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Abstract— Non-Bayesian learning is a computationally ef-
ficient approximation of Bayesian learning over multi-agent
networks. As the network scale increases, existing fully dis-
tributed solutions start to lag behind real-world challenges
such as slow information propagation and external adversarial
attacks. In this paper, to reduce the potential information
propagation delay in large systems, we consider a hierarchical
system architecture in which the agents are clustered into
M sub-networks, and a parameter server exists to facilitate
the information exchange among sub-networks. The message
exchange between any client and the parameter server is
expensive; hence it needs to be carefully controlled.

To the best of our knowledge, utilizing hierarchical structure
to speed up convergence and to enhance adversarial resilience is
largely under-explored, which is our focus. Byzantine resilience
via consensus suffers the curse of dimensionality – no Byzantine
consensus algorithms can withstand a fraction of Byzantine
agents exceeding min{1/3, 1/(d + 1)} where d is the input
dimension. To get around this, we solve the non-Bayesian
learning problem via running multiple scalar dynamics. Fur-
thermore, we use a novel Byzantine-resilient gossiping-type
rule at the parameter server to facilitate resilient information
propagation across sub-networks. We show that under some
technical conditions, each normal agent can asymptotically
identify the underlying truth hypothesis ¹∗ with probability
1. Notably, our theory implies that even if there exists a sub-
network whose majority of agents are Byzantine, our algorithm
still enables successful learning of the normal agents in such
sub-networks.

I. INTRODUCTION

Non-Bayesian learning [7], [8], [17], [18] is a “consensus

+ innovation” approach of social learning. It is a compu-

tational efficient approximation to Bayesian learning over

networks wherein the information is scattered over different

agents. Formally, social learning can be formulated as a

distributed multiple hypothesis testing problem. Let Θ =
{¹1, · · · , ¹d} be the set of d hypotheses. There is an unknown

underlying truth ¹∗ ∈ Θ that determines the joint distribution

of the local measurements at individual agents. For any given

¹ ∈ Θ, the marginal distributions at the agents can be

different. “Local confusion” often exists; that is, the marginal

distributions of different hypotheses may appear to be the

same to an agent. The goal of non-Bayesian learning is to

have agents collaboratively identify the unknown ¹∗.

As the scale of the multi-agent network increases, existing

fully distributed solutions start to lag behind the crucial real-

world challenges such as slow information propagation and
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external adversarial attacks. Towards scalable decentralized

solutions, instead of a gigantic multi-agent network, we con-

sider a hierarchical system architecture in which the agents

are clusters into M sub-networks, and a parameter server

exists to aid the information exchanges among sub-networks.

The system architecture is depicted in Fig.1. Similar system
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Fig. 1. A hierarchical system architecture

architecture is adopted

in the literature [6], [2],

[21], [11], [10], [3],

wherein centralized pa-

rameter servers can be

placed at the top of the

hierarchy to coordinate

between client clusters.

Sending messages be-

tween an agent and the

parameter server is costly; hence needs to be sparse.

In this paper, we study Byzantine-resilient hierarchical

non-Bayesian learning, wherein the compromised agents

can send maliciously calibrated messages to others and the

parameter server. Previous studies in non-Bayesian learning

have explored network structures such as sparse or weakly

connected graphs [16], [19], time-varying graphs [12], and

more general higher-order hypergraph structures [1]. Hierar-

chical architectures have been explored in literature on rele-

vant problems [6], [2], [21], [11], [10], [3]. However, existing

methods are not applicable to our problem; see Section II for

details. To the best of our knowledge, utilizing hierarchical

structure to speed up convergence and to enhance adversarial

resilience is largely under-explored, which is our focus.

Contributions. Byzantine resilience suffers curse of dimen-

sionality – no Byzantine consensus algorithms can tolerate

more than min{1/3, 1/(d + 1)} fraction of agents to be

Byzantine [15]. To avoid this, we solve the non-Bayesian

learning problem via running multiple scalar dynamics, each

of which only involves Byzantine consensus with scalar

inputs. Moreover, we introduce a novel Byzantine-resilient

gossiping-type to ensure the effective information propaga-

tion across networks. Our algorithm only uses sparse agent-

server communication in two senses: First, the fusion among

the M sub-networks occurs every other D∗ rounds, where

D∗ is the maximal diameter of the sub-networks. Second,

for each fusion, only a subset of clients are selected.

We show that our algorithm is resilient to arbitrary place-

ment of up to F Byzantine agents provided that there exists

at least F + 1 sub-networks each of which satisfies certain

condition. 1 Specifically, our algorithm enables each normal

1Formal description of the conditions can be found in Section V.



agent to asymptotically identify ¹∗ with probability 1 using

sparse communication with the parameter server. It is worth

noting that even if there exists sub-networks whose majority

of the agents are Byzantine, our algorithm still enables the

normal agents in such sub-networks to learn ¹∗.

II. RELATED WORK

Hierarchical architectures have been explored to speed up

the convergence of average consensus [6], [2]. In comparison

to using a large single network, Epstein et al. [2] improve the

speed of average consensus through hierarchical clustering

of agents, followed by iteratively performing consensus on

each level of the hierarchy with message passing between

adjacent levels. However, their characterized final consensus

errors are nonzero. Hou and Zheng [6] adopt a similar net-

work structure with the additional challenge of time-varying

communication links. Their local agent updates are based

on relative intra-cluster information and relative inter-cluster

“group information” when links are active. Unfortunately,

such group information is often expensive to collect.

A client-edge-cloud hierarchy has also been explored in

the context of edge computing [21], [11], [3], [10]. In the

context of load balancing problem, Tong et al. [21] propose to

use such hierarchical structure so as to efficiently utilize the

cloud resources to serve the peak loads from mobile users. In

their system architecture, clients are clustered based on their

proximity to edge communication servers. The communica-

tion between the clusters and the corresponding edge servers

are frequent yet the estimate synchronization among the edge

servers is infrequent. Liu et al. [11] apply Federated Learning

on such hierarchical systems and show improved conver-

gence of Hierarchical-FedAvg [11] compared to pure cloud-

based FedAvg and edge-based FedAvg [14] implementation.

Subsequent works have further improved the communication

efficiency through client selection based on worst-case delay

[3], or an evolutionary process [10]. Departing from above

existing literature, we consider Byzantine-resilience. A key

technical challenge is that Byzantine agents can launch

attacks via injecting adaptively calibrated messages, which

destroy the commonly assumed unbiased stochastic gradients

condition.

III. SYSTEM AND THREAT MODELS

A. System Model

The system consists of a parameter server (PS) and M sub-

networks, each of which is formally represented by graphs

G(Vi, Ei), where Vi = {vi1, · · · , v
i
ni
} is node set and Ei is

the set of all directed edges. Let N :=
∑M

i=1 ni, where ni =
|Vi|. No messages can be exchanged directly between agents

in different sub-networks. In addition, the PS has the freedom

in querying and pushing messages to any agent. However,

this type of message exchange comes at a high cost and

must be limited in frequency. For an arbitrary sub-network

Si, Ii
j = {k | (k, j) ∈ Ei} and Oi

j = {k | (j, k) ∈ Ei}
denote the sets of incoming and outgoing neighbors to agent

j. For notational convenience, dij :=
∣∣Oi

j

∣∣.

Denote the diameter of sub-network i as Di. Define

D∗ := max
i∈[M ]

Di. (1)

Intuitively, the smaller Di, the faster the information

fusion within the network. It is easy to see that, with the

hierarchical structure created by the parameter server, the

information fusion is expected to be faster provided that

the communication cost involves the parameter server is

comparable to the cost of agent-agent communication.

B. Threat Model: Byzantine Faults

We adopt Byzantine fault model [13], [9] – a canonical

fault model in distributed computing. There exists a system

adversary that can choose A ¢ ∪M
i=1Vi such that |A| f F

(where F f N ) to compromise and control. Each agent in

A is referred to as a Byzantine agent. Each normal agent

(i.e., an agent in ∪M
i=1Vi \ F) knows F but does not know

the set A and |A|. The system adversary has complete

knowledge of the system, including the local program that

each good agent is supposed to run and the problem inputs.

The Byzantine agents can collude with each other and

deviate from their pre-specified local programs to arbitrarily

misrepresent information to the good agents with the only

restriction that the communication channel is authenticated,

i.e., a Byzantine agent cannot forge the digital signature of

someone else. Moreover, Byzantine agents can use point-

to-point rather than broadcast communication. Formally, let

mjj1(t) and mjj2(t) be the messages sent by agent j to two

distinct outgoing neighbors j1 and j2. Under point-to-point

communication, it is allowed that mjj1(t) ̸= mjj2(t).

IV. SOCIAL LEARNING PROBLEM

We following a canonical learning model in social

networks/multi-agent systems [7], [8], [18]. The entire sys-

tem can be in one of the d possible unknown environments

Θ = {¹1, ¹2, · · · , ¹d}. Let ¹∗ ∈ Θ denote the underlying

environment that the normal agents try to collaboratively

learn based on their locally collected signals.

For each time t, each agent independently obtains private

signal about the environmental state ¹∗, which is initially

unknown to every agent in the network. Each agent j
in each sub-network i knows the structure of its private

signal, which is represented by a collection of parameter-

ized distributions Dij = {ℓij (sij |¹)|¹ ∈ Θ, sij ∈ Sij},

where ℓij (·|¹) is a distribution with parameter ¹ ∈ Θ, and

supsij∈Sij
sup¹,¹′∈Θ log

ℓij (sij |¹)

ℓij (sij |¹
′) f L for some positive

constant L > 0.

Θ: set of d hypotheses M : number of sub-networks
Vi: node set of sub-network Si ni = |Vi|

Ei: edge set of sub-network Si
dij : incoming degree of agent j

in sub-network Si

A: set of Byzantine agents F : upper bound of |A|
Di: diameter of network Si D∗ = maxi Di

TABLE I

REFERENCE NOTATION CHART.



For ease of exposition, we index the agents 1 to N . Let

sjt be the private signal observed by agent j in iteration t,
and let st = {s1t , · · · , s

N
t } be the signal profile at time t

(i.e., signals observed by the agents in iteration t). Given

¹∗, the signal profile st is generated according to the joint

distribution ℓ(· | ¹∗) = ℓ1(·|¹
∗)× · · · × ℓN (·|¹∗).

A. Multi-dimensional problems.

In a centralized setting, Bayesian learning methods can

be used to identify the underlying truth ¹∗ via iteratively

refining the posterior/belief (which is d-dimensional) based

on st. For fully distributed settings, non-Bayesian learning

is a computational efficient approximation to exact Bayesian

learning, wherein each agent refines its local estimate of the

global posterior (which is also d-dimensional) based on local

signal while running consensus update.

V. NON-BAYESIAN LEARNING: BYZANTINE RESILIENCE

Due to the curse of dimensionality of Byzantine resilience,

we can not directly plug in a Byzantine consensus algorithm

to serve as the “consensus” component. In Algorithm 1,

instead of updating any approximation to the global belief

vector evolution, we run multiple scalar linear dynamics

simultaneously – one for each hypothesis pair of distinct

hypotheses ¹ and ¹′. Roughly speaking, rj(¹, ¹′) is a local

approximation to the log-likelihood ratio between hypotheses

¹ and ¹′. Larger rj(¹, ¹′) implies that in the view of agent j,

compared with hypothesis ¹′, hypothesis ¹ is more likely to

be the underlying truth ¹∗. As described in lines 1-3, since

no signals sjt are collected prior to the algorithm execution,

rj(¹, ¹′) is initialized to 0 (i.e., rj0(¹, ¹
′) = 0).

If a sub-network belongs to a particular set C (to be

specified later), each agent j in that network does a trim +

consensus + innovation update as in lines 7-9. Specifically,

agent j first trims away the F smallest and F largest

values of the received r̃j
′

t−1(¹, ¹
′). Here we use the notation

r̃j
′

t−1(¹, ¹
′) rather than rj

′

t−1(¹, ¹
′) because that when j′ ∈ A

(i.e., when j′ is Byzantine) it may lie arbitrarily, resulting in

r̃j
′

t−1(¹, ¹
′) ̸= rj

′

t−1(¹, ¹
′). In line 9, the set I∗

j (t, ¹, ¹
′) ¦

Ii is the remained incoming neighbors whose messages

r̃j
′

t−1(¹, ¹
′) are not trimmed away by agent j at time t, and

log
ℓj(s

j
t |¹)

ℓj(s
j
t |¹

′)
is the log-likelihood ratio of the newly obtained

local signal sjt . The sparse information fusion among the

M sub-networks, under of the coordination of the parameter

server, is described in lines 10-20, which can be viewed

as Byzantine-resilient sparse gossiping. Such information

fusion is sparse in two senses: First, as is determined by

the if command in line 10, the fusion among the M sub-

networks occurs every other D∗ rounds, recalling that D∗ is

the maximal diameter of the sub-networks (as per Eq.(1)).

Second, for each fusion, only a subset of clients are selected

– referred to as representatives – to send local estimates.

When M g 2F + 1, the parameter server uniformly at

random chooses one representative from each sub-network.

If M < 2F + 1, the parameter server samples additional

2F + 1−M agents as in line 14. Since a selected network

representatives may be Byzantine, the parameter server trims

away the largest F and smallest F received values (line 16)

before taking the average, denoted as w̃. In line 17, the set

R̃(t, ¹, ¹′) is the set of representatives whose messages are

not trimmed away. Since the number of representatives is at

least 2F + 1, R̃(t, ¹, ¹′) is non-empty. Via lines 19 and 20,

each representative of the sub-networks not in C, its local

estimate is updated again as rjt (¹, ¹
′) = w̃(t, ¹, ¹′).

Algorithm 1: Hierarchical Byzantine-resilient Non-

Bayesian Learning

1 for j ∈ ∪M
i=1Vi do

2 for ¹, ¹′ ∈ Θ such that ¹ ̸= ¹′ do

3 rj0(¹, ¹
′)← 0;

4 In parallel, for each hypothesis pair ¹, ¹′ do:
5 for t = 1, 2, · · · do
6 if Agent j belongs to a network in C then

7 Transmit rjt−1(¹, ¹
′) on all outgoing edges;

8 Filter the smallest and largest F values of the

received log likelihood ratios r̃j
′

t−1(¹, ¹
′)

9 rjt (¹, ¹
′)←

∑
j′∈I∗

j
(t,¹,¹′) r̃

j′

t−1(¹,¹
′)+r

j
t−1(¹,¹

′)

|Ij |+1−2F
+ log

ℓj(s
j
t |¹)

ℓj(s
j
t |¹

′)
.

10 if t mod D∗ = 0 then
11 if M g 2F + 1 then
12 The parameter server randomly chooses one

representative from each of the M networks
and queries their estimates;

13 else
14 For each i ∈ C, randomly choose one agent in

Vi as network representative of iteration t.
Choose (2F + 1− |C|) representatives from
∪i/∈CVi uniformly at random as
representatives, and queries their estimates;

15 The parameter server removes messages with the
largest F and smallest F values;

16 w̃(t, ¹, ¹′)← 1

|R̃(t,¹,¹′)|

∑
j∈R̃(t,¹,¹′) r̃

j
t (¹, ¹

′);

17 The parameter server multicasts w̃(t, ¹, ¹′) to the
network representatives not in C.

18 for each i /∈ C do

19 the network representative updates its rjt (¹, ¹
′)

to w̃(t, ¹, ¹′).

VI. CONVERGENCE RESULTS

A. Preliminaries.

Definition 1 (KL Divergence): Let P and Q be probabil-

ity measures on a measurable space X , and P is absolutely

continuous with respect to Q, then the Kullback-Leibler (KL)

divergence from Q to P is defined as

DKL(P ∥ Q) :=

∫

X

log

(
P (dx)

Q(dx)

)
P (dx). (2)

Contextualizing in our setting, D (ℓj(·|¹) ∥ ℓj(·|¹
′)) = 0

implies that at agent j, based on its locally collected signal

sj1, s
j
2, · · · , it cannot distinguish ℓj(·|¹

′) from ℓj(·|¹) no

matter how many sample it collects.



Definition 2 (Reduced/information flow graph[24], [22]):

Given a graph G(V, E), a reduced/infomation flow graph is

constructed as:

• remove all faulty nodes A,

• remove all the links incident on the faulty nodes A,

• for each non-faulty node, remove F additional incoming

links. If there are less than F such links, remove all.

Both the malicious behaviors of the Byzantine agents

and message trimming can alter the effective information

flow in a network. A reduced/information flow graph as per

Definition 2 captures how information flows implicitly in a

network. Henceforth, for exposition clarity, we refer to such

constructed graphs as information flow graphs. Notably, since

there might be multiple choices of links in the third bullet of

Definition 2, the information flow graph is not unique. Let

Ginfo denote the collection of all the information flow graphs

of a given graph G(V, E), i.e., Ginfo(G(Vi, Ei)) is the set of

information flow graphs for the i-th sub-network. Let

Çi := |Ginfo(G(Vi, Ei))|. (3)

The information flow graphs as per Definition 2 is defined

for scalar problems, i.e., the local estimate variable is a

scalar [24], [22]. For multi-dimensional variables, the corre-

sponding information flow graphs are obtained by removing

dF links in the third bullet points of Definition 2 [23].

Intuitively, this is because that when the variables are multi-

dimensional, to restrain the impacts of the malicious values,

a normal agent trims away “extreme” messages aggressively,

significantly limits the effective information flow.

Assumption 1: [24] For any given G(V, E), each of its

information flow graph contains only one source component.

For scalar inputs, Assumption 1 is shown to be both

necessary and sufficient for Byzantine-resilient consensus

to be achievable on the given network G(V, E). Intuitively,

under Assumption 1, agents in the source component can

sufficiently fuse their local information and can propagate

the fused values to each normal agent in the network.

Assumption 2: The agents in a source component can

collectively distinguish hypotheses with infinitely many sam-

ples. Mathematically, for any information flow graph,

∑

j∈Cs

D (ℓj(·|¹) ∥ ℓj(·|¹
′)) ̸= 0, ∀ ¹ ̸= ¹′, (4)

where Cs denotes a source component.

In practice, the data sample is collected gradually rather

than given all at once. Moreover, the malicious behaviors of

the Byzantine agents can cause highly unstructured and intri-

cate statistical dependency, leading to tremendous obstacles

in both the algorithm design and analysis.

B. Convergence

Let C ¦ {1, 2, · · · ,M} be the set of sub-networks that

satisfy Assumptions 1 and 2. We first show that each normal

agent that is contained in a sub-network in C can identify ¹∗

asymptotically with probability 1. Towards this, define

D∗
KL := min

i∈C
min

¹∈Θ\{¹∗}
min

Cs∈Gi
info

∑

j∈Cs

DKL (ℓj(·|¹
∗) ∥ ℓj(·|¹)) .

It is easy to see that as long as C ̸= ∅, D∗
KL > 0.

Theorem 1: Fix i ∈ C. For any non-Byzantine agent j,

there exists ¹̃ ∈ Θ such that lim supt→∞ rjt (¹̃, ¹)
a.s.
−−→ +∞

and lim inft→∞ rjt (¹, ¹̃)
a.s.
−−→ −∞. Moreover, ¹̃ = ¹∗.

We prove Theorem 1 through a couple of lemmas.

Lemma 1: Fix any network i in C. Let ϕi = |Vi \ A|. Let

j ∈ Vi \ A be an arbitrary non-Byzantine agent. Then with

probability 1, it holds that

lim
t→∞

1

t2
rjt (¹

∗, ¹) g
1

2
´Çi(ni−ϕi)D∗

KL, and

lim
t→∞

1

t2
rjt (¹, ¹

∗) f −
1

2
´Çi(ni−ϕi)D∗

KL,

where ´ ≜ mini∈C minj∈Vi\A
1

2(di
j
−2F )+1

.

Recall that dij is the incoming degree of agent j that

belongs to sub-network i. It is worth noting that Lemma 1

does not provide any characterization of rjt (¹̃, ¹) and rjt (¹, ¹̃)
for ¹̃ ̸= ¹∗. To enable agent j to identify ¹∗ by monitoring

rjt (¹̃, ¹) and rjt (¹, ¹̃), we need to exclude the following

possibility: there exists ¹̃ ̸= ¹∗ such that

lim
t→∞

rjt (¹̃, ¹)
a.s.
−−→ +∞, and lim

t→∞
rjt (¹, ¹̃)

a.s.
−−→ −∞.

Lemma 2: Fix a network in i ∈ C. Suppose there ex-

ists ¹̃ ∈ Θ such that for any ¹ ̸= ¹̃, it holds that

limt→∞ rjt (¹̃, ¹)
a.s.
−−→ +∞, and limt→∞ rjt (¹, ¹̃)

a.s.
−−→ −∞.

Then ¹̃ = ¹∗, where
a.s.
−−→ denotes “converge almost surely”.

Proof. We prove this proposition by contradiction. Suppose

there exists ¹̃ ̸= ¹∗ ∈ Θ such that for any ¹ ̸= ¹̃, it holds

that limt→∞ rjt (¹̃, ¹)
a.s.
−−→ +∞, and limt→∞ rjt (¹, ¹̃)

a.s.
−−→

−∞. Then we know that limt→∞ rjt (¹̃, ¹
∗)

a.s.
−−→ +∞ and

limt→∞ rjt (¹
∗, ¹̃)

a.s.
−−→ −∞, contradicting Lemma 1.

□

It remains to show the case when agent j does not belong

to any network in C.

Theorem 2: Suppose that |C| g F + 1. For

any non-Byzantine agent j that does not belong

to any of the networks in C, there exists ¹̃ such

that ∀ ¹ ̸= ¹̃: lim supt→∞ rjt (¹̃, ¹)
a.s.
−−→ +∞, and

lim inft→∞ rjt (¹, ¹̃)
a.s.
−−→ −∞. Moreover, ¹̃ = ¹∗.

Remark 1: Theorem 2 is non-trivial. By [20], |C| g F +1
implies that at least F + 1 networks can reach consensus

individually despite different learning rates. However, since

the Byzantine agents can lie arbitrarily and the local signals

are non-IID and noisy, agents in C may not effectively

propagate its local learning to agents in a different network.

Particularly, in line 16, it is possible that the messages from

the sample agents in C are all filtered out by the PS. Though

we conjectured on the pairwise linear dynamics in [20],

formal analysis was missing and the sketched proof does not

go through. This is because the KL divergence term shows

up only when one of the hypothesis involved is the truth ¹∗.

Remark 2: The Byzantine agents A can be arbitrary sub-

set of ∪M
i=1Vi as long as |A| f F . One interesting extreme



case is when all the Byzantine agents are located in the same

sub-network. Assumption 1 implies that F < 1
3ni for i ∈ C.

It is worth noting that for a sub-network outside C, even if

the majority of the agents are Byzantine, our algorithm still

enables the normal agents to learn ¹∗.

APPENDIX I

PROOF SKETCH OF LEMMA 1.

Since the intersection of finitely many almost surely events

is also almost surely and the problem is invariant to the

permutation of hypothesis indices, it is enough to consider

the convergence for the distinct hypotheses pair ¹1 and ¹2
and assume that ¹∗ ∈ {¹1, ¹2}.

By [22], we know that for each pair of hypotheses ¹1
and ¹2, there exists a row-stochastic matrix M

1,2[t] ∈
R(ni−ϕi)×(ni−ϕi) such that

rjt (¹1, ¹2) =

ni−ϕi∑

j′=1

M
1,2
jj′ [t]r

j
t−1(¹1, ¹2) + log

ℓj(s
j
1,t | ¹1)

ℓj(s
j
1,t | ¹2)

. (5)

Matrix M
1,2[t] depends on ¹1 and ¹2, and is time-varying.

The reason of that M
1,2[t] is time-varying is two-fold:

(1) The log likelihood ratio of the cumulative signals

log
ℓj(s

j
1,t|¹1)

ℓj(s
j
1,t|¹2)

is changing over time due to the obtain of

new signal and the randomness in the signal; and (2) the

Byzantine agents can adaptively calibrate their malicious

messages based on algorithm execution up to time t.
Let rt(¹1, ¹2) ∈ Rni−ϕi be the vector that stacks

rjt (¹1, ¹2). The evolution of r(¹1, ¹2) can be written as

rt(¹1, ¹2) = M
1,2[t]rt−1(¹1, ¹2) +

t∑

r=1

Lr(¹1, ¹2)

=

t∑

r=1

Φ
1,2(t, r + 1)

r∑

k=1

Lk(¹1, ¹2), (6)

where Φ
1,2(t, r + 1) ≜ M

1,2[t]M1,2[t − 1] · · ·M1,2[r + 1]
for r f t, Φ1,2(t, t) ≜ M

1,2[t] and Φ
1,2(t, t+ 1) ≜ I.

Using coefficients of ergodicity [5], under Assumption 1,

it has been shown [23] that

lim
tgr, t→∞

Φ
1,2(t, r) = 1Ã1,2(r), (7)

where Ã(r)1,2 ∈ R(ni−ϕi) is a row stochastic vector, and
1 is the column vector with each entry being 1. To prove

limt→∞
1
t2
rjt (¹

∗, ¹) g 1
2´

Çi(ni−ϕi)D∗
KL, without loss of

generality, let ¹1 = ¹∗. For each j ∈ Vi \ A, we have

rjt (¹1, ¹2) =

t∑

r=1




ni−ϕi∑

j′=1

Φ
1,2
jj′(t, r + 1)

r∑

k=1

Lj′

k (¹1, ¹2)

− r

ni−ϕi∑

j′=1

Ã1,2
j′ (r + 1)Dj′

KL(¹1, ¹2)




︸ ︷︷ ︸
(A)

+

t∑

r=1

r

ni−ϕi∑

j′=1

Ã1,2
j′ (r + 1)Dj′

KL(¹1, ¹2)

︸ ︷︷ ︸
(B)

.

By [23, Lemma 4], we know that: For any r g 1, there

exists an information flow graph with source component Cs
such that Ã1,2

i (r) g ´Çi(ni−ϕi) ∀ j ∈ Cs. Thus,

(B) g
t∑

r=1

r´Çi(ni−ϕi)
∑

j′∈Cs

Dj′

KL(¹1, ¹2)

g
t(t+ 1)

2
´Çi(ni−ϕi)D∗

KL.

Thus, let t → ∞, it holds that (B) → ∞, and that

lim
t→∞

1

t2
(B) g

1

2
´Çi(ni−ϕi)D∗

KL.

To bound (A), we first note that when ¹1 = ¹∗,

Es∼ℓ(·|¹∗)

[
Lj′

k (¹
∗, ¹2)

]
= Dj′

KL (¹∗, ¹2) .

Following [20, Lemma 3], we can show that

1

t2

t∑

r=1

r

ni−ϕi∑

j′=1

Ãj′(r+1)(Lj′

k (¹1, ¹2)−D
j′

KL(¹1, ¹2))
a. s.
−→ 0.

With Eq. (6), we conclude that

lim
t→∞

1

t2
rjt (¹

∗, ¹) g
1

2
´Çi(ni−ϕi)
m D∗

KL, almost surely.

It can be shown analogously that

lim
t→∞

1

t2
rjt (¹, ¹

∗) f −
1

2
´Çi(ni−ϕi)
m D∗

KL, almost surely.

APPENDIX II

PROOF SKETCH OF THEOREM 2.

We focus on the scenario where M g 2F +1. The analysis can
be easily adapted for the scenario where M f 2F . Without loss of
generality, let j ∈ V1 \ A.

For each t such that t mod D∗ = 0, with probability 1
n1

, agent

j will be selected as a representative. Let ji ∈ Vi\A be an arbitrary
non-Byzantine agent for i = 2, · · · ,M . Let j1(k), · · · , jM (k)
denote the representatives of networks 1, · · · ,M at t = kD∗. We
define a sequence of events:

Ak := {É : j1(k) = j, and ji(k) = ji ∀ i ̸= 1}. (8)

Let pk = P {Ak} for k = 1, 2, · · · . It is easy to see that pk =
1
n1

∏M
i=2

1
ni

=
∏M

i=1
1
ni

. Since
∑∞

k=1 pk =
∑∞

k=1

∏M
i=1

1
ni

=
∞, and A1, A2, · · · are mutually independent, by Borel-Cantelli
lemma [4, Lemma 1.3], we know

P {Ak infinitely often} = 1, (9)

where Akinfinitely often = ∩ng1 (∪kgnAk) . That is, with proba-
bility 1 (almost surely), agent j will be selected infinitely many
times. Let Ä1, Ä2, · · · be the time indices at which agent j is
selected.

Let É be a sample path in which each of the network in C learn ¹∗

independently, and that agent j is selected as the representative of
network S1 infinitely often. Let t∗ be the time index such that for all

t g t∗, rj
′

t g
1
2
´Çi(ni−ϕi)D∗

KLt
2 for all i ∈ C and j′ ∈ Vi\A. By

Theorem 1 and Eq.(9), we know that P {all such É} = 1. Notably,
t∗ may change as the sample path É changes. Henceforth, we fix
one such sample path. Let ¹1 = ¹∗ and let

cmin := min
i∈C,j′∈Vi\A, t<t∗

rj
′

t (¹1, ¹2),

cmax : = min
i∈C,j′∈Vi\A, t<t∗

rj
′

t (¹1, ¹2).



By definition, w̃(t) = 1

|R̃(t)|

∑
j∈R̃(t) mj(t). For any Är ,

none of the representatives are Byzantine; hence, w̃(Är) =
1

|R̃(Är)|

∑
j∈R̃(Är)

rjÄr (¹1, ¹2). Hence, we are able to rewrite (via

two steps) w̃(Är) in a form in which at least M−F representatives
have non-trivial influence on j. Let k1, · · · , kF be the indices of
the bottom F values that are filtered out by the parameter server.
Similarly, let k′

1, · · · , k
′
F be the indices of the filtered top F values.

For each ℓ = 1, · · · , F , there exists ³ℓ ∈ [0, 1] such that

w̃(Är) = ³ℓr
kℓ
Är (¹1, ¹2) + (1− ³ℓ) r

k′
ℓ

Är (¹1, ¹2).

Thus, w̃(Är) =
1
F

∑F
ℓ=1 ³ℓr

kℓ
Är (¹1, ¹2) + (1− ³ℓ) r

k′
ℓ

Är (¹1, ¹2). We
further rewrite w̃(Är) as

r
jℓ(t)
t (¹1, ¹2) = w̃(Är) =

M − 2F

M
w̃(Är) +

(
1−

M − 2F

M

)
w̃(Är)

=
M − 2F

M

1

|R̃(Är)|

∑

j∈R̃(Är)

rjÄr (¹1, ¹2)

+

(
1−

M − 2F

M

)
1

F

F∑

ℓ=1

(
³ℓr

kℓ
Är (¹1, ¹2) + (1− ³ℓ) r

k′
ℓ

Är (¹1, ¹2)
)

=
1

M

∑

j∈R̃(Är)

rjÄr (¹1, ¹2)

+
2

M

F∑

ℓ=1

(
³ℓr

kℓ
Är (¹1, ¹2) + (1− ³ℓ) r

k′
ℓ

Är (¹1, ¹2)
)
.

Notably, either ³ℓ g 1/2 or (1− ³ℓ) g 1/2. Recall that∣∣∣R̃(Är)
∣∣∣ = M − 2F . Hence, we conclude that w̃(Är) can be

written as a convex combination of all the local estimates of the M
representatives with at least M −F representatives with weights at
least 1

M
. Since |C| g F +1, we now that at least one representative

from a network in C will have corresponding coefficient g 1
M

.
Thus, when ¹1 = ¹∗, by Theorem 1, we have

rjkÄ
(¹1, ¹2) g

1

M
´Çi(ni−ϕi)D∗

KL (kÄ )
2 −max{|cmin|, |cmax|}.

Let Ä → ∞, we have limÄ→∞ rjkÄ
(¹1, ¹2) = +∞, i.e.,

lim supt→∞ rjkÄ
(¹∗, ¹) = +∞. For t ̸= Är for any r and t g t∗,

via the same argument in [23], we are able to write rjt (¹
∗, ¹) =

w̃(t) as a convex combination of the non-Byzantine representatives
of iteration t. That is, there exists ³̃1

t , · · · , ³̃
M
t such that

rjt (¹
∗, ¹) = w̃(t) =

M∑

i=1

³̃i
tr

ji(t)
t (¹∗, ¹).

Thus, we have rjt (¹
∗, ¹) g −max{|cmin|, |cmax|}.

Thus, lim inft→∞ rjt (¹
∗, ¹) g −max{|cmin|, |cmax|}. Since

P {all such É} = 1, we conclude that with probability 1, for

all ¹ ̸= ¹∗, it is true that lim supt→∞ rjt (¹
∗, ¹) = +∞ and

lim inft→∞ rjt (¹
∗, ¹) g −max{|cmin|, |cmax|}.

Similarly, we are able to show that with probability 1, for all ¹ ̸=
¹∗, it holds that lim supt→∞ rjt (¹, ¹

∗) f max{|cmin|, |cmax|}, and

lim inft→∞ rjt (¹
∗, ¹) = −∞.

It can be easily shown by contradiction (similar to the proof of

Lemma 2) that if there exists ¹̃ ∈ Θ such that for any ¹ ̸= ¹̃, it

holds that lim supt→∞ rjt (¹̃, ¹) =∞, lim inft→∞ rjt (¹̃, ¹) > −∞,
and lim supt→∞ rjt (¹, ¹̃) < ∞, lim inft→∞ rjt (¹̃, ¹̃) = −∞, then

¹̃ = ¹∗, proving Theorem 2.
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