


Attack Category Method Model-Free? Level Access Detailed Descriptions

Editing

(§6.2)

post-generation

Typo Insertion ✓ Character None
Create typos by inserting, deleting, substituting, and

transposing mainly.

Homoglyph Alteration ✓ Character None
Change English characters into visually similar Unicodes,

e.g., Cyrillic characters.

Format Character Editing ✓ Character None

Change or insert formatting characters, including

zero-width whitespace \u200B insertion, and shift

character editing, e.g., \n, \r, \u000B (vertical tab), etc.

Paraphrasing

(§6.3)

post-generation

Synonyms Substitution opt ✓ or ✗ Word None

For model-free (✓) setting, retrieve a synonym from a

static dictionary; for model-based (✗) setting, utilize a

LLM to generate synonyms list given context.

Span Perturbation ✗ Span None
Use a masked LM (Raffel et al., 2020) to rewrite spans of

tokens by masked filling.

Inner-Sentence Paraphrase ✗ Inner-Sent. None
Use Pegasus (Zhang et al., 2020) to paraphrase each

sentence of the text and then join them.

Inter-Sentence Paraphrase ✗ Inter-Sent. None

Paraphrase with Dipper (Krishna et al., 2023), a

paragraph-level paraphraser that can re-order, split, and

merge sentences meanwhile paraphrasing each sentence.

Co-Generating

(§6.4)

on-generation

Emoji Co-Generation ✓ Inter-Sent. Decoding

Compulsorily generate or insert an emoji after finishing

each sentence while recurrent generation and remove all

the emojis after finishing the whole text.

Typo Co-Generation ✓ Inter-Sent. Decoding

Preset character substitution rules and execute the rules

when finishing sampling each token and recover them after

finishing the whole text generation.

Prompting

(§6.5)

pre-generation

Prompt Paraphrasing ✗ Inter-Sent. Prompting
Paraphrase the raw prompt before generation using

Pegasus.

In-Context Learning ✗ Inter-Sent. Prompting

Given the example of HWT and MGT as positive and

negative demonstrations when generating MGT on the

same prompt.

Character-Substituted Generation ✗ Inter-Sent. Prompting

Prompt to ask the model to generate the text with specific

character substitution criteria and recover the output after

finishing the whole generation.

Table 1: Overview of the attacks. ‘Model-Free’ means whether the attacker is free from using any additional

language model or not. ‘Access’ indicates the access to the generator needed when doing the attack (details in §6

and examples in Table 16).

(Mitchell et al., 2023), to perform worse than a

random prediction (§6.2), etc. Hence, we view the

attacks as the stumbling blocks for current MGT de-

tectors toward robustness. Moreover, we interpret

the reasons behind detectors’ weaknesses under at-

tacks and further introduce out-of-the-box patches

with inferior performance in some scenarios.

We build a robustness leaderboard (Table 2, and

the pipeline is illustrated in Figure 1) by averag-

ing results from different attacks. We find that

watermarking (Kirchenbauer et al., 2023a) per-

forms best for robust MGT detection to its ap-

plicable attacks.3 Next, model-based detectors

are more robust than metric-based ones in most

cases. Overall, this study aims to raise awareness

of the detection vulnerabilities and the urgency of

more robust methodologies, thereby turning the

stumbling blocks into stepping stones.

2 Problem Formulation

Threat Model. Figure 1 shows the overall pipeline.

There are three roles in the problem: generator

(§3), detector (§3), and attacker (Table 1, §6). The

task for the detector is to classify whether a given

3Watermarking requires logit-level access to the generator
model and has the risk of negatively impacting text quality.

piece of text is human-written (HWT) or machine-

generated (MGT) from the generator LM. In the

attacked scenario, before the MGT is sent to the

detector, an attacker could tamper with the text or

the generator, attempting to deceive the detector

into classifying the MGT as HWT. We compute the

budget (§4) of each attack to measure its impact on

text quality and semantics.

Scope. For a realistic scenario, we set the scope of

our robustness evaluation under attack as follows:

(i) We assume that the attacker does not have any

knowledge or access to the detectors.

(ii) The attacker only has limited access to the

generators: We assume to have prompting ac-

cess with tunable sampling hyper-parameters

for the following reason: currently, most

top-performing LLMs accessible to users are

closed-source (e.g., GPT-4, Claude), to which

we only have API access or a panel including a

prompt input and sampling settings (OpenAI,

2022a). Due to the same reason, adversarial

attacks (Li et al., 2018; Le et al., 2022) are not

covered in this study.

(iii) For a holistic comparison, we apply each

attack on different perturbation levels (e.g.,
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number of typos), termed as budgets (§4).

3 Generators and Detectors

We select GPT-2 XL (1.5B) (Radford et al., 2019),

GPT-J (6B) (Wang and Komatsuzaki, 2021), and

LlaMA-2 (7B-hf) (Touvron et al., 2023a) as the

representative open-source generators, and Text-

Davinci-003 (OpenAI, 2022b) and GPT-4 (OpenAI,

2023) as the closed-source generator representa-

tives. All the generators shared similar results

under attacks (Appendix F.3). We select GPT-J

(6B) as the default generator to show the results in

§6 if unspecified (we empirically find metric-based

detectors do not perform well on stronger gener-

ative LMs even without attacks). The results of

LlaMA-2 and GPT-4 will be additionally shown in

Appendix F.3 and §6. For closed-source generators,

some of the detectors can not be applied due to the

requirement of white-box parameters.

Current MGT detectors could be classified into

3 high-level categories, as we introduce below. We

include representative detectors from each category

for our evaluation. A detailed introduction of the

detectors is deferred to Appendix B.2.1.

Metric-Based Detector relies on the inferred log-

probability from the generator LLM, and adopts

a threshold for classification.4 Detectors for this

type do not require any training. We include GLTR

(Gehrmann et al., 2019; Solaiman et al., 2019),

Rank and LogRank (Solaiman et al., 2019), and

DetectGPT (Mitchell et al., 2023) as representative

approaches in the category.

Fine-Tuned Detector is trained on a pretrained lan-

guage model (PLM) in a supervised method with

a classification loss. We include OpenAI Detector

(Solaiman et al., 2019), SimpleAI Detector (Guo

et al., 2023), and Fine-tuned DeBERTa as represen-

tative models in the category.

Watermark-Based Detector adds algorithmically

detectable signatures into texts during generation.

Kirchenbauer et al. (2023a) is a representative ap-

proach, which adds a token-level bias in the decod-

ing stage (represented as Watermark afterward).

We follow the recommended configurations for

most detectors. Detailed hyperparameters are in-

cluded in the Appendix B.2.2.

4The setting of threshold largely impacts the detection
accuracy, but it is out-of-the-scope of this paper’s focus. Thus,
we mainly use threshold-free metrics (e.g., AUC ROC and
TPR@FPR) in experiments (detailed in §5).

4 Budget of Attacks

As stated in §2, to measure the perturbation level

of attacks on the generated texts, we utilize a series

of text generation evaluation metrics as the budget

of attacks, covering syntactic- or semantic-level

perturbation. A strong attack should induce large

detection performance degradation with a relatively

small budget.

For the editing attacks, we use Levenshtein Edit

Distance (Levenshtein, 1965) as the major budget,

which is the minimum number of single-character

edits, including insertions, deletions, and substitu-

tions. A larger distance represents a larger attack

budget. Additionally, we also record Jaro Similar-

ity (Jaro, 1989).5

To measure the quality of texts under the attacks

that change the semantic meaning (e.g., prompt-

ing attacks and co-generating attacks), we utilize

Perplexity under LlaMA-7B-hf (Touvron et al.,

2023b) and MAUVE (Pillutla et al., 2021). We

use MAUVE to compare the distribution gap be-

tween MGTs and HWTs. MGTs are used to esti-

mate the model distribution, and HWTs are used

to estimate the target distribution (the setting is ab-

breviated as ‘M2H’). Lower Perplexity or higher

MAUVE (M2H) represents better quality and a

smaller budget. Table 6 shows the unattacked value

for reference.

For the attacks that do not change semantics

meaning, e.g., paraphrasing, we use BERTScore

(Zhang et al., 2019) as the major metric for the

budget. We utilize it to compare the similarity be-

tween MGTs after the attack to MGTs before the at-

tack. In this scenario, attacked MGTs are the candi-

dates for BERTScore, while unattacked MGTs are

the reference (the setting is abbreviated as ‘A2B’).

The BERTScore we used is rescaled. A larger

BERTScore (A2B) value means a smaller budget

in the attack. Besides, we also record BARTScore

(Yuan et al., 2021) and Cosine Similarity, which

shows equivalent results.

See Table 17 for more details on the metrics

for the attack budget. Appendix F.1 shows the

correlation among all metrics, which share highly

similar trends of attacked performance.

5 Experiment Setting

Data Setting. Following the setting of Pu et al.

(2023), we generate News-style texts with a proper

5The edit distance, Jaro similarity, and cosine similarity
are implemented based on the string2string (Suzgun et al.,
2023) package.
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Leaderboard: MGT Detector Robustness

Detector Edit Para. Prompt CoGen. Avg.

Watermark 99.86 97.17 - - 99.99 99.01

SimpleAI Det. 108.1 97.51 81.58 95.04 95.55

OpenAI Det.-Lg 57.77 97.84 105.2 107.2 92.00

Model. Avg. 76.65 92.08 97.57 92.22 89.63

F.t. DeBERTa 104.1 81.49 99.09 64.28 87.24

OpenAI Det.-Bs 36.63 91.46 104.4 102.4 83.71

DetectGPT-1d 74.82 75.32 102.8 66.46 79.85

DetectGPT-10d 62.67 64.40 97.68 49.78 68.63

DetectGPT-10z 56.41 59.73 93.88 43.08 63.28

Metric. Avg. 51.82 61.89 91.26 33.49 59.62

LogRank 41.76 58.38 84.44 11.20 48.95

Rank 36.46 57.68 81.00 20.08 48.81

GLTR 38.82 55.80 87.79 10.32 48.18

Table 2: The overall robustness leaderboard of MGT

detectors by averaging the relative AUC ROC percent-

age across all attack budget levels in §6, ranking down-

wards by the overall average. ‘Metric. Avg.’ and ‘Model.

Avg.’ represent the average performance of metric-based

and model-based detectors. Bolding indicates the best

performance in each detector category, and worse per-

formance with drops larger than 70% are in orange.

sampling strategy for each generator, detailed in

Appendix B.1. Our study can be readily applied

to data from other domains. The prompts used for

MGT generation are the first 20 tokens of HWTs

in the dataset. The setting of the sampling strategy

aims to prevent repetition (Welleck et al., 2019).

The training, evaluation, and testing set size is

8,000, 1,000, and 1,000, respectively, with bal-

anced labels.

Metrics for Detector Performance. The met-

rics we use to evaluate detection performance

are binary classification metrics AUC ROC and

TPR@FPR. AUC ROC is the area under the re-

ceiver operating characteristic curve. TPR@FPR

is the true positive rate when the false positive rate

is at a specific percentage. Under our setting, it

is equivalent to Attack Success Rate (ASR) (Tsai

et al., 2019)7. We mainly show TPR@FPR=5%,

and TPR@FPR=10% and =20% are additionally

recorded in the Appendix F.2. We do not involve

Accuracy and F1-score because those metrics de-

pend on the threshold setting for metric-based de-

tectors, which could be biased in the comparison.

6The x-ticks in format (ZWS) character editing is twice the
ones in typo and homoglyph because the Unicode is 2 bytes
when computing edit distance.

7Under our settings, we define the success of the attack
is to deceive detectors by classifying machine-generated text
into human-written (described in §2). So, (1-TPR) and ASR
are both evaluating the equivalent thing.

Absolute MGT Detector Performance w/o Attack

Detector AUC TF=5 TF=10 TF=20 ACC

GLTR 84.46 39.00 53.40 71.60 76.00

Rank 68.13 22.60 35.60 46.80 63.60

LogRank 87.36 50.00 65.60 78.20 79.00

Entropy 51.84 7.60 14.60 26.40 50.80

DetectGPT-1d 68.66 15.80 27.40 45.80 62.10

DetectGPT-10d 83.12 21.60 43.80 71.20 75.80

DetectGPT-10z 85.16 30.80 50.80 73.20 76.20

OpenAI Det.-Bs 83.12 42.40 56.20 69.00 75.00

OpenAI Det.-Lg 88.55 53.60 65.60 78.00 79.00

SimpleAI Det. 87.98 81.20 82.60 84.60 84.40

F.t. DeBERTa 91.90 5.40 49.20 99.60 88.80

Watermark 99.94 99.80 99.80 99.80 99.99

Table 3: The performance of the detectors in the

unattacked scenario (absolute value). For short,

‘AUC’ is ROC AUC, ‘TF=5’ is TPR@FPR=5%, ‘ACC’

is Accuracy, ‘Det.’ is Detector, and ‘F.t.’ is Fine-tuned.

Notably, we report all the metrics of attacked sce-

narios in relative value to the unattacked perfor-

mance (Table 3) for clearer comparison.

6 Attacks and Results

In this section, we describe the attack methodolo-

gies and results divided by attack category. We

view the degraded performance under attacks of

various detectors as stumbling blocks to robust

MGT detection. Further, we analyze the defects

and propose defense patches in each category to

explore the potential of turning stumbling blocks

into stepping stones. Table 1 is an overview of all

attacks and Table 16 shows some examples.

6.1 Overall Message

For readers who want a high-level overview of our

findings, we show the overall results and messages

ahead here by aggregating results from all types

of attacks covered in our work. We will introduce

and discuss the detailed attacks and results in the

following subsections (§6.2 - §6.4).

Leaderboard. Overall, we build a leaderboard of

detector robustness averaging all the performance

datapoints under attacks. The relative AUC ROC

under attack8 are as shown in Table 2. A high rel-

ative AUC ROC means that the detector is robust

to the attack. According to the leaderboard, water-

8‘Relative AUC ROC under attack’ is the percentage of the
AUC ROC in attacked scenarios divided by the unattacked
AUC ROC, to show the relative performance drop of the de-
tectors under attack. Detailed in §5.
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(Zellers et al., 2019), etc. But in realistic scenar-

ios, user prompts might be much more diverse, ab-

normal, and even noisy (Zamfirescu-Pereira et al.,

2023). In this section, we introduce three attack

types. Table 5 shows the results.

6.6 Approaches

Prompt Paraphrasing. Instead of paraphrasing

whole texts post-generation (§6.3), paraphrasing

the prompt prior to generation is much cheaper and

low-impact on the output quality. We use Pegasus

paraphraser to rewrite the prompts.14

In-Context Learning (Dong et al., 2022) improves

generation quality by giving only a few examples

in the form of demonstration. To generate more

human-like texts to deceive detectors, we give the

generator a related HWT as a positive example

and a vanilla MGT as a negative example. We fol-

low the prompt design of Super-NaturalInstructions

(Wang et al., 2022).15

Character-Substituted Generation is inspired by

substitution cipher (Spillman et al., 1993) in the

domain of cryptography. We found that recent

LLM, e.g., GPT-4, are able to follow some easy

substitution rule, e.g., replace ‘a’s with ‘z’s,

during generation. Afterward, we substitute the

mapping back to clean the output. Table 7 shows an

example. Notably, we only find GPT-4 maintains

acceptable generation quality under this attack, so

we solely show its result.

6.7 Results and Analysis

Table 5 shows the results. The metric-based detec-

tors severely suffer the character-substituted gener-

ation attack but are robust to prompt paraphrasing

and in-context learning. On the other hand, the fine-

tuned detectors show some drop in prompt para-

phrasing but have great robustness under character-

substituted generation.16

Discussion on interpretation is in Appendix C.3.

14Since the prompts are usually very short, it is hard for us
to control the budget while paraphrasing. Hence, we report
attacked performance under a single budget at Table 5.

15It is also hard to adjust the budget for this attack. One
potential way is to change the demonstration number, but
it shows no clear correlation to the budgets and also might
exceed the generator’s maximum length of the input sequence.

16Note that the budget of character-substituted generation
is larger than other attacks. As a prompting method, it is hard
to control it, so a milder character-substitution method with
an adjustable budget is by controlled generation (§6.4).

7 Future Work

We propose ideas of enhancement for detectors in

Appendix D.1 and three stronger attack categories,

namely sampling attacks, fine-tuning attacks, and

human-involved attacks in Appendix D.2.

8 Related Work

To the best of our knowledge, there is no exist-

ing thorough study on stress testing the robustness

of machine-generated text detection under various

attacks. Some existing works of MGT detectors

evaluate their robustness under some specific at-

tacks. Liu et al. (2022) evaluate the robustness of

their model-based detector CoCo under token edit-

ing. Krishna et al. (2023) stress test detectors on

paragraph-level paraphrase, and further purpose a

retrieval-based method to increase robustness. Hu

et al. (2023) focus on paraphrastic robust model-

based detectors by adopting adversarial learning.

Zhang et al. (2023) purpose that topic shifting drops

the metric-based detectors’ performance. In the wa-

termark domain, Kirchenbauer et al. (2023a) pro-

pose a list of initial attack ideas, including editing,

paraphrasing, and generation strategy. However,

they only experiment on the span perturbation at-

tack for their watermark method. Further, Kirchen-

bauer et al. (2023b) study the watermark robustness

after LLM paraphrase, manual paraphrase, and mix

into a longer document. Zhao et al. (2023b) en-

hance the robustness of the watermarking scheme

against editing and paraphrasing attacks by em-

ploying a fixed group design. And Hou et al. (2023,

2024) propose a semantic watermark at the sen-

tence level for paraphrastic robustness.

To summarize, a thorough and comparative

stress test on the robustness covering a wide range

of detectors and attacks is lacking in the literature,

which motivates our work.

9 Conclusion

This study evaluates the robustness of 8 MGT de-

tectors against 12 realistic attacks, revealing strik-

ing vulnerabilities. Findings show that no detector

consistently withstands all attacks, as some attack

strategies severely compromise detection accuracy.

Among various detectors, watermarking is the most

robust, followed by model-based detectors. We

also suggest combining metric- and model-based

detectors for better resilience. Aiming at robust

MGT detection, we call for awareness of vulnera-

bility and the need for further methods.
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Limitations

We mainly show and discuss the results of represen-

tative generators, detectors, and attack methods in

the main paper following the preset scope §2. Since

our work is a general and reproducible evaluation

pipeline, it is readily applicable to other generators

or detectors.

We mainly focus on English in our work. Most

attacks are able to be generalized to other lan-

guages, but the generation quality might suffer

mainly depending on the generator’s capability, es-

pecially in lower-resource languages. Also, the de-

tection accuracy highly relies on the base model’s

capability in other languages. Some attacks could

have slightly different designs for other languages,

e.g., the homoglyph alteration attack could be more

complex in logographic languages like Chinese,

Japanese (Kanji), and Vietnamese (Chu Nôm), and

it would be interesting to explore in future work.

Ethics Statement

The goal of this paper is not to provide a cookbook

for malicious use of attacks to deceive MGT detec-

tors. On the contrary, we want to draw attention to

the potential vulnerabilities of current MGT detec-

tors. Moreover, we call for future MGT detectors

that are robust against the attacks we tested. For

this target, we will open-source all the code and

dataset for easy reproduction of our pipeline of ro-

bustness tests. We also propose and describe some

defense patches for fixing these loopholes.
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A Other Related Works

Study on Adversarial Attack to MGT Detection.

Adversarial attack (Goodfellow et al., 2014), which

exposes optimized regions of the input space where

the model under-performs, first introduced to text

data by Li et al. (2018), is powerful to reveal robust-

ness in text classification (Jin et al., 2020). Shi et al.

(2023) first use adversarial attack on MGT detec-

tors, including OpenAI-Detector, DetectGPT, and

watermarking. They cover adversarial word substi-

tution and prompting, both of which deceive three

detectors. Furthermore, RADAR (Hu et al., 2023)

attempts to improve the robustness of model-based

detectors by adversarial learning on paraphrasing.

We also take inspiration from recent work on the

blind spots of NLG metrics (He et al., 2023a).

However, under realistic scenarios, attackers do

not have detailed knowledge of which detector is

being used (§2). Hence, our work focuses on non-

adversarial attacks, which are under-explored.

Study on Generalization of MGT Detection.

Generalization capability is an important aspect

of robustness in MGT detection. For model-based

detectors, Solaiman et al. (2019) evaluate their Ope-

nAI Detector on generalize through different model

sizes, sampling strategies, and input text length. Pu

et al. (2023) study the generalization ability when

testing on out-of-domain data from different gener-

ators. Pagnoni et al. (2022) analyze the generaliza-

tion on sequence length, decoding strategy, dataset

domain, and generator size. Wang et al. (2023) in-

troduce a multi-generator, multi-domain, and multi-

lingual corpus to train more generalizable detec-

tors. For metric-based detectors, Mireshghallah

et al. (2023) explore the generalization between

different base models and dataset generators on a

perturbation-based metric-based detector.

In comparison, our research focuses not on

the generalization problem but on the robustness

against realistic and malicious attacks.

Unwatermarked Watermarked

PPL MAUVE(M2H) PPL MAUVE(M2H)

1.930 ± 0.386 0.9444 2.119 ± 0.524 0.9639

Table 6: The unattacked value of average Perplexity

and MAUVE (M2H) as the base point. Notably, for

the watermark-based detector, the reference texts for

budget computation are watermarked MGTs instead of

the original unwatermarked MGTs.

B Experiment Settings

The experiments are done on 8 Tesla V100 and 4

Tesla A100 GPUs, taking up a total of around 500

GPU hours.

B.1 Dataset and Generators

We build the dataset based on Pu et al. (2023). The

HWTs are from the News domain of the dataset,

and the MGTs are generated with different tempera-

tures for each generator we selected. Table 8 shows

the sample number of each split in our dataset.

Table 9 shows the number of tokens of each

entry in the dataset from each generator. All of

them are around 110 tokens. The length setting

follows the literature, e.g., 120 tokens in Pu et al.

(2023) (based on RealNews), 200 tokens in Hu et al.

(2023) (based on Xsum, SQuAD, and Reddit Writ-

ingPrompts), 100 words in He et al. (2023b) (based

on Essay, WP, and Reuters), and 100 words in

Chakraborty et al. (2023) (based on Reuters). More-

over, a longer average length would lead to higher

detection accuracy (Bao et al., 2023; Chakraborty

et al., 2023). So, we also aim to control the level

of task difficulty by controlling the length.

For sampling, we use a combination of nucleus

sampling (Welleck et al., 2019) with top-p = 0.96

and a tuned temperature parameter (Caccia et al.,

2020; Nadeem et al., 2020). While smaller temper-

ature gives higher quality, it will also cause repeti-

tion, especially for less capable LMs. So, we tune

the temperature based on the criteria of preventing

repetition, which is < 0.2 in terms of 4-gram du-

plication under metric seq-rep-4 in Welleck et al.

(2019). Table 10 shows the our temperature set-

tings.

Prompt:
Continue 20 words with all ‘a’s substituted
with ‘z’s and all ‘z’s substituted with ‘a’s:

As the sun dipped below the horizon, casting

GPT-4:

Zs the sun dipped below the horiaon, czsting
shzdows zcross the lzndsczpe, z gentle
breeae whispered through the trees, czrrying
with it the sweet zromz of spring flowers ...

Cleaned

Output:

As the sun dipped below the horizon, casting
shadows across the landscape, a gentle
breeze whispered through the trees, carrying
with it the sweet aroma of spring flowers ...

Table 7: A character-substituted generation example.
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Split Train Eval Test

Sample Num. 8,000 1,000 1,000

Table 8: The sample number of each split of the dataset.

B.2 Detectors

B.2.1 Detailed Introduction

Metric-Based Detector relies on the inferenced

log-probability from the generator LLM, and

adopts a threshold for classification.

GLTR (Gehrmann et al., 2019; Solaiman et al.,

2019) using the average of the next-token proba-

bility to determine whether an input text is MGT.

Texts with high average probability are classified

as MGTs.

Rank and LogRank (Solaiman et al., 2019;

Mitchell et al., 2023) using the averaged rank and

log-rank of next-token probability for detection re-

spectively.

DetectGPT (Mitchell et al., 2023) stands as the

pioneering work of using perturbation as a com-

parison to original texts to enhance metric-based

detection. Perturbation here refers to rewriting or

substituting spans of tokens using a mask-filling

LM (i.e., T5-small (Raffel et al., 2020)). It poses

that perturbed MGTs tend to have lower log proba-

bilities compared to the original samples under the

base LM, while perturbed HWTs may be at about

a similar level to the origin. Bao et al. (2023); Su

et al. (2023); Liu et al. (2024); Mao et al. (2024)

further follow up DetectGPT.

We apply the white-box setting to the metric-

based detectors, where full knowledge (e.g., which

LLM generated the texts) and access ( including

the parameters of the generator LLM) are given to

the detectors. The reason is that those detectors

require the generator LLM as the base model to

compute the metrics.

Fine-Tuned Detector is trained on a pretrained

language model (PLM) in a supervised method

with a classification loss.

OpenAI Detector (Solaiman et al., 2019) is a

model to detect GPT-2 generation by fine-tuning

a RoBERTa (Liu et al., 2019) model. We evaluate

both the base size (125M) and the large size (355M)

model.

SimpleAI Detector (Guo et al., 2023) is a detec-

tor mainly for distinguishing ChatGPT, using the

HC3 QA dataset (Guo et al., 2023) to fine-tune a

RoBERTa model.

Fine-tuned DeBERTa is the model we fine-tuned

on our generation data, representing an in-domain

setting. We use DeBERTa-v3-base (He et al., 2021)

as the base model.17

Compared with OpenAI and SimpleAI Detectors

as off-the-shelf models, our fine-tuned DeBERTa is

relatively in-domain since it is solely fine-tuned on

the dataset from the same generator and within the

same topic domain as the test set. All the fine-tuned

detectors are under the black-box setting, which

means they have no knowledge or access to the

generator LLM but only the generated dataset.

Watermark-Based Detector adds algorithmically

detectable signatures into texts during generation.

Kirchenbauer et al. (2023a) is a representative wa-

termarking approach, which adds a token-level bias

in the decoding stage (represented as Watermark

afterward). This work is followed up by Zhao

et al. (2023b); Christ et al. (2023); Kuditipudi et al.

(2023); Hou et al. (2023, 2024). All watermark-

based detectors are under the white box setting,

where they have all the knowledge and access to

the generator LLM.

B.2.2 Detailed Hyperparameters

For all model-based detectors, we use the origi-

nal generator of the test set as the base model to

compute the next-token probability and perplexity.

For DetectGPT, we follow the recommendation

hyperparameter setting. The perturbation word ra-

tio is 15% on 2-spam, the perturbation model is

T5-3B (Raffel et al., 2020), and the sample number

of perturbation is 1 or 10 (indicated in the name

of the legend). In the legend, mode ‘d’ represents

the direct use of the absolute likelihood drop while

mode ‘z’ adds an additional normalization. The

mask-filling in perturbation is with temperature 1

without any sampling strategy (e.g., top-p and top-

k).

For all fine-tuned detectors, we directly use the

logits as the output probability. When fine-tuning

F.t. DeBERTa, we set batch size as 4, learning rate

as 1e-5, weight decay as 0, adam epsilon as 1e-8,

and epoch number as 10.

For the watermark, we follow the setting in

Kirchenbauer et al. (2023a), setting gamma as 0.25,

17We have also tried other base models, e.g., BERT (Devlin
et al., 2018), RoBERTa, ELECTRA (Clark et al., 2020), etc.
The selection of base model does not impact the overall trend
of the findings, and the gap on the absolute detection accuracy
is within 2%.
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Dataset GPT-J GPT-J Watermarked GPT-4 LlaMA-2

# token 109.89 ± 5.33 109.88 ± 7.09 109.46 ± 5.15 110.23 ± 5.33

Table 9: The average token number in the dataset from each generator.

Generator GPT-2 XL GPT-J LlaMA LlaMA-2 DaVinci-003 GPT-4

Temp. 1.5 1.5 1.0 1.5 0.7 0.7

Table 10: The temperature we set for each generator to follow the criteria of avoiding severe repetitions.

seeding scheme as selfhash, and z-score threshold

as 4.0.

B.2.3 Under Closed-Source Dataset

For GPT-4 datasets, as we do not have the white-

box generator model, we select an alternative LM

as the base model. According to the conclusion

from Mireshghallah et al. (2023), GPT-2 Small

(Radford et al., 2019) is the best-performed base

model when generalized to GPT-4. Our exper-

iment compares GPT-2 (Small, Medium, Large,

XL), OPT (125M, 350M, 1.3B, 2.7B) (Zhang et al.,

2022), GPT-Neo (125M, 1.3B, 2.7B) (Black et al.,

2021), and GPT-J (6B), and the results align that

GPT-2 Small is the best. Hence, our GPT-4 dataset

results are all under GPT-2 Small as the base model.

Table 12 shows the unattacked performance. Ta-

ble 11 shows the Perplexity and MAUVE (M2H)

as budget of unattacked GPT-4 dataset.

Unwatermarked

PPL MAUVE(M2H)

2.042 ± 0.250 0.4831

Table 11: The unattacked value of average Perplexity

and MAUVE (M2H) of GPT-4 dataset as the base point

budget.

C Interpretation

The watermarked detector adds a signature at each

token, and our editing attacks only change a mini-

mal portion of them. Hence, they show substantial

robustness, maintaining high AUC ROC.

C.1 Paraphrasing Attacks (§6.3)

For metric-based detectors, localized disturbances

from lower-level perturbations cause more de-

creases in next-token probability than high-level

perturbations. While for high-level perturbations,

Detector AUC TF=5 TF=10 TF=20 ACC

GLTR 62.41 2.20 7.20 22.00 60.40

Rank 62.15 11.40 21.20 36.00 59.80

LogRank 65.96 5.00 17.00 32.60 62.00

Entropy 66.40 12.40 23.00 35.80 61.80

DetectGPT-1d 51.22 3.60 6.60 15.20 50.40

DetectGPT-10d 55.61 2.00 4.40 16.20 55.60

DetectGPT-10z 59.53 5.80 11.00 22.20 58.40

OpenAI Det.-Bs 55.72 13.20 20.20 28.60 52.60

OpenAI Det.-Lg 57.70 6.00 12.20 24.60 56.00

SimpleAI Det. 86.81 81.00 82.20 85.40 84.40

F.t. DeBERTa 100.0 99.80 99.80 99.80 99.80

Table 12: The performance of detectors in the

unattacked scenario for the GPT-4 dataset. For short,

‘AUC’ is ROC AUC, ‘TF=5’ is TPR@FPR=5%, ‘ACC’

is Accuracy, ‘Det.’ is Detector, and ‘F.t.’ is Fine-tuned.

the decrease is spread out in wider spans, thus mi-

nor the overall impact. For fine-tuned detectors,

Liu et al. (2022) pose that they concentrate more on

long-form patterns (e.g., commonly used phrases

or sentence structures) from LLM to detect. Hence,

localized disturbances of low-level perturbation di-

rectly interrupt the long-form patterns, while high-

level paraphrasing is milder as it rewrites such pat-

terns but still keeps some of the machine signatures.

Moreover, we surmise that paraphrasing attacks are

not making MGTs more human-like but only mix-

ing the machine signatures. So, sometimes, the

detectors’ performance falls then rises as the bud-

gets increase, during which the dominant machine

signatures switch from the original generator’s to

the paraphraser’s.

C.2 Co-Generating Attacks (§6.4)

The insertion of emojis and typos during recurrent

next-token generation is a disruption for the sam-

pling of LLMs, shifting the generation away from

the generator’s original distribution. Moreover, re-
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moving the emojis and recovering the typos post-

generation disrupt the conditional probability again

for metric-based detectors. For fine-tuned models,

we surmise that when doing in-domain detection

(F.t.-DeBERTa), the detector might focus more on

localized features. Otherwise, out-of-domain mod-

els here (OpenAI and SimpleAI Detectors) focus

on long-term patterns. Thus, the in-domain model

is less robust to the attacks.

We have also attempted emoji co-generation

for watermarking, and it also demonstrates very

strong robustness, similar to the typo case. Inter-

estingly, inserting more emojis did not affect the

budget (MAUVE score) for watermarked genera-

tion. Therefore, we choose not to plot this result in

Table 5 to avoid confusion.

C.3 Prompting Attacks (§6.5)

The character-substituted generation attack is a

more localized perturbation compared with prompt

paraphrasing and in-context learning, which is on

the general level. So, similar to the paraphrasing

attacks, metric-based detectors show a larger vul-

nerability to localized perturbation since it directly

increases the next-token probabilities, which is also

shown as the high perplexity after the attack. How-

ever, fine-tuned detectors focus more on long-term

patterns, which may not impacted by a few substitu-

tions. But, prompt paraphrasing is a form of attack

that shifts the prompt pattern, which can degrade

fine-tuned detectors severely, especially those ones

that are not generalizable.

D Future Work

D.1 Future Work on Defenses

D.1.1 Paraphrasing Attacks (§6.3)

For metric-based detectors, a straightforward way

is to choose a base model that is related to com-

mon paraphrasers’ base models, e.g., T5, Prophet-

Net (Qi et al., 2020), or fine-tune the base model

on some paraphrased corpus. Similarly, data aug-

mentation on paraphrasing and adversarial learning

could be useful for training fine-tuned detectors

(Hu et al., 2023). Moreover, Krishna et al. (2023)

purpose that retrieval on an MGT database can be

the defense, if it is possible to collect enough in-

domain MGT entries. For watermarking, semantic-

level watermarking (Hou et al., 2023) (as opposed

to token-level) has been proposed for paraphrastic

robustness.

D.1.2 Co-Generating Attacks (§6.4)

To the best of our knowledge, there are no re-

lated existing works. We feel it is hard for metric-

based detectors to overcome the defects. Under this

scenario, fine-tuned detectors could be the better

choice. One potential way to enhance fine-tuning

is to adopt some data augmentation, like random

masking on short-term spans. Also, we surmise a

combination of metric-based detectors and model-

based detectors is useful to bypass each other’s

stumbling blocks better when attacked. The ensem-

bling could also ease the impact of other attacks.

Fortunately, the co-generation attacks are still not

widely available now since they need to be on the

white-box models.

D.1.3 Prompting Attacks (§6.5)

To patch the weakness of fine-tuned detectors un-

der prompt paraphrasing, an efficient way is to fine-

tune the classifier on multi-generator, multi-domain

datasets, e.g., M4 by Wang et al. (2023). Other-

wise, using an ensembling system (Pagnoni et al.,

2022) containing both metric-based and fine-tuned

detectors could ease the problem. However, we sur-

mise there is no direct way to patch the character-

substituted generation because it mimics the subop-

timal generation strategy of humans at the root. Yet

current LLMs are not capable of always following

the character-substitution prompts with high text

quality, which could cause unnatural expressions

and extra typos. A way to fix the loophole could be

censoring the prompts and generated texts if they

have weird expressions (Dou et al., 2022; Chiang

and Lee, 2023). Additionally, training detectors

on the MGT corpus from unnatural instructions

(Honovich et al., 2022) could also be considered.

D.2 Future Work on Attacks

Below, we briefly discuss other types of attacks

related to generalization, which are not covered in

this work.

Sampling Attacks. Diverse sampling strategies

(Holtzman et al., 2019) can be adopted when

generating MGTs both by setting different hyper-

parameters. Pagnoni et al. (2022) show that de-

tection performance generally decreases when a

fine-tuned detector is evaluated on a sampling strat-

egy it was not trained on.

Fine-Tuning Attacks. In some scenarios, users

might fine-tune the generator LLM on their spe-

cific domain. Since the detectors have no knowl-
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AUC% Typo Type Mixed Insert Delete Subst. Trans.

Budget Edit Distance 17.68 18.05 18.04 16.76 17.87

Detect.

GLTR 2.14 2.96 6.96 3.17 5.76

Rank 6.81 7.25 13.70 6.67 12.18

LogRank 2.56 3.65 9.74 3.72 7.67

DetectGPT-1d 44.66 44.57 53.38 42.59 58.28

DetectGPT-10d 17.99 15.98 32.62 18.01 25.18

DetectGPT-10z 15.02 14.54 26.24 15.95 20.75

OpenAI Det.-Bs 27.62 27.37 24.00 26.32 25.57

OpenAI Det.-Lg 34.76 29.56 35.11 32.68 33.58

SimpleAI Det. 111.6 111.1 112.1 111.0 111.2

F.t. DeBERTa 108.4 96.80 97.20 96.83 97.48

Table 13: Detectors’ performance drops in terms of

relative AUC ROC % of 4 typo types, namely insertion,

deletion, substitution, and transposition.

edge and access to the customized generator, their

performance might decrease.

Human-Involved Attacks is to manually polish

or replenish MGTs to be more human-like and im-

prove their quality, which could deceive the MGT

detector. Kirchenbauer et al. (2023b) purpose man-

ual paraphrasing and mixing HWTs into MGTs as

an attack to watermarks. And Christ et al. (2023)

describe a manual prefix-specificity scheme to lead

to a more human-like generation. Therefore, a ma-

jor limitation of the current detector technique is

the inability to classify human-LLM-collaborated

texts into binary classes. Future MGT detectors

that are able to measure the portion of LLM in-

volvement in text writing are worth considering as

an answer to this attack genre.

E Attack Details

In this section, we report the details that are not

included in the main paper due to lack of space,

including methodologies and settings.

E.1 Typo Insertion

Table 13 shows the performance drop of four sepa-

rate typo types, i.e., insertion, deletion, substitution,

and transposition. All of them share similar obser-

vations on degradation trends and are close to the

mixed typo type. Therefore, for the figure in the

main text, we show the result of mixed for brevity.

E.2 Synonym Substitution

Table 14 shows the prompt design for LlaMA to do

the model-based synonym generation with the con-

text. After the generation, we have an additional

step to ask LlaMA double check and correct the

grammar of the substituted sentences.

${sentence}\n Synonyms of the word “${word}"

in the above sentence are:\n a)

Table 14: Prompt for LlaMA to generate synonyms

based on the context for substitution attack.

E.3 Typo Co-Generation

The results reported in the main text using the typo

substitution rule switching ‘c’s and ‘k’s. We have

also tried other rules, e.g., ‘a’s and ‘z’s. The differ-

ent rules cause different budgets depending on the

character appearance frequency in the texts. We

select a rule that has a comparable budget interval

to other attacks, but our system also supports other

rules.

E.4 Emoji Co-Generation

Emojis are widely used in web texts, especially

social media (Ayvaz and Shiha, 2017). However,

emojis are usually excluded from the training cor-

pus of fine-tuned detectors and are situated at the

long tail of distribution for metric-based detectors.

Thus, they have a similar effect as the insertion

of typos (§6.2). We insert a random emoji from

Gemoji18 when LLM finishes a sentence and let

the LLM generate the next sentence recurrently.

We control the budgets by tuning the probability

of inserting an emoji after a sentence. We clean

the output texts after generation by removing all

emojis to hide the trace of the attack. Note that

the distribution shift caused by emoji during sam-

pling will still embodied in the text and deceive the

detectors.

F Additional Results

F.1 Across Budgets

The design of the budget considers the alignment

of different metrics’s indications, especially for the

ones on the same aspects.

Figure 6 to Figure 10 and Figure 11 to Figure 15

show the performance drop in terms of BERTScore,

BARTScore, Cosine Similarity, Jaro Similarity, and

Edit Distance for paraphrasing attacks. Figure 16

to Figure 17 show the editing attacks, and Figure 18

to Figure 21 show the co-generating attacks. The

line charts illustrate a similar trend for performance

drop of MGT detectors under attacks, which cross-

validate our results and conclusion. Also, they sup-

port the reasonability of the design of our budget.

18A package of emoji collections: https://github.com/
wooorm/gemoji.
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Prompt
A new poll reveals that more Americans would choose the Internet as their only

news source than TV, radio

HWT

A new poll reveals that more Americans would choose the Internet as their only

news source than TV, radio and newspapers combined, and Internet reports are

considered much more reliable that other media. It also shows only 1 in 200

people surveyed believes newspapers will be a dominant source of information in

2014. The survey discovered 56 percent of adults nationwide would pick the

Internet if they were allowed just one source for their news, while television,

newspapers and radio earned the support of 41 percent – together. Among

Republicans, 56 percent would choose the Internet for their news, while among

Democrats that figure was 50 percent.

unattacked MGT

A new poll reveals that more Americans would choose the Internet as their only

news source than TV, radio or newspapers. And it’s true: only a third of

Americans get their news from newspapers, TV or radio. In a new Pew Research

Center poll, only 37 percent of Americans said they get their news from

newspapers. That’s down from 44 percent who said they got news from newspapers

in 2010. TV news was a distant second in the poll. Only 23 percent of Americans

said they get their news from TV. That’s down from 26 percent in 2010.

unattacked
watermarked MGT

A new poll reveals that more Americans would choose the Internet as their only

news source than TV, radio, newspapers or magazines. The poll, conducted by the

News Literacy Project, found that 42 percent of American adults say they rely

exclusively on the Internet for news. That’s up from 33 percent in 2008. At the

same time, the number of people relying on television for information has

declined since the poll began asking this question in 2003. In 2003, 47 percent

of Americans said they used TV exclusively for news. That’s down to 38 percent

in 2008 and 34 percent today.
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typo insertion
(mixed)

Description: Create typos by a mixture method of inserting, deleting, substituting, and transposing.
Config: Insert typo in 20% of tokens, one edit per selected token.
A new poll reveals that more Americans would choose the Internet as their only

news source than TV, rapio or newsbapers. And it’s true: only a third of

Ameyicans get their news from newspapers, TV or radio. In a now Pew Research

Center poll, only 37 percent of Americans said they ges their nws fro

newspapers. Bhat’s down rrom 4 percent who aid hthey got nelws from newspapers

in 2010. TV news wae a distant secod in the poll. Only 23 percent of Americans

said hey get their news fdom TV gThat’s down from 26 percent in 2010.

homoglyph
alternation

Description: Change English characters into visually similar Unicodes.
Config: Change 20% of tokens, one homoglyph character per selected token.
A new poll reveals thaτ more Americans would choose the Internêt as their only

news source than TV radio or newspapers. And it’s true: oňly a third of

Americans get their news from newspapers, TV or radio. In a new Pew Research

Ceňter poll, only percent of Americans said they get their neωs from newspapers.

Thât’s down from 44 percent who said they gôt news from newspapers in 2010. TV

newŝ was a distant second în the poll. Only 23 peřcent of Amêricans said they

get their nêws from TV. Thaτ’s down from 26 percenτ in 2010.

format character
editing (zero-width
whitespace)

Description: Insert formatting characters, i.e., zero-width whitespace \u200B.
Config: Insert \u200B at the end of 20% of tokens.
A new poll reveals that more Americans would choose the Internet as their only

news source than TV, radio or newspapers. And it’s true: only a third of

Americans get their news from newspapers, TV or radio. In a new Pew Research

Center poll, only 37 percent of Americans said they get their news from

newspapers. That’s down from 44 percent who said they got news from newspapers

in 2010. TV news was a distant second in the poll. Only 23 percent of Americans

said they get their news from TV. That’s down from 26 percent in 2010. [Note:
zero-width whitespace can not be displaced in LATEX.]

synonyms
substitution
model-free

Description: Retrieve synonym from a static dictionary to substitute.
Config: Substitute 10% words.
A new poll reveals that more American English would choose the Internet as their

only news source than TV, radio, newsprint or magazines. The crown, conducted

by the news show Literacy Project, found that 42 percent of American English

adults say they rely exclusively on the Internet for news. That’s up from 33

percent in 2008. At the same clock, the bit of people relying on television for

info has declined since the poll began asking this interrogative sentence in

2003. In 2003, 47 percent of American English said they used TV exclusively for

news show. That’s down to 38 percent in 2008 and 34 percent today.

synonyms
substitution
model-based

Description: Utilize an LLM to generate a synonym list given context.
Config: Substitute 10% words using LlaMA with temperature 1.
A new poll reveals that more Americans would choose the Internet as their only

news source than TV, depend on solely newspapers or magazines. The poll,

conducted by the News Literacy Project, found that 42 percent of American

adults say they rely exclusively on radio Internet for news. That’s survey from

33 percent in 2008. At the same time, the number of people relying on

television solely information has declined since the poll began asking this

question in 2003. In yesterday, 47 percent of Americans said they used TV

exclusively for news. That’s down to 38 percent in 2008 and 34 percent today.

span perturbation

Description: Use a masked LM (Raffel et al., 2020) to rewrite spans of tokens by masked filling.
Config: Rewrite 30% of 2-spans.
A new poll reveals that more people choose the Internet as their primary news

source than TV, radio, newspapers or magazines. The survey, conducted by The

Media Literacy Project, found 73 percent of American poll respondents said they

rely exclusively on the Internet for news. It’s up from 33 percent in 2008. At

the same time, the number of people relying on television for news has declined

since the poll began asking questions in 2007. In 2003, 47 percent of Americans

said they used TV exclusively to get their news. That’s down to 38 percent in

2009, and 34 percent today.

inner-sentence
paraphrasing

Description: Use Pegasus (Zhang et al., 2020) to paraphrase each sentence of the text and then join
them.
Config: Paraphrase 80% of the sentences.
A new poll shows that more Americans would prefer the internet to TV, radio,

newspapers or magazines. The poll, conducted by the News Literacy Project, found

that 42 percent of American adults say they rely exclusively on the Internet

for news. It was up from 33 percent in 2008. At the same time, the number of

people relying on television for information has declined since the poll began

asking this question in 2003. Almost half of Americans used TV exclusively for

news in 2004. In 2008 it was 38 percent and today it is 34 percent.
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inter-sentence
paraphrasing

Description: Paraphrase with Dipper (Krishna et al., 2023), a paragraph-level paraphraser that can
re-order, split, and merge sentences.
Config: Lexical (L) diversity 60 and Order (O) diversity 60.
Most Americans get their news from television, radio, and old-fashioned

newspapers. In a recent poll by the Pew Research Center only 37 percent

reported that they get news from newspapers. And that’s true. More Americans

would now use the Internet to get their news than would do so newspapers, radio,

or the Americanized news service. In the survey, “American View” was the second

most favored channel, with 23 percent, and the Americanized news service was

the third most favored with 13 percent. In 2010, 44 percent of Americans said

they would get their news from newspapers. Now that’s just 33 percent. Down

from the old-fashioned 32 percent in 2010.

prompt
paraphrasing

Description: Paraphrase the raw prompt before generation using Pegasus.
Config: -
More Americans would choose the internet as their only news source, according

to a new poll released recently. The survey shows a significant shift in how

people consume news, with a growing preference for digital platforms over

traditional media like television or newspapers. Respondents cited the

convenience, immediacy, and accessibility of online sources as key reasons for

this shift. However, concerns about misinformation and fake news persist,

emphasizing the need for diligent fact-checking and critical evaluation of

digital content. The study underscores the significant influence of the

internet on shaping public opinion and the rapidly changing media landscape.

in-context learning

Description: Given the example of HWT and MGT as positive and negative demonstrations when
generating MGT on the same prompt.
Config: 1 positive demonstration + 1 negative demonstration.
A new poll reveals that more Americans would choose the Internet as their only

news source than TV, radio, and print media. The survey further indicates that

60% of the respondents rely on social media for daily news updates,

highlighting the increasing importance of platforms like Facebook, Twitter, and

Instagram in news dissemination. The trend is particularly prominent among the

younger demographic, with 70% of those aged 18-34 choosing the internet as

their primary news source. Despite this, concerns about the spread of fake news

and misinformation online persist, stressing the need for digital literacy and

fact-checking mechanisms.

character-
substituted
generation

Description: Prompt to ask the model to generate the text with specific character substitution criteria
and recover the output after finishing the whole generation.
Config: Substitute ‘c’s and ‘k’s using GPT-4.
A new poll reveals that more Americans would choose the Internet as their only

news source than TV, radio or newspapers. This shift in preferenae highlights

the growing influence of the Internet and digital technologa in shaping public

opinion. It’s not surpriaing, given the ezae of access to information online.

Yet, some raise concern over the increasing relianae on the web for news, as it

makes it easier to spread misinformation. With fake news becoming a common

issue, there’s a growing need for digital literacy and critical thinking skills

to discern fact from fiction.

typo co-generation

Description: Preset character substitution rules and execute the rules when finishing sampling each
token and recover them after finishing the whole text generation.
Config: Substitute ‘c’s and ‘k’s with 50% probability.
A new poll reveals that more Americans would choose the Internet as their only

news source than TV, radio or newspapers. The results 73 percent are reported

by Pew Research that were conducted on an average of views based on discussions

and polls around the Internet, and express popular ingestion vivid facts. The

majority of Americans choose fer the Internet as their source of faksual

information rather than TV news or radio news, reports Pew. About half online

respondents (52%), for example, say they go there when they need information

they likely folllow upwere.
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emoji
co-generation

Description: Compulsorily generate or insert an emoji after finishing each sentence while recurrent
generation and remove all the emojis after finishing the whole text.
Config: Insert 1 emoji at the end of 20% sentence.
A new poll reveals that more Americans would choose the Internet as their only

news source than TV, radio or any print publication. A new study by social

analytics firm Altimeter Group confirms what has been obvious to most consumers

since 2017 We are a far more information-driven species, and are blown away

with the freely available, POV-polling and influence-mongering power of the

Internet perspective Quinnipiac University Polls conducted during April and May

2018 reveal that an astounding eight in ten voters say they trust internet

polls in deciding important battles, versus an abysmal 49 in 2016.

Table 16: Example of the attacks with description and configs.
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Metric Scale Definition

Levenshtein Edit Distance

(Levenshtein, 1965)
≥ 0 ↑

The minimum number of single-character edits (insertions, deletions or

substitutions).

Jaro Similarity (Jaro, 1989) ≥ 0 ↓
A similarity metric based on matching characters and transpositions in two

strings.

Perplexity (PPL) > 0 ↔ Apply Llama-7B-hf (Touvron et al., 2023b).

MAUVE

(Pillutla et al., 2021)

M2H (0, 1] ↔
MGTs to estimate the model distribution Q and HWTs to estimate the target

distribution P . For attacked scenarios, the closer value to the unattacked

scenario is favored.

A2B (0, 1] ↓
MGTs (attacked) to estimate the model distribution Q and MGTs (unattacked)

to estimate the target distribution P .

Cosine Similarity [−1, 1] ↓
Utilize BART embedding (Lewis et al., 2020) to compare the similarity of texts

after the attack to before the attack.

BERTScore

(Zhang et al., 2019)

M2H [0, 1] ↔
MGTs as the candidates

∧

x and HWTs as the reference x. For attacked

scenarios, the closer value to the unattacked scenario is favored.

A2B [0, 1] ↓
MGTs (attacked) as the candidates

∧

x and MGTs (unattacked) as the reference

x.

BARTScore

(Yuan et al., 2021)

M2H < 0 ↔
MGTs as the source x and HWTs as the target y. For attacked scenarios, the

closer value to the unattacked scenario is favored.

A2B < 0 ↓ MGTs (attacked) as the source x and MGTs (unattacked) as the target y.

Semantics Human Eval [0, 1] ↓
Pairing attacked MGTs with the unattacked, asking humans to judge whether

they are semantic-similar.

Quality Human Eval [0, 1] ↓
Pairing attacked MGTs with the unattacked, asking humans to judge which one

is more high-quality.

Table 17: The metrics considered to evaluate the budget of attacks. ↑ means a larger number represents a more

significant attack on the raw texts. ↔ means the value closer to the value of unattacked texts is favorable. ‘M2H’ is

‘MGT to HWT,’ and ‘A2B’ is ‘After to Before Attack’ for short. Metrics in grey are not distinguishable enough

empirically that we do not show in the paper, but are also implemented and reported in our code and data repertory.
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