoders from malicious
probing presents three challenges. Challenge 1: Integrity of
Pre-trained Encoder. The protection strategy should maintain
the encoder’s functionality on authorized domains (those
for which the encoder is designed), while restricting misuse
on prohibited domains (those not allowed due to malicious
intent). Furthermore, it is advisable to have a small impact on
admissible domains (those are gray-listed and not explicitly
considered during encoder design). Challenge 2: Robustness to
Malicious Probing. Malicious users can customize downstream
heads with various configurations (e.g., hyper-parameters and
classifier architectures). The protection method must be robust
against these diverse setups. Challenge 3: Accessibility to
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Fig. 1. Applicability Authorization with EncoderLock: Fixed pre-trained
encoders accept user inputs and return representations. Users can utilize them
for various customized tasks by probing with downstream heads. EncoderLock
aims to prevent malicious probing to pre-defined prohibited domains, which
may have different levels of data accessibility, marked by different colors.

Prohibited Domains. Effective protection requires pre-defined
prohibited domains, while a lack of samples from these domains
can significantly impact its performance. A few studies design
protection against direct applicability on prohibited tasks—
malicious users can do inference but no further fine-tuning [20],
[21]. They introduced a training strategy considering solely a
given prohibited dataset with clear labels and an authorized
dataset, called Non-Transferable Learning (NTL). Unfortunately,
NTL doesn’t apply to pre-trained encoders—as malicious users
can further probe encoders with downstream heads using
prohibited data. Therefore, we propose EncoderLock, a new
applicability authorization strategy for pre-trained encoders.
EncoderLock is based on our new three-level threat model
for model applicability authorization for pre-trained encoders,
following a paradigm akin to that used in representation
learning, as illustrated in Fig. 1: a) Level 1 Label-enriched:
The provider has a labeled dataset of the prohibited domain,
b) Level 2 Label-free: The provider only has an unlabeled
dataset, c) Level 3 Theme-only: The provider has no data
but knows the theme they wish to exclude the encoder from
processing. These levels represent real-world model providers
with different data accessibility. Throughout the paper, we will
use this color coding to represent these data accessibility levels.
EncoderLock proposes the following solutions to address
all three challenges against malicious probing. First, we
propose domain-aware weight selection and updating, which
identifies critical weights to the target domain and adjusts
them, successfully restricting the model’s transferability to the
target domain while minimizing its effect on other authorized
domains (addressing Challenge 1). To ensure the robustness
of EncoderLock against customized malicious downstream
heads (addressing Challenge 2), we introduce a minimax
optimization—self-challenging training, which refines the en-
coder’s feature space iteratively by continuously adjusting
auxiliary downstream heads. Together, these strategies con-
stitute supervised EncoderLock, which effectively addresses
the Level 1 scenario. To address Challenge 3, we extend two

EncoderLock variants for stricter accessibility to the prohibited
domain. For Level 2 where only an unlabeled target dataset is
available, we introduce unsupervised EncoderLock, including
a novel regularization term based on contrastive loss in the
feature space, which deliberately obfuscates features in the
target dataset. For Level 3, we propose zero-shot EncoderLock,
which leverages an Al agent and a text-to-image generative
model to build a reliable pathway from semantic description to
an unlabeled synthetic dataset. To ensure the synthetic dataset
is representative of the target domain and comprehensive, we
propose a prompt refining method utilizing the Al agent.
Our Contributions: We propose EncoderLock, a novel
and proactive protection on the pre-trained encoder against
malicious probing. The contributions of this work include:

1) EncoderLock provides a robust applicability authorization
framework to owners of pre-trained encoders. It maintains
the encoder’s performance on authorized domains with the
domain-aware weight selection algorithm and offers robust
defense against diverse customized probing through a self-
challenging training scheme.

2) We propose a three-level threat model following the practical
data availability of representation learning. Correspondingly,
we present three variants of EncoderLock with novel
techniques to address different levels of target domain data
accessibility, tackling realistic comprehensive scenarios.

3) We conduct extensive experiments to evaluate EncoderLock
across twelve domains and three encoder architectures,
including a large, real-world Vision Transformer [22].
Our results demonstrate the effectiveness of all three
EncoderLock variants. Specifically, we assess EncoderLock
in a real applicability authorization scenario, preventing
a pre-trained encoder from being misused for military
purposes while keeping its generalizability to civilian ones.

II. BACKGROUND
A. Pre-trained Encoders and Model Probing

Pre-trained models are widely used in computer vision [23]-
[25], representation learning [26]-[29], and natural language
processing [30]-[32], which embed pre-learned knowledge as
the model initialization to reduce the complexity in training new
tasks. Taking transfer learning in vision tasks as an example,
there are three common strategies:

Full Fine-tuning: Full fine-tuning leverages the entire pre-
trained model as the training initialization and fine-tunes it
with the target dataset. It often has good performance but has
the risk of stability and catastrophic forgetting [6], [33].
Prompting: Rather than finetune the model parameters,
prompting redirects the pre-trained model via modification
on the inputs (i.e., visual prompt). Prompting is efficient but
performance experiences a larger degradation [34]—[37].
Model Probing: Probing freezes the early layers of the pre-
trained model (e.g., deep convolutional layers or self-attention
layers [38], [39]) as the fixed pre-trained encoder and fine-tunes
the downstream classifier. It has a small training cost and high
stability of the training process [40]-[42].



In this work, we focus on model probing as it is more
efficient and stable than fully fine-tuning and has better
performance than prompting. Probing also supports pre-trained
encoders from different training schemes, which can be
categorized into three types: supervised, unsupervised, and self-
supervised. For supervised learning, the model (i.e., encoder
and downstream head) is trained directly using labeled training
data and a loss function (e.g., cross-entropy loss) [43]. Unsuper-
vised learning aims to learn from unlabeled data, using methods
such as Gaussian Mixtures Model (GMM) [44], Variational
Autoencoder (VAE) [45], and Generative Adversarial Network
(GAN) [46]. Self-supervised learning aims to train an encoder
to predict one part of data given another part of the input [47]-
[49]. Tt leverages the inherent data characteristics and shows
increasing robustness and generalizability of the encoder [50].
Specifically, given the input (e.g., an image), one will use
data augmentation operations (e.g., cropping, color jitter, and
adding random noise) to build augmented images. The training
objective is to make the encoder generate similar embeddings
for augmented images from the same input, denoted as positive
pairs; while ensuring the discrepancy of embeddings from
different images, denoted as negative pairs. The training of
a self-supervised encoder utilizes contrastive loss [47], [48],
which increases the similarity between positive pairs but
decreases those of negative pairs. Our design of EncoderLock
considers various data accessibility of prohibited domains,
which aligns with the training process of pre-trained encoders—
with or without labeled datasets.

B. Applicability Authorization

Recently, applicability authorization, a new IP protection
scheme, has been proposed to address the rising concerns of IP
infringement on DNN models [20], [21], [51], [52]. Traditional
model IP protection aims to protect the rights of owners of
DNN models with two typical defense strategies: ownership
verification and usage authorization. Ownership verification is
designed to trace the illegal behavior of IP infringement using
methods such as embedding watermarks during the training
procedure or recording fingerprints of the model owner [53]-
[55]. In contrast, usage authorization aims to restrict user access
to the model, ensuring that only verified, trusted users can
access with assigned authorization keys [56], [57]. Instead of
protecting the model parameters or hyper-parameters directly
like traditional methods, applicability authorization focuses
on the unauthorized transfer of the pre-trained models [51].
Specifically, it aims to prevent malicious transfer learning
through which an attacker can abuse the pre-trained model for
prohibited data or tasks, i.e., non-transfer-learning. In this work,
we further propose EncoderLock to address the challenges of
applicability authorization of pre-trained encoders to safeguard
them from unauthorized probing.

C. Non-Transferable Learning (NTL)

Wang et al. [20] introduced NTL for applicability authoriza-
tion of an entire model without any fine-tuning. In particular,

NTL leverages a negative regularization term on the model’s
target domain performance:

Lyt = Ls+ Rt (1

where Ls is the Kullback—Leibler (KL) divergence/loss on
the source dataset, aiming to retain the model’s performance
on the source domain. Model non-transferability comes from
the regularization term, defined as Ry = —min(8,« - Ly -
Lg;s) [20], where Ly is the KL loss on the target dataset, Lg;s
measures the feature space distance between the source and
target domains (using Maximum Mean Discrepancy), and «
and f are scaling factors. Another prior work [21] proposes
an additional CUTI-domain for regularization on private style
features with the R+ as — L. In addition, previous works also
proposed ‘source-only’ NTL for cases when there is no target
data available. As the term ‘source-only’ indicates, this strategy
leverages generative models (i.e., GAN) to create a synthetic
dataset, which serves as the boundary from the source domain
to prohibit the model’s transferability to all other domains.

D. Limitations of Prior Works

Prior works focus on the case when the attacker uses
the trained model directly but cannot fine-tune it [20], [21].
However, with the increasing popularity and low cost of probing
the pre-trained (fixed) encoder, the applicability authorization
(model non-transferability) can be bypassed in a few probing
epochs. Moreover, previous methods predominantly add a
regularization term solely based on the model outputs. Although
[20] introduces a feature space distance as a regularization
between the source and target domains, they cannot ensure
restriction as the class discrepancy might still be large on the
feature space. Furthermore, previous methods only consider
the case of supervised NTL, i.e., the defender has access
to one labeled target dataset and one labeled source dataset.
Our Challenge 3 is closer to the practical scenario where the
defender lacks knowledge about the prohibited target. Pre-
trained encoders and model probing bring new challenges
in data availability for applicability authorization. Our work
EncoderLock aims to address them accordingly.

III. THREAT MODEL

In this work, we tackle applicability authorization for pre-
trained encoders, aiming to prevent malicious users from
probing the encoder for harmful tasks (i.e., unethical, illegal, or
abusive activities). In this paper, we focus on vision encoders
and image classification as the downstream task.

A. Malicious Users

The attackers are users with malicious intent to breach the
usage policy of fixed pre-trained encoders with probing [58].
Objective. Their objective is to exploit pre-trained encoders for
tasks that are not allowed, specifically, accurately classifying
samples from prohibited domains. Other forms of DNN IP
infringement of the pre-trained encoder, e.g., model stealing
attacks, are out of the scope of this paper.

Capabilities. Capabilities of the malicious users include:
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Fig. 2. Overview of the proposed EncoderLock framework and paper organization. The procedure in Round r includes: 1.domain-aware critical weight
selection algorithm: take data batches Bs and 37 from the authorized source dataset Ds and the prohibited target dataset D, respectively, and calculate
the weight importance with gradients of loss Ls and L7 and choose critical weights to update for the round r as N, note here specific losses depend on
different levels of accessibility of the target domain; 2. EncoderLock weight update algorithm (with three variants for the three levels of target domain dataset),

utilizing the supervised EncoderLock loss L), unsupervised contrastive loss L

o They can probe a pre-trained encoder using inputs from
prohibited target domains and utilize the representations to
train a local downstream classifier for inference. Although
they query the encoder (as a service or local private model), it
is a black-box with both structure and parameters unknown.

e Users can build their own downstream classifiers, customiz-
ing the classifier’s hyper-parameters and fine-tuning the
parameters with any learning rates and optimizers.

« Following the common setting of probing, we assume that
the attacker has a small amount of data from the prohibited
domain for fine-tuning (e.g., 10% from the target domain).

B. Model Owner

Model owners aim to safeguard the pre-trained encoder

against malicious probing proactively. Following the common
definition of transfer learning, the dataset on which the encoder
is trained is defined as the source domain (authorized
domain), and the dataset that the (malicious) downstream
classifier is trained for is the target domain (prohibited
domain). Moreover, we define data domains other than these
two as admissible domains, indicating that the usage of the
encoder on these domains is allowed but their performance is
not guaranteed like the source domain.
Protection Objective. The major goal includes: restricting
the pre-trained encoder from being probed for the prohibited
domain; preserving its performance on the authorized domain.
Capabilities. The capabilities of the model owner include:

o The model owner has full control of the encoder to adjust the
architecture, hyper-parameters, and parameters, and manage

ont

and the generated synthetic dataset D’-, respectively.

training strategies for the encoder before deploying it.

o The owner has no access to the user’s dataset after deploy-
ment to detect if the probing samples belong to the prohibited
domain, and has no knowledge about the probing process or
downstream heads.

« The owner may have different levels of accessibility to the
prohibited domain, from high to low: a) Level 1: The owner
has a labeled target dataset; b) Level 2: The owner obtains
the target dataset, but it is unlabeled; c) Level 3: The owner
only has an abstract concept about the prohibited target
domain (i.e., a text description), which is called a ‘theme’. We
propose three variants of EncoderLock to address different
levels of accessibility, respectively.

IV. PROPOSED FRAMEWORK: ENCODERLOCK

In this work, we propose a new applicability authorization
strategy for a pre-trained encoder against malicious probing,
which we call EncoderLock. Fig. 2 depicts an overview of
the framework, which consists of two major steps - domain-
aware weight selection algorithm and specific weight updating
algorithms catering to the different levels of accessibility of the
target domain. By managing the weights, EncoderLock restricts
the encoder from being probed on the prohibited target domain
to extract useful information, while ensuring that the encoder
correctly responds to authorized (source) inputs. Existing
literature mostly focuses on protecting pre-trained models from
being transferred [20], [21], while our EncoderLock targets
pre-trained encoders, with several unprecedented challenges
outlined in Section IV-A.



A. Design Objectives and Challenges for EncoderLock

In addition to the traditional design objective of controlling
the transferability of pre-trained models to prohibited target
domains [20], EncoderLock faces three additional challenges
that need to be effectively addressed.

Challenge 1. Preservation of Integrity: The integrity of
the encoder lies in maintaining the pre-learned knowledge
about the authorized domains. One question is raised: how
can EncoderLock make minimal modifications to the encoder
to restrict it on the prohibited domain while preserving the
integrity on the source domain?

Challenge 2. Robustness to malicious probing: When
malicious users adjust the downstream heads for the prohibited
domain with any learning rate and optimizer, how to success-
fully ‘lock’ the encoder against malicious probing?
Challenge 3. Different target domain data accessibility: In
reality, as the defender (model owner) may have various levels
of knowledge about the target domain, how should Encoder-
Lock be designed for practical scenarios including unlabeled
datasets or even no samples from prohibited domains?

B. Domain-aware Weight Selection

To address Challenge 1, we propose domain-aware weight
selection to selectively update weights that are critical only
for the target domain, thereby minimizing EncoderLock’s
negative impact on the integrity of the pre-trained encoder.
Our strategy is motivated by two observations of DNN
models: 1) Weight importance varies across different domains.
Different sets of critical weights in the same model may
respond to different domains, which can be measured by the
weight’s gradient magnitude. This notion has been exploited
in achieving domain-specific pruning [59], effective fault
injections on DNN parameters [60]-[62], and watermarking
embedding [54]. Fig. 3 demonstrates one example of different
weight importance for different domains. The model is a multi-
layer perceptron network trained on MNIST (source domain),
and the distribution of the weight gradients is shown in red
color. When this model runs inference for another dataset
USPS (target domain), the weights gradient profile is shown in
blue color, distinctly different from that on MNIST. 2) Over-
parametrization—DNNs often have more weights than required,
with a large portion being insignificant. This characteristic is
widely utilized in model compression for efficiency [63]-[65],
where only critical weights are retained while others are pruned.

Our Domain-aware Weight Selection (DWS) algorithm is
described in Function 1. The search process runs iteratively.
In the ™ round, it uses datasets from the source and target
domains, Ds and Dy, to search for and update the critical
weight set A;.. It is important to note that the composition of
D+ depends on the level of data accessibility. For supervised
EncoderLock (Level-1), inputs from the target dataset have
labels, and the loss L is calculated using cross-entropy, similar
to Ls. In the unsupervised and zero-shot EncoderLock (Level-
2 and Level-3), the target dataset consists of unlabeled or
synthetic images, and we propose using a contrastive loss
for these unlabeled inputs, presented in Eq.(6). The weight

I MNIST

I USPS

an|eA uaipeo

Fig. 3. Visualization of weight importance in a pre-trained model—The
X-Y plane represents the weight matrix of a selected dense layer in a model
trained on MNIST and probed for USPS. The color and height indicate each
weight’s importance to the output (the higher and darker, the more important).

Function 1 Domain-aware Weight Selection

Input: Source domain Ds, Target domain D7, Pre-trained encoder
parameters ¢, Number of new critical weights N, Set of critical
weights for the previous round N;_1

Output: Set of critical weights N/,

1: function DWS(Ds, D1, ¢, Nr—1, N)
2: Sample a training batch B7 from Dy
3: Sample a training batch Bs from Dgs
/* Compute gradients for both batches */
4: V L1 + ComputeGradients(¢, Br)
5: V Ls < ComputeGradients(¢, Bs)
/* Compute scores and select critical weights */

1,0

6: Compute score for i*" weight in ' layer:

VL’Tﬂ
vkt
l,i

7: Select top /N weights: argmax

Viz
vik?
8: N, + N,._1 U {selected weights}

9: return M,
10: end function

importance score is defined as the magnitude ratio of gradients
for the it" weight in layer [ between the target and source
domains |VLlT’Z / VLfé’ . This score is used to identify weights
that are critical to target domains but less crucial to the source.

The search process is iterated across R rounds, with
N weights selected in each round, resulting in a total of
N x R weights to update. The values of N and R are two
hyperparameters that control the number of altered weights
and will be discussed further in Section VI-A. Such design
allows us to process the datasets in batches and implement the
self-challenging training scheme (see Section IV-C2).

In Section IV-C to IV-E, we further discuss more details
about how to update the selected weights and how to achieve
robustness against downstream fine-tuning (Challenge 2). The
method varies across different levels of accessibility to the
target domain, as shown in three branches of Fig. 2.

C. Supervised EncoderLock

Level 1 EncoderLock is supervised, with a labeled target
domain dataset. Specifically, given the source domain Ds and
target domain D7, with (zs,ys) € Ds and (z7,y7) € D



as the corresponding datasets, let fj denote the pre-trained
encoder, and Cyp, and Cy., denote the auxiliary downstream
task classifiers for the source and target domains, respectively.
Our objective is to find an optimal encoder ¢* that minimizes
Ls but maximizes L, which are expressed as:

Ls = L(Cos (fs(s)),ys), L1 = L(Cor(fo(z7)),y7m) (2

where L is the classification loss function (i.e., cross-entropy
loss) and is used to compute gradient in Algorithm 1 for
weight selection. To restrict the impact on the encoder’s
generalizability, we require ||¢* — ¢|lo < M (:=N x R), where
| - 1lo is 4o norm and M signifies the weight change budget.
The fundamental supervised EncoderLock consists of three
steps: 1) Domain-aware weight selection, 2) Non-transferability
updating, and 3) Self-challenging downstream model training.
We run these three steps iteratively for R rounds or until
the accuracy of the auxiliary downstream classifier reaches
the early stopping criterion. For the three different levels of
target domain data accessibility, the weight search and update
algorithms are similar, but with different loss functions. But
the supervised EncoderLock, with its loss design for the output
space, requires an additional self-challenging training step to
ensure its robustness. We next discuss the other two design

steps for supervised EncoderLock in detail.

1) Weight Updating for Non-transferability: With critical
weights selected to update, we design a loss function in the
form of Equation (1), focusing on the regularization term R to
mitigate the malicious probing for the target domain. Previous
regularization terms [20], [21] only consider the target domain,
which leads to unstable performance especially when Ls and
L are at different orders of magnitude. In particular, when
Ls is very small (i.e., near zero), the introduction of R will
cause a strong impact on Ls. Therefore, we propose a new
log-ratio regularization term considering both Ls and L

Ler = Ls + R, where R = log(1 + afi) 3
-

Such logarithmic regularization term gently penalizes the loss
ratio between the source and target, with o moderating the
balance between preserving the source domain accuracy and
enforcing the target domain non-transferability. Consequently,
the optimization objective for the encoder is defined as:

" = argm(gnLel(qb, 0s,07) st ||[¢" — ollo < M Vos,07 (4)

2) Self-challenging Training Scheme: To update the encoder
weights in supervised EncoderLock following Equation (4), we
consider the auxiliary downstream classifier to compute L.
However, malicious users have full control of the downstream
classifier, including adjusting the architecture and choosing the
optimization method, and can fine-tune the model parameters
based on the extracted features. Consequently, the performance
of the pre-trained encoder and the classifier on the target
domain can be improved. Relying solely on a fixed-weight
target classifier could lead to vulnerability, where supervised
EncoderLock may only be non-transferable for given auxiliary

classifiers but not for others the malicious user opts for.

To improve robustness against any potential malicious prob-
ing for supervised EncoderLock, we propose a self-challenging
training scheme with a minimax problem formulation as:

o argngnrrglaxLel(cﬁ, 0s,07) st ||¢"—dllo <M (5
T

Algorithm 1 Self-challenging Training Scheme

Input: Pre-trained encoder with ¢, Source domain D, Target training
dataset D‘}“i“, Target validation dataset D?lid, Number of critical
weights NV, Number of rounds R, Desired target accuracy qgoai.

Output: Encoder with supervised EncoderLock ¢*

I: for r=1to R do
/* Initialize critical weights set for the first round*/
2: if r == 1 then
Initialize set NV, _1 < ()
end if

/* Begin Domain-aware Weight Selection */

5: N; = DWS(Ds, D7, ¢, Nr—1, N)

/* Minimax optimization for enhancing robustness */

¢* + optimize weights in ;. to minimize L.; (4)
Initialize an auxiliary downstream C'7(-; 61)

Fine-tune C7 using D™ with encoder ¢*
Compute accuracy i of C'r on D?“d

/* Stop Criterion */

10: if a7 < agoar o1 [|[¢* — ¢|lo > N X R then

11: return ¢*

12: end if

13: end for
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Fig. 4. Design motivation of unsupervised EncoderLock

Feature Space

Specifically, during the iterations of updating critical weights
in the encoder part, we also adjust the target downstream
models iteratively. It is noted that the training objective of the
target downstream models will be adversarial to EncoderLock’s
applicability objective—the fine-tuning aims to extract useful
features in the embeddings to enhance the target domain
performance. The retrained downstream model adjusts itself fre-
quently to create a challenging target downstream classifier that
will increase L.; (decreasing L), prompting the supervised
EncoderLock to adjust more critical weights on the encoder
part. Algorithm 1 outlines this self-challenging training process.
To ensure the randomness of the target downstream classifiers,
every iteration we retrain it from scratch (with a random
initialization). The iterative training proceeds until the target
downstream classifier’s accuracy drops below a predefined
threshold or reaches the maximum number of altered weights
M. The self-challenging training scheme ensures a gradual and
smooth reduction in the encoder’s transferability, forcing the
encoder part to extract features that are less useful for the target
domain, thereby leading to more robust performance even when
the attacker probes the downstream model adaptively.

D. Unsupervised EncoderLock

In this section, we address Level-2 accessibility of the
target domain via unsupervised EncoderLock. This scenario
is practically relevant when the goal is to prevent transferring
to arbitrary sets of images while getting their labels is either



infeasible or expensive. Our method leverages the technique
from self-supervised representation learning [47], [48], which
builds a highly distinguishable feature space without labeling.

The design idea for unsupervised EncoderLock is as follows:
for the latent embeddings of samples from the source domain,
we aim to ensure their high discrepancy between classes; while
for those from the prohibited target domain, our objective is to
obfuscate the latent clusters boundary so that the embeddings
would not contain much information about the class. As shown
in Fig. 4, an expected encoder will automatically cluster the
samples from the source domain but blur the class boundaries
of the target domain. Due to such direct manipulation towards
the encoder’s feature space, the unsupervised EncoderLock
is always robust to different downstream heads and doesn’t

require further self-challenging training.

Towards this goal, we introduce a self-supervised regulariza-
tion term Ry to be used in Equation (3). Specifically, given
a batch of samples from the target domain, we leverage data
augmentation, including random crop, color jitter, or Gaussian
blur [66], [67], to create a set of positive pairs and a set
of negative pairs. Any pair with a sample and an augmented
sample from the same original image is defined as positive, and
we denote their feature space as (z;, 2;), where z; is defined as
the normalized embedding of the sample x; using the encoder
f. Any pair with augmented samples from different original

images is defined as negative, denoted as (z;,Z;)i+;. We
define the contrastive loss function L™ as:
Np . ~
. 1 sim(z;, Z;)
Lumt JE—— IOg( ~ - i - (6)
Np ; Zj:Bl sim(z;, Z;)

where Np is the batch size, and sim(-,-) computes the cosine
similarity between the normalized embeddings. We select pairs
from S to compute LZ™, and from 7 to compute L$™. They
are used to compute gradients in Algorithml.

The presented loss function aims to increase the similarity
between any positive pairs but reduce what between negative
pairs, effectively pushing the encoder to learn representations
that clearly distinguish similar samples from dissimilar ones
within feature space. We follow the regularization framework
in Eq. (3) and penalize ratios between contrastive losses:

cont
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R?" =log(1+ o>
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For the unsupervised EncoderLock, self-challenging training
is not necessary because this loss function directly penalizes
the discrepancy of the feature space for the target dataset.
Therefore, as shown in Fig. 2, the procedure of unsupervised
EncoderLock in one round includes: 1) Domain-aware weight
selection with L™; 2) Update Encoder’s Non-transferability
with RS™, without retraining the challenging classifier.

E. Zero-shot EncoderLock

In this section, we address Level-3 accessibility of the target
domain for EncoderLock, where the model owner even has no
target samples. This represents the most practical and relevant
scenario, as the definition of harmful content is often vague in
real-world applications. For instance, in most cases, a DNN
product’s user guidelines regulate prohibited content using text
descriptions of unethical or sensitive material. How to turn such
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Fig. 5. Building synthetic datasets for zero-shot EncoderLock
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Synthetic Dataset using refined prompts for zero-shot EncoderLock

vague scope description into representative and comprehensive
target domain dataset is a challenge. We define the basic
knowledge about the target domain as a theme, which can
be in the form of a text description, keywords, or reference
figures. Using the target theme, zero-shot EncoderLock aims
to generate a synthetic dataset for applicability authorization
without relying on real-world samples or labels.

Fig. 5 presents the framework of zero-shot EncoderLock,
illustrating the process of generating a synthetic dataset for
“military vehicles”. Section V-D will showcase the full results.
First, we employ a large language model (e.g., GPT-4 [68])
as an Al agent to generate text inputs, known as prompts,
for the given theme. These prompts are then fed into pre-
trained text-to-image models (e.g., CLIP [69] and Stable
Diffusion [70]) to generate the synthetic dataset. To ensure the
synthetic dataset comprehensively covers the target domain,
we introduce a prompt refining framework. Using a pre-trained
vision encoder, we extract latent features from the synthetic
images and compute pairwise similarity scores between the
initial prompts. This similarity matrix serves as feedback to
the Al agent, enabling it to analyze the scores, identify similar
prompts, and refine them accordingly. For example, as shown
in Fig. 5, Antique Cannon and Futuristic Tank exhibit high
similarity due to their shared barrel feature. Consequently,
the Al agent revises these prompts to be Artillery System
and Combat Vehicles. The refinement process continues until
all prompt pairs demonstrate low similarity or the similarity
stops decreasing. Finally, we employ the synthetic dataset
generated in the last round for unsupervised EncoderLock
training, resulting in an encoder with restricted transferability
to the target “theme.”

V. EXPERIMENTS

A. Experiment Setup

Baselines: As the first of its kind work addressing malicious
probing of pre-trained encoders, there is no prior work for direct
comparison with our EncoderLock. The closest related work is
the SOTA non-transferable learning, including NTL [20] and
CUTI [21]. For such baseline work, we adopt the pre-trained



TABLE I
DATASETS USED IN EVALUATION OF ENCODERLOCK

Dataset Abbr. Type Feat. Supervised Unsupervised | Zero-shot
MNIST [71] MT digits -
USPS [72] UP digits Datasets that are used in

SVHN [73] SN digits | the baselines [20], [21].

MNIST-M [74] MM digits | All samples are resized IV vV

Synthetic Digits [75] | SD digits | into (32,32, 3) and the la-

CIFAR-10 [76] CF image | bel space is 10.

STL-10 [77] ST image

EMNIST [78] EM char. 47-class characters Vv

CIFAR-100 [76] CF100 | image 100-class images Vv

TImageNette [79] image High resolution im- vV Vv Vv
TmageWoof [79] image ages with the shape of

Military Vehicle [80] image (224,224, 3). Vi

model, freeze the encoder part, and train a new downstream
head on the prohibited target domain to evaluate the baseline
model’s resistance against malicious probing.

Datasets: Table I lists the twelve datasets for our evaluation.
In addition to the five digits datasets used in the previous
work [20], [21], we also assess datasets with larger label spaces,
i.e., EMNIST (47 classes) and CIFAR-100 (100 classes). By
utilizing text-to-image generators, zero-shot EncoderLock is
evaluated with more complex datasets. We test ImageNette [79]
as the source dataset and the military vehicle dataset [80] as
the prohibited target® following a practical scenario. Further,
we evaluate the influence of EncoderLock on three admissible
domains—ordinary vehicles®, weapons*, and animals’.
Models: Our method is assessed using three prevalent DNN
architectures: VGG-11 [81], ResNet-18 [82], and Vision
Transformer (ViT) [22]. We leverage the supervised pre-
trained models for VGG-11 and ResNet-18% and fine-tune
them on various authorized domains (source). The early
convolutional layers (residual blocks) of VGG-11 and ResNet-
18 are considered encoders, while the output dense layer(s) are
used as downstream heads for probing. ViTs utilize a vision
encoder structure that is trained with self-supervised learning.
Hyperparameters: Hyperparameters for supervised and unsu-
pervised EncoderLock can be found in Appendix A.

Metric: The metric to quantify the encoder’s resistance to
malicious probing is the relative accuracy drop in both the
target and the source domains, defined as %, where
acc, is the probing accuracy of the original encoder, and acc,,
is the one when modified with protection methods. A higher
accuracy drop indicates a strong restriction on given domains.
We expect the accuracy drop in the source domain to be low
for preserving the model integrity, while the accuracy drop
in the target domain to be high for robustness to malicious
probing. In Section V-E, we further introduce the Performance
Protection Index (PPI) to evaluate the restriction on prohibited
domains and the influence on authorized or admissible domains
simultaneously for comparison.

Platform: Our implementation uses PyTorch 1.5.0 on Ubuntu
18.04.6 with NVIDIA TITAN RTX.

Training cost: With this experimental setup, training Encoder-

Zhttps://www.kaggle.com/datasets/amanrajbose/millitary-vechiles
3https://www.kaggle.com/datasets/marquis03/vehicle-classification
“https://huggingface.co/datasets/Kaludi/data- csgo-weapon-classification
Shttps://www.kaggle.com/datasets/alessiocorrado99/animals 10/code
Shttps://pytorch.org/vision/stable/models.html
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Fig. 6. Accuracy drop across distinct source and target domains—It
assesses the transferability of VGG-11 encoder with CF (Left) and MT (Right)
as the source. Each data point illustrates the simultaneous impact on accuracies
on the source and target domain with supervised EncoderLock.

Lock requires between 0.1 and 6 GPU hours, depending on the
encoder architecture and dataset size. Detailed training costs
for various configurations are provided in Appendix D.

B. Evaluating the Supervised EncoderLock

Table II demonstrates the performance of supervised Encoder-
Lock across the datasets of digits for VGG-11 and ResNet-
18. We compare the accuracy after probing the encoder with
corresponding default downstream classification heads, before
and after applying supervised EncoderLock, report the relative
accuracy drop on the source domain (columns Drops) and
the average accuracy drop on the target domains (Dropr),
and also present the average percentage of weight change
(column AW). The experimental results of VGG-11 reveal
that EncoderLock exhibits a steep reduction (up to 78.70%)
in performance on the target domains while ensuring minimal
degradation on the source domain (highlighted in bold, up
to 3.53%). Moreover, the accuracy degradation on ResNet-18
shows even a better restriction on the prohibited domain, from
71.73% to 86.02%. In contrast, the degradation of ResNet-
18 encoder with EncoderLock on the authorized domain is
minimized from 0.28% to 1.65%. Moreover, with less than
0.08% of the weights changed on average, the supervised
EncoderLock preserves a higher generalizability of the pre-
trained encoder to the admissible domains and avoids the
catastrophic forgetting of the encoder’s pre-learned knowledge.
It will be further discussed in Section V-E as a comparison
between different EncoderLock and baseline methods.

In addition to the accuracy drop, we find that the complexity
of the datasets (domains) affects the EncoderLock’s perfor-
mance. For instance, on VGG-11, we observe that restricting
transferring from a complex domain (e.g., SN, MM, and SD,
comprising RGB-colored digit images) to a simple domain (e.g.,
MT and UP, including grayscale images) is more challenging.
Specifically, the supervised EncoderLock requires more weights
to be changed, and yields a smaller target accuracy drop and
a larger source accuracy drop, when the source domain is
SN which is a more realistic, 3-channeled digits dataset (the
Street View House Number) A similar phenomenon is also
observed in ReseNet-18 supervised EncoderLock, with the
highest average weight modification at 0.041%. Moreover,
the similarity between the source and target domains also



SUPERVISED ENCODERLOCK PERFORMANCE: THE ENCODER TRANSFERABILITY—PRE AND POST-ENCODERLOCK ACCURACY ARE REPORTED,

TABLE 11

DESIGNATED AS ‘BEFORE(%) = AFTER (%)’. BOLD VALUES SHOW ACCURACIES ON THE SOURCE DOMAIN

Source \ Target MT UP SN MM SD ‘ AW ‘ Drops ‘ Dropr
VGG-11: 133M Parameters
MT 9953 = 99.32 | 96.35 = 8.47 4374 = 18.98 68.24 = 18.05 69.65 = 13.67 | 0.63% | 0.21% | | 78.70% |
UP 97.70 = 11.35 | 97.91 = 94.94 | 58.23 = 16.86 65.24 = 15.43 87.10 = 16.93 | 0.43%c | 2.97% 4 | 76.16% {
SN 95.30 = 19.72 | 92.68 = 15.89 | 94.04 = 90.51 | 71.51 = 32.17 96.96 = 15.66 | 2.50% | 3.53% 4 | 76.62% |
MM 98.85 = 12.71 | 94.67 = 17.99 53.80 = 23.80 | 94.24 = 92.71 | 85.80 = 28.20 | 09%%c | 1.53%) | 75.28% 4
SD 9713 = 20.19 | 93.57 = 18.68 90.40 = 41.42 71.53 = 4091 | 99.83 = 98.89 | 1.78% | 0.94% | | 64.13% |
ResNet-18: 11.4M Parameters
MT 09.48 = 99.12 | 93.77 = 13.16 41.47 = 19.67 70.02 = 20.77 72.48 = 16.69 | 0.31 %0 | 0.28% 4 | 71.73% {
UP 95.10 = 13.89 | 96.11 = 95.69 | 33.72 = 11.36 55.79 = 9.04 61.76 = 16,53 | 0.29 %o | 0.44% | | 76.98% |
SN 94.65 = 9.53 88.04 = 15.65 | 91.06 = 90.12 | 66.52 = 11.36 95.08 = 10.45 | 0.41 %o | 1.03% 4 | 86.02% |
MM 08.82 = 24.05 | 92.33 = 12.81 4818 = 7.01 91.49 = 90.39 | 78.03 = 18.53 | 0.13 %o | 1.20% | | 80.87% J
SD 96.76 = 10.39 91.68 = 8.47 86.74 = 30.70 68.56 = 9.95 99.42 = 97.77 | 0.18 %o | 1.65% | | 82.53% 4
TABLE III
UNSUPERVISED ENCODERLOCK PERFORMANCE ON ENCODER (VGG-11) TRANSFERABILITY
Source \ Target MT UP SN MM SD AW Drops Dropr

MT 99.53 = 99.22 | 96.35 = 16.84 4374 = 19.61 | 68.24= 12.26 | 69.65 = 17.90 | 0.12%0 | 0.31% § | 73.51% J
UP 97.70 = 45.02 | 97.91 = 96.44 | 58.23 = 9.59 65.24 = 13.88 | 87.10 = 12.66 | 0.22% | 1.50% | | 75.41% |
SN 95.30 = 20.74 92.68 = 17.09 | 94.04 = 94.33 | 71.51 = 50.85 | 96.96 = 94.01 | 0.21%0 | 0.31% T | 47.93% |
MM 98.85 = 40.26 94.67 = 30.74 53.80 = 33.97 | 94.24 = 93.30 | 85.89 = 55.79 | 0.15%0 | 0.99%] | 49.68%
SD 97.13 = 76.63 9357 = 86.75 90.40 = 75.31 | 71.53 = 27.23 | 99.83 = 99.44 | 0.20%c | 0.39% J | 26.74% 1

affects the supervised EncoderLock’s performance, e.g., the 0 Rounds 10 Rounds 30 Rounds 20 Rounds
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label space (e.g., 0~9 digits), during malicious probing, one

could aspire to transfer the queried features from the encoder =

to domains with distinctly different label spaces. Thus, we also =

evaluate the performance of supervised EncoderLock on VGG- B

11 under various circumstances: a) transition between distinct e

task types (CF to MT); b) variation in the size of the label
space for similar tasks (CF to CF100); c) changes in both the
task type and the label space size (CF to EM). The results are
presented in Fig. 6. Overall, supervised EncoderLock achieves
good performance across all these transfer tasks, manifesting a
much higher drop in the target domain than the source. Similar
to experiments on digit datasets, the more distinct the target
dataset is from the source dataset, the better performance.
For instance, supervised EncoderLock performs well when
transferring across different tasks, i.e., transitioning from digits
to images (CF) and vice versa; while it results in a lower
performance when transferring from CF to CF100 as these
two share a large number of similar features. Notably, when
MT is the source domain and CF100 is the target domain,
EncoderLock can significantly reduce the accuracy on CF100
to 1.19%, closely resembling random guessing across the 100
classes, i.e., the encoder fails to extract features. While for
transferring between MT and EM (both digits), the accuracy
only drops to 32.04%. We posit that a pre-trained encoder
tends to capture more intricate features when applied on similar
domains, while there will be more distinct features when the
source and target domains diverge significantly. We characterize
the similarity between datasets using MMD in Appendix B.

Fig. 7. Unsupervised EncoderLock-Latent Space Change via Rounds

C. Evaluating the Unsupervised EncoderLock

The unsupervised EncoderLock addresses the challenge when
the model owner has no access to the true labels of samples
from the target domain. To demonstrate the effectiveness of
the proposed contrastive loss in Eq. (6), we conduct the
same evaluation on digits datasets with results on VGG-11
shown in Table III and ResNet-18 in Appendix C Table VII.
The unsupervised EncoderLock also successfully restricts the
encoder’s transferability to the target domain and maintains the
encoder’s integrity on the source domain, with a small number
of weight changes.

Compared with supervised EncoderLock, the unsupervised
EncoderLock demonstrates better performance in preserving
accuracy within the source domain, but worse performance in
reducing the target accuracy. This is due to the proposed R™,
utilizing contrastive loss, necessitates a more discriminative
latent space for the source domain by reducing LE™. To further
illustrate, in Fig. 7 we visualize the change of the latent space



from both the source (MT) and target (MM) domains using
t-SNE [83]. With more rounds of unsupervised EncoderLock
(indicating more training epochs and more weight updates), the
source domain remains class-discriminative, while the target
domain becomes less discriminative. However, some small
clusters of classes can still be observed, which leads to a
higher accuracy when we fine-tune a downstream classifier on
such a latent space on the target domain.

D. Evaluating the Zero-shot EncoderLock

For zero-shot EncoderLock, we utilize the GPT-4 API as the
Al agent to interpret the semantic meaning of the prohibited
theme’ with a pre-trained stable diffusion model for text-to-
image generation® to create synthetic datasets. To show the
effectiveness of the Al agent and prompts refining (Fig. 5), we
test the zero-shot EncoderLock under three scenarios: 1) The
prompts are created manually (without Al agents); 2) An Al
agent generates prompts randomly; 3) The Al agent generates
prompts and refines them. We utilize 10 prompts to the
generative model for 1,000 fake images as the prohibited dataset.
Prompts and synthetic images can be found in Appendix K.

We evaluate one-shot EncoderLock’s performance on the
source domain (ImageNette [79]) and the target domain (a
real military vehicle dataset [80]) with a pre-trained encoder
using ResNet-18. Furthermore, we select three admissible
domains to evaluate EncoderLock’s impact on other domains,
neither source nor target. Considering the semantics of ‘military
vehicles’, we utilize two admissible datasets with closer
semantic meaning and one unrelated. 1). Ordinary vehicles: A
10-class normal vehicle classification dataset related to the
prohibited domain in ‘vehicle’, i.e., sedan, SUV, and bus.
2). Weapons: An 11-class game-based weapon classification
dataset, related to the prohibited domain in ‘military’, i.e.,
AK-47, Famas, and UPS. 3). Animals: A 10-class animal
classification dataset with no obvious semantic meaning with
the prohibited domain, i.e., chicken, cat, and butterfly.

Fig. 8 shows the performance of different EncoderLock
variants on authorized, prohibited, and three admissible do-
mains. We present the testing accuracy degradation on each
domain versus the percentage of critical weights modified. The
original pre-trained encoder has an average accuracy 96.59%
on the authorized domain and 60.55% on the prohibited domain.
Supervised EncoderLock shows the strongest performance
restriction on the prohibited domain (11.48%) and meanwhile
preserving a high accuracy on the authorized domain (94.17%).
The primary reason behind the efficacy of the supervised
EncoderLock is its well-defined prohibited domain. This clarity
allows for targeted modifications of critical weights. As a result,
EncoderLock can enhance specific aspects of the encoder’s
performance while maintaining its overall generalization ca-
pability. Unsupervised EncoderLock demonstrates the second
highest performance with a label-free prohibited domain by
restricting the target performance to 18.34% and keeping

"https://platform.openai.com/docs/models/gpt-4-turbo-and- gpt-4
8https://huggingface.co/Comp Vis/stable-diffusion-v1-4
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the accuracy on the source at 93.43%. The introduction of
contrastive loss penalizes more general features than the
supervised loss, causing a larger degradation on the authorized
and admissible domains. Zero-shot EncoderLock works on
the most challenging accessibility to the prohibited domain.
Without any data from it, using prompts from military fans
(manual prompts in Appendix K) shows similar to the one-time
initial prompt from the AI agent. The prompts and generated
synthetic images are not general enough to describe the entire
prohibited domain, thereby leading to the smallest restriction
on the military vehicle dataset. (Manual: 41.81%, Al initial:
38.61%) When we refine the AI prompts for more general
features of the prohibited domain with the presented refinement
algorithm, there is a noticeable increase in the EncoderLock
restriction ability (23.69%). However, such prompts cause
the largest accuracy degradation on the authorized domain
(92.86%), as its wide restriction on the encoder’s features. In
addition to the relevance of prompts, the synthetic dataset’s
quality also affects the strength of EncoderLock. Specifically,
a high-quality synthetic dataset, generated after large number
of inference iterations and bearing small noise, enhances the
defense capability of EncoderLock. More detailed results are
shown in Appendix F.

Other than the performance of authorized and prohibited
domains, our evaluation on the admissible domains indicates
the impact of EncoderLock on the generalizability to unknown
data. In particular, all five EncoderLock’s restrictions on the
prohibited ‘military vehicles’ show higher penalties on the
‘weapon’ dataset. On the other hand, the impact on the encoders’
performance on ordinary vehicles is small, similar to what from
the animal dataset. We will further present a deep analysis
of this phenomenon in Section V-F, where we show the
encoder’s attention shifting from the attack module of the
military vehicles, i.e., the barrel. As a result, it has a lower
effect on distinguishing between various types of vehicles but
has a significant impact on different types of firearms.

In Fig. 8, we also present the probing performance of
EncoderLock when the portion of critical weights to change
varies. In particular, the pre-trained encoder’s performance
keeps dropping on the prohibited domain but its performance
degradation on the authorized and admissible domain shows
a ‘degradation peak’ at the point of changing half of critical
weights. This phenomenon is likely due to the integrity of
EncoderLock’s critical weights updating process affected by
the random sampling. A complete updating process with either
supervised loss (4) or unsupervised loss (6) ensures the encoder
cannot perform well on the target domain but still effective
on the source domain, as shown the good performance when
changing 100% critical weights. However, only updating half
of them will break the encoder’s integrity on the source domain
and the admissible domain as it breaks the network connectivity
between critical weights, leading to unstable EncoderLock.
Such phenomenon also shows in the standard deviation on the
curves in Fig. 8, where when only changing half of critical
weights, the EncoderLock performance has the largest variance.
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Fig. 8. Comparison among different EncoderLock—on authorized, prohibited, and admissible domains. We randomly select a percentage of domain-aware
weights as the X-axis, as the optimization process of domain-aware weights. The authorized and prohibited domains are run 5 times with error bars plotted.

E. Comparison with Prior Methods

We compare EncoderLock with SOTA baselines: NTL [20]
and CUTI [21] in protection against malicious probing. Specif-
ically, we probe the encoder on the target dataset with fine-
tuned downstream heads. Moreover, we propose a new stable
metric—Protection Performance Index (PPI)—to measure the
performance in restricting on the target domain (D7) relative

to what in retention on the base domain (Dg), defined as:
T

acc) Jacel,

PPI(D7, D) = 7

accB JaccB,

PPI measures the ratio of change in performance before and
after applying protection for a prohibited target domain with an
authorized or admissible base domain. A higher PPI indicates
better non-transferability and resistance to malicious probing.

In Fig. 9, we compare the PPI of supervised and unsupervised
EncoderLock with the baselines in five pairs of authorized
and prohibited domains when probing the downstream heads
by epochs. Our proposed supervised EncoderLock shows the
best non-transferability performance, while the unsupervised
EncoderLock also demonstrates good performance overall. In
addition, we also present the PPI between admissible domains
and prohibited domains in Fig. 10. The PPI of supervised and
unsupervised EncoderLock is still better than the baselines.
However, the advantage is not obvious due to the prohibited and
admissible domains are highly similar as they are all digital
datasets. Therefore, critical weights on prohibited domains
often overlap with those in admissible ones, causing a higher
accuracy drop as the weights are not optimized during the
updating process of the EncoderLock. A good example can
be found in Fig. 8, where we analyze the admissible domain
with distinct semantic meaning (i.e., animals versus military
vehicle), EncoderLock can preserve the encoder generalizability
to semantic unrelated domains. Additional numerical results
can be found in Appendix H.

When we fine-tune the downstream classifier on the encoder
trained using NTL and CUTI, the encoder performance on the
source domain may decrease considerably, or its performance
on the target domain may still be high. This indicates that
previous methods are not suitable for the scenario of malicious
probing. To explain this phenomenon, we visualize the source
(MM) and target (UP) domains on the latent space with different
trained encoders in Fig. 11, where the colors represent the
true labels of the testing dataset. The self-challenging scheme
employed in supervised EncoderLock effectively preserves
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a higher discrepancy within the source domain, while very
little class-related information is discernible within the target
domain. The unsupervised EncoderLock, despite lacking class
information, still successfully reduces class distinguishability
on the target domain. In contrast, NTL [20] penalizes the
Maximum Mean Discrepancy between the source and target
latent spaces, showcasing the distribution difference between
these domains, but samples from the same class still cluster
together in the target domain. Therefore, its transferability
can be resumed via fine-tuning. CUTI [21] only considers
target performance during training and shows the worst non-
transferability—its target domain is clearly clustered by classes.

F. Interpretation of EncoderLock

To further understand the changes in the encoders generated
by different variants of EncoderLock, we use the encoders
trained from Section V-D and visualize their decision-making
process with Gradient-weighted Class Activation Mapping
(GradCAM) [84], as illustrated in Fig. 12. Specifically, the
GradCAM attribution is computed for the last convolutional
layer in the encoder (ResNet-18) and is upsampled to act as
a mask added to the original input (the cool-warm heatmap
in Fig. 12). The highlighted red part indicates the feature that
the encoder focuses on to make its prediction. We observe
that the original pre-trained encoder focuses on the English
Springer correctly, and it performs well on the military dataset
(tanks) as its focus is moved to the main gun barrel of the tank.
However, the supervised EncoderLock, which has less effect
on the source domain data, switches the encoder’s focus to the
tank track, leading the fine-tuned downstream classifier to make
a wrong prediction as ‘Armored combat support vehicles’. The
unsupervised EncoderLock, aiming to blur the entire feature
space’s class-discrepancy, generates a more vague interpretation
of the decision process—the focus is mainly on the vehicle but
not on specific features of tank. In Appendix J, we also visualize
the GradCAM results on three different admissible domains.
The findings indicate that the attack module of military weapons
also experiences a loss of focus in the model, resulting in a
significant impact of EncoderLock on the weapon dataset.

We also visualize the GradCAM of zero-shot EncoderLock
with different types of prompts. The manual prompts show less
effectiveness in the model’s non-transferability, still focusing
on some useful features such as the tank roof and gun barrel.
The Al-agent-generated prompts (with or without refinement)
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have a strong effect on the source domain, especially the green
part (bash in the source figure), considering ‘green’ is likely
related to the camouflage. With the proposed prompt refinement
process, the synthetic dataset obfuscates most of the useful
features of the military theme, leading to a very vague focus on
the target domain. The interpretation of EncoderLock further
reinforces its effectiveness: the supervised EncoderLock has
the highest performance as it has the ground truth labels, and
therefore able to move away the encoder’s focus on specific
features; while the unsupervised and zero-shot EncoderLock
directly cause the latent feature space to be less informative,
leading to all input features having similar importance.

G. Real-world Case Study

Previous evaluations mainly focus on small encoders ex-
tracted from supervised-trained DNN models with basic
architectures (e.g., VGG-11 and ResNet-18). To demonstrate
that EncoderLock is practical in protecting real-world encoders,
we apply it to a public encoder based on Vision Transformer
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(ViT) released by Facebook [22]. This encoder is a transformer
pre-trained on a large collection of images (ImageNet-1k [85]
with a resolution of 224x224) in a self-supervised fashion.
The input images are presented to the model as a sequence
of fixed-size patches (the patch size is 16x16). ViT learns an
inner representation of images that can extract features useful
for downstream tasks with probing heads (downstream models).
As reported, the training process requires approximately 2.6
days with a computational power of 16 GPUs. The pre-trained
encoder represents a valid IP, and our proposed EncoderLock
for applicability authorization aims to protect the IP.

We first evaluate the performance of the supervised Encoder-
Lock, considering ImageNette [79] and CIFAR-100 [69] as the
source domains and the military dataset and Imagewoof dataset
as the target domains. The ImageWoof dataset is a selected
subset of ImageNet with different types of dogs. Note that to fit
the input resolution of ViT, the CIFAR-100 inputs are resized
to 224x224. We also evaluate the ViT with EncoderLock on
some simple datasets, as shown in Appendix E. In Fig. 13,
we visualize the accuracy after fine-tuning the downstream
classifier on the source and target domains, respectively, versus
the number of weight changes. We observe that for the pre-
trained ViT, the supervised EncoderLock still works effectively
in restricting the target domain performance and preserving the
source domain performance. In addition, the largest accuracy
drop often happens in the early epochs (early sets of domain-
specific weights). This demonstrates the effectiveness of the
proposed domain-aware weight selection algorithm when the
most important (target-domain sensitive) weights are selected.

Similarly, we apply unsupervised and zero-shot EncoderLock
on the same ViT encoder between the ImageNette (i.e., autho-
rized) and military (i.e., prohibited) datasets, and the results



Pre-trained Encoder Supervised

Original Image

Authorized
(English springer)

Prohibited
(Tanks)

= il f

Unsupervised

Zero-shot (Manual) Zero-shq} (Initial) Zero-shot (Refined)

Fig. 12. Interpretation of Different EncoderLock using GradCAM [84]-the red parts highlight the focus of encoder to make decisions.

—e— Sourcc: imagenctte == Target: military
%0 50 . 50
g supervised| unsupervised| zero-shot
760 ‘w0
é 60
j;_ a0 40
W
0 0
LT T T Y T 2w w0 s 0 2000 4000 w0 800 10000
—— s gencte == Targesimagewoof o= Sourceicifarl00  —8— Target: miliary —o— Souveiciforl00  —e— Target: imagewoof
o oo o o+ o o o o+ o 60 80
_%0 supervised
£ supervised| supervised | «
I 40
Zw
20 0 20

0 1000 2000 3000 4000 5000 0
Number of changed weights

6000 8000

2000 4000 6000 8000 10000 0 2000
Num weights

Number of changed weights

Fig. 13. Evaluation on a Pre-trained ViT: Top row - source (target) accuracy
versus number of changed weights for different levels of EncoderLock; Bottom
row: performance of supervised EncoderLock on different datasets.

are shown in Fig. 13. All three variations of EncoderLock
effectively limit the encoder’s performance on the prohib-
ited domain. Notably, supervised (21.56%) and unsupervised
(18.15%) EncoderLock provide stronger protection than the
zero-shot version (29.26%), due to their higher accessibility
during training. And supervised EncoderLock outperforms in
maintaining the accuracy in the authorized domain, as the
more accurate penalization on the labeled prohibited domain.
In conclusion, all three variants of EncoderLock demonstrate
effectiveness for safeguarding real-world pre-trained encoders.

VI. DISCUSSIONS

A. Ablation Studies of EncoderLock

1) EncoderLock on Probing with Various Architectures:
As shown in Challenge 2, the attacker takes full control of
the downstream classifier and can optimize it for malicious
probing. In this section, we further evaluate the protection
performance of EncoderLock with various downstream head
structures. Taking supervised EncoderLock on VGG-11 as an
example, we delve into diverse depths and widths for the linear
probing heads, including varying numbers of layers and hidden
dimensions (no hidden layer when there is only one layer in
the classifier). The detailed results of these experiments are
presented in Table IV, which shows that one can leverage the
features from our pre-trained encoders to achieve impressive
performance (> 99%) on the source task but only achieve up to
17.89% on the target task, across a comprehensive collection of
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are reported on the left y-axis and the changed weight percentage is on the
right y-axis. Original accuracy on source and target are 99.53% and 94.91%.

configurations of the downstream classifiers. This demonstrates
the effectiveness of the self-challenging training scheme.

2) EncoderLock on Probing with More Prohibited Data: We
consider a real-world attacker who can be adaptive in attacking
the encoders. In our initial malicious probing scenario, we
assume an attacker uses a small amount of data (10%) to
attempt redirecting the pre-trained encoder. However, once the
attacker becomes aware of the defense mechanism, s/he can
probe the downstream head with a larger amount of prohibited
data. We assess the resistance of EncoderLock against such
possible attacks in Appendix G. Thanks to self-challenging
training in supervised EncoderLock and the manipulation of the
latent feature space in unsupervised EncoderLock, our approach
demonstrates strong resistance to malicious probing, even when
the attacker gains access to entire prohibited datasets.

3) EncoderLock with Various Hyperparameters: we employ
the transfer scenario from MT to UP as an example.
Regularization Term («): The regularization term in Eqn. (3)
plays an important role in balancing the model integrity on
the source domain and preventing malicious probing on the
target domain. We vary the weight o and Fig. 14 (a) (b)
show the effect of the regularization term for supervised and
unsupervised EncoderLock, respectively. It is worth noting that
the regularization term ensures that all o values sustain the
original performance on the source domain, due to the log-scale
term. Comparing different o, we choose o = 10 for supervised
EncoderLock and o = 1 for unsupervised EncoderLock.
Number of Critical Weights to Update per Round (V):
Fig. 14 (c) inspects the repercussions of varying the number
of critical weights (N) selected in each round, in the range of



TABLE IV
PERFORMANCE OF THE SUPERVISED ENCODERLOCK ON VARIOUS CLASSIFIER CONFIGURATIONS—SOURCE(MT) TO TARGET(UP).

# Layers 1 2 3 4
Hidden dim. / 256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 4096
size (M) 0.25 6.42 1285 257 51.4 102.8 6.49 13.11 2675 5559 11959 | 6.56 1338 2738 59.8 136.37
Accgl (%) 99.12 | 99.09 9921 99.20 99.29 9920 | 99.32 99.29 99.24 9927 9936 | 99.29 99.29 99.26 99.19  99.30
Acc%l (%) 17.89 | 17.89 17.89 13.15 17.89 17.89 | 9.87 17.89  17.89 17.89 17.89 13.15 17.89 847 17.89 17.89

1 to 200. When N is too small, the training of EncoderLock is
slow and can not converge even with the maximum number of
rounds (R = 100). A larger N will cause more weight change
for EncoderLock, reducing the encoder’s generalizability. Our
selection of N can be found in Table V.

B. Security Analysis of EncoderLock

The security of an encoder protected with EncoderLock
can be assessed by setting an accuracy threshold (accy,) on
the prohibited domain, with the accuracy drop of it on the
authorized domain below a certain constraint (e). For example,
acce, can be defined by the accuracy of a train-from-scratch
model, and the € is set at 2%, as outlined in Appendix L. In
this case, the encoder is deemed secure because an attacker
lacks incentive for malicious probing, with its performance no
better than direct training.

C. Future Works

In this work, we have demonstrated the effectiveness of
EncoderLock for different levels of domain data accessibility.
However, EncoderLock still requires the EaaS provider to
clearly specify the prohibited domain, meaning that the provider
should know what the encoder is allowed to do and what
should be prohibited. This causes inconvenience in automatic
detection and restriction on any unknown ‘theme’ of harmful
tasks. One potential avenue for future work is to incorporate
EncoderLock with toxicity content detection utilizing large
language models [86], [87] to automatically identify and restrict
prohibited domains without relying on explicit specifications
from the model owner. This approach would further enhance
the flexibility and adaptability of EncoderLock. Furthermore,
while we have showcased the effectiveness of EncoderLock
in image classification tasks, pre-trained encoders are useful
for many other applications, such as image generation and
semantic segmentation. Extending EncoderLock to these dif-
ferent tasks may unlock additional potential in controlling the
encoder’s transferability. The main challenge will be how to
combine different forms of loss terms (i.e., generation loss or
segmentation loss) with the loss for a pre-trained encoder.

VII. CONCLUSIONS

In this work, we address a new security issue arising during
the probing process of pre-trained encoders: restricting the
applicability to harmful prohibited domains. We recognize a
realistic challenge about the data accessibility to prohibited
domains and propose supervised, unsupervised, and zero-shot
EncoderLock for different levels of knowledge of prohibited
domains. We propose novel and effective domain-aware weight
selection and self-challenging training to maintain the encoder’s
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integrity while protecting it against malicious probing. Our
evaluation has validated the efficacy of EncoderLock in resisting
malicious probing across various domains and encoders.
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APPENDIX A
HYPERPARAMETER CONFIGURATION OF ENCODERLOCK

TABLE V
HYPERPARAMETERS USED IN THE EXPERIMENT
Hyperparameters N R « LR
Supervised EncoderLock 100 | 100 | 1,000 | 0.01
Unsupervised EncoderLock | 200 | 100 10 0.01

In this section, we provide the hyper-parameters config-
uration in this work. During training EncoderLock, we use
1,000 samples from the training dataset. During fine-tuning of
the downstream classifiers, we use 10% of the training data
and evaluate with the entire testing data (usually 20% of the
data). The fine-tuning process uses the Adam optimizer [88]
with adaptive learning rate scheduling [89] and an early
stopping criterion [90] (patience=10). For the default supervised
EncoderLock configuration, we use N = 100, R = 100,
and a = 103. For the default unsupervised EncoderLock
configuration, we use N = 200, R = 100, and o = 10
Hyperparameters are evaluated in Section VI-A.

APPENDIX B
DATASET SIMILARITY

TABLE VI
DATASETS’ FEATURE SPACE COSINE SIMILARITY

MT

0.999
0.712
0.579
0.467
0.712
0.938
0.408
0.302
0.450

UpP

0.707
0.999
0.570
0.650
0.891
0.780
0.398
0.280
0.428

MM

0.577
0.551
0.993
0.570
0.587
0.553
0.499
0.566
0.507

SN

0.452
0.652
0.570
0.998
0.768
0.514
0.519
0.459
0.557

SD

0.706
0.892
0.606
0.777
0.999
0.794
0.454
0.347
0.470

EM

0.942
0.786
0.590
0.521
0.791
0.999
0.405
0.301
0.438

CF10

0.404
0.395
0.505
0.522
0.452
0.404
0.996
0.836
0.971

STL10

0.303
0.276
0.549
0.455
0.345
0.296
0.831
0.993
0.801

CF100

0.448
0.425
0.5151
0.548
0.483
0.432
0.972
0.788
0.995

MT
upP
MM
SN

EM
CF10
STL10
CF100

Evaluating the transferability of our EncoderLock inherently
involves understanding the similarities between datasets, as this
not only influences encoder transfer learning performance but
also reflects the intrinsic characteristics of the data domains.
Quantifying domain similarity is challenging, yet crucial for
a comprehensive evaluation. To address this, we adopt an
approach inspired by previous work [91], utilizing cosine
similarity as a metric to compare the features of input samples
across different domains. We employ a widely-used feature
extractor, a PyTorch pre-trained VGG-16 model, to extract
latent features from pairs of data domains and calculate their
cosine similarity. The results, presented in Table VI, corroborate
the observations made in Section V-B regarding the high
similarity between the MT domain and the UP and EM
domains—highlighted in bold within the table. This supports
the notion that similarities in feature space significantly impact
the transferability of EncoderLock.

APPENDIX C
UNSUPERVISED ENCODERLOCK ON RESNET-18

In this section, we present the additional results using
ResNet-18 for the unsupervised EncoderLock in Table VII.
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TABLE VII
UNSUPERVISED ENCODERLOCK’S PERFORMANCE ON ENCODER
(RESNET-18) TRANSFERABILITY

Source \ Target SN sD
MT
3
SN
MM
SD

MT ‘ up Drops

99.48 5 9887 | 93.77 = 10.26

9510 5 37.60 9611 = 94.95

9965 = 2262 | _88.01= 698

08825 17.01 | 0233 = 17.14
[

IL.17 = 11.27
3B2= 1815
91.06 = 89.55
I8.18 = 1818
§6.74 = 30.80

G
9149 = 90.97
G8.56 = 17.68

96.76 = 50.00 | 91.68 = 21.72

The unsupervised EncoderLock also shows promising result in
applicability authorization.

APPENDIX D
TRAINING COST OF ENCODERLOCK

Source SIZE
MT
MT
MT
MT
ImageNette
ImageNette

Architecture | Level
ResNet-18
ResNet-18
VGG-11

VGG-11

ResNet-18
ResNet-18

Target
TP

UpP

P

uP
Military
Military

DWS (5)
0.771 £0.147
1.03 + 0.086
0.821 £0.275
1.34 4 0.498
145+ 0.217
1.82 +0.286

DWU (5)
5.85 £ 0.021
45.8 +0.126
8.66 £ 0.039
45.14+0.122
502 £2.23
455.2 £ 1.03

SCE
233 £ 1.50

sup.
unsup./zero-shot
sup.

unsup./zero-shot

8.75£9.11

Sup. 531£102
unsup./zero-shot -

We present the training time costs of supervised, unsuper-
vised, and zero-shot EncoderLock on our platform equipped
with an RTX TITAN GPU. Note the zero-shot EncoderLock
has similar computational complexity as the unsupervised
version, because they employ the same training strategy. We
choose to examine two representative source-target domain
pairs: a smaller digits pair (MT and UP) with an input size of
32 x 32 x 3, and a more complex image pair (ImageNette and
Military) with an input size of 224 x 224 x 3. Additionally,
we assess the training costs associated with two different
encoder architectures, ResNet-18 and VGG-11. We break down
the training complexity into the three key steps described in
EncoderLock: domain-aware weight search (DWS), domain-
aware weight updating (DWU), and self-challenging training
(SC). The results demonstrate that the primary computational
burden lies in the DWU step, and for supervised EncoderLock,
the self-challenging phase is also costly, where the classifier
must be retrained to enhance robustness against adversarial
attacks. Furthermore, we find that DWS and DWU in unsuper-
vised and zero-shot EncoderLock incur higher computational
costs compared to the supervised version. This is attributed
to the contrastive learning-based loss function (6). When
comparing different input sizes, higher-resolution images lead
to substantially longer training time because of the larger
feature maps to compute during the forward pass of the encoder,
especially in the DWU process. Large models also require more
training time. It is worth noting that such training cost is a
one-time expense, and there is no performance impact on the
protected encoder during inference.

APPENDIX E
NUMERICAL RESULTS — SUPERVISED ENCODERLOCK (VIT)

Following a similar setting in Section V-G, we consider that
the model provider aims to prevent the pre-trained ViT encoder
on ImageNette from being transferred to a specified simple
unauthorized domain. In particular, we evaluate EncoderLock
on four target datasets: CF, ST, MT, and CF100. To fit the input
size of ViT, we resize the target input to 224 x 224 x 3 and
monitor the accuracy degradation on both the target datasets and



ImageNet [92], the source dataset. During training, we follow
the ViT fine-tuning instructions and use the last hidden state as
the extracted feature space and connect to a single-dense-layer
output classifier. From results shown in Table VIII, we find
that EncoderLock reaches the non-transferability design goal —
reducing the ViT performance on the target domain by 65.8%
but keeping the accuracy on the source domain with a small
accuracy drop of 2.15%. Our experimental results demonstrate
that EncoderLock is effective when applied to a large encoder
pre-trained on a large amount of samples.

TABLE VIII
ENCODERLOCK ON VIT-SOURCE TASK (IMAGENETTE [79])

Target { Accgg { Accgfg { Accgl { Accf} { Drops { Dropr

CF 74.99 86.83 36.70 0.49% | | 51.9% |

ST 8726 73.50 86.80 10.53 0.53% ] | 85.7% |

MT . 92.06 85.20 47.56 2.36% | | 48.3% |

CF100 53.31 82.62 12.07 5.32% | | 77.4% |
APPENDIX F

IMPACT OF THE SYNTHETIC DATASET QUALITY ON
ZERO-SHOT ENCODERLOCK

In addition to prompt relevance, the generation quality of the
synthetic dataset significantly affects the performance of zero-
shot EncoderLock. We measure the quality with two metrics:
the noise level of the synthetic images and the generation quality
of the diffusion model. To ensure a fair comparison, we use
the same set of prompts (refined prompts from the prohibited
domain) for zero-shot EncoderLLock and select an encoder
with the same degradation level on the authorized domain
as reported in Section V-D (greater than 92%). We report the
EncoderLock performance in the format of (accfl, acc%). Note
that the defense goal of EncoderLock is a higher accS, and
lower acc!,

m*

noise level

target acc 23.69 % target acc 32.02% target acc 37.13% target acc 46.30%
protection performance

Fig. 15. Zero-shot EncoderLock performance with different noise levels

Fig. 15 shows an example image with different levels of
Gaussian noise. Introducing random noise into the images
reduces EncoderLock’s ability to restrict the prohibited domain.
We assess the impact of different noise levels, at ¢ = 1,
o =5, and o = 10, respectively. The zero-shot EncoderLock
performance degrades to (91.90%, 32.02%), (91.85%, 37.13%),
and (92.20%, 46.30%), where the performance on the noise-
free synthetic dataset is (92.86%, 23.69%). High level of noise
significantly reduces the synthetic quality, leading to poorer
performance of the zero-shot EncoderLock.

We regenerate the synthetic datasets with varying number
of inference iterations in the stable diffusion model. The

generation inference iterations

target acc 46.25% target acc 37.56% target acc 25.60% target acc 23.69%

Protection performance

Fig. 16. Zero-shot EncoderLock performance with different diffusion qualities

generation quality improves as we increase the iteration
count from 5, 10, 20, to 50 (the value used in the original
setting), as shown in Fig. 16. Consequently, the protection
performance improves from (92.71%, 46.25%) to (92.25%,
37.56%), (92.31%, 25.60%) and (92.86%, 23.69%). A higher-
quality synthetic dataset provides clearer potential features
of the prohibited domain, thus enhancing the restriction
performance. However, increasing the number of inference
iterations in the generator leads to higher computational costs.
Running 5 inference iterations achieves a speed of 8.2 items/s,
whereas 50 inference iterations reduce the speed to 0.8 items/s.

APPENDIX G
ENCODERLOCK PERFORMANCE ON VARIOUS DATA

Supervised EncoderLock
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Unsupervised EncoderLock
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Fig. 17. EncoderLock performance for various volumes of probing data.

We evaluate the scenario where an attacker probes the
encoder using varying amounts of probing data, ranging from
10% to the entire dataset, in both supervised and unsupervised
settings. The results are illustrated in Fig. 17. Notably, for
the prohibited target domain, the accuracy remains low even
when the attacker utilizes the full prohibited dataset, while the
protection slightly degrades with more data. For the authorized
source domain, the accuracy remains consistently high even
with a small amount of probing data. These results demonstrate
the robustness of both supervised and unsupervised versions
of EncoderLock against malicious probing attempts.

APPENDIX H
COMPARE WITH PREVIOUS WORK

In this section, we present more comparison results with
baselines. From Table IX, we compare the baseline methods
and the proposed supervised EncoderLock and unsupervised
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EncoderLock between different pairs of digit datasets. The
observation is similar to our conclusion in Section V-E.
Specifically, under the condition of fine-tuning the downstream
model fine-tuning, the proposed methods outperform baselines.

TABLE IX
COMPARISON THE EFFECTIVENESS OF ENCODERLOCK ON THE TARGET
DOMAIN AND ITS PERFORMANCE ON OTHER DOMAINS WITH
BASELINES [20], [21]. IN THIS TABLE, BOLD TEXT INDICATES THE BEST
PERFORMANCE, UNDERLINED DENOTES THE SECOND-BEST PERFORMANCE.
THE GRAY ROW DENOTES ORIGINAL TRANSFER ACCURACY.

) - Source | Target Other Domains

Methods \ Domain NIM P ‘ T SN SD
Original Accuracy 94.2% | 94.7%  98.9% | 53.8% | 85.9%
NTL [20] 81.6% | 77.3% ‘ 97.9% | 30.4% | 62.1%
CUTI [21] 66.6% | 90.6% | 96.0% | 52.3% | 82.0%
Supervised EncoderLock 93.5% | 178% 98.8% | 39.3% | 69.1%
Unsupervised EncoderLock | 93.3% | 30.7% 98.9% | 49.0% | 78.4%

APPENDIX I

SECURITY ANALYSIS—TRAIN-FROM-SCRATCH ACCURACY

—e— Train From Scraich ~ —®— Original Encoder ~ —®— EncoderLock-Protected Encoder

Accuracy (%)
25 2 =

Number of Training/Probing Epochs Number of Training/Probing Epochs Number of Training/Probing Epochs

Fig. 18. EncoderLock’s Performance Versus Train-from-scratch

Here we apply the security assessment definition in Sec-
tion VI-B on three example pairs of domains: MT to UP,
UP to MT, and MM to UP for the supervised EncoderLock
on VGG-11. Their accuracy drops on the authorized domain
are 0.07%, 0.25%, and 0.17%, respectively, all below the
accuracy drop constraint (e = 2%). Fig. 18 shows the probing
performance of the EncoderLock-protected and unprotected
encoders on the prohibited domain, compared to the accuracy
of the “train-from-scratch” model. It demonstrates that starting
from the EncoderLock-protected encoder allows the model to
achieve lower accuracy and faster convergence on the prohibited
domain, than a model trained from scratch. Therefore, the
protected encoder can be considered SECURE, as an attacker
would have no motivation to perform malicious probing. By
contrast, the original encoder is NOT SECURE, as the accuracy
(red) is always higher than train-from-scratch accuracy (gray)
as shown in Fig. 18.

APPENDIX J
ENCODERLOCK GRADCAM ON ADMISSIBLE DOMAINS
In this section, we present the additional results to visualize
the admissible domains with GradCAM in Fig. 19.
APPENDIX K
GENERATED PROMPTS & IMAGES

The (refined) prompts for generating synthetic datasets in
zero-shot EncoderLock. The theme is military vehicles.
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Fig. 19. Interpretation of Different EncoderLock using GradCAM [84]-
the red parts highlight the focus of encoder to make decisions.

Manual Prompts. See Figure 20

Artillery Tractor

Logistic Support Transport Vehicle
Tank

Self-propelled Artillery
Multi-functional Infantry Vehicle

Armored Personnel Carrier
Anti-tank Combat Vehicle
Tactical Missile Vehicle
Forward Command Vehicle
Communication Support Vehicle

Initial Prompts: The synthetic images shown in Figure 21
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.

nuclear-powered submarine, deep-
sea exploration

stealth bomber, night operation
battlefield command and control
center, high-tech

anti-aircraft missile system, mobile
defense

futuristic tank, stealth design
antique cannon, ceremonial use
amphibious assault vehicle, coastal
operations

drone carrier truck, mobile base
armored medical evacuation vehicle,
red cross

cyberpunk hoverbike, scout unit

Refined Prompts: The synthetic image shown in Figure 22

Armored Ground Vehicle, Modern
Combat

Artillery System, Classic Aesthetics
Amphibious Assault Transport
Drone Carrier, Tactical

Field Support Unit, Healthcare

Reconnaissance Craft, Urban Aerial
Deep Sea Explorer, Nuclear Propul-
sion

Stealth Surveillance Plane
Command Center, High-Tech
Missile Defense Network, Mobile

opelled Artillery Artillery Tractor

Logistic Support Transport Vehicle

Armored Personnel

Anti-tank Combat Vehicle o
% ﬁ

Fig. 20. Manual Prompts and Generated Synthetic Dataset
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Fig. 21. AI agent Initial Prompts and Generated Synthetic Dataset
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Fig. 22. AI agent Refined Prompts and Generated Synthetic Dataset

Command Center

Armored Ground Vehicle




APPENDIX L
ARTIFACT APPENDIX

Artifact DOI 10.5281/zenodo.14248909.

A. Description and Requirements

1) How to Access: Our artifacts include the source code to
run the training and evaluation process of EncoderLock.

2) Hardware Dependencies: A GPU is highly recommended
for testing the source code to ensure faster training and
evaluation.

3) Software Dependencies: The required software includes
Python 3.9 and PyTorch 1.12.

4) Datasets: Most of the datasets can be downloaded via
torchvision. We also provide links to download the real-
world datasets (i.e., ImageNette and Military Vehicle) in the
README file and the main manuscript.

B. Artifact Installation

The artifacts run in a Python 3.9 environment. We rec-
ommend installing the required packages in an Anaconda
environment using the environment .yml file.

C. Experiment Workflow

The experiment consists of three parts:

o Data and Model Preparation: To run the experiment,
we first need to prepare data from both the source domain
and the target domain (synthetic dataset for the zero-shot
EncoderLock). Additionally, we need a victim pre-trained
encoder that performs well on the source domain but is
vulnerable to malicious probing on the target domain.

« EncoderLock Training: In this stage, the user should
fine-tune the encoder using the proposed method to obtain
a modified encoder that resists malicious probing on the
target domain.

« EncoderLock Testing: In this stage, the user needs to test
the probing performance of the modified encoder on the
target domain to demonstrate that the model is protected
against probing.

D. Major Claims

We demonstrate the effectiveness of EncoderLock in protect-
ing against malicious probing. The main results are presented
in Table II and Table III. Specifically, you should observe that
while the source domain experiences a slight degradation in
testing accuracy, the target domain accuracy drops significantly
after implementing EncoderLock.

E. Evaluations

1) Experiment Cost: Training EncoderLock usually takes
from 0.1 to 6 GPU hours, varying depending on the GPU
platform and the dataset.

2) How To: Please follow the steps in the README . md file
included with the artifacts to run the evaluations.

3) Execution: We provide scripts to directly run all evalua-
tions; you can find them under the /tests/ directory.

4) Customization: Hyperparameters can be directly adjusted
in the execution scripts.
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