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Abstract— Non-Bayesian learning is a computationally ef-
ficient approximation of Bayesian learning over multi-agent
networks. As the network scale increases, existing fully dis-
tributed solutions start to lag behind real-world challenges
such as slow information propagation and external adversarial
attacks. In this paper, to reduce the potential information
propagation delay in large systems, we consider a hierarchical
system architecture in which the agents are clustered into
M sub-networks, and a parameter server exists to facilitate
the information exchange among sub-networks. The message
exchange between any client and the parameter server is
expensive; hence it needs to be carefully controlled.

To the best of our knowledge, utilizing hierarchical structure
to speed up convergence and to enhance adversarial resilience is
largely under-explored, which is our focus. Byzantine resilience
via consensus suffers the curse of dimensionality — no Byzantine
consensus algorithms can withstand a fraction of Byzantine
agents exceeding min{1/3, 1/(d + 1)} where d is the input
dimension. To get around this, we solve the non-Bayesian
learning problem via running multiple scalar dynamics. Fur-
thermore, we use a novel Byzantine-resilient gossiping-type
rule at the parameter server to facilitate resilient information
propagation across sub-networks. We show that under some
technical conditions, each normal agent can asymptotically
identify the underlying truth hypothesis 6 with probability
1. Notably, our theory implies that even if there exists a sub-
network whose majority of agents are Byzantine, our algorithm
still enables successful learning of the normal agents in such
sub-networks.

I. INTRODUCTION

Non-Bayesian learning [7], [8], [17], [18] is a “‘consensus
+ innovation” approach of social learning. It is a compu-
tational efficient approximation to Bayesian learning over
networks wherein the information is scattered over different
agents. Formally, social learning can be formulated as a
distributed multiple hypothesis testing problem. Let © =
{01, -, 04} be the set of d hypotheses. There is an unknown
underlying truth 6* € O that determines the joint distribution
of the local measurements at individual agents. For any given
@ € O, the marginal distributions at the agents can be
different. “Local confusion” often exists; that is, the marginal
distributions of different hypotheses may appear to be the
same to an agent. The goal of non-Bayesian learning is to
have agents collaboratively identify the unknown 6*.

As the scale of the multi-agent network increases, existing
fully distributed solutions start to lag behind the crucial real-
world challenges such as slow information propagation and
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external adversarial attacks. Towards scalable decentralized
solutions, instead of a gigantic multi-agent network, we con-
sider a hierarchical system architecture in which the agents
are clusters into M sub-networks, and a parameter server
exists to aid the information exchanges among sub-networks.
The system architecture is depicted in Fig.1. Similar system
architecture is adopted

in the literature [6], [2], —
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parameter server is costly; hence needs to be sparse.

In this paper, we study Byzantine-resilient hierarchical
non-Bayesian learning, wherein the compromised agents
can send maliciously calibrated messages to others and the
parameter server. Previous studies in non-Bayesian learning
have explored network structures such as sparse or weakly
connected graphs [16], [19], time-varying graphs [12], and
more general higher-order hypergraph structures [1]. Hierar-
chical architectures have been explored in literature on rele-
vant problems [6], [2], [21], [11], [10], [3]. However, existing
methods are not applicable to our problem; see Section II for
details. To the best of our knowledge, utilizing hierarchical
structure to speed up convergence and to enhance adversarial
resilience is largely under-explored, which is our focus.

A hierarchical system architecture

Contributions. Byzantine resilience suffers curse of dimen-
sionality — no Byzantine consensus algorithms can tolerate
more than min{1/3, 1/(d + 1)} fraction of agents to be
Byzantine [15]. To avoid this, we solve the non-Bayesian
learning problem via running multiple scalar dynamics, each
of which only involves Byzantine consensus with scalar
inputs. Moreover, we introduce a novel Byzantine-resilient
gossiping-type to ensure the effective information propaga-
tion across networks. Our algorithm only uses sparse agent-
server communication in two senses: First, the fusion among
the M sub-networks occurs every other D* rounds, where
D* is the maximal diameter of the sub-networks. Second,
for each fusion, only a subset of clients are selected.

We show that our algorithm is resilient to arbitrary place-
ment of up to I’ Byzantine agents provided that there exists
at least ' + 1 sub-networks each of which satisfies certain
condition. ! Specifically, our algorithm enables each normal

"Formal description of the conditions can be found in Section V.



agent to asymptotically identify 6* with probability 1 using
sparse communication with the parameter server. It is worth
noting that even if there exists sub-networks whose majority
of the agents are Byzantine, our algorithm still enables the
normal agents in such sub-networks to learn 6*.

II. RELATED WORK

Hierarchical architectures have been explored to speed up
the convergence of average consensus [6], [2]. In comparison
to using a large single network, Epstein et al. [2] improve the
speed of average consensus through hierarchical clustering
of agents, followed by iteratively performing consensus on
each level of the hierarchy with message passing between
adjacent levels. However, their characterized final consensus
errors are nonzero. Hou and Zheng [6] adopt a similar net-
work structure with the additional challenge of time-varying
communication links. Their local agent updates are based
on relative intra-cluster information and relative inter-cluster
“group information” when links are active. Unfortunately,
such group information is often expensive to collect.

A client-edge-cloud hierarchy has also been explored in
the context of edge computing [21], [11], [3], [10]. In the
context of load balancing problem, Tong et al. [21] propose to
use such hierarchical structure so as to efficiently utilize the
cloud resources to serve the peak loads from mobile users. In
their system architecture, clients are clustered based on their
proximity to edge communication servers. The communica-
tion between the clusters and the corresponding edge servers
are frequent yet the estimate synchronization among the edge
servers is infrequent. Liu et al. [11] apply Federated Learning
on such hierarchical systems and show improved conver-
gence of Hierarchical-FedAvg [11] compared to pure cloud-
based FedAvg and edge-based FedAvg [14] implementation.
Subsequent works have further improved the communication
efficiency through client selection based on worst-case delay
[3], or an evolutionary process [10]. Departing from above
existing literature, we consider Byzantine-resilience. A key
technical challenge is that Byzantine agents can launch
attacks via injecting adaptively calibrated messages, which
destroy the commonly assumed unbiased stochastic gradients
condition.

III. SYSTEM AND THREAT MODELS
A. System Model

The system consists of a parameter server (PS) and M sub-
networks, each of which is formally represented by graphs
G(Vi, &), where V; = {v},--- v} } is node set and &; is
the set of all directed edges. Let NV := Zﬁl n;, where n; =
|V;|. No messages can be exchanged directly between agents
in different sub-networks. In addition, the PS has the freedom
in querying and pushing messages to any agent. However,
this type of message exchange comes at a high cost and
must be limited in frequency. For an arbitrary sub-network
Sis IJL = {k | (k7]) € gz} and O]l = {k | (jvk) € gz}
denote the sets of incoming and outgoing neighbors to agent
j. For notational convenience, d: := |O}|.

Denote the diameter of sub-network i as D;. Define

D* := max D;. (D
i€[M]

Intuitively, the smaller D;, the faster the information
fusion within the network. It is easy to see that, with the
hierarchical structure created by the parameter server, the
information fusion is expected to be faster provided that
the communication cost involves the parameter server is
comparable to the cost of agent-agent communication.

B. Threat Model: Byzantine Faults

We adopt Byzantine fault model [13], [9] — a canonical
fault model in distributed computing. There exists a system
adversary that can choose A C UMV, such that [A] < F
(where F' < N) to compromise and control. Each agent in
A is referred to as a Byzantine agent. Each normal agent
(i.e., an agent in UM, V; \ F) knows F but does not know
the set A and |A|. The system adversary has complete
knowledge of the system, including the local program that
each good agent is supposed to run and the problem inputs.
The Byzantine agents can collude with each other and
deviate from their pre-specified local programs to arbitrarily
misrepresent information to the good agents with the only
restriction that the communication channel is authenticated,
i.e., a Byzantine agent cannot forge the digital signature of
someone else. Moreover, Byzantine agents can use point-
to-point rather than broadcast communication. Formally, let
m;j;, (t) and m;,(t) be the messages sent by agent j to two
distinct outgoing neighbors j; and j. Under point-to-point
communication, it is allowed that my;, (t) # m;j;, (t).

IV. SOoCIAL LEARNING PROBLEM

We following a canonical learning model in social
networks/multi-agent systems [7], [8], [18]. The entire sys-
tem can be in one of the d possible unknown environments
O = {61,605, -+ ,04}. Let 6* € O denote the underlying
environment that the normal agents try to collaboratively
learn based on their locally collected signals.

For each time ¢, each agent independently obtains private
signal about the environmental state 6*, which is initially
unknown to every agent in the network. Each agent j
in each sub-network ¢ knows the structure of its private
signal, which is represented by a collection of parameter-
ized distributions D% = {{; (s;,|0)|0 € O, s;, € S},
where /;,(-|0) is a distribution with parameter 6§ € ©, and

sup Supy g/ logM < L for some positive
sijeSij 0,0’cO Zij(sij‘el) —

constant L > 0.

M': number of sub-networks
_ n; = Vil
&;: edge set of sub-network S; d; : mcpmmg degree of agent j
in sub-network S;
F: upper bound of |A]
D* = max; D;

©: set of d hypotheses
V;: node set of sub-network S;

A: set of Byzantine agents
D;: diameter of network S;

TABLE I
REFERENCE NOTATION CHART.



“For ease of exposition, we index the agents 1 to N. Let
s] be the private signal observed by agent j in iteration ¢,
and let s; = {s},---,sN} be the signal profile at time ¢
(i.e., signals observed by the agents in iteration ). Given
0%, the signal profile s; is generated according to the joint
distribution £(- | %) = £1(-|0%) x -+ x € (-]0%).

A. Multi-dimensional problems.

In a centralized setting, Bayesian learning methods can
be used to identify the underlying truth 6* via iteratively
refining the posterior/belief (which is d-dimensional) based
on s;. For fully distributed settings, non-Bayesian learning
is a computational efficient approximation to exact Bayesian
learning, wherein each agent refines its local estimate of the
global posterior (which is also d-dimensional) based on local
signal while running consensus update.

V. NON-BAYESIAN LEARNING: BYZANTINE RESILIENCE

Due to the curse of dimensionality of Byzantine resilience,
we can not directly plug in a Byzantine consensus algorithm
to serve as the “consensus” component. In Algorithm 1,
instead of updating any approximation to the global belief
vector evolution, we run multiple scalar linear dynamics
simultaneously — one for each hypothesis pair of distinct
hypotheses # and #’. Roughly speaking, 77(6,6") is a local
approximation to the log-likelihood ratio between hypotheses
6 and ¢'. Larger 77 (6,6") implies that in the view of agent j,
compared with hypothesis #’, hypothesis 6 is more likely to
be the underlying truth §*. As described in lines 1-3, since
no signals s] are collected prior to the algorithm execution,
77(0,0') is initialized to 0 (i.e., r}(6,6") = 0).

If a sub-network belongs to a particular set C (to be
specified later), each agent j in that network does a trim +
consensus + innovation update as in lines 7-9. Specifically,
agent j first trims away the F' smallest and F' largest
values of the received 77_, (6, 0’). Here we use the notation
ﬁL1(6‘7 6’) rather than r{Ll(G, ¢’) because that when j' € A
(i./e., when j' is Byzantine) it may lie arbitrarily, resulting in
7_1(0,0") # r]_1(6,0"). In line 9, the set Z;(t,0,0") C
Ii/ is the remained incoming neighbors whose messages
7{_1(9, ') are not trimmed away by agent j at time ¢, and
og @J(S/_’;\G)

ICALONN
local signal s]. The sparse information fusion among the
M sub-networks, under of the coordination of the parameter
server, is described in lines 10-20, which can be viewed
as Byzantine-resilient sparse gossiping. Such information
fusion is sparse in two senses: First, as is determined by
the if command in line 10, the fusion among the M sub-
networks occurs every other D* rounds, recalling that D* is
the maximal diameter of the sub-networks (as per Eq.(1)).
Second, for each fusion, only a subset of clients are selected
— referred to as representatives — to send local estimates.
When M > 2F + 1, the parameter server uniformly at
random chooses one representative from each sub-network.
If M < 2F + 1, the parameter server samples additional
2F + 1 — M agents as in line 14. Since a selected network

is the log-likelihood ratio of the newly obtained

representatives may be Byzantine, the parameter server trims
away the largest F' and smallest F' received values (line 16)
before taking the average, denoted as w. In line 17, the set
R(t,0,0") is the set of representatives whose messages are
not trimmed away. Since the number of representatives is at
least 2F + 1, R(t,0,6’) is non-empty. Via lines 19 and 20,
each representative of the sub-networks not in C, its local
estimate is updated again as 77 (0,0") = w(t,6,6’).

Algorithm 1: Hierarchical Byzantine-resilient Non-
Bayesian Learning

1 for j € UM, V; do

2 for 0,0’ € © such that 0 # 0’ do
3 L r5(6,0') + 0;
4 In parallel, for each hypothesis pair 6,6’ do:
s fort=1,2,--- do
6 if Agent j belongs to a network in C then
7 Transmit 7]_, (6,0’) on all outgoing edges;
8 Filter the smallest and largest F' values of the
received log likelihood ratios ?ﬂt,_l(e, 0"
9 HCNARS
i’ ’ J ’ .
E.f’eI;(t,e,el)I’v“‘:lli:iH’Q-l(” ) +log Zj(Sj{IG) )
L J ‘gj (St 167)
10 if ¢ mod D* = 0 then
11 if M > 2F + 1 then
12 The parameter server randomly chooses one
representative from each of the M networks
and queries their estimates;
13 else
14 For each ¢ € C, randomly choose one agent in
V; as network representative of iteration ¢.
Choose (2F + 1 — |C|) representatives from
Usgc Vi uniformly at random as
representatives, and queries their estimates;
15 The parameter server removes messages with the
largest F' and smallest F' values;
16 w(t,0,0") 7@(;9’9,)‘ D ierio,0n T1(0,0');
17 The parameter server multicasts w(t, 0, 6’) to the
network representatives not in C.
18 for each i ¢ C do
19 the network representative updates its 77 (6, 6")
to w(t,6,6").

VI. CONVERGENCE RESULTS
A. Preliminaries.
Definition 1 (KL Divergence): Let P and @) be probabil-
ity measures on a measurable space X', and P is absolutely

continuous with respect to (), then the Kullback-Leibler (KL)
divergence from () to P is defined as

Deu (P || Q) = /X log@%) P(dz). ()

Contextualizing in our setting, D (¢;(-|0) || ¢;(:|0")) = 0
implies that at agent j, based on its locally collected signal
s1,8h, -+, it cannot distinguish ¢;(-|¢") from ¢;(-|#) no
matter how many sample it collects.




Definition 2 (Reduced/information flow graph[24], [22]):
Given a graph G(V, ), a reduced/infomation flow graph is
constructed as:

o remove all faulty nodes A,

o remove all the links incident on the faulty nodes A,

« for each non-faulty node, remove F' additional incoming
links. If there are less than F' such links, remove all.

Both the malicious behaviors of the Byzantine agents
and message trimming can alter the effective information
flow in a network. A reduced/information flow graph as per
Definition 2 captures how information flows implicitly in a
network. Henceforth, for exposition clarity, we refer to such
constructed graphs as information flow graphs. Notably, since
there might be multiple choices of links in the third bullet of
Definition 2, the information flow graph is not unique. Let
Ginto denote the collection of all the information flow graphs
of a given graph G(V, &), i.e., G (G(Vi, E;)) is the set of
information flow graphs for the ¢-th sub-network. Let

Xi = |gm’ro(G(Vugz))‘ (3)

The information flow graphs as per Definition 2 is defined
for scalar problems, i.e., the local estimate variable is a
scalar [24], [22]. For multi-dimensional variables, the corre-
sponding information flow graphs are obtained by removing
dF links in the third bullet points of Definition 2 [23].
Intuitively, this is because that when the variables are multi-
dimensional, to restrain the impacts of the malicious values,
a normal agent trims away “extreme” messages aggressively,
significantly limits the effective information flow.
Assumption 1: [24] For any given G(V, &), each of its
information flow graph contains only one source component.

For scalar inputs, Assumption 1 is shown to be both
necessary and sufficient for Byzantine-resilient consensus
to be achievable on the given network G(V,£). Intuitively,
under Assumption 1, agents in the source component can
sufficiently fuse their local information and can propagate
the fused values to each normal agent in the network.

Assumption 2: The agents in a source component can
collectively distinguish hypotheses with infinitely many sam-
ples. Mathematically, for any information flow graph,

ST D10) [ 45010) # 0,
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where C, denotes a source component.

In practice, the data sample is collected gradually rather
than given all at once. Moreover, the malicious behaviors of
the Byzantine agents can cause highly unstructured and intri-
cate statistical dependency, leading to tremendous obstacles
in both the algorithm design and analysis.

B. Convergence

Let C C {1,2,---,M} be the set of sub-networks that
satisfy Assumptions 1 and 2. We first show that each normal
agent that is contained in a sub-network in C can identify 6*

asymptotically with probability 1. Towards this, define
D% :=min min min

D (-10%) 11 £(:19)) -
i€C 0€O\{6*} C. €], ; kL (6 (107) [ 4;(:10))

It is easy to see that as long as C # (), D3, > 0.

Theorem I: Fix ¢ € C. For any non- Byzantine agent 7
there exists 6 € © such that limsup,_, o, 77(6,0) == 400
and liminf,_ 7 (6, 0) 2> —co. Moreover, 0 = 6*.

We prove Theorem 1 through a couple of lemmas.

Lemma 1: Fix any network ¢ in C. Let ¢; = |V; \ A|. Let
j € Vi \ A be an arbitrary non-Byzantine agent. Then with
probability 1, it holds that

lim l7"t(9* 0) >

t—o00 12

N S PP
lim t—2r§(0,0 ) <

t—o0

1
§BX'i(ni_¢i)D;<L7 and

,lﬁxz'(nz‘*(ﬁz‘)D;(L,
where 3 £ min;cc min;ey,\ 4 m

Recall that d’ is the incoming degree of agent j that
belongs to sub- network 1. It is worth notlng that Lemma 1
does not provide any characterization of (6, #) and 7 (6, 9)
for 9 # 0. To enable agent j to identify 6™ by monitoring
r1(6,0) and ri(6,0), we need to exclude the following
possibility: there exists ] # 0* such that

lim r{(g, 0) 22 400, and  lim r{(@,g) 2% 0.
t—o0 t—o0

Lemma 2: Fix a network in i € C. Suppose there ex-
ists 0 € O such that for any 6 # 0, it holds that
limg o r1(0,0) 2= —|—oo and limy_, o0 77 (6,60) 22 —o0.
Then 6 = 6*, where =5 denotes ‘converge almost surely”.
Proof. We prove this proposition by contradiction. Suppose
there exists 0 ;é 0" € @ such that for any 6 ;é 0, it holds
that limy_,o0 77 (6,0) 22 +00, and lim; o0 A 106,0) 2=
—o0. Then we~know that lim;_, oo rt(G 0*) 225 400 and
lim;_, o0 77 (0%, 0) 225 —o0, contradicting Lemma 1.

]

It remains to show the case when agent j does not belong
to any network in C.

Theorem 2: Suppose
any non-Byzantine agent j A
to any of the networks in C, there exists 6 such
that V6 # 0: hm 1SUD; 00 T 1(6,0) —> +o0, and
lim inf, o0 77 (6, 6) 22 —oco. Moreover, 8 = 6*.

Remark 1: Theorem 2 is non-trivial. By [20], |C| > F +1
implies that at least ' 4+ 1 networks can reach consensus
individually despite different learning rates. However, since
the Byzantine agents can lie arbitrarily and the local signals
are non-IID and noisy, agents in C may not effectively
propagate its local learning to agents in a different network.
Particularly, in line 16, it is possible that the messages from
the sample agents in C are all filtered out by the PS. Though
we conjectured on the pairwise linear dynamics in [20],
formal analysis was missing and the sketched proof does not
go through. This is because the KL divergence term shows
up only when one of the hypothesis involved is the truth 6*.

Remark 2: The Byzantine agents A can be arbitrary sub-
set of UM, V; as long as |A| < F. One interesting extreme

that |C| > F + 1. For
that does not belong



case is when all the Byzantine agents are located in the same
sub-network. Assumption 1 implies that F' < %nz for i € C.

It is worth noting that for a sub-network outside C, even if
the majority of the agents are Byzantine, our algorithm still
enables the normal agents to learn 6*.

APPENDIX [
PROOF SKETCH OF LEMMA 1.

Since the intersection of finitely many almost surely events
is also almost surely and the problem is invariant to the
permutation of hypothesis indices, it is enough to consider
the convergence for the distinct hypotheses pair 6; and 6o

and assume that 0* € {61, 02}.

By [22], we know that for each pair of hypotheses 6,
and 0, there exists a row-stochastic matrix M2?[t] €
R(Mi=@)x(ni=¢i) guch that

0
Z M T[] ( 01,02)+10g¥ 5)

0,9
o 31t|92)

Matrix M172[t} depends on #; and 6y, and is time-varying.
The reason of that M'2[t] is time-varying is two-fold:
(1) The log likelihood ratio of the cumulative signals
lo Z.j(sjl_,tlel)

£5(51,4102) ) ]
new signal and the randomness in the signal; and (2) the

Byzantine agents can adaptively calibrate their malicious
messages based on algorithm execution up to time .

Let r4(61,02) € R™~% be the vector that stacks
r](01,02). The evolution of r(fy,02) can be written as

is changing over time due to the obtain of

t

= M1’2[t]rt_1(91, 02) -+ Z Er(gla 92)

r=1

t T
=Y @Vt r+1))  Li(61,02),  (6)
r=1 k=1

ry (017 02)

where ®12(t,r + 1) & MU2[IMY2[t — 1] --- MY2[r + 1]
for r <t, ®L2(t, 1) £ MY2[t] and ®12(¢,t +1) 2 L.

Using coefficients of ergodicity [5], under Assumption 1,
it has been shown [23] that

lim  ®Y2(t,r) =

t>r, t—oo

where 7(r)"? € R(™~%) is a row stochastic vector, and
1 is the column vector with each entry being 1. To prove

limy o0 577 (0%,0) > 1px:(u=9) D% without loss of
generality, let §; = 6*. For each j € V; \ A, we have

an

172(r), @)

t

ri (61,62) =)

r=1

(t,r+1) Zcﬂ (01, 65)

—r Z 7r, (r+1)

(4)

+Z Z 77’ (r+1 KL(91:92)~
=1

(B)

KL(ol 92)

By [23, Lemma 4], we know that: For any r > 1, there
exists an information flow graph with source component Cg
such that 7)7(r) > gxi("i=%1) Y j € C,. Thus,

) > Zr,@xtm ) N" Diey(01,62)

j'€Cs
< (t +1)
- 2
Thus, let ¢ — oo, it holds that (B) — oo, and that

ﬂxi(ni7¢i)D}‘(L.

To bound (A), we first note that when 6, = 0*,
Esne(107) [ﬁf; (9*,92)} = D, (67,65).
Following [20, Lemma 3], we can show that
1 t n;—¢;
Z2 7 > my(r)(
r=1 j'=1

With Eq. (6), we conclude that

L] (61,02)— Dy, (61,62) =55 0.

lim l7",‘(67 6) >

t—oo t -

%57’55 (ni=¢i) pr.. almost surely.

It can be shown analogously that

lim l7',5 0,07) < f% i (ni

t—o0 t2

~?J D%, almost surely.

APPENDIX II
PROOF SKETCH OF THEOREM 2.

We focus on the scenario where M > 2F + 1. The analysis can
be easily adapted for the scenario where M < 2F. Without loss of
generality, let j € V1 \ A.

For each ¢ such that ¢ mod D* = 0, with probability n—ll, agent
J will be selected as a representative. Let j; € V;\ A be an arbitrary
non-Byzantine agent for ¢ = 2,-.- M. Let ji(k),---,jm(k)
denote the representatives of networks 1,--- , M at t = kD*. We
define a sequence of events:

—{wi k) = ad iR =i ¥ i£1h ®
Let pk = P{Ax} for k = 1,2,---. It is easy to see that px =

M
nllezm:Hzln Slncezk PR = D 1HL1n =
oo, and A, Ag,--- are mutually independent, by Borel-Cantelli
lemma [4, Lemma 1.3], we know

P { Ay, infinitely often} = 1, 9)

where Apinfinitely often = Ny>1 (Uk>nAx) . That is, with proba-
bility 1 (almost surely), agent j will be selected infinitely many
times. Let 71,72,--- be the time indices at which agent j is
selected.

Let w be a sample path in which each of the network in C learn 6*
independently, and that agent j is selected as the representative of
network S1 infinitely often. Let ¢* be the time index such that for all
t > t*, rJ > 1/8’“("7 ¢ D% t? forall i € Cand j' € Vi\A. By
Theorem | and Eq.(9), we know that P {all such w} = 1. Notably,
t* may change as the sample path w changes. Henceforth, we fix
one such sample path. Let §; = 6* and let

7"{/(917 02)7

7”{/(91, 92)

Cmin ‘= . 1mn
i€C,j €V \A, t<t*

Cmax = min
P€C,5 EV\A, t<t*



By definition, w(t) = m > eme mi(t). For any 7,
none of the representatives are Byzantine; hence, w(r.) =
Wl‘w)l 2 jeR(rn) T (01,02). Hence, we are able to rewrite (via
two steps) w(7,-) in a form in which at least M — F’ representatives
have non-trivial influence on j. Let ki,--- ,kr be the indices of
the bottom F' values that are filtered out by the parameter server.
Similarly, let k7, - - - , k%= be the indices of the filtered top F values.
For each £ =1,--- | F, there exists ¢ € [0, 1] such that

W(ry) = aer® (01,02) + (1 — o) 754 (81, 02).

Thus, @(r,) = £ S5 aerk (61, 02) + (1 — o) 52 (61, 62). We
further rewrite w(7,) as

i ~ M —2F _ M —2F\ _
00,00 = () = 12w+ (1- X2 ) an)
M—2F 1 i
M Z TTT( 1,02
Rl &2
F
M —-2F)\ 1 ’
(1= ) 5 X (a0 + (1 )t 01,0)

=1

1 .
M Z TZ_T (91, 02)

JER(Tr)
2 — y
k
+ i ; (oemf (01,02) + (1 — ap) r,f(91792)) )

Notably, either oy > 1/2 or (1 —ay) > 1/2. Recall that
‘ﬁ(n)‘ = M — 2F. Hence, we conclude that w(7.) can be
written as a convex combination of all the local estimates of the M
representatives with at least M — F’ representatives with weights at
least +-. Since |C| > F+1, we now that at least one representative
from a network in C will have corresponding coefficient > ﬁ
Thus, when 6; = 6", by Theorem 1, we have

- 1 i) on
rh, (01,62) > 7284 Djep (kr)? — max{leminl, emax}.

Let 7 — o0, we have lim,_ oo TL (01,02) = +oo, ie.,
limsup, ., 74 (0",0) = +oc. For t # 7 for any r and ¢ > ",
via the same argument in [23], we are able to write 77 (6,0) =
w(t) as a convex combination of the non-Byzantine representatives
of iteration ¢. That is, there exists &, - - - , & such that

M
rl(07,0) = w(t) =Y &l (0", 0).
i=1

Thus, we have 77(6%,0) >  —max{|cmin| |cmax|}-
Thus, liminf; oo 7] (6%,0) > —max{|cmin|,|Cmax|}. Since
P{all such w} = 1, we conclude that with probability 1, for
all @ # 67, it is true that limsup, . 77 (6",0) = +oco and
lim inf; o0 77 (6%, 0) > — max{|cmin|, |cmax|}-

Similarly, we are able to show that with probability 1, for all 6 #
6™, it holds that limsup, _, . 77 (6, 0*) < max{|cmin|, |¢max|}, and
liminfy— o0 77 (6%, 0) = —o0.

It can be easily shown by contradiction (similar to the proof of
Lemma 2) that if there exists § € © such that for any 6 # 0, it
holds that lim sup, , ., r7(6,0) = oo, lim inf;,0o 1/ (6,0) > —o0,
and limsup, , ., 77(6,0) < oo, liminf; e 7 (0,60) = —oo, then
6 = 0™, proving Theorem 2.
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