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Abstract

Large language models (LLMs) demonstrate

great potential for problems with implicit

graphical structures, while recent works seek

to enhance the graph reasoning capabilities of

LLMs through specialized instruction tuning.

The resulting “graph LLMs” are evaluated with

in-distribution settings only, thus it remains un-

derexplored whether LLMs are learning gener-

alizable graph reasoning skills or merely mem-

orizing patterns in the synthetic training data.

To this end, we propose the NLGIFT bench-

mark, an evaluation suite of LLM graph rea-

soning generalization: whether LLMs could

go beyond semantic, numeric, structural, rea-

soning patterns in the synthetic training data

and improve utility on real-world graph-based

tasks. Extensive experiments with two LLMs

across four graph reasoning tasks demonstrate

that while generalization on simple patterns

(semantic, numeric) is somewhat satisfactory,

LLMs struggle to generalize across reasoning

and real-world patterns, casting doubt on the

benefit of synthetic graph tuning for real-world

tasks with underlying network structures. We

explore three strategies to improve LLM graph

reasoning generalization, and we find that while

post-training alignment is most promising for

real-world tasks, empowering LLM graph rea-

soning to go beyond pattern memorization re-

mains an open research question.1

1 Introduction

Large Language Models (LLMs) are increasingly

employed for tasks at the intersection of language

and structure such as multi-hop QA (Geva et al.,

2021; Ding et al., 2023) and structured common-

sense reasoning (Sakaguchi et al., 2021; Madaan

et al., 2022). These problems are often described in

natural language and have implicit graphical struc-

tures (Geva et al., 2021; Ding et al., 2023; Saha

*equal contribution
1Code and data are publicly available at

https://github.com/MatthewYZhang/NLGift.

et al., 2021; Sakaguchi et al., 2021), where LLMs’

graph reasoning capabilities are tested. While

LLMs do possess preliminary abilities to represent

and reason with graphs (Wang et al., 2023), they

also face challenges such as hallucinations (Huang

et al., 2023b) and prompt sensitivity (Fatemi et al.,

2024) when dealing with structured data.

Existing works seek to improve LLM graph rea-

soning mainly through better prompting (Fatemi

et al., 2024) or instruction tuning (Wang et al.,

2024; Chen et al., 2024a), while the latter line

of training-based approaches is generally more ef-

fective in producing specialized models for graph-

based applications (Tang et al., 2023; Wang et al.,

2024; Chen et al., 2024a; Luo et al., 2024). How-

ever, these approaches are often evaluated in in-

distribution settings, while robust graph reason-

ers should go beyond training sets to encode gen-

eral and transferable graph reasoning capabilities

in model parameters. Consequently, we ask: Are

LLMs graph reasoners or merely pattern regurgita-

tors? More concretely, Can LLM graph reasoning

go beyond memorizing patterns in the training data

and perform well in out-of-distribution contexts?

The answer to this question has profound impli-

cations for LLM reliability in structured contexts

since real-world graph-based problems are diverse,

heterogeneous, and constantly evolving.

To this end, we propose NLGIFT, a compre-

hensive testbed of Natural Language Graph rea-

soning with shifting patterns. NLGIFT contains

37,000 problems in total, where LLMs are instruc-

tion tuned on a subset of problems with distribution

Dtrain and evaluated on both in-distribution Dtrain

and out-of-distribution Dtest test sets. NLGIFT

features five types of patterns where LLMs should

generalize beyond: 1) semantic, 2) numerical, 3)

structural, 4) reasoning, and 5) real-world patterns.

The first four settings focus on transferring across

patterns in the synthetic graph data, while the real-

world pattern focuses on the transfer from synthetic
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2 NLGIFT Benchmark

To examine whether LLMs are capable of robust

reasoning with graph problems rather than mem-

orizing training patterns, we present the NLGIFT

Benchmark (Figure 1). Specifically, we select four

representative graph reasoning tasks: connectivity,

shortest path, topological sort, and maximum flow.

We then design five patterns that LLMs should gen-

eralize beyond. We present the five patterns in

ascending order of difficulty so that they can serve

as a progressive testbed.

2.1 Graph reasoning patterns

Semantic Patterns The semantic pattern in-

volves representing the graph problem with dif-

ferent natural language descriptions such as “edge

(2,3)” or “Bob and Amy are friends”. When trained

on one type of semantic representation, robust

graph reasoners should achieve similar levels of

performance when testing with different semantic

representations. Specifically, we employ four typ-

ical representation methods: adjacency, incident,

graph expert, and friendship (Fatemi et al., 2024).

• Adjacency: We list all the edges in the graph with

natural language. (i.e., node 1 is connected to

node 3. node 1 is connected to 2)

• Incident: We describe the connectivity of each

node in a single sentence. (i.e., node 1 is con-

nected to 2, 3, 4)

• Graph Expert: We employ the prompt “You are

a graph analyst” as a prefix, and then use letters

to represent the nodes. (i.e., A->B, A->C)

• Friendship: We describe the nodes as people and

the edges as the friendship between people. (i.e.,

Alice and Carol are friends)

Numerical Patterns For the numerical pattern,

we aim to investigate whether different number dis-

tributions in the edge attributes (i.e., edge weight,

edge capacity) might affect LLM graph reasoning.

Specifically, we employ three different number dis-

tributions: small integers (from 1 to 10), large inte-

gers (from 11 to 100), and floats with one floating

point (from 1.0 to 10.0). Trained on graph prob-

lems with one numerical distribution of node/edge

attributes, robust graph reasoners should achieve

similar performance on another set of problems

with different numerical distributions.

Structural Patterns Graphs are often diverse

and heterogeneous, featuring varying levels of size,

centrality, and other structural variations. We there-

fore investigate the impact of structural patterns,

if changes in graph structural properties might af-

fect the performance of LLM’s reasoning abilities.

We specifically design three different criteria to

quantify a network’s structural features.

• Graph Size: Small-size graphs have 3 to 10 nodes

while large-size graphs have 11 to 25 nodes.

• Graph Generator: we use two different graph

generator algorithms to generate graphs, specif-

ically, Erdos-Renyi (Erdős et al., 1960) and

Barabasi-Albert (Barabási and Albert, 1999).

• Graph Transitivity: we calculate the graph

transitivity (Luce and Perry, 1949; Wasser-

man and Faust, 1994) and partition them into

low-transitivity and high-transitivity subsets.

Graph transitivity (T) is calculated as T =
3×number of triangles
number of all triplets

.

Reasoning Patterns For the previous three pat-

terns, we train and test LLMs on the same graph

tasks, while a robust graph reasoner should learn

universal principles of graph reasoning to general-

ize across different graph reasoning problems. To

evaluate this, we use the four graph reasoning tasks

(§2), instruction-tune the LLM on one synthetic

graph task and evaluate it on both the same task

and three other graph tasks.

Real-world Patterns While the previous four

patterns all train and test on synthetic graph data,

we argue that the ultimate goal of graph synthetic

tuning is to benefit real-world problems with un-

derlying graph structures: after all, these synthetic

problems could be solved with 100% accuracy by

conventional algorithms. Thus for the real-world

pattern, we fine-tune LLMs with synthetic graph

data, and then evaluate with real-world problems

that have implicit graph structures. We specifically

employ two types of datasets for evaluation:

• Multi-Hop QA: Multi-hop QA involves answer-

ing questions that require multi-hop reasoning,

which is inherently related to synthetic graph

problems such as connectivity or shortest path,

as the solving process can be viewed as navigat-

ing through a network of concepts and relations

or trying to find the shortest path between two

concepts using existing relations. We adopt Strat-

egyQA (Geva et al., 2021) and Knowledge Cross-

words (Ding et al., 2023) for the multi-hop QA

task.



train/test
Connectivity Shortest Path

Adjacency Friendship Expert Incident Adjacency Friendship Expert Incident

LLAMA2-7B

ADJACENCY .672 (+29%) .518 (0%) .512 (-2%) .660 (+27%) .212 (+1225%) .122 (+578%) .152 (+850%) .132 (+725%)

FRIENDSHIP .500 (-4%) .694 (+34%) .686 (+31%) .540 (+4%) .028 (+75%) .242 (+1244%) .086 (+438%) .042 (+163%)

EXPERT .482 (-8%) .548 (+6%) .624 (+20%) .484 (-7%) .044 (+175%) .028 (+56%) .184 (+1050%) .046 (+188%)

INCIDENT .662 (+27%) .512 (-1%) .502 (-4%) .728 (+40%) .132 (+725%) .084 (+367%) .124 (+675%) .244 (+1425%)

ZERO-SHOT .522 .516 .522 .520 .016 .018 .016 .016

CHATGPT

ADJACENCY .958 (+25%) .826 (+12%) .880 (+16%) .912 (+24%) .542 (+132%) .516 (+153%) .512 (+129%) .546 (+101%)

FRIENDSHIP .892 (+17%) .950 (+29%) .892 (+18%) .896 (+21%) .426 (+82%) .476 (+133%) .486 (+117%) .518 (+90%)

EXPERT .930 (+22%) .874 (+19%) .922 (+22%) .916 (+24%) .472 (+102%) .400 (+96%) .526 (+135%) .568 (+109%)

INCIDENT .808 (+6%) .780 (+6%) .772 (+2%) .964 (+31%) .324 (+38%) .390 (+91%) .354 (+58%) .616 (+126%)

ZERO-SHOT .764 .736 .756 .738 .234 .204 .224 .272

Table 1: Results for the semantic pattern where colors indicate Significant Transfer , Strong Recovery , and

in-distribution results . LLMs can generalize across different semantic representations of the same graph problems

to some extent and achieve Significant Transfer 68.8% of the time. The larger CHATGPT is stronger in generaliza-

tion, achieving Significant Transfer and Strong Recovery in 21 and 7 cases compared to LLAMA2’s 12 and 3.

• Structured Commonsense Reasoning: This task

tests the intersection of commonsense knowledge

and structured reasoning, where LLMs need to

figure out the dependency structure of events

(e.g. open the fridge before taking milk from

the fridge) and generate a reasonable plan. This

is strongly correlated with synthetic graph prob-

lems such as topological sort, where different

steps have a constraint of order. We specifically

employ ExplaGraphs (Saha et al., 2021) and Pro-

script (Sakaguchi et al., 2021) for this task.

Finally, we obtain the NLGIFT Benchmark with

33,000 synthetic problems and 4,000 realistic prob-

lems. Details of NLGIFT and the four real-world

datasets can be found in Appendix B.2.

2.2 Generalization Metrics

We instruction-tune a pre-trained language model

fθ with initial parameters θ on one distribution of

training data Dtrain. Formally, this is expressed as:

θDtrain
= argmin

θ
E(x,y)∼Dtrain

[L(fθ(x), y)],

where L represents the loss function, and (x, y)
are input-output pairs in instruction tuning. We

evaluate the tuned model on a different data distri-

bution Dtest to test its generalization ability, which

is defined as a generalization pair.

Acc(Dtest | θDtrain
) = E(x,y)∼Dtest

I(fθDtrain
(x), y),

where I(fθDtrain
(x), y) is the indicator function

of whether the fθDtrain
(x) and y have the same

reasoning path and reach the same answer.

We use two standards to quantify the success of

LLM graph reasoning generalization: 1) Signifi-

cant Transfer and 2) Strong Recovery. Concretely,

Significant Transfer is when the performance of the

tuned model on Dtest is significantly better than the

original untuned model, which is tested by propor-

tional z-test (Seabold and Perktold, 2010):

Acc(Dtest | θDtrain
) ≫ Acc(Dtest | θ) (p < 0.01)

where Acc(Dtest | θ) refers to untuned model’s

performance on Dtest data.

The higher criteria, Strong Recovery, means the

model’s performance on out-of-distribution data

should largely match the performance with in-

distribution training. Specifically, we define Perfor-

mance Gap Recovered (PGR) following Burns et al.

(2023), and achieving Strong Recovery requires

that PGR is no less than a threshold parameter λ:

PGR =
Acc(Dtest | θDtrain

)−Acc(Dtest | θ)

Acc(Dtest | θDtest
)−Acc(Dtest | θ)

≥ λ

In the following experiments, we empirically set

the PGR threshold λ = 0.8 while we also experi-

ment with other values in Appendix A.

3 Experiment Settings

We evaluate the graph reasoning capabilities

of two LLMs: CHATGPT (GPT-3.5-TURBO)

(Ouyang et al., 2022) and LLAMA2-7B (META-

LLAMA/LLAMA-2-7B-CHAT-HF) (Touvron et al.,

2023). We empirically employ temperature τ = 1
and τ = 0.9 for the two models respectively to



train/test
Shortest Path Maximum Flow

Small Int Large Int Float Small Int Large Int Float

LLAMA2-7B

SMALL INT .330 (+617%) .330 (+432%) .294 (+407%) .168 (+140%) .080 (+208%) .060 (+114%) *

LARGE INT .252 (+448%) .244 (+294%) .242 (+317%) .116 (+66%) .064 (+146%) .064 (+129%)

FLOAT .388 (+743%) .368 (+494%) .398 (+586%) .060 (-14%) .062 (+138%) .052 (+86%)

ZERO-SHOT .046 .062 .058 .070 .026 .028

CHATGPT

SMALL INT .620 (+48%) .638 (+54%) .588 (+76%) .262 (+122%) .094 (+31%) * .108 (+35%) *

LARGE INT .604 (+44%) .628 (+52%) .580 (+74%) .122 (+3%) .092 (+28%) .092 (+15%)

FLOAT .60 (+43%) .634 (+53%) .584 (+75%) .148 (+25%) .096 (+33%) * .100 (+25%)

ZERO-SHOT .420 .414 .334 .118 .072 .080

Table 2: Results for the numerical pattern. In this table, four cells are marked with *, indicating corner cases

where they achieve Strong Recovery but fail to achieve Significant Transfer due to the low-performance in zero-shot

settings. For different numerical distributions, easier tasks (the shortest path task) show better transfer results

compared to more complex tasks (the maximum flow task).

sample solutions. For CHATGPT instruction tun-

ing, we fine-tune the model for 3 epochs and em-

ploy default hyperparameters with the OpenAI fine-

tuning API. For LLAMA2-7B instruction tuning,

we quantize our model in 4-bit quantization and

use QLoRA (Dettmers et al., 2024) for efficient

fine-tuning with lora_alpha of 16. We train for 10

epochs with a batch size of 4, and a learning rate of

1e-4 with a warmup ratio of 0.03. For the first four

patterns (testing on synthetic graph problems), we

use 500 training samples and 500 testing samples.

For the real-world pattern, we use 1,000 samples as

training data and 1,000 real-world tasks as testing

data. We use zero-shot prompting by default and

additionally append format instructions for the rea-

soning and real-world pattern. More details about

experiment settings can be found in Appendix B.

4 Results

We evaluate LLM graph reasoning generalization

with NLGIFT across diverse data patterns: while

generalization on simple patterns (semantic, numer-

ical and structural) is somewhat satisfactory, LLMs

struggle to generalize across the more challenging

reasoning and real-world patterns, casting doubt on

the benefit of synthetic graph tuning for real-world

tasks with underlying network structures.

Semantic Patterns We present the results for se-

mantic pattern generalization in Table 1. Out of

the 48 generalization pairs, 33 achieved Signifi-

cant Transfer and 10 achieved Strong Recovery of

in-distribution performance. The larger and more

capable CHATGPT can transfer better when test-

ing on out-of-distribution data, with 21 out of 24

achieving Significant Transfer, compared to 12 out

of 24 for Llama-2-7B. However, even CHATGPT

can only achieve 7 out of 24 Strong Recovery, indi-

cating that LLMs rely at least partially on natural

language patterns to reason on graphs.

Moreover, the semantic representation ‘incident’

can represent the graph most robustly, with 3 out of

4 best performance when testing on in-distribution

data, achieving as much as 17.6% of improvement

over other in-distribution test performance. The

‘incident’ representation shows fewer fluctuations

as it achieves 9 out of 12 Significant Transfer when

testing on out-of-distribution data. This indicates

that LLM graph reasoning might be impacted by

semantic representations, where some ways of de-

scribing graph problems work better than others.

We thus employ the ‘incident’ representation by

default in the following experiments.

Numerical Patterns We present the results with

the three different number distributions in Table

2. For the shortest path task, both models demon-

strate strong performance on in-distribution and

out-of-distribution accuracy. However, the maxi-

mum flow task is much more challenging since the

zero-shot performance is much lower and only 3

out of 12 transfer settings achieve both Significant

Transfer and Strong Recovery, indicating that both

models show limited transfer capabilities for harder

graph reasoning problems. In addition, the abso-

lute performance gain for in-distribution evaluation

is limited for large integer and float distributions

(average of 2.6% accuracy increase) compared to



train/test
LLAMA2-7B CHATGPT

Shortest Path Topological Sort Shortest Path Topological Sort

Graph Size

Small Large Small Large Small Large Small Large

SMALL .656 (+507%) .208 (+767%) .884 (+391%) .022 (+∞) * .834 (+21%) .492 (+51%) .942 (+163%) .466 (+959%)

LARGE .756 (+600%) .336 (+1300%) .536 (+198%) .344 (+∞) .854 (+23%) .650 (+99%) .720 (+101%) .752 (+1609%)

ZERO-SHOT .108 .024 .180 .000 .692 .326 .358 .044

Graph Generator Algorithm

ER BA ER BA ER BA ER BA

ER .380 (+604%) .340 (+750%) .656 (+343%) .496 (+700%) .622 (+45%) .632 (+65%) .844 (+213%) .776 (+203%)

BA .372 (+589%) .390 (+875%) .564 (+281%) .718 (+1058%) .594 (+39%) .648 (+69%) .530 (+96%) .928 (+263%)

ZERO-SHOT .054 .040 .148 .062 .428 .384 .270 .256

Graph Transitivity

Low High Low High Low High Low High

LOW .426 (+407%) .232 (+955%) .756 (+278%) .364 (+1200%) .692 (+50%) .420 (+44%) .886 (+175%) .658 (+391%)

HIGH .284 (+238%) .196 (+791%) .720 (+260%) .374 (+1236%) .624 (+36%) .482 (+65%) .924 (+187%) .814 (+507%)

ZERO-SHOT .084 .022 .200 .028 .460 .292 .322 .134

Table 3: Results for the structural pattern. The colors have the same meaning as that in Table 1. One cell is marked

with *, indicating a corner case where PGR cannot be calculated. The graph size setup has the worst transfer

performance, suggesting that graph size has the biggest impact on LLMs reasoning capabilities.

12.1% accuracy increase for small integer evalua-

tion. This indicates that the impact of numerical

distributions varies based on task complexity.

Structural Patterns As shown in Table 3, it is

evident that among the three different graph struc-

ture aspects, graph size has the most significant

impact on the reasoning abilities of language mod-

els, with only 2 out of 8 achieved Strong Recovery.

Also, the results of training on small graphs and

testing on large graphs show that the average PGR

is less than 60%. This suggests that it may not

be effective to train on small graphs and expect it

will generalize to larger graphs. On the other hand,

different types of graph generators and different

transitivity levels have weak influence on graph

reasoning capabilities, with 10 out of 16 showing

Strong Recovery. This indicates that LLM graph

reasoning could transfer across graph types and

transitivity, but not size: when creating a synthetic

graph training set, it is crucial to include a wide

range of problems with varying network sizes.

Reasoning Patterns From Table 4, there is no

Strong Recovery and only 8 out of 24 Significant

Transfer achieved. More importantly, the aver-

age improvements of out-of-distribution perfor-

mance are -12% for LLAMA2-7B and 19% for

CHATGPT, significantly lower than average in-

distribution (>280% for LLAMA2-7B and >100%

for CHATGPT). The results show that LLMs might

only memorize the reasoning pattern about specific

train/test Connectivity Topological Sort Shortest Path Maximum Flow

LLAMA2-7B

CONNECTIVITY .728 (+40%) .038 (-74%) .058 (+7%) .124 (+77%)

TOPOLOGICAL SORT .470 (-10%) .656 (+343%) .008 (-85%) .028 (-60%)

SHORTEST PATH .656 (+26%) .094 (-36%) .380 (+604%) .140 (+100%)

MAXIMUM FLOW .584 (+12%) .052 (-65%) .032 (-41%) .168 (+140%)

ZERO-SHOT .520 .148 .054 .070

CHATGPT

CONNECTIVITY .964 (+31%) .368 (+36%) .512 (+22%) .142 (+20%)

TOPOLOGICAL SORT .890 (+21%) .844 (+213%) .380 (-10%) .136 (+15%)

SHORTEST PATH .804 (+9%) .328 (+21%) .620 (+48%) .130 (+10%)

MAXIMUM FLOW .830 (+12%) .484 (+79%) .396 (-6%) .262 (+122%)

ZERO-SHOT .738 .270 .420 .118

Table 4: Results for the reasoning pattern. We find very

weak or even negative transfer, where only 8 out of 24

cases achieve Significant Transfer and 9 cases where

out-of-distribution training is counterproductive.

tasks from training data, but cannot successfully

transfer general graph reasoning capabilities to

other graph reasoning tasks. The two models show

entirely different transferring capabilities, making

it hard to discuss relationships between tasks.

Real-World Patterns The first four patterns are

based on synthetic graph data, while the ultimate

goal of graph instruction tuning is to boost perfor-

mance on real-world tasks with implicit graph struc-

tures. However, as illustrated in Figure 2, there are

barely any improvements after instruction tuned on

related synthetic tasks or all synthetic tasks. Also,

for some real-world tasks like Proscript, we see a

significant drop of an average of 12.5% for both

models after instruction tuning. The results suggest

that current LLMs struggle to transfer their learned







graphs. Many works focus on designing prompts

to elicit or evaluate the graph reasoning abilities of

LLMs (Han et al., 2023; Guo et al., 2023; Zhang

et al., 2023b; Luo et al., 2023; Huang et al., 2023a;

Zhao et al., 2023; Fatemi et al., 2024; Ye et al.,

2024), among which Fatemi et al. (2024) study en-

coding graphs with different semantic descriptions

such as friend networks and find that graph encod-

ing function has a significant impact on LLM graph

reasoning. Besides prompt-based methods, Perozzi

et al. (2024) further replace the text-template-based

graph encoder with graph neural network encoders,

which improves the performance on graph reason-

ing tasks; Wang et al. (2024) use instruction tuning

and preference alignment to improve the graph rea-

soning ability of LLMs; Li et al. (2024) incorporate

the visual modality and evaluate Large Multimodal

Models on graph reasoning problems.

Another line of work aims at real-world graph

tasks such as node classification (Qin et al., 2023;

He et al., 2024a; Chen et al., 2024b,c), or tasks

with implicit graph structures such as multi-hop

knowledge QA (Ding et al., 2023; He et al., 2024b).

These methods can mainly be divided into three

categories (Li et al., 2023b; Chen et al., 2024b): 1)

LLMs-as-Enhancers, where LLMs are utilized to

enhance the quality of node embeddings for GNNs

(Wei et al., 2024; Wan et al., 2024); 2) LLMs-as-

Predictors, where LLMs directly make predictions

for graph-related tasks (Chen et al., 2024a; Tang

et al., 2024); and 3) GNN-LLM Alignment, where

the embedding spaces of GNNs and LLMs are

aligned to integrate the graph modality with the

text modality (Zou et al., 2023; Li et al., 2023a).

Although there is great improvement in LLM

graph reasoning through specialized instruction

tuning, we hypothesize that LLMs might be

merely memorizing in-distribution patterns, thus

the learned graph reasoning skills are not gen-

eral and transferable. We study the generaliza-

tion across graph reasoning patterns and provide

insights for future works on improving graph rea-

soning abilities.

8 Conclusion

We propose NLGIFT, an evaluation suite of LLM

graph reasoning generalization across semantic,

numerical, structural, reasoning, and real-world

patterns. Extensive experiments demonstrate that

while LLMs are somewhat robust to changes in

the graphs’ semantic and numerical attributes, it is

hugely challenging to generalize beyond synthetic

reasoning patterns and benefit real-world tasks in-

volving networks and structures. We explore three

preliminary solutions: while post-training align-

ment is the most promising, empowering LLMs

to go beyond memorizing synthetic patterns in the

training data remains an open research question.

Limitations

Language models We only consider one black-

box LLM (CHATGPT and one open-source LLM

(LLAMA2-7B due to compute constraints, while

the experiments could be expanded to stronger

models and other types of LLMs (e.g. code

LLMs) if compute permits. Also, we employ 4-

bit quantization and QLoRA in the experiments

for LLAMA2-7B, which might have an impact on

the results compared to full parameter fine-tuning.

Since we will make the NLGIFT Benchmark and

the evaluation tools publicly available, we leave

it to future work on evaluating graph reasoning

generalization of more LLMs in other setups.

Evaluation setup In NLGIFT, we simulate the

scenario that there might be substantial differences

between training and testing distributions by only

having data from one distribution as training and

another as testing. When developing graph LLMs,

researchers often make efforts to cover as many

tasks and distributions possible, but there might in-

evitably be blind spots and underrepresented distri-

butions in training data: NLGIFT aims to simulate

this gap by deliberately leaving out certain distri-

butions in training. For generalization gaps that

are less clear-cut where some distributions might

be present but underrepresented, we additionally

conduct experiments with a mixture of graph tasks

(e.g. 80% of training data comes from a majority

task while the remaining 20% are divided into other

tasks) in Figure 3 and Appendix A.

Methods for improving graph reasoning gen-

eralization The three strategies explored in the

work are not effective in all scenarios, leaving how

to empower LLM graph reasoning to go beyond

pattern memorization as an open research question.

It might be helpful to incorporate other modalities

to represent the graphs (Das et al., 2024). Another

potentially promising method is neuro-symbolic

approaches combining LLMs with graph neural

networks for enhanced reasoning (Perozzi et al.,

2024; He et al., 2024b), which we hope to explore



in future work with more compute available.

Generalization domains We mainly experi-

mented with classic problems in graph and network

algorithms, while we envision our generalization

study could be extended to other structured data

types such as tables (Gupta et al., 2023; Zhou et al.,

2024), natural language proofs (Xiong et al., 2023;

Sprague et al., 2023), and code (Chiu et al., 2023;

Zhang et al., 2023a; Zelikman et al., 2023).
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train/test StrategyQA ExplaGraph K-Crosswords Proscript

ZERO-SHOT .648 .845 .566 .549

RELATED SYNTHETIC .669 .812 .544 .467

ALL SYNTHETIC .678 .774 .506 .485

REAL-WORLD PROBLEMS .784 .946 .825 .872

Table 7: CHATGPT results on real-world problems us-

ing different training data. Best performance for each

task is marked with bold. For all real-world tasks, di-

rectly instruction-tune on in-distribution data achieves

best performance.

not be as robust as we expected.

Real-world Pattern Results Analysis While

task-specific fine-tuning data is not always avail-

able in large quantities for real-world tasks, we

provide results for directly instruction-tuning the

LLM on the four real-world tasks in Table 7. We

find that performance when directly tuning on real-

world problems greatly exceeds tuning on synthetic

problems in various settings, indicating that there

is a great gap in generalizing from synthetic graph

patterns to real-world graph reasoning problems,

where synthetic data failed to play an important

role in improving LLMs’ graph reasoning capa-

bilities. This further proves that existing LLMs

have limited capabilities of generalizing to differ-

ent patterns. Whether we can utilize synthetic data

to improve LLMs reasoning capabilities on graphs,

and how we should utilize synthetic data to improve

LLMs, remain an open research question.

B Experiment Details

B.1 Graph reasoning problems

We elaborate on the four graph reasoning problems

selected in our benchmark.

• Connectivity: In an undirected graph G =
{V, E}, two nodes u and v are connected if there

exists a sequence of edges from node u to node

v in E . During evaluation, the answer is correct

if the model’s response has a deterministic ‘yes’

or ‘no’ response and the response is correct.

• Shortest Path: The shortest path between two

nodes is the path with the sum of edge weights

minimized. Given an undirected graph G =
{V, E}, a positive weight w for each edge, and

two nodes u and v, the task is to find the shortest

path between node u and node v and its corre-

sponding path length. During the evaluation, the

answer is correct if the model’s response contains

a correct shortest path and a correct shortest path

length.

Pattern Keywords

ADJACENCY weight, between, 0, 1, 2

FRIENDSHIP miles, friends, Evan, Thomas, Christian

EXPERT weight, ->, A, B, C

INCIDENT weight, connected, 0, 1, 2

Table 8: The keywords for semantic patterns.

• Topological Sort: A topological sort of a directed

graph is a linear ordering of its nodes such that

for every directed edge (u, v) from node u to

node v, u comes before v in the ordering. Dur-

ing the evaluation, the answer is correct if the

model’s response contains all mentioned nodes

and satisfies all the directed edges’ constraints.

• Maximum Flow: Let G = {V, E} be a directed

graph with two nodes s, t ∈ V being the source

and the sink. Each edge is associated with a

capacity c, and the goal is to find the maximum

amount of flow that can pass through the edge.

During the evaluation, the answer is correct if the

maximum flow value is equal to the ground truth.

B.2 Real-world Datasets

For real-world datasets, we evaluate using the fol-

lowing experimental settings:

• StrategyQA: We do not provide any context to

the LLM. We reorganize the dataset into a simple

yes or no question, and mark the model’s output

as correct if the output has a deterministic yes or

no response and the response is correct.

• Knowledge-Crosswords: We do not provide any

context or related knowledge to the LLM. We

reorganize the choices to make every question a

multiple-choice question with 4 possible choices.

We mark the answer as correct if the response has

a deterministic option (either the option letters

from A to D or the content of the option) and the

option is correct.

• ExplaGraphs: We make the dataset a simple “sup-

port” or “counter” question based on the two ar-

guments, without structural graphs as context.

We mark the model’s output as correct if the out-

put has a deterministic response of either "sup-

port" or "counter" and the response is correct.

• Proscript: We provide the goal and all the pos-

sible steps and prompt the LLM to decide the

order of all the steps. For evaluation, first we



make sure the response contain all possible steps,

and then we count the number of satisfied con-

straints of the response and the number of all

the constraints for each question. We then add

the satisfied number from all questions’ response,

and divided by the number of all the constraints

from each question as partial credit.

B.3 Dataset Statistics

We present NLGIFT statistics in Table 9. A total

of 37,000 problems are included in NLGIFT, in

which 4,000 are real-world problems.

B.4 Keywords for Semantic Patterns

We present the keywords for semantic patterns in

Table 8. For each semantic pattern, we select five

keywords with the first two used to describe edges

and the last three to represent nodes.

B.5 Computational Resources

The fine-tuning and inference with LLAMA2-7B

are conducted on a machine with 4 A4000 GPUs

each with 16 GB memory, and Intel(R) Xeon(R)

Silver 4210 CPU @ 2.20GHz with 96 GB RAM.

For LLAMA2-7B fine-tuning, it takes around 120

minutes to fine-tune on 500 data points for 10

epochs on one A4000 GPU with batch size set to 4.

For LLAMA2-7B inference, it takes around 30 to

120 minutes to infer 500 data points, depending on

the length of the instruction and the response.



Pattern Semantic Numerical Structural Reasoning Real-World

Settings

Adjacency

Friendship

Expert

Incident

Small Integers

Large Integers

Floats

Graph Size

Graph Generator

Graph Transitivity

train on one task

and test on all tasks

2 specific synthetic task mix

1 all synthetic task mix

Tasks
Connectivity

Shortest Path

Shortest Path

Maximum Flow

Shortest Path

Topological Sort

Connectivity

Shortest Path

Topological Sort

Maximum Flow

StrategyQA

ExplaGraphs

K-Crosswords

Proscript

# Problems 8,000 6,000 12,000 4,000 7,000

Split 4× 2× 1, 000 3× 2× 1, 000 (3× 2)× 2× 1, 000 1× 4× 1, 000 (2 + 1)× 1, 000 + 4× 1, 000

# Train 4,000 3,000 6,000 2,000 3,000 (synthetic)

# Test 4,000 3,000 6,000 2,000 4,000 (real-world)

Table 9: Statistics for NLGIFT. For semantic and numerical patterns, the total number of problems can be calculated

as # Settings × # Tasks × 1, 000, where 1, 000 is the total of # Train and # Test for a single task. For structural

pattern, for each setting we have two levels (i.e., large graph size and small graph size), hence we will multiply

2. For reasoning pattern, there is only one setting. For real-world pattern, we generate three different mixtures of

synthetic tasks, in which two are task-specific synthetic task mix, and we test on 1,000 real-world problems for each

task.

Dtrain Dtest Question CHATGPT LLAMA2-7B

Incident Adjacency Determine if there is a path between two

nodes in the graph. Note that (i,j) means

that node i and node j are connected with

an undirected edge.\n(0,4) (1,4) (2,4)\nQ:

Is there a path between node 0 and node

4?\nA:

0, 4 are connected. The

answer is yes. "

The answer is yes. The

node 0 is connected to

node 4. The answer is 1.

"

Friendship G describes a friendship graph among

the following people. We have the fol-

lowing edges in G:\nEvan and Chris-

tian are friends.\nWillow and Christian

are friends.\nGillian and Christian are

friends.\nQ: Is there a path between node

Evan and node Christian?\nA:

Evan and Christian are

friends. The answer is

yes. "

The answer is no. The

graph is:\n\nEvan - 0 -

Christian - 1 - Willow

- 1 - Gillian - 1\n\nThe

only connection between

Evan and Christian is a

negative edge, indicat-

ing that Christian is not

friends with Evan. %

Expert You are a graph analyst and you have been

given a graph G. G has the following undi-

rected edges:\nA -> E, B -> E, C -> E\nQ:

Is there a path between node A and node

E?\nA:

A: A -> E.% The answer is yes. Node

A is connected to node E

through two edges. "

Incident The following text describes an undirected

graph. Determine if there is a path be-

tween two nodes in the graph.\nNode 0 is

connected to 4.\nNode 1 is connected to

4.\nNode 2 is connected to 4.\nNode 4 is

connected to 0, 1, 2.\nQ: Is there a path

between node 0 and node 4?\nA:

0 is connected to 4. The

answer is yes. "

0 is connected to 4.

The answer is yes.", "re-

sponse": "0 is connected

to 4. The answer is yes.

"

Table 10: Qualitative results for semantic pattern. Even on the simplest task (connectivity), both models cannot

fully learn the reasoning path of the task, leading to a great generalization gap.



Dtrain Dtest Question CHATGPT LLAMA2-7B

Float Small Integers The following paragraph describes an undirected

graph with weights.\nNode 0 is connected to node

1 with weight 1, node 3 with weight 6, node 5 with

weight 9, node 7 with weight 1.\nNode 1 is connected

to node 0 with weight 1, node 6 with weight 4.\nNode

2 is connected to node 4 with weight 1, node 5 with

weight 8, node 6 with weight 2.\nNode 3 is connected

to node 0 with weight 6, node 5 with weight 5, node 6

with weight 7.\nNode 4 is connected to node 2 with

weight 1, node 5 with weight 1, node 6 with weight

2.\nNode 5 is connected to node 0 with weight 9, node

2 with weight 8, node 3 with weight 5, node 4 with

weight 1.\nNode 6 is connected to node 1 with weight

4, node 2 with weight 2, node 3 with weight 7, node 4

with weight 2.\nNode 7 is connected to node 0 with

weight 1.\nQ: What is the shortest path between node

0 and node 4, and what is the length of the shortest

path?\nA:

Some possible paths

from node 0 to node 4

are:\n0 -> 3 -> 5 -> 4

with a total weight of 6 +

5 + 1 = 12.\n0 -> 1 -> 6

-> 4 with a total weight

of 1 + 4 + 2 = 7.\n0 ->

3 -> 6 -> 4 with a total

weight of 6 + 7 + 2 =

15.\n0 -> 1 -> 6 -> 2 ->

4 with a total weight of

1 + 4 + 2 + 1 = 8.\nThe

answer is 7. "

Some possible paths

from node 3 to node 0

are:\n3 -> 0 with a total

weight of 6 = 6.\nThe

answer is 6.\nThe follow-

ing is a list of possible

paths from node 3 to

node 0, along with their

total weights:\nThe

answer is 6.\nQ: What is

the shortest path between

node 5 and node 4, and

what%

Large Integers The following paragraph describes an undirected

graph with weights.\nNode 0 is connected to node

1 with weight 78, node 3 with weight 67, node 5 with

weight 27, node 7 with weight 64.\nNode 1 is con-

nected to node 0 with weight 78, node 6 with weight

33.\nNode 2 is connected to node 4 with weight 45,

node 5 with weight 69, node 6 with weight 41.\nN-

ode 3 is connected to node 0 with weight 67, node

5 with weight 19, node 6 with weight 66.\nNode 4

is connected to node 2 with weight 45, node 5 with

weight 80, node 6 with weight 22.\nNode 5 is con-

nected to node 0 with weight 27, node 2 with weight

69, node 3 with weight 19, node 4 with weight 80.\nN-

ode 6 is connected to node 1 with weight 33, node

2 with weight 41, node 3 with weight 66, node 4

with weight 22.\nNode 7 is connected to node 0 with

weight 64.\nQ: What is the shortest path between node

0 and node 4, and what is the length of the shortest

path?\nA:

Some possible paths

from node 0 to node 4

are:\n0 -> 3 -> 5 -> 4

with a total weight of 67

+ 19 + 80 = 166.\n0 ->

1 -> 6 -> 4 with a total

weight of 78 + 33 + 22

= 133.\n0 -> 5 -> 2 -> 4

with a total weight of 27

+ 69 + 45 = 141.\n0 ->

3 -> 6 -> 4 with a total

weight of 67 + 66 + 22 =

155.\nThe answer is 133.

%

Some possible paths

from node 0 to node 4

are:\n0 -> 3 -> 5 -> 4

with a total weight of 67

+ 19 + 80 = 166.\n0 -> 5

-> 4 with a total weight

of 27 + 80 = 107.\n0 ->

7 -> 6 -> 4 with a total

weight of 64 + 33 + 22 =

119.\nThe answer is 107.

"

Floats The following paragraph describes an undirected

graph with weights.\nNode 0 is connected to node 1

with weight 2.2, node 3 with weight 2.0, node 5 with

weight 2.0, node 7 with weight 6.0.\nNode 1 is con-

nected to node 0 with weight 2.2, node 6 with weight

3.5.\nNode 2 is connected to node 4 with weight 6.4,

node 5 with weight 7.5, node 6 with weight 2.8.\nN-

ode 3 is connected to node 0 with weight 2.0, node

5 with weight 6.7, node 6 with weight 3.4.\nNode

4 is connected to node 2 with weight 6.4, node 5

with weight 5.4, node 6 with weight 9.1.\nNode 5

is connected to node 0 with weight 2.0, node 2 with

weight 7.5, node 3 with weight 6.7, node 4 with weight

5.4.\nNode 6 is connected to node 1 with weight 3.5,

node 2 with weight 2.8, node 3 with weight 3.4, node

4 with weight 9.1.\nNode 7 is connected to node 0

with weight 6.0.\nQ: What is the shortest path be-

tween node 0 and node 4, and what is the length of

the shortest path?\nA:

Some possible paths

from node 0 to node 4

are:\n0 -> 3 -> 5 -> 4

with a total weight of 2.0

+ 6.7 + 5.4 = 14.1.\n0 ->

1 -> 6 -> 4 with a total

weight of 2.2 + 3.5 + 9.1

= 14.8.\n0 -> 3 -> 6 -> 4

with a total weight of 2.0

+ 3.4 + 9.1 = 14.5.\n0 ->

5 -> 2 -> 4 with a total

weight of 2.0 + 7.5 + 6.4

= 15.9.\n0 -> 3 -> 6 -> 2

-> 4 with a total weight

of 2.0 + 3.4 + 2.8 + 6.4

= 14.6.\nThe answer is

14.1. %

Some possible paths

from node 0 to node 4

are:\n0 -> 3 -> 5 -> 4

with a total weight of 2.0

+ 6.7 + 5.4 = 14.1.\n0 ->

5 -> 4 with a total weight

of 2.0 + 5.4 = 7.4.\nThe

answer is 7.4. "

Table 11: Qualitative results for numerical pattern. For both models, there exists a performance gap when testing on

out-of-distribution data.
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