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Abstract

Membership inference attacks (MIAs) attempt to predict whether a par-
ticular datapoint is a member of a target model’s training data. Despite
extensive research on traditional machine learning models, there has been
limited work studying MIA on the pre-training data of large language
models (LLMs). We perform a large-scale evaluation of MIAs over a suite
of language models (LMs) trained on the Pile, ranging from 160M to 12B
parameters. We find that MIAs barely outperform random guessing for
most settings across varying LLM sizes and domains. Further analyses
reveal that this poor performance can be attributed to (1) the combination
of a large dataset and few training iterations, and (2) an inherently fuzzy
boundary between members and non-members. We also find that, when
LLMs have been shown to be vulnerable to MIAs, this apparent success can
be attributed to a distribution shift, e.g., members and non-members are
seemingly drawn from identical domain but with different temporal ranges.
Finally, we observe that existing MIAs are highly sensitive to even small
changes in a sample. Such changes may cause samples that are lexically or
semantically similar to members to be classified as non-members, which
may be at odds with leakage that privacy auditors care about. We release
our code and data as a unified benchmark package that includes all existing
MIAs, supporting future work.

1 Introduction

Membership inference attacks (MIAs) aim to predict whether a particular record belongs to
the training dataset of a given model. Thus, MIAs have great utility for privacy auditing
of models (Steinke et al., 2023), as well as investigating memorization of training data,
copyright violations and test-set contamination (Shi et al., 2023; Oren et al., 2023). While
MIAs have been found to achieve high attack performance, alluding to high levels of
training-data memorization (Zarifzadeh et al., 2023; Bertran et al., 2023; Lukas et al., 2023),
most analyses are limited to classifiers or LM fine-tuning (Mireshghallah et al., 2022b; Fu
etal., 2023). The performance of existing MIAs on LLMs and their pre-training data is largely
unexplored. In this work, we set out to explore the challenges in evaluating membership
inference attacks on LLMs, across an array of five commonly-used membership inference
attacks. We introduce MIMIR!, a unified repository for evaluating MIAs for LMs, with
implementations of several attacks from literature. We report on experiments extensively
evaluating these MIAs against target models from the Pythia suite (Biderman et al., 2023b)
over the Pile (Gao et al., 2020) (§3). For the most part, we find that the performance across
most MIAs and target domains is near-random.

Our further analysis suggests that the inherent characteristics of LLMs at scale—specifically,
the use of massive training data and near-one epoch training (§3.2.1)—considerably decrease
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current MIA performance. This suggests that the success of current MIAs in previous
settings does not transfer well to attacking pre-trained LLMs seemingly due to a lack of
memorization of member data. We also find that the frequent overlap between members and
non-members from natural language domains considerably decreases MIA performance
and raises the question of how membership should be interpreted (§3.2.2). Notably, in
several domains, non-members have high n-gram overlap with members, e.g., non-members
from the Pile Wikipedia and ArXiv test samples have average 7-gram overlaps of over 30%.
Notably, non-members with lower n-gram overlap are more distinguishable by existing
MIAs. We also suggest that high MIA performance reported by prior work (Shi et al.,
2023) is likely because non-members are chosen from the same domain as members but
are temporally shifted, and these seemingly in-domain non-members likely belong to a
different distribution as a result of n-gram overlap shift (§4).

Finally, building off membership ambiguity due to n-gram overlap, we discuss how the
precise definition of members in standard MI may not capture important information
leakage under generative text-modeling. We generate modified members preserving lexical
and/or semantic similarity by altering a tiny fraction of tokens and show that existing MIAs
classify them as non-members with a high degree of confidence, often more definitively
than actual non-members (§5). We encourage future work to study MI using membership
definitions accounting for such fuzzy members to better understand privacy leakage.

2 Background

The goal of an MIA is to infer whether a given data point x was part of the training dataset
D for model M, by computing a membership score f(x; M). This score is then thresholded
to determine a target sample’s membership.

MIAs are often used as a proxy to determine whether a machine-learning model leaks
information related to its training data (Shokri et al., 2017; Shokri, 2022; Cummings et al.,
2024). It is the de-facto threat model when discussing machine-learning privacy (Shokri
etal., 2017), with a large array of attacks (Yeom et al., 2018; Carlini et al., 2022; Mireshghallah
et al., 2022a) and defenses (Abadi et al., 2016; Tang et al., 2022; Chen et al., 2022). More
involved approaches include training shadow models (Shokri et al., 2017; Ye et al., 2022) on
non-overlapping data from the target model’s underlying data distribution. While attacks
like LiRA (Carlini et al., 2022) show promise, they require training multiple copies of shadow
models, which is often intractable for LLMs. Other stronger assumptions for MIAs include
white-box access to the model (i.e., access to model parameters) or access to a ground-truth
subset of member/in-distribution non-member samples for training meta-classifiers.

In our setting, M is an auto-regressive language model that outputs a probability distribu-
tion of the next token given a prefix, denoted as P(x¢|x;...x;—1; M). We consider five MIAs
(See Appendix A.4 for detailed descriptions):

(1) LOSS (Yeom et al., 2018) - the target sample’s loss under the model: f(x; M) = L(x; M).
(2) Reference-based (Carlini et al., 2021) calibrates £(x; M) with respect to another reference
model (M,f) to account for the intrinsic complexity of the target sample x: f(x; M) =
L6 M) = L Mief)-

(3) Z1ib Entropy (Carlini et al., 2021) calibrates £(x; M) with target sample xs zlib compres-
sion size: f(x; M) = L(x; M) /zlib(x).

(4) Neighborhood attack (Mattern et al., 2023) - the curvature of the loss function at x, esti-
mated by perturbing the target sequence to create n ‘neighboring” samples, and comparing
the loss of the target x with its neighbors x: f(x; M) = L(x; M) — 1y | £(%; M).

(5) Min-k% Prob (Shi et al., 2023) uses the k% of tokens with the lowest likelihoods to
compute a score instead of averaging over all token probabilities as with LOSS: f(x; M) =

TRingo0] Lremink(o) — 108(p(xi | 11, xi-1)).
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Wikipedia Github Pile CC PubMed Central

#Params LOSS Ref min-k zlib Ne LOSS Ref min-k zlibb Ne LOSS Ref mink zlib Ne LOSS Ref min-k zlib Ne

70M 503 504 494 508 .510 .629 .584 .627 .648 .635 .494 489 .503 495 489 .502 .516 .510 .502 .485
160M 504 515 488 .514 513 .638 .591 .634 .656 .638 .497 497 .503 .498 .496 .500 .516 .504 .500 .486
1.4B 510 .544 506 518 518 .656 .587 .654 .670 .650 .500 .525 .509 .502 .499 .496 .530 .505 .500 .490
2.8B 516 .565 .511 .522 517 .707 .657 .708 .717 .698 .501 .537 .509 .503 .502 .498 .536 .502 .500 .497
6.9B 514 571 512 521 514 .672 573 .675 .684 .654 .511 .564 .516 .512 .505 .504 .552 .508 .504 .497
12B 516 579 517 524 520 .678 .559 .683 .690 .660 .516 .582 .521 .517 .514 .506 .559 .512 .506 .497

ArXiv DM Math HackerNews The Pile

#Params LOSS Ref min-k zlib Ne LOSS Ref min-k zlib Ne LOSS Ref min-k zlib Ne LOSS Ref min-k zlib Ne

70M 506 481 499 495 496 492 520 495 485 481 .494 495 .507 497 .506 .503 .511 .508 .506 .499
160M 507 486 501 500 .507 .490 .523 493 .482 489 .492 490 497 497 .505 502 .511 .506 .505 .499
1.4B 513 510 .511 .508 .511 .486 .512 497 481 .465 .503 .514 .509 .502 .504 .504 .521 .508 .507 .504
2.8B 517 531 .522 512 519 .485 .504 .497 482 .467 .510 .549 .518 .507 .513 .507 .530 .512 .510 .506
6.9B 521 538 524 516 .519 .485 .508 496 .481 469 .513 .546 .528 .508 .512 .510 .549 .516 .512 .510
12B 527 555 530 .521 519 .485 .512 495 .481 475 518 .565 .533 .512 .515 .513 .558 .521 .515 .511

Table 1: AUC ROC of MIAs against PYTHIA-DEDUP (TPR@low%FPR results in Table 11).
Highest performance across different MIAs is bolded per domain. MIA methods perform
near random (< .6) in most domains. See Appendix B.3 for GitHub outlier discussion.

Membership Inference vs. Data Extraction. MIA advantage is frequently used as a measure
of information leakage (Shokri, 2022; Shokri et al., 2017; Mireshghallah et al., 2022a) and a
proxy for measuring memorization (Carlini et al., 2021; Mireshghallah et al., 2022b), with
recent attempts studying user-level leakage for the fine-tuning setting (Kandpal et al., 2023).
However, the ‘extractability” of training samples has recently become synonymous with
memorization and is increasingly used to compare memorization across models (Biderman
et al., 2023a; Carlini et al., 2023; Tirumala et al., 2022). Kandpal et al. (2022) investigated
the impact of factors such as training data deduplication on extractability in a similar
vein to our work on MIA. With extraction, a prefix is used as a prompt to measure the
memorization of a sequence by comparing the resulting generation against the suffix. Both
MIA and extraction are useful techniques for studying leakage in models, but rely on
different assumptions and reveal different types of leakage risks. While MIAs require
knowledge of candidates and only reveal directly which of those candidates are included
in the training data, extraction requires knowledge of sufficient-length prefixes to perform
extraction and additional measures to determine if extracted texts are valid.

3 Membership Inference on LLMs is Difficult

We perform a large-scale evaluation of five state-of-the-art MIAs (§2) on a range of LLMs with
up to 12B parameters and diverse benchmarks. For the reference-based attack in Table 1 and
all following experiments, we use STABLELM-BASE-ALPHA-3B-V2 as the reference model
(determined empirically in §3.1). Code is available at http://github.com/iamgroot42/
mimir.

Target models. We primarily target the PYTHIA model suite, including (1) five models of
PYTHIA (Biderman et al., 2023b) with 160M, 1.4B, 2.8B, 6.7B, and 12B parameters 2 trained
on the original Pile data (Gao et al., 2020), and (2) five models of PYTHIA-DEDUP (Biderman
et al., 2023b) with the same parameter counts as PYTHIA but trained on the deduplicated
Pile data. We also experiment with the GPT-NEO family to validate our findings with a
different model family, observing similar trends in most domains (see Appendix A.6).

Datasets. We use seven diverse data sources included in the Pile: general web (Pile-CC),
knowledge sources (Wikipedia), academic papers (PubMed Central, ArXiv), dialogues
(HackerNews), and specialized-domains (DM Math, Github). We also perform experiments
over the entire Pile. Members and non-members for each data source are sampled from

2We include results for the 70M variant in Table 1 for completeness over the model suite, but choose
to focus mainly on the larger models for the later experiments.
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Figure 1: MIA performance as model size increases for the reference-based attack over select
domains. We also plot the AUC ROC trajectory against the non-deduped Pythia suite for
comparison. Increasing model size slightly boosts MIA performance while deduplication
decreases performance. Other attacks follow similar trends (Appendix Figure 12).

the train and test sets of the Pile, respectively. Gao et al. (2020) decontaminated the Pile
test set against the training set at a document level; nonetheless, to be more rigorous,
we perform additional deduplication following Groeneveld et al. (2023). We additionally
sample from documents greater than 100 words, and truncate samples up to 200 words.
Refer to Appendix A.3 for further details.

Evaluation metrics. We primarily report AUC ROC for our evaluations, and additionally
record TPR@low%FPR (Carlini et al., 2022) to assess performance in high-confidence
settings. We visualize the 95% confidence interval for AUC ROC scores via shaded regions.

3.1 Main Results

MIAs perform near random. Table 1 shows that all existing MIAs perform near random for
most domains®. No single MIA or target model demonstrates attack AUC above 0.6, with the
exception of Github domain (see Appendix B.3 for discussion). Overall, the reference-based
attack performs best, although there are a few settings where other attacks perform better,
e.g., Min-k% Prob on Pile CC for the 160M PYTHIA-DEDUP model. Marginal differences in
performance across MIAs make it hard to single out an overall best attack.

MIA performance tends to increase with the target model size (Table 1, Figure 1), in agree-
ment with prior work (Shi et al., 2023; Li et al., 2023a; Watson et al., 2022). This is likely
because larger models are more prone to overfitting the training data (Nakkiran et al.,
2021). We also find deduplication of the training data reduces MIA performance (Figure 1),
confirming the findings from Kandpal et al. (2022).

Difficulty in Choosing a Reference Model. We ablate the choice of reference models
in the reference-based attack in Appendix A.5. In summary, (1) most reference models
yield poor performance, with STABLELM-BASE-ALPHA-3B-V2 being the best overall, and
(2) even aggregating all reference models performs poorly. In general, we find choosing
the right reference model for a target LLM challenging and largely empirical. A reference
model should be trained on the data that is same-distribution but largely disjoint from the
training data of the target model. However, this assumption is hard to impose at the scale of
pre-training corpora; common practice is to collect all the data available on the web, leading
independently collected datasets to naturally overlap with each other.

3Similar trends for TPR@1%FPR. See Table 11 in Appendix.
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Figure 2: (Left) Reference-based attack performance as the amount of training data seen,
measured in the number of training steps, increases across 1 epoch of the deduplicated
Pile. In general, performance spikes greatly before gradually decreasing as the amount
of training data seen increases. Other attacks (Figure 13, Appendix) follow similar trends.
(Right) MIA performance on target model DATABLATIONS as the number of effective epochs
increases via increasing epoch count. Performance increases linearly with the number of
effective epochs. See Figure 10 for results on SILO.

3.2 Why is MI Challenging against LLMs

We identify several key factors that may contribute to the decreased performance of MIAs
on LLMs. Some factors are due to unique characteristics of practices in LLM pre-training
(83.2.1) while others are due to inherent ambiguity in MIA (§3.2.2).

3.2.1 Characteristics of LLMs

Training Data Size. Current state-of-the-art pretrained LLMs are trained with billions and
trillions of tokens (Touvron et al., 2023a;b; Team, 2023). We hypothesize the large pretraining
corpora characteristic to LMs decreases MIA performance, as larger pretraining datasets
lead to better generalization (Hoffmann et al., 2022; Muennighoff et al., 2023).

We employ the PYTHIA-DEDUP model suite’s intermediate checkpoints to assess the impact
of different amounts of training data. While keeping non-members fixed, we sample
members for each checkpoint from its most recent 100 steps to remove the impact of the

recency bias of the members.* See Appendix A.3.1 for details.

MIA performance generally starts as near-random, then rapidly increases within the next
few thousand steps, before decreasing across successive checkpoints® (Figure 2, left). We
speculate the initial low performance is due to the model warming up in training, with
high losses across both member and non-member samples. We believe the following rapid
rise and then gradual decline in performance are because the data-to-parameter-count
ratio is smaller early in training and the model may tend to overfit (Yeom et al., 2018),
but generalizes better as training progresses, in line with observations in existing work
(Nakkiran et al., 2021).

Number of Training Epochs. It is standard practice to pre-train LLMs for around one
epoch, given the scale of data and their tendency to overfit quickly (Muennighoff et al., 2023;
Komatsuzaki, 2019). Previous MIA works that demonstrate attack effectiveness consider

4Using recently seen members elevates MIA performance noticeably, but doesn’t disrupt the impact
of increasing training data size. See Appendix C.1 for the impact of the recency of data seen in training.

SPYTHIA-DEDUP-2.8B stands apart with a performance trajectory that is consistently near-random.
Previous work also observes unexplainable behavior for this model (Biderman et al., 2023a).
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Figure 3: Natural distributions of 7-gram overlap of non-member data over select domains.
Github has a considerably higher overlap than other domains.

supervised fine-tuning or masked LM pre-training (Nakamura et al., 2020; Lehman et al.,
2021; Mireshghallah et al., 2022a;b), where models are trained for more than 10 epochs. We
explore how the near-one epoch training of LLMs leads to decreased MIA performance.

To verify this hypothesis, we perform MIA against the Datablations suite (Muennighoff
et al., 2023), consisting of models trained on subsets of C4 (Raffel et al., 2019) train data for
varying numbers of epochs (see Appendix A.2 for model details). We also experiment with
SILO (Min et al., 2023); see Appendix C.2 for SILO results.

Increasing the number of effective epochs corresponds to an increase in attack performance
(Figure 2, right). While Muennighoff et al. (2023) shows training for multiple epochs helps
improve performance, our results suggest that such multi-epoch training (and/or large
upsampling factors) can increase training data leakage.

3.2.2 Inherent Ambiguity in MIA

Natural language documents commonly have repeating text—even with the best efforts in
decontamination and deduplication. These include common phrasings and quotes, natural
use of similar texts, and syntactical similarities inherent to specific domains. This leads to
substantial text overlap between members and non-members, which motivates the following
hypothesis: higher overlap between members and non-members increases MIA difficulty.

We quantify overlap using the percentage of n-gram overlap, defined as®: For a non-member
sample x consisting of m words such that x = x1x;...x;; and an n-gram in x defined as a
continuous substring x;...x;;,_1 , the n-gram overlap of x on training dataset D is

1 m—n+1

For a given non-member sample, this gives us the percentage of n-grams in the non-member
that can be found in at least one member sample. We first compute the percentage of 7-gram
overlap for non-members against the entire Pile training (member) set (Figure 3)’; see
Appendix B.1 for implementation details. We observe high n-gram overlap with training
data for a substantial portion of non-members; e.g., the Wikipedia, ArXiv, and PubMed
Central domains have average 7-gram overlaps of 32.5%, 39.3%, and 41.0%, respectively.
Domains such as GitHub, DM Mathematics, and FreeLaw see even higher overlap, with
mean 7-gram overlap of 76.9%,72.8%, and 62.3%, respectively.

High n-gram overlap suggests that substrings of non-members may be seen exactly during
training, which makes the distinction between members and non-members even less clear.
To verify our hypothesis, we resample non-members ensuring < 20% n-gram overlap with
members, and report MIA performance (Table 2). While this step is designed to more strictly

®Non-members can still have 100% n-gram overlap without being members as n-grams can appear
in different member samples. However, this is increasingly unlikely for larger .
7Figure 14 shows n-gram overlap distributions for other #.
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Domain Wikipedia Github PubMed Central Pile CC ArXiv
ORIG 7-GRAM ORIG 7-GRAM ORIG 7-GRAM ORIG 7-GRAM ORIG 7-GRAM
LOSS 516 666 678 878 .506 .780 516 574 527 787
Ref .579 677 .559 .615 .559 .595 .582 .644 .555 715
min-k 517 .644 .683 .890 512 792 521 .578 .530 734
zlib 524 631 690 908 .506 772 517 560 521 .780
Ne 520 612 660 877 497 737 514 566 519 773

Table 2: Comparison of MIA performance over select domains with varying non-member
sets at < 20% n-gram overlap threshold for n = 7, as well as the natural non-member
set. Target model is PYTHIA-DEDUP-12B and AUC ROC reported. Strict n-gram overlap
thresholding results in higher performance.

eliminate instances of non-member records that may overlap with training records, it also
introduces an explicit drift between member and non-member distributions by selecting
non-members that are most “unlike” training records. We clarify that this step is not a
suggestion for researchers to alter their benchmarks; such a processing step drifts away
from the standard membership inference game (Yeom et al., 2018).

Results. MIAs perform significantly better as the non-member distribution concentrates
towards lower n-gram overlap and further diverges from the natural n-gram overlap
distribution of non-members from the training distribution e.g., .516—.666 in Wikipedia,
.690—.908 in Github, and .512—.792 in PubMed Central for various attacks. This is intuitive
as the target model is likely to assign a lower likelihood to non-members further from
its training data, making members and non-members more distinguishable. Note that
decreasing the n-gram overlap threshold, especially for smaller n, pushes the setting closer
to distribution inference (Suri & Evans, 2022), since the distributions of ‘member” and ‘non-
member’ records are no longer the same. We further discuss outlier behavior in Appendix B.

We note that n-gram overlap is an intrinsic property of natural language rather than a
problem of the Pile train-test split. These splits are already deduplicated at a document
level, following standard practice in decontamination (Gao et al., 2020; Brown et al., 2020).
Nonetheless, repeating texts across distinct documents are fundamental and natural proper-
ties of domain data. We also note that n-gram overlap distribution analysis can help assess
how representative of a target domain a set of candidate non-members is when constructing
MIA benchmarks. Ultimately, we highlight the need to consider qualities of the data domain,
e.g., n-gram overlap, and understand their potential impact on MIA performance.

4 Importance of Candidate Set Selection

In contrast to our findings in §3, recent works report state-of-the-art MIAs achieving > .7
AUC ROC on pretrained LLMs (Shi et al., 2023; Meeus et al., 2023). We investigate how the
non-member candidate selection methods in these works can result in an inherent but likely
unintended distribution shift between members and non-members as one such reason for
the observed performance differences.

Experimental Setup. Prior work distinguishes members and non-members of a target
domain based on the knowledge cutoff date of the target model, with members coming
before and non-members coming after the cutoff. We construct similar experimental settings
under two domains also used in earlier works: Wikipedia and ArXiv.

We follow the same setup as §3 on the Wikipedia domain, but replace the non-member
set with samples from the entire RealTimeData WikiText dataset (Li et al., 2023c). The Pile
members are sampled from articles in a Wikipedia dump from before March 2020 (Gao et al.,
2020), whereas non-members consist of Wikipedia articles created from August 2023 and
onwards. For the ArXiv domain or further details on Wikipedia, see Appendix A.3.2.
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highest score across MIAs is bolded. members.

Results. Table 3 demonstrates that the temporally shifted settings yield MIA performances
significantly higher than when members and non-members are from the same temporal
range. Figure 6 (Appendix) also demonstrates that MIA performance generally increases as
non-members are further temporally shifted from member data. We speculate this follows
from changes in language such as the introduction of new terminology and ideas over time.

Temporal Shift as Change in n-gram Overlap. We interpret temporal shift as a change in n-gram
overlap distribution between the original and temporally shifted non-members. Figure 4
demonstrates that the distribution of 7-gram overlap of such shifted data concentrates at
lower overlap percentages compared to their natural counterparts. The natural Wikipedia
non-members have an average 7-gram overlap of 39.3%, whereas for the temporally shifted
Wikipedia non-members it is 13.9%. See Appendix B.4 for temporal ArXiv discussion.

In general, when aiming to assess MIA performance, we advise estimating how representa-
tive a sample non-member set is of the member domain by comparing its n-gram overlap
distribution with that of a left-out sample set from the pretraining corpora. Particularly, if
the distribution of the candidate set is noticeably shifted towards lower n-gram overlap
compared to the left-out member sample set, the candidate non-member set may not be
representative of the member distribution from the target domain and potentially high MIA
performances should be carefully examined. Closer inspection (Table 5, Appendix) reveals
the extent of such over-estimation; decision thresholds derived using temporally-shifted
non-members end up testing for temporal shift rather than membership. We note that dis-
tinguishing between members and temporally shifted non-members is a realistic inference
game with practical implications but differs from the classical MI game as temporally-shifted
data may belong to a different distribution. Furthermore, as we aren’t able to reproduce the
experimental settings of prior works (Shi et al., 2023; Meeus et al., 2023) for distributional
shift analysis, it is inconclusive if their differing results are solely due to the temporal shift
between member /non-member samples (see Appendix A.3.2 for details).

5 Revisiting Membership

The discussion of high n-gram overlap of non-members with members raises the question of
whether exact membership is always useful concerning information leakage. The definition
of membership in the standard MI game treats only records seen exactly during training as
members, e.g., for language models, substrings appearing exactly in the training corpus.
However, this may be at odds with what adversaries and privacy auditors care about
when concerning information leakage. For generative models especially, guessing the
membership of some sample via other sufficiently close samples can be useful. For example,
any paraphrase of “Product launch in Q2, 2025” may be relevant as long as it preserves
information regarding the product launch timeline, even if the paraphrase has a significant
lexical difference, e.g., “Launching product in Q2, 2025” or “Q2 2025 release”. Note that
standard notions of Differential Privacy (Dwork et al., 2006) do not immediately protect
against such cases, since records being tested for membership are not, in the literal sense,
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Figure 5: Distribution of scores for LOSS and Reference-based attacks for members, non-
members, and modified members across ArXiv and Wikipedia domains. (Top) Modified
members generated by random token replacement for edit distance 25. (Bottom) Modified
members generated by replacing 5% of tokens with semantically similar tokens.

D . 1% 5% 10% . LOSS Ref
omain Domain

1 10 25 1 10 25 1 10 25 1% 5% 10% 1% 5% 10%
ArXiv 01 00 00 03 01 01 07 03 02 ArXiv 0.0 0.8 2.5 0.7 1.9 4.0

Wikipedia 00 00 00 02 01 01 06 04 0.1 Wikipedia 0.0 0.5 2.3 0.4 3.0 8.2

Table 4: FPR (%) on modified members (treated as non-members) when using a score
threshold that achieves a 1, 5, or 10% FPR on the original member and non-member data
for ArXiv and Wikipedia domains. (Left) Results for lexically similar modified members at
edit-distances n = { 1,10, 25}. Reference-based attack is shown. For LOSS attack, all FPR
values are 0 across all tested FPR thresholds and values of n. (Right) Results for semantically
close modified members. LOSS and Reference-based attack reported.

members. We explore two methods of constructing such “sufficiently close” samples as an
initial step in studying approximate membership definitions.

Lexical Distance. We first experiment with creating modified member samples by replacing
n random tokens in a given sample with tokens randomly sampled from the model’s
vocabulary. We do so for n = {1,10,25} (20 trials per n) and visualize the distribution
for MIA scores using LOSS and Reference-based attacks (Figure 5, top). The LOSS attack
yields distinct loss distributions between the modified members and original member/non-
members, suggesting that the model is sensitive to out-of-place random tokens even for
lightly perturbed member samples. The Reference-based attack, on the other hand, has a
distribution of modified members much closer to both members and non-members, likely
due to the reference model calibration accounting for the complexity introduced by the
random tokens. This further reinforces the ambiguity of such samples—should they be
considered members or non-members?

We also compute the thresholds corresponding to certain FPRs for actual member and
non-member data and use these thresholds to compute the FPR on the modified members.
We consider these modified members as “non-members”, which they are with regards to
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exact match®. Table 4 (left) shows that these modified members have extremely low FPRs
for edit distance as low as n = 1, suggesting that these samples would be classified as
non-members by the MIA, even though from the perspective of information leakage such a
sample is effectively a member. We highlight the need to rethink membership for samples
with extremely low lexical distance from actual training members, though even membership
at higher lexical distances is important with respect to what information is still leaked in the
unperturbed portions.

Semantic Distance. While a small edit distance suggests closeness in meaning, a higher edit
distance does not necessarily imply loss of semantics. We compute MIA scores for neighbors
generated for member samples as part of the Neighborhood attack (see Appendix A.4) for
the Wikipedia and ArXiv benchmarks and repeat the above pipeline. Visualizing the scores
shows how the modified members are not too far from original member score distributions,
especially for the Reference attack (Figure 5, bottom). We repeat the same FPR experiment as
edit-distance-based modified members. While the FPR for these semantically close records
is noticeably higher than records close by edit distance, the false positive rates are still low
(Table 4, right). Again, these results suggest that semantically close members would be
classified as non-members even though they may be as useful as actual members depending
on the inference goal and the semantic information preserved.

While it is not surprising that semantically close neighbors have MIA scores more similar
to actual member samples than randomly-replaced tokens, it is clear that an ideal distance
function should combine the benefits of lexical distance and semantics in defining a mem-
bership neighborhood. Such observations also motivate a fully semantic MI game, where
a neighbor member may be defined by its proximity to an exact member in a semantic
embedding space. This may provide a clearer interpretation of knowledge leakage than
lexical matching, especially when samples naturally have high lexical (i.e., n-gram) overlap.

6 Conclusion

We shed light on the difficulty of membership inference against LLMs from the lens of an
adversary. Our results suggest two possibilities: (1) data does not leave much of an imprint,
owing to characteristics of the pre-training process at scale, such as large datasets and single-
epoch training, and (2) the similarity between in and out members (which we demonstrate
via n-gram overlap), coupled with huge datasets, makes this distinction fuzzy. While MIA
performance could improve via stronger attacks (Casper et al., 2024), the second factor
requires rethinking the membership game itself. Our empirical results suggest that both of
these might be confounding factors while measuring leakage. The membership inference
game needs to be extended for such generative models to better align with information
leakage that adversaries and auditors may care about, such as user-level leakage (Kandpal
et al., 2023) and PII (Lukas et al., 2023). In the meanwhile, special care should thus be
taken to avoid unintentional distributional shifts while constructing non-members for MIA
benchmark construction.
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A Implementation details

A1l MIMIR

We release our codebase as a Python package (available at http://github.com/iamgroot42/
mimir), complete with documentation and tests, for implementing and evaluating mem-
bership inference attacks for language models. The data used in our experiments is also
available via HuggingFace (https://huggingface.co/datasets/iamgroot42/mimir). Some
features of the package include:

* A base attack class that provides bare-bones code and helper functions that can be
easily used in implementations of both existing and new attacks.

* Data processing utilities to filter and cache data for membership evaluation, from
both provided and available sources.

* Support for a vast array of models that can be used as target or reference models.

The entire codebase works with modular configuration files, allowing multiple experiments
to be run simultaneously with no edits to the code itself. We used Python 3.9.7 for our
experiments, with PyTorch 2.0.1. Our experiments were executed on a mix of machines,
with GPUs ranging from RTX6k to A100.

A.2 Additional Target Model Details

PYTHIA-DEDUP. Both the PYTHIA and PYTHIA-DEDUP model suites provide intermediate
checkpoints for each model. For experiments targeting the PYTHIA-DEDUP model, as the
PYTHIA-DEDUP model is trained for greater than 1 epoch, we select the checkpoint that
most closely matches the one epoch mark over the deduplicated Pile. We decide this is
checkpoint "step99000’. For experiments targeting the non-deduped PYTHIA models, we
use the final checkpoint, which sees just under one (~ 0.9) epoch of the original Pile.

SILO. The models from the SILO suite (Min et al., 2023) consist of 1.3B-parameter trans-
former LMs based on the OpenLM implementation of the LLaMA architecture (Touvron
et al., 2023a). These are trained for multiple epochs on the Open License Corpus, which
consists of permissively-licensed text data classified as either public domain (PD) texts,
permissively licensed software (SW), or under an attribution license (BY). We target the
SILO-PDSW model (alongside its intermediate checkpoints) trained on only texts classified
as PD or SW for domains contributing less than 5% of the data upsampled by a factor of 3x
(which includes HackerNews and DM Mathematics).

DATABLATIONS. The DATABLATIONS suite (Muennighoff et al., 2023) is a large collection of
models trained to study scaling laws in data-constrained regimes. They vary in the extent of
data repetition and compute budget, ranging up to 900 billion training tokens and 9 billion
parameters. For the epoch experiment, we choose the 2.8B-parameter subset of models,
with each seeing a total of 55B tokens from the C4 dataset across their training runs. These
models vary in the number of epochs their training subset is seen, ranging from one to 14
epochs. They also offer a model trained for 44 epochs, which we decided to leave out of
evaluation.

GPT-NEO. is a collection of 125M-, 1.3B-, and 2.7B-parameter models of similar architecture
to the GPT-3 model family. These models are trained on the Pile for about 300B tokens,
similar to the PYTHIA suite. This model suite is a precursor to the GPT-NEOX (Andonian
et al., 2023) model architecture, which PYTHIA-DEDUP and PYTHIA are built on. Noticeable
differences include the tokenizer used per model suite, with the GPT-NEOX allocating
additional tokens to whitespace characters, as well as intended training settings, with
GPT-NEO geared towards TPU training and GPT-NEOX GPU training.

OLMo. The OLMO model suite (Groeneveld et al., 2024) is a suite of open language models
trained on the DOLMA(Soldaini et al., 2023) dataset. OLMO models currently available
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include 1B- and 7B-parameter variants trained on 3T and 2.5T tokens, respectively. While
our preliminary results just target the final checkpoints, the OLMO suite is similar to the
PYTHIA suite in that intermediate checkpoints and exact training order are fully open.

A.3 Benchmark Details

We sample 1,000 members and non-members from each target domain from the Pile train
and test sets, respectively. We do the same for the aggregate Pile experiment, except we
sample 10,000 members and non-members each from the complete Pile train and test sets.
We sample documents greater than 100 words and truncate them up to 200 words from the
beginning to create our benchmark examples. Previous work (Shi et al., 2023) observes that
sample length correlates with performance, so we bound the sample length to reduce its
impact while picking a reasonable threshold so that our samples are likely to contain ample
signal. While further increasing the length of samples could yield greater MIA performance,
such an experiment is orthogonal to the ones we conduct; inherent differences in LLM
training and MI evaluation would still impact evaluation on longer texts.

We follow the same pipeline when generating the benchmark for targeting the DATABLA-
TIONS models, picking members and non-members from the C4 train and validation sets,
respectively.

For our additional decontamination on Pile benchmarks, we follow Groeneveld et al. (2023),
which uses a bloom filter to check for n-gram inclusion. We keep the default filtering settings
of n = 13 and a threshold of < 80% overlap. Further details about setting up the bloom
filter can be found in Appendix B.1

A.3.1 Training Data Size Benchmarks

For each model, we pick checkpoints every 5000 steps ending at step 95000, with each
step corresponding to 1024 samples of length 2048 tokens. We also include checkpoints
at step 1000 and step 99000, the closest checkpoint to the step where one full epoch of
the deduplicated Pile was seen. For each checkpoint, we use the same non-member set
for evaluation consisting of 1000 samples sampled from the entire Pile test set. We then
construct a member set for each checkpoint’: for the checkpoint at step 1, we sample 1000
random samples from documents seen within the range step {n — 100, n}. EleutherAl
provides random seeding for deterministic training data order across the PYTHIA-DEDUP
training runs, which we use to determine the seen document order. This allows us to
determine which documents to sample from for a given step range. For both members and
non-members, we sample with the same criterion as the general experiments above.

A.3.2 Temporal Benchmarks

For the temporal Wikipedia benchmark non-members, we collect samples from the Real-
TimeData "wikitext_latest” dataset (Li et al., 2023c). This yielded Wikipedia articles created
between the week of August 12, 2023 till the week of January 8, 2024 10 We then follow Pile
processing steps by simply appending the article titles to the front of each respective article
with a “\n\n”. Members are sampled from the Wikipedia subdomain of the Pile training
set. Members and non-members are then sampled with the same criterion as in the general
experiments.

For the temporal ArXiv benchmarks, the member set for each benchmark is fixed and
sampled from the ArXiv subdomain of the Pile training set, which consists of papers posted
prior to July 2020 (Gao et al., 2020). For non-members, we use the ArXiv API again following

9Ideally, the member set should be fixed, which could be done by performing multiple training
runs and injecting the fixed member set at various steps. However, this is computationally expensive.
Furthermore, because of how the data is shuffled, we’d expect the difficulty of the member set to be
reasonably consistent across our samples
10NJote that while the articles are created in the recent time frame, the contents of the Wikipedia
page aren’t necessarily about recent topics, people, or events
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Figure 6: MIA performance across benchmarks where non-member data is selected from
ArXiv preprints created during increasingly later months past the target model’s knowledge
cutoff. Timestamps are formatted as year-month. The target model is PYTHIA-DEDUP-12B.
In general, MIA performance increases as the temporal shift of non-members increases

Li et al. (2023c) to collect ArXiv preprints from specific months: August 2020, January 2021,
June 2021, January 2022, June 2022, January 2023, and June 2023 !. We then apply the same
processing steps used in the Pile (Gao et al., 2020). This mainly involves converting the latex
sources for a given preprint into a single Markdown file, and then filtering out documents
such as those with conversion errors. For each month range, we sample non-members from
processed files in the given date range. By sampling non-members from successively later
time ranges after the Pile ArXiv cutoff date, we also seek to explore how greater temporal
shift impacts MIA performance. We again sample both members and non-members with
the same criterion as in the general experiments.

Difficulties in reproducing and analyzing existing works. While we follow a similar
method of non-member candidate selection for our temporal experiments as prior works
such as Shi et al. (2023) and Meeus et al. (2023), we were unable to reproduce their settings
for analysis for two main reasons: 1) their exact non-member candidates and/or pipelines
to reproduce the non-member candidate selection are unavailable or 2) target models used
such as LLAMA (Touvron et al., 2023a) do not release their training data to conduct n-gram
or other distributional analyses.

A.4 Attack Details

MIAs consider a target model M, which outputs a probability distribution of the next
token given a prefix, denoted as P(x¢|xj...x;—1; M). Their goal is to model f(x; M), which
outputs a score for target sample x = xj...x;, with n tokens. This score is then thresholded to
determine the target sample’s membership in the training data of M.

LOSS (Yeom et al., 2018; Carlini et al., 2019) considers the model’s computed loss over the
target sample:

fl M) = L(x; M).

Reference-based (Sablayrolles et al., 2019; Watson et al., 2022) attacks assume access to a
reference model M, another LM trained on a disjoint set of training data drawn from
a similar distribution. In practice, an assumption of disjoint training data is impractical.

N This slightly differs from the Pile ArXiv data collection, which uses the ArXiv bulk access through
S3. However, we believe both ArXiv bulk access and API should yield the preprints in the same
manner regardless.
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0, 0 0,

Thresholding Benchmark 1% 5% 10%

LOSS Ref min-k zlib LOSS Ref min-k zlib LOSS Ref min-k zlib
2020-08 32 42 45 3.7 12.6 13.4 13.5 13.8 241 23.3 24.6 20.2
2021-01 3.7 3.9 3.5 3.5 11.4 15.8 13.5 10.4 21.7 27.0 24.6 17.5
2021-06 3.2 4.2 5.7 54 14.4 16.0 15.7 13.6 255 255 29.5 23.0
2022-01 4.5 4.2 5.3 4.1 14.4 16.3 14.6 12.7 245 27.0 28.7 22.0
2022-06 2.8 39 3.1 2.5 10.3 18.1 13.1 10.7 234 27.8 25.4 20.6
2023-01 29 8.5 3.5 3.1 11.9 235 13.5 10.9 25.0 36.1 26.3 219
2023-06 5.8 9.4 5.5 5.8 15.6 227 19.1 14.1 26.3 37.3 27.8 22.2
Temporal Wiki 9.8 7.5 10.3 7.9 23.8 22.8 243 17.6 30.0 34.1 35.0 22.8

Table 5: FPR (%) on non-members from the Pile (original; not temporally shifted) on various
attacks when using a score threshold that achieves a 1, 5, or 10% FPR on the temporally-
shifted ArXiv (for varying levels of temporal shift) and Wikipedia benchmarks. The target
model is PYTHIA-DEDUP-12B. FPRs on the original non-members are much higher then the
thresholded FPR on the temporally shifted benchmarks, indicating that such thresholds
may be moreso classifying temporal shift rather than member and non-members.

Empirically, using an LM that is different from M has been a reasonable choice and was used
in prior work (Kandpal et al., 2022; Watson et al., 2022). The attack considers the membership
score of the target sample by M relative to the membership by M to calibrate the target
model’s score given a difficulty estimate through the reference model’s score, with goals to
improve precision and reduce the false negative rate. For our experiments, we use LOSS as
the uncalibrated membership score such that, for the reference-based attacks,

M) = L6 M) = L% Meg)-

This method exactly follows the method from Watson et al. (2022) and is also largely similar
to the offline Likelihood Ratio attack (LiRA; Carlini et al. (2022)), although LiRA uses many
reference models (often trained shadow models).

Z1ib Entropy (Carlini et al., 2021) functions similarly to reference-based MIA, using the zlib
compression size of a sample x as a local difficulty threshold per sample:

fxM) = Ez(l;t;z:(/;)'

where zlib(x) is the length in bytes of the zlib compressed sample.

Neighborhood Attack (Mattern et al., 2023) assumes access to a masking model, and
operates by generating “neighbor” texts X to a given text sequence x by using the masking
model to replace a percentage of randomly selected token spans while still maximizing the
neighbor’s likelihood. If the sample’s loss is considerably lower than the neighbor’s losses,
the difference is attributed to the target model overfitting the sample, and the sample is
considered a training member. Formally, we have

fox M) =L(x; M) — % iﬁ(ii;/\/l).

We use BERT (Devlin et al., 2019) as our masking model of choice, with a masking percentage
of 5%.

Min-k% Prob (Shi et al., 2023) is based on the intuition that non-member examples tend
to have more tokens assigned lower likelihoods than member examples do. Given sample
X = X1, ..., Xn and hyperparameter k, let min-k(x) be the set formed by the k% of tokens in x
with minimum likelihood. We then have

flx M) !

~ [min-k(x)]

Y, —log(p(xi| x1,xi1)).

x;€min-k(x)

We experiment with multiple different k € {10, 20, 30,40,50} as suggested in Shi et al. (2023),
but settle on k = 20 for our experiments.
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We compute the performance of each attack based on 1,000 bootstrap samples of the bench-
mark and report the average AUC ROC and TPR@low%FPR over the bootstraps.

MIAs involving meta-classifiers. While many recent works study MIAs that perform
membership classification through meta-classifiers trained on features extracted from a
ground-truth subset of member /non-member data, we primarily focus on blackbox attacks
as access to such a subset can be difficult to guarantee in practice, especially as the inclusion
of samples in pre-training corpora becomes more ambiguous as these corpora continue to
expand.

A.5 Reference Model Choices

We choose a diverse set of reference models to experiment with. For the aggregate method
over all reference models, we take the average of the scores per reference model for a target

sample!?. We report results for our complete ablation on reference model choice in Table 6.

GPT-2 (Radford et al., 2019) is suite of pre-trained transformer trained on a large dataset of
around 40GB of web text, likely overlapping with the Pile. We use the GPT-2-small variant
with 124M parameters.

DISTILGPT2 (Sanh et al., 2019) is a smaller 82M-parameter model trained with the supervi-
sion of GPT-2-small using knowledge distillation.

OPT (Zhang et al., 2022) is a suite of open-sourced pre-trained transformers that are trained
on a curated pre-training corpus including several datasets from the Pile, such as Wikipedia,
DM Mathematics, and HackerNews. We use the 1.3B-parameter variant.

As mentioned in Appendix A.2, GPT-NEO (Black et al., 2021) is another suite of pre-trained
transformers designed using EleutherAl’s replication of the GPT-3 architecture. These
models are trained on the full Pile for a similar amount of tokens as PYTHIA (~ 300B),
though the data seen may not necessarily be in the same order as the PYTHIA models. We
use the 1.3B-parameter variant.

SILO-PDSWBY (Min et al., 2023) is a 1.4B-parameter transformer pre-trained on all types
of permissively licensed data in the Open License Corpus. The training data consists of
certain Pile domains such as HackerNews and DM Mathematics.

LLAMA (Touvron et al., 2023a) is a collection of large, open-sourced pre-trained LMs
ranging in size from 7B to 65B parameters. The pre-training corpus is on the scale of trillions
of tokens, much larger than the Pile, and likely has significant overlap with the Pile. We use
the 7B-parameter variant.

STABLELM-ALPHA-V2 (Tow, 2023) is a set of open-source pre-trained LMs also trained on
a large pre-training corpus with trillions of tokens. Training is conducted in two stages,
with the first stage seeing 1 trillion tokens of a mixture of data from sources such as
RedPajama (Together Al, 2023) and the Pile, with an emphasis on refined web text. The
second stage is trained on 100 billion tokens with a higher context length, increasingly
sampling naturally long texts and adding the StarCoder (Li et al., 2023b) dataset. We use
the 3B-parameter variant.

We also experiment with the non-deduped PYTHIA-DEDUP-1.4B model as a reference model
to see how using a smaller version of the target model (same architecture and training data
order) impacts reference-based attack performance (Carlini et al., 2021).

A.5.1 Stablelm-Base-Alpha-3B-v2 Performance

We speculate that the slightly higher performance with STABLELM-BASE-ALPHA-3B-V2 as
the reference model, even though its pre-training corpus has high overlap with the Pile, is

12Note that the scores over different reference models may not be directly comparable due to the
reference models having different tokenizers. This may contribute to the poor performance of this
naive ensembling method.
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Wikipedia Pile CC

#Params Gp12 DisTiL  OPT NEO  SILO LLAMA STABLE PYTHIA GPT2 DisTiL  OPT NEO  SILO LLAMA STABLE PYTHIA

160M 498 502 494 490 492 511 515 480 .520 504 488 473 504 487 497 480

1.4B 503 505 507 500 502 521 544 476 523 507 513 500 516 504 525 496

2.8B 511 510 519 532 531 539 565 526 526 509 521 499 520 510 .537 504

6.9B 510 507 517 518 516 536 571 501 538 520 542 525 531 530 564 540

12B 514 510 522 528 529 546 579 517 548 525 555 538 541 545 582 555
PubMed Central ArXiv

#Params GprT12 DIsTiL  OPT NEO  SILO LLAMA STABLE PYTHIA GPT2 DisTiL  OPT NEO  SILO LLAMA STABLE PYTHIA

160M 495 491 515 511 513 515 516 497 523 518 516 480 496 492 486 472

1.4B 493 491 514 517 514 515 530 503 529 524 523 501 512 506 510 484

2.8B 494 492 513 518 515 518 536 500 .534 528 528 524 522 516 531 528

6.9B 499 49 519 527 520 530 552 526 540 532 534 539 531 528 538 554

12B 504 498 523 531 524 538 559 533 546 538 541 555 540 538 555 581
DM Math HackerNews

#Params Gpr12 DIsTIL  OPT NEO  SILO LLAMA STABLE PYTHIA GPT2 DiIsTiL OPT NEO  SILO LLAMA STABLE PYTHIA

160M 489 488 520 509 487 502 .523 514 496 496 496 480 398 486 490 466

1.4B 487 485 509 496 485 503 512 496 508 509 511 496 401 504 514 483
2.8B 485 486 511 503 483 500 .504 509 521 522 529 534 421 521 549 527
6.9B 485 485 510 499 484 502 508 497 525 526 534 536 436 531 546 542
12B 487 486 514 504 485 502 512 503 534 533 545 559 453 545 565  .561

Table 6: The effect of the choice of a reference model to PYTHIA-DEDUP models across
various domains. The reference model yielding the highest performance, per target domain
and target model, is bolded. ROC-AUC values are reported.

because 1) larger target models'3 such as the PYTHIA-DEDUP-12B model may considerably
overfit certain member samples and 2) the STABLELM-BASE-ALPHA-3B-V2 is trained on a
much larger corpus, which helps it generalize well and achieve similar losses as the target
model on the non-member data. As a result, member samples are more likely to have a
greater magnitude of difference between the target and reference model losses compared to
the difference between losses on non-members.

A.6 Results with GPT-Neo models

We repeat our experiments with the GPT-NEO family of models. Table 7 demonstrates
similar trends targeting the GPT-NEO models as seen when targeting the PYTHIA model
family (Table 1, Table 12), such as MIA performance generally increasing as the target
model size increases. In general, performance against the GPT-NEO models is similar, if not
lower than, performance against the PYTHIA-DEDUP and PYTHIA models when comparing
similarly sized variants. In some domains such as HackerNews, the best performing MIA
differs between target models (Min-k% Prob for GPT-NEO, reference-based for PYTHIA-
DEDUP), though marginally.

A.7 Results with OLMo models

We perform preliminary experiments targeting the OLMO family of models. Benchmark con-
struction is similar to what is detailed in Appendix A.3. However, we sample from domains
that make up DOLMA (Soldaini et al., 2023), namely Wikipedia, C4, Reddit, Common Crawl,
and peS2o (Soldaini & Lo, 2023). These are similar to domains used in Pile. We note that
peS2o consists of both abstracts (s2ag) and full papers (s2orc), and evaluate them as separate
domains. To get non-member, we use held-out DOLMA data from PALOMA (Magnusson
et al., 2023).

Table 8 also demonstrates generally near-random performance trends, with both the 1B- and
7B-parameter model variants exhibiting similar performances. We speculate that, due to the
incredibly large amounts of training data (3T tokens for 1B-parameter model, 2.5T tokens

13Also target models that are domain specific like DATABLATIONS or are trained on a less diverse
corpus like SILO
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Wikipedia Github Pile CC Pubmed Central
#Params LOSS Ref min-k zlib LOSS Ref min-k zlib LOSS Ref min-k zlib LOSS Ref min-k zlib
125M 504 511 492 511  .641 582 642 660 495 492 500 497 499 506 502 499

1.3B 510 531 506 517 681 570  .681 .696 500 517 503 501 496 499 499 497
2.7B 513 545 513 519 699 570 700 .712 504 .531 507 506 498 .507 501 .499
ArXiv DM Math HackerNews The Pile

#Params LOSS Ref min-k zlib LOSS Ref min-k zlib LOSS Ref min-k zlib LOSS Ref min-k zlib

125M 507 494 503 501 492 522 493 484 489 480 .505 496 502 .507 .505  .505
1.3B 511 506 512 507 486 .511 491 481 499 500 514 501 505 .514 509 507
2.7B 515 520 517 510 486 .509 492 481 502 512 516 .503 507 .519 511 509

Table 7: AUC ROC of MIAs against GPT-NEO across different datasets from the Pile. The
highest performance across the different MIAs is bolded per domain. Similar to PYTHIA-
DEDUP, MIA methods perform near random (< .55) in most domains.

for the 7B-parameter model), performance across different model sizes begins to converge to
near-random performance even with such distinct model sizes. Interestingly, the Reference-
based attack using STABLELM-BASE-ALPHA-3B-V2 performs much worse than when used
to calibrate the PYTHIA models, reinforcing the difficulty in finding suitable reference
models for different LLMs. We also observe many settings where MIA performance is
considerably less than .5, suggesting that the MIAs are more likely to predict members as
non-members, and vice versa. More investigation is needed to understand such behaviors
on specific domains such as s2ag from peS2o0 in the DOLMA data.

Wikipedia C4 Reddit
# Params LOSS Ref min-k zlib LOSS Ref min-k zlib LOSS Ref min-k zlib
1B 484 .510 495 510 515 A79 .520 513 464 495 478 470
7B 481 488 493 .500 516 499 .520 514 463 501 480 469
Common Crawl s2ag s2orc
#Params LOSS Ref min-k zlib LOSS Ref min-k zlib LOSS Ref min-k zlib
1B .509 412 517 511 449 376 461 392 484 480 .500 463
7B 498 410 505 .500 465 483 475 406 491 507 .503 470

Table 8: AUC ROC of MIAs against OLMO across different datasets from the Dolma dataset.
The highest performance across the different MIAs is bolded per domain.

B n-gram Overlap Details and Takeaways

B.1 Measuring n-gram Overlap

We create a bloom filter following Groeneveld et al. (2023). Due to the scale of the Pile
training data and limited memory, we shard the bloom filter. In our construction, we split
the training data in half, resulting in two bloom filter shards. Since each shard only sees
half of the training data, to check for n-gram inclusion across the entire Pile, we check for
containment in both of the sharded bloom filters, counting an n-gram included only if it is
included in at least one of the bloom filters.

For each shard, we configure the bloom filter according to the data size such that the false
positive rate of the bloom filter is less than 1% (0.6%). Then, for each document, we tokenize
at the word level. We then add n-grams to the filter by using a striding window over n
words at a time with a stride of 1. We use the same method of gathering n-gram§ when
checking the non-members for n-gram overlap.

B.2 Reference-based Attack Performance

Table 2 shows that, interestingly, reference-based MIAs have a noticeably smaller increase
in performance compared to non-referenced-based MIAs for domains such as GitHub or
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PubMed Central under n-gram overlap thresholding. We speculate that, since numerous
low n-gram overlap non-members are outliers to the relevant domain, these non-members
will also be outliers to the similar/overlapping data seen by the reference model. As a
result, even though these non-members may yield higher losses from the target model,
we see similar high losses for the reference model as well, which makes the difference
between target and reference model loss for non-members and members relatively less
distinguishable compared to signals from the other attacks.

At the same time, domains like Pile CC do not see this dampened performance, likely
because the 20% threshold in the case of Pile CC is not sufficient to select outliers, as samples
from this domain have naturally low n-gram overlap. Another case where the reference-
based attack seems to avoid this observation is in the temporally shifted non-member setting
for both Wikipedia and ArXiv despite the temporally shifted non-members being more
out-of-distribution relative to the Pile Wikipedia and ArXiv distributions, respectively. We
speculate this is due to the reference model of choice, STABLELM-BASE-ALPHA-3B-V2,
which has not only been trained on a corpus with high overlap with the Pile, but also trained
on datasets that capture more recent data such as RedPajama-Data-1T (Together Al, 2023)
which contains Wikipedia and ArXiv samples from a much more recent cutoff date (i.e.,
RedPajama uses the 2023-03-20 Wikipedia dump), allowing it to generalize better over the
temporally shifted non-members and avoiding a shift towards higher losses that weaker or
older reference models might experience.

Attacks like LOSS or Min-k% Prob do not utilize any external signal or difficulty calibra-
tion, and thus rely exclusively on signals from the target model for member classification.
Calibration-based methods like zlib and reference-based attacks, on the other hand, account
for the inherent “difficulty” of a seen sample. Thus, in situations where the non-member
data is significantly out of domain, even for a reference model or calibration method, it is
likely that the signals from the target model and difficulty calibration would cancel out,
leading to a weakened MIA signal. On the other hand, difficulty calibration can further
boost MIA signal in settings where the member data is inherently more likely to be mem-
orized, such as in §3.2.1 where reference-based attacks yielded considerably higher MIA
performance in low training data size and high effective epoch count settings, with perfor-
mance being further amplified in the extremes of both settings. Thus, MIA baselines for
new MIAs should include both kinds of methods: calibration-based and calibration-free.
Having baseline coverage for both styles of MIA can help uncover inherent characteristics
of the evaluation setting such as unintentional member/non-member distributional shift or
overfitted target models that influence MIA performance and also paints a holistic picture
with regards to what MIAs are most suitable for specific attack settings.

B.3 GitHub as an Outlier

As seen in Table 1, MIA performance in the

Github domain even without thresholding oas original oas Decontaminated

is notably higher than that in other domains, 0.40 040

with the best method (zlib) achieving an g o3 035

AUC ROC of ~ .70. We speculate this isnot 2 °* 030

because the GitHub domain, or codein gen- ¢ ©” -

eral, is an easier domain to attack, but be- § . 015

cause the presumably reasonable decontam- £ o.0 0.10

ination threshold of <80% 13-gram overlap 009 SRl I ——
threshold only captures a small percentile "™ o 20 « e s 10 °® 0 2 2 s o w0
of non-members as GitHub is naturally very % 7-gram Overlap

high overlap. Figure 7: 7-gram overlap of GitHub non-

o member data before and after 13-gram decon-
We speculate a large factor contributing to 1 nination at threshold < 80%.

the high overlap is the repetitive nature of
code, such as copyright notices, function
definitions, and syntax like HTML tags. Figure 7 demonstrates how our decontamination
threshold impacts the 7-gram distribution of non-members. Non-members under our
decontamination threshold are more likely outliers to the GitHub domain (see Figure 15
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for an example of such an outlier). The additional n-gram overlap threshold experiments
(83.2.2) only exacerbate the impact of thresholding, which leads to notably higher MIA
performance.

Such observations indicate why lexical non-member boundaries may lead to ambiguous
interpretations of MIA performance in high-overlap domains. Here, using semantic differ-
ences between samples to draw non-member boundaries may be key to better understanding
membership leakage in such domains.

B.4 Temporal Shift as Change in n-gram Overlap
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Figure 8: Distribution of n-gram overlap for non-member ArXiv preprints sampled from
the months 2020-08 and 2023-06, respectively. We also plot the n-gram overlap distribution
of the original Pile ArXiv non-members. Between the original non-members and both
temporally shifted non-member sets, the temporally shifted non-member n-gram overlap
distributions are considerably more concentrated at lower % n-gram overlap. The original
non-members have an average 7-gram overlap of 39.3%, while non-members from months
2020-08 and 2023-06 have 7-gram overlap of 22.7% and 20.5%, respectively.

Figure 8 reinforces our observations in Figure 4, as similar to the temporal Wikipedia setting,
temporally shifted non-members from after the target model’s knowledge cutoff date are
concentrated at considerably lower % n-gram overlap than non-members from the natural
ArXiv non-member set. This contributes to the greater MIA performance in general over the
temporally shifted ArXiv benchmarks. However, we note that n-gram overlap distribution
shift does not provide a strong interpretation for the increase in MIA performance as non-
members are increasingly temporally shifted. For example, the average 7-gram overlap of
non-members from the month 2020-08 is 22.7% while the average for the month of 2023-06 is
20.5%. While there is a small decrease in average 7-gram for later non-members, the change
is quite small and doesn’t clearly justify the considerable difference in MIA performance
when evaluating on benchmarks using non-members from the different months (i.e., .723
—.795 AUC ROC from the 2020-08 benchmark to the 2023-06 benchmark). We speculate
other factors that contribute to this increase include changes in the distribution of topics
(i.e., increasing popularity of research into LLMs) and the presence of specific identifying
tokens (i.e., dates, references, new terminology). We believe such factors only further
reinforce the need to carefully analyze MIA benchmark construction when evaluating MIAs
to understand what signals are truly being captured.

C Characteristics of LLM Training

C.1 Recency of Member Samples

We explore how the recency of member samples seen in training impacts MIA performance.
We follow the same setup as the training data experiment (A.3.1), but instead of evaluating
the checkpoint at step n with the member data sampled from within steps {n — 100, n} and
the fixed non-member set, we fix the target model, only targeting the checkpoint at step
99000 for all the benchmarks.
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Figure 9: MIA performance for different member data sets sampled at different training
steps across 1 epoch of the deduplicated Pile pretraining corpus, visualized across different
attacks. Target model is the PYTHIA-DEDUP-12B checkpoint at step-99000. AUC-ROC
reported. Performance on benchmarks with more recently seen members is higher, but
gradually decreases to a plateau for less recently seen members.

Figure 9 demonstrates that, in general, member data seen more recently by the given
checkpoint contributes to slightly higher MIA performance. We believe this supports
existing work in LM forgetting (Jagielski et al., 2023), where observed patterns in recently
seen training data are better preserved in the model parameters, while earlier seen data are
less memorized.

We also note that the MIA performance trajectories seem to drop slightly more quickly
for smaller models, though the trajectories across all model sizes seem to converge when
evaluating on member data from much earlier in the training run. We speculate this is a
result of larger models having more parameters, allowing them to capture more seen data
before having to drop older knowledge.

We also note that, in the context of MIA against fine-tuning datasets, our results indicate that
data seen during fine-tuning or continued pre-training may also be increasingly vulnerable
due to how recent they are seen. This aligns with previous work demonstrating high MIA
performance on fine-tuning datasets (Mireshghallah et al., 2022a; Fu et al., 2023). This is
especially relevant in practice since fine-tuning is a popular option to re-purpose large
pre-trained models for varying downstream tasks such as commercial use cases, which
often involves tuning with sensitive data.

C.2 Number of Training Epochs

While experiments against the DATABLATIONS model (Figure 2, right) operate in a fixed
training data size setting, we also explore a more realistic setting where the amount of
training data the target model sees increases alongside the effective epoch count by targeting
the SILO-PDSW model and intermediate checkpoints. In Figure 10, for HackerNews,
we observe MIA performance initially increases with more effective epochs, similar to
the DATABLATIONS setting, but then begins to plateau or drop as effective epoch count
continues to increase. DM mathematics, on the other hand, surprisingly decreases as the
number of effective epochs increases. We speculate over factors that may contribute to these
observations:

* HackerNews, even when up-sampled for this variant of the SILO-PDSW model,
still only makes up 5.9% of the training data (Min et al., 2023). In the first few epochs,
when the total training data seen is low, the model can memorize the HackerNews
samples. However, as the number of epochs increases, the target model may tend to
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Figure 10: MIA performance on target model SILO-PDSW as the number of effective epochs
in which the member domain data has been seen increases. AUC-ROC reported. For
HackerNews, performance does increase with an increasing number of effective epochs
initially, but begins to plateau or even drop with further epochs. For DM Mathematics,
performance surprisingly drops with increasing effective epochs.

overfit data more so from domains with greater representation. As the SILO model
is on the smaller side with 1.4B parameters, we suspect the target model begins to
memorize less of the HackerNews samples, leading to a plateau or drop in MIA
performance.

* DM Mathematics also makes up only 3.5% of the training data. In addition, with
DM Mathematics being a dataset of mathematical problems, we suspect that the
abundance of tokens from a concentrated token space (i.e., digits, variables) that
are largely symbolic rather than semantic makes memorization of specific samples
unlikely. Overall, it simply fails to perform well on such data even after multiple
epochs (as observed when looking at model loss values for this data).

For both cases, further investigation is needed into the target domains and attack setting
setup to better understand these counter-intuitive phenomena.
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D Revisiting Membership through Semantic Similarity

We follow the same pipeline as §5 but focus on generating member paraphrases that are
semantically similar while preserving as much specific information from the original mem-
ber sample as possible. To do so, we follow Yang et al. (2023) and prompt GPT4 (OpenAl
et al., 2024) to paraphrase member samples in a different style (5 trials per member). We
perform this paraphrasing over the ArXiv, Wikipedia, and HackerNews domains; see Ta-
ble 9 for domain-specific prompts. In general, we don’t focus on the lexical similarity of
the paraphrases unlike the earlier semantically similar samples generated via masking
and replacing a small percentage of tokens. However, with HackerNews, we do specify
a comment structure different from how HackerNews records were formatted for model
training, a noticeable lexical difference.

Domain Prompt

ArXiv Please help me paraphrase the following text chunk from a research
paper in a different style. Importantly, for sentences containing
specific details like mathematical definitions or proofs, only make
minimal changes and ensure these details are included exactly in
the paraphrase. If the paper includes a title or authors, please keep
them in the rephrase. If not, please DO NOT make up a title. Use a
similar number of words.

Wikipedia Please help me paraphrase the following text chunk from Wikipedia
in a different but concise style. Importantly, for sentences contain-
ing specific details, make minimal changes and ensure all details
are included correctly in the paraphrase. Use a similar number of
words.

HackerNews Please help me paraphrase the following conversation chunk from
a thread in HackerNews while maintaining the conversational style.
Follow this structure for each comment in the thread: [user] - [com-
ment]. Ensure all user’s comments are represented in the para-
phrase. Make sure all details in each user’s comments are included
correctly in the paraphrase, such as links. Be specific and don’t
generalize.

Table 9: Instructions used to prompt GPT4 to obtain paraphrased members.

We again visualize the score distributions between the paraphrased members, and original
members and non-members (Figure 11). We observe in general across both the LOSS and
Reference-based attacks over the three domains that the paraphrased member score distri-
butions are distinguishable from the original member and non-member score distributions
but have noticeable overlap, similar to what was observed with masking-based semantic
neighbors. However, when we perform the FPR experiment (Table 10), we see that in high-
confidence settings, the paraphrased members are likely to be classified as non-members.
Both the LOSS and Reference-based attacks seem noticeably insensitive to such paraphrased
neighbors.
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Figure 11: Distribution of scores for LOSS and Reference-based attacks for members, non-
members, and GPT4-paraphrased (modified) members across ArXiv, Wikipedia, and Hack-
erNews domains.

D . LOSS Ref
omain

1% 5% 10% 1% 5% 10%
ArXiv 0.1 0.2 0.5 0.2 0.7 1.7
Wikipedia 0.0 0.0 0.2 0.0 0.2 0.7
HackerNews 0.1 1.1 1.7 0.0 0.1 0.2

Table 10: FPR (%) on modified members (treated as non-members) when using a score
threshold that achieves a 1, 5, or 10% FPR on the original member and non-member data
for the ArXiv, Wikipedia, and HackerNews domains. Modified members are generated by
prompting GPT4 to paraphrase member samples with significant lexical difference. LOSS
and Reference-based attack reported.
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E Additional Figures and Tables

Wikipedia Github Pile CC Pubmed Central
# Params LOSS Ref min-k zlib Ne LOSS Ref min-k zlibb Ne LOSS Ref mink zlb Ne LOSS Ref mink zlib Ne
70M 08 09 10 10 05 131 78 126 130 110 07 10 04 04 01 07 1.0 09 05 06
160M 11 08 12 14 13 135 46 123 147 59 04 08 05 04 04 07 09 10 03 0.1
1.4B 06 09 05 07 04 128 07 129 164 39 06 06 05 07 08 04 07 06 05 0.1
2.8B 06 08 05 07 09 208 45 208 234 111 06 05 07 08 09 04 10 14 06 09
6.9B 06 06 04 06 05 129 06 131 168 61 10 14 12 13 10 08 1.6 08 03 08
12B 07 06 06 07 10 139 08 142 174 49 10 17 11 15 10 10 15 13 07 09
ArXiv DM Math HackerNews The Pile

#Params LOSS Ref min-k zlib Ne LOSS Ref min-k zlibb Ne LOSS Ref mink zlib Ne LOSS Ref min-k zlib Ne

70M 08 10 07 05 09 06 13 05 07 08 11 07 13 13 05 22 14 18 21 20
160M 08 04 02 07 03 05 14 06 12 07 10 08 12 06 07 24 13 20 22 22
1.4B 03 10 02 04 07 08 08 06 10 17 07 09 12 09 08 24 14 24 23 23
2.8B 05 21 05 05 05 08 04 10 13 08 06 14 08 11 17 28 22 28 28 24
6.9B 06 18 06 06 06 09 02 06 10 07 9 19 10 09 13 26 18 25 25 22
12B 06 25 06 05 09 10 05 05 09 08 07 23 08 08 14 27 18 26 26 22

Table 11: %TPR@1%FPR of MIAs against PYTHIA-DEDUP across different datasets from the
Pile. The highest performance across the different MIAs is bolded per domain. In general,
leakage in high confidence settings is low (< 3%). As with AUC ROC, GitHub is an
exception, still yielding considerably higher leakage with most attacks. Unlike with AUC
ROC, trends in performance are much noisier in the high-confidence setting, with trends in
model size and best-performing attacks in certain domains no longer holding, reinforcing
the difficulty in determining a best attack.

Wikipedia Github Pile CC Pubmed Central
#Params LOSS Ref min-k =zlib LOSS Ref min-k zlib LOSS Ref min-k =zlib LOSS Ref min-k zlib
160M 503 512 491 512 657  .639 .652 .674 496 491 504 497 499 513 506 500

1.4B 513 552 511 520 698 670 .699 .710 501 522 510 502 498 .531 502 500

2.8B 518 582 518 525 712 653 713 .723 501 537 508 504 500 .537 504 501

6.9B 528 618 536 536 730 644 733 .739 507 550 515 509 506 .558 511 506

12B 535 .639 544 544 740 630 743 748 511 567 517 512 513 .582 523 512
ArXiv DM Math HackerNews The Pile

#Params LOSS Ref min-k zlib LOSS Ref min-k zlib LOSS Ref min-k =zlib LOSS Ref min-k zlib
160M 510 494 507 502 489 510 495 481 494 491 509 498 503 511 505 506

1.4B 515 516 517 509 486 512 497 482 505 522 512 504 505 .522 510 .508
2.8B 519 531 525 514 484 505 .480 480 513 551 524 509 508 .533 513 511
6.9B 529 558 535 523 485 511 496 481 521 579 536 513 514 .554 522 516
12B .534 575 546 527 485 510 497 481 528 606 546 517 519 569 528 520

Table 12: AUC ROC of MIAs against non-deduped PYTHIA across different datasets from
the Pile. The reference-based attack uses STABLELM-BASE-ALPHA-3B-V2 as the reference
model. The highest performance across the different MIAs is bolded per domain. Per-
formance follows similar trends seen when targeting the PYTHIA-DEDUP models, but
performance is, in general, marginally higher. Due to computational limitations, we leave
out evaluations for the Neighborhood attack, but expect similar trends.
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Figure 12: MIA performance as model size increases over select domains for various other
attacks. We additionally plot the AUC ROC trajectory against the non-deduped Pythia suite
for comparison. Similar to the reference-based attack, increasing model size slightly boosts
MIA performance while deduplication decreases performance.
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Figure 13: MIA performance as the amount of training data seen increases across 1 epoch of
the deduplicated Pile pretraining corpus, visualized over a range of model sizes for various
attacks. We use the training step as a unit for the amount of training data seen, with 1 step
corresponding to seeing 2097152 tokens. AUC-ROC reported. Similar to the reference-based
attack, for all attacks, performance drastically increases before gradually decreasing as
the amount of training data seen increases.
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Figure 14: Distribution of n-gram overlap over all evaluation domains for n = 4,7,13.
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Figure 15: A sample GitHub non-member outlier captured by the < 80% 13-gram overlap
threshold. This sample is from a language resource repository under Google, but is a clear

outlier to the code-dominant GitHub domain
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