arx1v:2406.15992v2 [cs.CL] 11 Oct 2024

Can LLLM Graph Reasoning Generalize beyond Pattern Memorization?

Yizhuo Zhang*!
Zhaoxuan Tan?

Heng Wang*?
Xiaochuang Han!

Shangbin Feng*!
Tianxing He* Yulia Tsvetkov’

"University of Washington 2Xi’an Jiaotong University
3University of Notre Dame *Tsinghua University
mattyz@uw.edu wh2213210554@stu.xjtu.edu.cn shangbin@cs.washington.edu

Abstract

Large language models (LLMs) demonstrate
great potential for problems with implicit
graphical structures, while recent works seek
to enhance the graph reasoning capabilities of
LLMs through specialized instruction tuning.
The resulting “graph LLMs” are evaluated with
in-distribution settings only, thus it remains un-
derexplored whether LLMs are learning gener-
alizable graph reasoning skills or merely mem-
orizing patterns in the synthetic training data.
To this end, we propose the NLGIFT bench-
mark, an evaluation suite of LLM graph rea-
soning generalization: whether LLMs could
go beyond semantic, numeric, structural, rea-
soning patterns in the synthetic training data
and improve utility on real-world graph-based
tasks. Extensive experiments with two LLMs
across four graph reasoning tasks demonstrate
that while generalization on simple patterns
(semantic, numeric) is somewhat satisfactory,
LLMs struggle to generalize across reasoning
and real-world patterns, casting doubt on the
benefit of synthetic graph tuning for real-world
tasks with underlying network structures. We
explore three strategies to improve LLM graph
reasoning generalization, and we find that while
post-training alignment is most promising for
real-world tasks, empowering LLM graph rea-
soning to go beyond pattern memorization re-
mains an open research question.’

1 Introduction

Large Language Models (LLMs) are increasingly
employed for tasks at the intersection of language
and structure such as multi-hop QA (Geva et al.,
2021; Ding et al., 2023) and structured common-
sense reasoning (Sakaguchi et al., 2021; Madaan
et al., 2022). These problems are often described in
natural language and have implicit graphical struc-
tures (Geva et al., 2021; Ding et al., 2023; Saha
“equal contribution

!Code and data are publicly
https://github.com/MatthewYZhang/NLGift.

available at

et al., 2021; Sakaguchi et al., 2021), where LLMs’
graph reasoning capabilities are tested. While
LLMs do possess preliminary abilities to represent
and reason with graphs (Wang et al., 2023), they
also face challenges such as hallucinations (Huang
et al., 2023b) and prompt sensitivity (Fatemi et al.,
2024) when dealing with structured data.

Existing works seek to improve LLM graph rea-
soning mainly through better prompting (Fatemi
et al., 2024) or instruction tuning (Wang et al.,
2024; Chen et al., 2024a), while the latter line
of training-based approaches is generally more ef-
fective in producing specialized models for graph-
based applications (Tang et al., 2023; Wang et al.,
2024; Chen et al., 2024a; Luo et al., 2024). How-
ever, these approaches are often evaluated in in-
distribution settings, while robust graph reason-
ers should go beyond training sets to encode gen-
eral and transferable graph reasoning capabilities
in model parameters. Consequently, we ask: Are
LLMs graph reasoners or merely pattern regurgita-
tors? More concretely, Can LLM graph reasoning
go beyond memorizing patterns in the training data
and perform well in out-of-distribution contexts?
The answer to this question has profound impli-
cations for LLM reliability in structured contexts
since real-world graph-based problems are diverse,
heterogeneous, and constantly evolving.

To this end, we propose NLGIFT, a compre-
hensive testbed of Natural Language Graph rea-
soning with shifting patterns. NLGIFT contains
37,000 problems in total, where LLMs are instruc-
tion tuned on a subset of problems with distribution
Dirain and evaluated on both in-distribution Dyyqin
and out-of-distribution Dy, test sets. NLGIFT
features five types of patterns where LLMs should
generalize beyond: 1) semantic, 2) numerical, 3)
structural, 4) reasoning, and 5) real-world patterns.
The first four settings focus on transferring across
patterns in the synthetic graph data, while the real-
world pattern focuses on the transfer from synthetic

/—[1. Semantic Pattern]—\

/—[2. Numerical Pattern]—\

/—[3. Structural Pattern]—\

8

2 low transitivity: e

(5)

O—® 6
Q @6.1

262 \/ 40

Orra®) 0~@-6

©O)
@

,—[Train (Flow in int)]—\

Train (Incident)

The following text describes an undirected graph.
Determine if there is a path between two nodes
in the graph.

to 6, and the edges are:

In adirected graph, the nodes are numbered from O

Node 1 is connected to node 3 with capacity 2.
Node 5 is connected to node 1 with capacity 8...
Q: What is the maximum flow from node 6 to node 3?

high transitivity: e
D0
{ Train (low transitivity) }———

The following text describes a directed graph

Node O is connected to 1, ...

among 0,1, 2, 3,4,5.

Q: Is there a path between node 4 and node 3?

\ J
/ f-[Test (Flow in float)]—\

Node 1 should be visited before nodes 3, 4...

Test (Friendship)

G describes a friendship graph among the following|
people. We have the following edges in G:

Evan and Willow are friends...

Q: Is there a path between node Christian and
node Thomas?

to 6, and the edges are:

Inadirected graph, the nodes are numbered from O

Node 1 is connected to node 3 with capacity 4.0.
Node 5 is connected to node 1 with capacity 6.2...
Q: What is the maximum flow from node 6 to node 3?

‘Q: Can all the nodes be visited? Give the solution.)

{ Test (high transitivity)]—

The following text describes a directed graph
among 0,1, 2, 3, 4.
Node 1 should be visited before nodes O...

oI,

Train on Connectivity

L@
QPG

Test on Shortest Path
The following paragraph describes an
undirected graph with weights.

Node 0 is connected to node 4 with
weight 1, node 5 with weight 10...

Q: What is the shortest path
between node 1 and node O, and what

@

The following text describes an
undirected graph. Determine if there is
a path between two nodes in the graph.
Node O is connected to 1, 2...

Q: Is there a path between node 4 and
node 3?

is the length of the shortest path?

&)/ \\)/ QQ: Can all the nodes be visited? Give the solution. /
/—[4. Reasoning Pattern] N (_[5. Realistic Pattern] ~

Train on connectivity & neanderthal

shortest path
The following text describes an undirected
graph. Determine if there is a path between two [

primitive
humans

after
~xe
supreme court Fare?
of Us. o8

Test on realistic task
Please answer the following question
with either yes or no: Has a
neanderthal ever served on the
Supreme Court of the United States?

has
attribute
lived 40,000
years ago

nodes in the graph.
Node O is connected to 1, 2...
Q: Is there a path between node 4 and node 3?

established
in1798

The following paragraph describes an
undirected graph with weights.

Node 0 is connected to node 4 with weight 1,
node 5 with weight 10

Q: What is the shortest path between node 1
and node O, and what is the length of the

Qhortesf path?
A\

/

Figure 1: Overview of the NLGIFT Benchmark, featuring five types of graph reasoning patterns that are increasingly
challenging in order. We present an example for each pattern to show the transfer from training to test sets.

graph problems to real-world tasks with graph im-
plications such as structured commonsense reason-
ing (Saha et al., 2021; Sakaguchi et al., 2021) and
multi-hop QA (Geva et al., 2021; Ding et al., 2023).
These five patterns are increasingly challenging in
order and offer a progressive testbed of LLM graph
reasoning generalization.

To quantify the success of generalization, NL-
GIFT establishes two standards: 1) the basic stan-
dard: Significant Transfer, i.e., the tuned model’s
improvement on out-of-distribution test sets over
the zero-shot untuned model is statistically sig-
nificant; 2) the strong standard: Strong Recovery,
i.e., when evaluated on out-of-distribution data, the
tuned LLMs could substantially recover the gains
of in-distribution training. Robust graph reasoners
should ideally meet both basic and strong general-
ization standards across the five patterns.

Extensive experiments on NLGIFT with two
LLMs demonstrate that on easier patterns (seman-
tic, numerical, and structural), LLMs achieve the
basic standard 75% of the time but only reach the
strong standard in 35% of settings. On reason-
ing patterns, LLMs only achieve basic generaliza-

tion 33% of the time while never qualify for the
strong standard of generalization. What’s worse,
on the most challenging real-world patterns, LLMs
achieve basic generalization in 6% of the settings
while graph instruction tuning is counterproduc-
tive in 69% of cases, casting doubt on the benefit
of synthetic graph data. Further analysis reveals
that task composition and keyword frequency in
training corpus greatly impact graph reasoning gen-
eralization.

We explore three preliminary strategies to
augment LLLM graph reasoning generalization:
code mixing, machine-generated CoTs, and post-
training alignment. While post-training alignment
is most promising on real-world tasks, empowering
LLMs with general and transferable graph reason-
ing abilities remains an open research question. To
sum up, our key contributions include presenting
the NLGIFT benchmark, evaluating LLM graph
reasoning generalization with diverse tasks and pat-
terns, as well as exploring preliminary solutions to
mitigate the profound generalization challenges.

2 NLGIFT Benchmark

To examine whether LLMs are capable of robust
reasoning with graph problems rather than mem-
orizing training patterns, we present the NLGIFT
Benchmark (Figure 1). Specifically, we select four
representative graph reasoning tasks: connectivity,
shortest path, topological sort, and maximum flow.
We then design five patterns that LLMs should gen-
eralize beyond. We present the five patterns in
ascending order of difficulty so that they can serve
as a progressive testbed.

2.1 Graph reasoning patterns

Semantic Patterns The semantic pattern in-
volves representing the graph problem with dif-
ferent natural language descriptions such as “edge
(2,3)” or “Bob and Amy are friends”. When trained
on one type of semantic representation, robust
graph reasoners should achieve similar levels of
performance when testing with different semantic
representations. Specifically, we employ four typ-
ical representation methods: adjacency, incident,
graph expert, and friendship (Fatemi et al., 2024).

* Adjacency: We list all the edges in the graph with
natural language. (i.e., node 1 is connected to
node 3. node 1 is connected to 2)

* Incident: We describe the connectivity of each
node in a single sentence. (i.e., node 1 is con-
nected to 2, 3, 4)

* Graph Expert: We employ the prompt “You are
a graph analyst” as a prefix, and then use letters
to represent the nodes. (i.e., A->B, A->C)

* Friendship: We describe the nodes as people and
the edges as the friendship between people. (i.e.,
Alice and Carol are friends)

Numerical Patterns For the numerical pattern,
we aim to investigate whether different number dis-
tributions in the edge attributes (i.e., edge weight,
edge capacity) might affect LLM graph reasoning.
Specifically, we employ three different number dis-
tributions: small integers (from 1 to 10), large inte-
gers (from 11 to 100), and floats with one floating
point (from 1.0 to 10.0). Trained on graph prob-
lems with one numerical distribution of node/edge
attributes, robust graph reasoners should achieve
similar performance on another set of problems
with different numerical distributions.

Structural Patterns Graphs are often diverse
and heterogeneous, featuring varying levels of size,

centrality, and other structural variations. We there-
fore investigate the impact of structural patterns,
if changes in graph structural properties might af-
fect the performance of LLM’s reasoning abilities.
We specifically design three different criteria to
quantify a network’s structural features.

* Graph Size: Small-size graphs have 3 to 10 nodes
while large-size graphs have 11 to 25 nodes.

* Graph Generator: we use two different graph
generator algorithms to generate graphs, specif-
ically, Erdos-Renyi (Erdés et al., 1960) and
Barabasi-Albert (Barabasi and Albert, 1999).

* Graph Transitivity: we calculate the graph
transitivity (Luce and Perry, 1949; Wasser-
man and Faust, 1994) and partition them into
low-transitivity and high-transitivity subsets.
Graph transitivity (T) is calculated as T =

3xnumber of triangles
number of all triplets *

Reasoning Patterns For the previous three pat-
terns, we train and test LLMs on the same graph
tasks, while a robust graph reasoner should learn
universal principles of graph reasoning to general-
ize across different graph reasoning problems. To
evaluate this, we use the four graph reasoning tasks
(§2), instruction-tune the LLM on one synthetic
graph task and evaluate it on both the same task
and three other graph tasks.

Real-world Patterns While the previous four
patterns all train and test on synthetic graph data,
we argue that the ultimate goal of graph synthetic
tuning is to benefit real-world problems with un-
derlying graph structures: after all, these synthetic
problems could be solved with 100% accuracy by
conventional algorithms. Thus for the real-world
pattern, we fine-tune LLMs with synthetic graph
data, and then evaluate with real-world problems
that have implicit graph structures. We specifically
employ two types of datasets for evaluation:

* Multi-Hop QA: Multi-hop QA involves answer-
ing questions that require multi-hop reasoning,
which is inherently related to synthetic graph
problems such as connectivity or shortest path,
as the solving process can be viewed as navigat-
ing through a network of concepts and relations
or trying to find the shortest path between two
concepts using existing relations. We adopt Strat-
egyQA (Gevaetal., 2021) and Knowledge Cross-
words (Ding et al., 2023) for the multi-hop QA
task.

. Connectivity Shortest Path
train/test
Adjacency Friendship Expert Incident Adjacency Friendship Expert Incident
LLAMA2-7B
ADJACENCY | .672 (+29%) .518 (0%) 512 (-2%) 660 (+27%) = 212 (+1225%) 122 (+578%) | .152 (+850%) .132 (+725%)
FRIENDSHIP .500 (-4%) | .694 (+34%) .686 (+31%) .540 (+4%) 028 (+75%) | 242 (+1244%) .086 (+438%) .042 (+163%)
EXPERT A82 (-8%) 548 (+6%) | .624 (+20%) 484 (-7%) .044 (+175%) 028 (+56%) | .184 (+1050%) .046 (+188%)
INCIDENT | .662 (+27%) .512 (-1%) 502 (-4%) | 728 (+40%) 132 (+725%) .084 (+367%) .124 (+675%) .244 (+1425%)
ZERO-SHOT 522 516 522 .520 016 .018 .016
CHATGPT
ADJACENCY | .958 (+25%) .826 (+12%) .880 (+16%) 912 (+24%) .542 (+132%) 516 (+153%) 512 (+129%) .546 (+101%)
FRIENDSHIP .892 (+17%) 950 (+29%) .892 (+18%) .896 (+21%) .426 (+82%) 476 (+133%) 486 (+117%) 518 (+90%)
EXPERT 930 (+22%) .874 (+19%) = 922 (+22%) 916 (+24%) .472 (+102%) 400 (+96%) 526 (+135%) .568 (+109%)
INCIDENT 808 (+6%) 780 (+6%) 772 (+2%) 964 (+31%) .324 (+38%) .390 (+91%) .354 (+58%) .616 (+126%)
ZERO-SHOT 764 736 756 738 234 204 224 272

Table 1: Results for the semantic pattern where colors indicate Significant Transfer , Strong Recovery , and

in-distribution results . LLMs can generalize across different semantic representations of the same graph problems
to some extent and achieve Significant Transfer 68.8% of the time. The larger CHATGPT is stronger in generaliza-
tion, achieving Significant Transfer and Strong Recovery in 21 and 7 cases compared to LLAMA?2’s 12 and 3.

 Structured Commonsense Reasoning: This task
tests the intersection of commonsense knowledge
and structured reasoning, where LL.Ms need to
figure out the dependency structure of events
(e.g. open the fridge before taking milk from
the fridge) and generate a reasonable plan. This
is strongly correlated with synthetic graph prob-
lems such as topological sort, where different
steps have a constraint of order. We specifically
employ ExplaGraphs (Saha et al., 2021) and Pro-
script (Sakaguchi et al., 2021) for this task.

Finally, we obtain the NLGIFT Benchmark with
33,000 synthetic problems and 4,000 realistic prob-
lems. Details of NLGIFT and the four real-world
datasets can be found in Appendix B.2.

2.2 Generalization Metrics

We instruction-tune a pre-trained language model
fo with initial parameters 6 on one distribution of
training data Dy,qiy,. Formally, this is expressed as:

eptrain = a'rg rrbin E(:c,y)NDtmm [L(f9 (.Tf), y)} ?

where L represents the loss function, and (z,y)
are input-output pairs in instruction tuning. We
evaluate the tuned model on a different data distri-
bution Dy to test its generalization ability, which
is defined as a generalization pair.

ACC(DtESt ’ 9Dtmin) =]:E(l’,y)NDtestZ(feDtrain (‘/'U)7 y)7

where Z(fy,, (z),y) is the indicator function
of whether the fg, (x) and y have the same
reasoning path and reach the same answer.

We use two standards to quantify the success of
LLM graph reasoning generalization: 1) Signifi-
cant Transfer and 2) Strong Recovery. Concretely,
Significant Transfer is when the performance of the
tuned model on D,y is significantly better than the
original untuned model, which is tested by propor-
tional z-test (Seabold and Perktold, 2010):

Acc(Diest | 0p,,;,) > Acc(Drese | 0) (p < 0.01)

where Acc(Dyes; | 6) refers to untuned model’s
performance on Dy, data.

The higher criteria, Strong Recovery, means the
model’s performance on out-of-distribution data
should largely match the performance with in-
distribution training. Specifically, we define Perfor-
mance Gap Recovered (PGR) following Burns et al.
(2023), and achieving Strong Recovery requires
that PGR is no less than a threshold parameter A:

ACC(Dtest | HDrrain)
ACC(Dtest | QDtest)

— ACC(ID[&Y[‘ 0)

PCR =
GR = Aco(Diew | 0)

> A

In the following experiments, we empirically set
the PGR threshold A = 0.8 while we also experi-
ment with other values in Appendix A.

3 Experiment Settings

We evaluate the graph reasoning capabilities
of two LLMs: CHATGPT (GPT-3.5-TURBO)
(Ouyang et al., 2022) and LLAMAZ2-7B (META-
LLAMA/LLAMA-2-7B-CHAT-HF) (Touvron et al.,
2023). We empirically employ temperature 7 = 1
and 7 = 0.9 for the two models respectively to

. Shortest Path
train/test

Maximum Flow

Small Int Large Int Float Small Int Large Int Float
LLAMA2-7B
SMALL INT | .330 (+617%) .330 (+432%) .294 (+407%) .168 (+140%) .080 (+208%) .060 (+114%) *
LARGE INT 252 (+448%) = .244 (+294%) 242 (+317%) .116 (+66%) | .064 (+146%) .064 (+129%)
FLOAT 388 (+743%) 368 (+494%) 398 (+586%) .060 (-14%) = .062 (+138%) .052 (+86%)
ZERO-SHOT 046 .062 .058 .070 026 028
CHATGPT
SMALL INT | .620 (+48%) .638 (+54%) 588 (+76%) 262 (+122%) .094 (+31%)* .108 (+35%) *
LARGE INT = .604 (+44%) .628 (+52%) .580 (+74%) 122 (+3%) .092 (+28%) 092 (+15%)
FLOAT .60 (+43%) .634 (+53%) 584 (+75%) 148 (+25%) .096 (+33%) * = .100 (+25%)
ZERO-SHOT 420 414 334 118 .072 .080

Table 2: Results for the numerical pattern. In this table, four cells are marked with *, indicating corner cases
where they achieve Strong Recovery but fail to achieve Significant Transfer due to the low-performance in zero-shot
settings. For different numerical distributions, easier tasks (the shortest path task) show better transfer results
compared to more complex tasks (the maximum flow task).

sample solutions. For CHATGPT instruction tun-
ing, we fine-tune the model for 3 epochs and em-
ploy default hyperparameters with the OpenAl fine-
tuning API. For LLAMA2-7B instruction tuning,
we quantize our model in 4-bit quantization and
use QLoRA (Dettmers et al., 2024) for efficient
fine-tuning with lora_alpha of 16. We train for 10
epochs with a batch size of 4, and a learning rate of
le-4 with a warmup ratio of 0.03. For the first four
patterns (testing on synthetic graph problems), we
use 500 training samples and 500 testing samples.
For the real-world pattern, we use 1,000 samples as
training data and 1,000 real-world tasks as testing
data. We use zero-shot prompting by default and
additionally append format instructions for the rea-
soning and real-world pattern. More details about
experiment settings can be found in Appendix B.

4 Results

We evaluate LLM graph reasoning generalization
with NLGIFT across diverse data patterns: while
generalization on simple patterns (semantic, numer-
ical and structural) is somewhat satisfactory, LLMs
struggle to generalize across the more challenging
reasoning and real-world patterns, casting doubt on
the benefit of synthetic graph tuning for real-world
tasks with underlying network structures.

Semantic Patterns We present the results for se-
mantic pattern generalization in Table 1. Out of
the 48 generalization pairs, 33 achieved Signifi-
cant Transfer and 10 achieved Strong Recovery of
in-distribution performance. The larger and more
capable CHATGPT can transfer better when test-

ing on out-of-distribution data, with 21 out of 24
achieving Significant Transfer, compared to 12 out
of 24 for Llama-2-7B. However, even CHATGPT
can only achieve 7 out of 24 Strong Recovery, indi-
cating that LLMs rely at least partially on natural
language patterns to reason on graphs.

Moreover, the semantic representation ‘incident’
can represent the graph most robustly, with 3 out of
4 best performance when testing on in-distribution
data, achieving as much as 17.6% of improvement
over other in-distribution test performance. The
‘incident’ representation shows fewer fluctuations
as it achieves 9 out of 12 Significant Transfer when
testing on out-of-distribution data. This indicates
that LLM graph reasoning might be impacted by
semantic representations, where some ways of de-
scribing graph problems work better than others.
We thus employ the ‘incident’ representation by
default in the following experiments.

Numerical Patterns We present the results with
the three different number distributions in Table
2. For the shortest path task, both models demon-
strate strong performance on in-distribution and
out-of-distribution accuracy. However, the maxi-
mum flow task is much more challenging since the
zero-shot performance is much lower and only 3
out of 12 transfer settings achieve both Significant
Transfer and Strong Recovery, indicating that both
models show limited transfer capabilities for harder
graph reasoning problems. In addition, the abso-
lute performance gain for in-distribution evaluation
is limited for large integer and float distributions
(average of 2.6% accuracy increase) compared to

. LLAMA2-7B
train/test

CHATGPT

Shortest Path Topological Sort Shortest Path Topological Sort
Graph Size

Small Large Small Large Small Large Small Large
SMALL .656 (+507%) 208 (+767%) | .884 (+391%) .022 (+oo0) * = .834 (+21%) 492 (+51%) 942 (+163%) .466 (+959%)
LARGE .756 (+600%) .336 (+1300%) .536 (+198%) .344 (4-00) 854 (+23%) .650 (+99%) .720 (+101%) .752 (+1609%)

ZERO-SHOT .108 .024 .180 .692 .326 358 .044

Graph Generator Algorithm
ER BA ER ER BA ER BA

ER 380 (+604%) 340 (+750%) .656 (+343%) .496 (+700%) .622 (+45%) .632 (+65%) .844 (+213%) .776 (+203%)
BA 372 (+589%) 390 (+875%) .564 (+281%) 718 (+1058%) .594 (+39%) .648 (+69%) .530 (+96%) 928 (+263%)

ZERO-SHOT .054 .040 .148 428 384 270 256

Graph Transitivity

Low High Low High Low High Low High
Low 426 (+407%) 232 (+955%) 756 (+278%) 364 (+1200%) .692 (+50%) .420 (+44%) .886 (+175%) .658 (+391%)
HicH 284 (4238%) = .196 (+791%) .720 (+260%) .374 (+1236%) .624 (+36%) 482 (+65%) .924 (+187%) .814 (+507%)

ZERO-SHOT .084 .022 .200 460 292 322 134

Table 3: Results for the structural pattern. The colors have the same meaning as that in Table 1. One cell is marked
with *, indicating a corner case where PGR cannot be calculated. The graph size setup has the worst transfer
performance, suggesting that graph size has the biggest impact on LLMs reasoning capabilities.

12.1% accuracy increase for small integer evalua-
tion. This indicates that the impact of numerical
distributions varies based on task complexity.

Structural Patterns As shown in Table 3, it is
evident that among the three different graph struc-
ture aspects, graph size has the most significant
impact on the reasoning abilities of language mod-
els, with only 2 out of 8 achieved Strong Recovery.
Also, the results of training on small graphs and
testing on large graphs show that the average PGR
is less than 60%. This suggests that it may not
be effective to train on small graphs and expect it
will generalize to larger graphs. On the other hand,
different types of graph generators and different
transitivity levels have weak influence on graph
reasoning capabilities, with 10 out of 16 showing
Strong Recovery. This indicates that LLM graph
reasoning could transfer across graph types and
transitivity, but not size: when creating a synthetic
graph training set, it is crucial to include a wide
range of problems with varying network sizes.

Reasoning Patterns From Table 4, there is no
Strong Recovery and only 8 out of 24 Significant
Transfer achieved. More importantly, the aver-
age improvements of out-of-distribution perfor-
mance are -12% for LLAMA2-7B and 19% for
CHATGPT, significantly lower than average in-
distribution (>280% for LLAMAZ2-7B and >100%
for CHATGPT). The results show that LLMs might
only memorize the reasoning pattern about specific

train/test Connectivity ~Topological Sort ~ Shortest Path Maximum Flow

LLAMAZ2-7B
CONNECTIVITY 728 (+40%) .038 (-74%) .058 (+7%) 124 (+77%)
TOPOLOGICAL SORT .470 (-10%) 656 (+343%) .008 (-85%) .028 (-60%)
SHORTEST PATH 656 (+26%) .094 (-36%) | .380 (+604%) .140 (+100%)
MAXIMUM FLOW 584 (+12%) .052 (-65%) 032 (-41%) | .168 (+140%)
ZERO-SHOT 520 148 .054 .070
CHATGPT
CONNECTIVITY 964 (+31%) .368 (+36%) 512 (+22%) 142 (+20%)
TOPOLOGICAL SORT ~ .890 (+21%) 844 (+213%) | .380 (-10%) 136 (+15%)
SHORTEST PATH .804 (+9%) 328 (+21%) 620 (+48%) 130 (+10%)
MAXIMUM FLow .830 (+12%) 484 (+79%) .396 (-6%) 262 (+122%)
ZERO-SHOT 738 270 420 118

Table 4: Results for the reasoning pattern. We find very
weak or even negative transfer, where only 8 out of 24
cases achieve Significant Transfer and 9 cases where
out-of-distribution training is counterproductive.

tasks from training data, but cannot successfully
transfer general graph reasoning capabilities to
other graph reasoning tasks. The two models show
entirely different transferring capabilities, making
it hard to discuss relationships between tasks.

Real-World Patterns The first four patterns are
based on synthetic graph data, while the ultimate
goal of graph instruction tuning is to boost perfor-
mance on real-world tasks with implicit graph struc-
tures. However, as illustrated in Figure 2, there are
barely any improvements after instruction tuned on
related synthetic tasks or all synthetic tasks. Also,
for some real-world tasks like Proscript, we see a
significant drop of an average of 12.5% for both
models after instruction tuning. The results suggest
that current LLMs struggle to transfer their learned

LLaMA2-7B
A related tasks

1.04

I zero shot = all

0.8
0.6 1
0.4
0.24

0.0-
ExplaGraph K-Crosswords

ChatGPT
1.0 I zero shot EEH related tasks

ProScript

= all
0.8 1

0.6 1

0.44

0.2-

StrategyQA

ExplaGraph K-Crosswords ProScript

Figure 2: Results for real-world patterns, where the
LLM is either untuned (zero shot), tuned with graph
tasks related to the real-world problem (related tasks),
or on the mixture of all synthetic tasks (all). We find no
obvious benefits or even negative transfers of synthetic
graph tuning for real-world graphical problems.

connectivity topological sort
0.95

7090

5085

g

® 0.80
075

100+ 85+ 70+ 55+ 40+ 0+ 100+ 85+ 70+ 55+ 40+ 0+
3 *: 10¢3 15%3 20*3 25%4 0 *: 10¢3 153 20*3 2544
{shortest path} + {other tasks} * {#tasks} {shortest path} + {other tasks} * {#tasks}

accuracy
o o
2 @
3 8

°
by
8

shortest path maximum flow

0.60

°
N
o

o
o
8
accuracy

accuracy

e o
R
3

o

0.40
0.10

100+ 85+ 70+ 55+ 40+ 0+ 100+ 85+ 70+ 55+ 40+ 0+
[} 5%*3 10f3 15*3 20*3 25%4 0 543 10¢3 153 20%3 2544
{shortest path} + {other tasks} * {#tasks} {shortest path} + {other tasks} * {#tasks}

Figure 3: Results for mixture of graph tasks. a + b x 3
indicates that the majority task (shortest path) is a% of
training data while the other three tasks are b%. The
two yellow lines show performance upper bound (in-
distribution training) and lower bound (zero-shot).

patterns from synthetic graph reasoning tasks to
real-world tasks with graph structures. This casts
doubt on the benefits of synthetic graph tuning,
where solutions are needed to bridge the gap be-
tween synthetic and real-world graph problems.
Results and further analysis of directly tuning the
model on real-world tasks is provided in Appendix
A.

S Analysis

Mixture of Graph Tasks Real-world generaliza-
tion gaps in LLLM graph reasoning might be less
clear-cut: certain distributions might be underrepre-
sented instead of outright missing. Thus we inves-
tigate reasoning pattern generalization by keeping

a majority task while gradually mixing other tasks
in the training data. For a total of 500 training
data points, we keep the majority task as shortest
path with 2%, while mixing the other three tasks
of £(100 — z)% each. Results in Figure 3 with
CHATGPT show that when other tasks are present,
the performance of the majority task (shortest path)
drops dramatically by up to 43%, while we see
higher performance for other simpler tasks (con-
nectivity and topological sort). For tasks on the
harder end (e.g. maximum flow), the performance
didn’t improve even 25% of training data is the
maximum flow task. This suggests that even for
CHATGPT, instruction tuning on the mixture of
graph tasks may not be the most effective option to
improve overall performance on graph tasks.

Frequency in Training Corpus In addition to in-
struction tuning, LL.M pretraining data might have
substantial impact on the pattern memorization of
LLMs (Mallen et al., 2023). We study semantic
patterns and analyze the correlation between the
frequency of keywords in the graph description and
the in-distribution performance. Since we have
no access to the training corpus of base LLMs,
we adopt the Dolma Corpus (Soldaini et al., 2024)
which has 3.1T tokens as an approximation. Specif-
ically, we use infini-gram (Liu et al., 2024) to calcu-
late the frequency of five representative keywords
for each semantic pattern (full list in Appendix B.4)
and compare the average frequency with CHAT-
GPT’s in-distribution performance. As shown in
Figure 4, keyword frequency in pretraining data
and in-distribution performance are generally posi-
tively related. This indicates that LL.M graph rea-
soning generalization is partially impacted by pre-
training data as well.

We present further analysis in Appendix A.

6 Improving Graph Reasoning
Generalization

Results on the NLGIFT benchmark show LLMs
are not robust graph reasoners but mostly pattern re-
gurgitators, as they show limited capabilities when
testing on out-of-distribution data across various
settings. To improve LLM graph reasoning gener-
alization, we explore three preliminary strategies.

Mixing Code Previous works show that language
models trained on code might be better reasoners
with structures (Madaan et al., 2022), as code data
is naturally more structured than linear sequences

Structural Reasoning Real-World Tasks
Method Performance ARR Performance ARR StrategyQA K-Crosswords ExplaGraphs Proscript
GENERAL CODE 456 .844 384 .806 .545 269 .565 279
GRAPH CODE 332 .898 351 .920 .539 .190 660 279
MACHINE COT 362 788 .390 791 541 258 .646 261
DPO .047 1.682 .329 1.325 559 259 .566 489
ORIGINAL LLM 489 .887 401 425 .525 242 .585 455

Table 5: Results for the strategies to improve LLM graph reasoning generalization. Performance is calculated as the
mean of all in- and out-of-distribution test accuracies, and average recovery rate (ARR) is calculated as the mean of
the two out-of-distribution PGRs. Best result in bold. There is no approach that improves across every setting, but
post-training alignment with DPO is preliminarily the most promising.

=
o
o

B connectivity ~[Z3 shortest path —$— frequency

0.01

=
N
u

e
=3
=1

g
=]
o

o

N

o
o
o
e

avg. performance
frequency

4
o
=]
o
o
N}

e
N
[

friendship expert adjancency incident

semantic pattern

Figure 4: Average frequency of five keywords for four
semantic patterns and the corresponding in-distribution
performance. Frequency and in-distribution perfor-
mance are positively related.

of texts. We explore incorporating code into the
instruction tuning data to improve graph reason-
ing generalization. Specifically, we use two types
of code instruction tuning data: general code in-
struction tuning data (Chaudhary, 2023) and graph-
related code filtered from Greengerong (2023) us-
ing a list of graph-related keywords. We add 200
randomly selected samples to each training set of
synthetic graph data for instruction tuning.

Machine-generated Chain of Thoughts In pre-
vious experiments, we generate intermediate rea-
soning paths for instruction tuning with predefined
rules for each graph task. However, this hand-
crafted reasoning path might be different from
LLMs’ internal reasoning process, thus one possi-
ble improvement is to utilize CHATGPT’s output
as machine-generated chain of thoughts (CoTs),
and then filter out the correct response to further
fine-tune LLAMAZ2-7B. We hope this distillation
of graph reasoning CoTs from a stronger model to
a weaker one would help generalization.

Preference Alignment In addition to adapting
LLMs for graph reasoning through instruction
tuning, we adopt Direct Preference Optimization
(DPO) (Rafailov et al., 2023) to improve graph

reasoning at the alignment stage. DPO aims to
further refine the model’s reasoning capabilities
by learning from human preferences. It involves
a labeled input pair (R, R;) where R,, and R;
are preferred and dispreferred responses. To be
specific, we use the training sets in NLGIFT and
sample five solutions from CHATGPT to select
preferred and dispreferred based on answer correct-
ness, resulting in around 200 DPO pairs for each
task. We then apply DPO on previously fine-tuned
models and evaluate them on the same test set.

Results We evaluate with LLAMA2-7B and we
employ the more challenging tasks and patterns:
shortest path from the structural patterns with graph
size, connectivity and maximum flow from the rea-
soning pattern, and all four real-world tasks.

We present the results for the three strategies
in Table 5. We find that no single method can
improve generalization for every task, but there
are some improvements over both synthetic tasks
and real-world tasks. None of the improvement
methods achieve both high performances (average
performance drops 24%) and high recovery rates
(average recovery rate increases 72%). The most
promising solution is post-training alignment with
DPO, achieving the highest recovery rate for syn-
thetic patterns and highest performance in two out
of four real-world tasks. However, it is far from
perfect and how to improve LLM graph reasoning
generalization remains an open research question.

7 Related Work

A series of works have explored employing LLMs
for graph learning and reasoning. Wang et al.
(2023) propose one of the first natural language
graph reasoning benchmarks, NLGraph, and show
that LLMs have preliminary graph reasoning abili-
ties while being brittle to spurious correlations in

graphs. Many works focus on designing prompts
to elicit or evaluate the graph reasoning abilities of
LLMs (Han et al., 2023; Guo et al., 2023; Zhang
et al., 2023b; Luo et al., 2023; Huang et al., 2023a;
Zhao et al., 2023; Fatemi et al., 2024; Ye et al.,
2024), among which Fatemi et al. (2024) study en-
coding graphs with different semantic descriptions
such as friend networks and find that graph encod-
ing function has a significant impact on LLM graph
reasoning. Besides prompt-based methods, Perozzi
et al. (2024) further replace the text-template-based
graph encoder with graph neural network encoders,
which improves the performance on graph reason-
ing tasks; Wang et al. (2024) use instruction tuning
and preference alignment to improve the graph rea-
soning ability of LLMs; Li et al. (2024) incorporate
the visual modality and evaluate Large Multimodal
Models on graph reasoning problems.

Another line of work aims at real-world graph
tasks such as node classification (Qin et al., 2023;
He et al., 2024a; Chen et al., 2024b,c), or tasks
with implicit graph structures such as multi-hop
knowledge QA (Ding et al., 2023; He et al., 2024b).
These methods can mainly be divided into three
categories (Li et al., 2023b; Chen et al., 2024b): 1)
LLMs-as-Enhancers, where LLMs are utilized to
enhance the quality of node embeddings for GNNs
(Wei et al., 2024; Wan et al., 2024); 2) LLMs-as-
Predictors, where LLMs directly make predictions
for graph-related tasks (Chen et al., 2024a; Tang
et al., 2024); and 3) GNN-LLM Alignment, where
the embedding spaces of GNNs and LLMs are
aligned to integrate the graph modality with the
text modality (Zou et al., 2023; Li et al., 2023a).

Although there is great improvement in LLM
graph reasoning through specialized instruction
tuning, we hypothesize that LLMs might be
merely memorizing in-distribution patterns, thus
the learned graph reasoning skills are not gen-
eral and transferable. We study the generaliza-
tion across graph reasoning patterns and provide
insights for future works on improving graph rea-
soning abilities.

8 Conclusion

We propose NLGIFT, an evaluation suite of LLM
graph reasoning generalization across semantic,
numerical, structural, reasoning, and real-world
patterns. Extensive experiments demonstrate that
while LLMs are somewhat robust to changes in
the graphs’ semantic and numerical attributes, it is

hugely challenging to generalize beyond synthetic
reasoning patterns and benefit real-world tasks in-
volving networks and structures. We explore three
preliminary solutions: while post-training align-
ment is the most promising, empowering LLMs
to go beyond memorizing synthetic patterns in the
training data remains an open research question.

Limitations

Language models We only consider one black-
box LLM (CHATGPT and one open-source LLM
(LLAMAZ2-7B due to compute constraints, while
the experiments could be expanded to stronger
models and other types of LLMs (e.g. code
LLMs) if compute permits. Also, we employ 4-
bit quantization and QLoRA in the experiments
for LLAMAZ2-7B, which might have an impact on
the results compared to full parameter fine-tuning.
Since we will make the NLGIFT Benchmark and
the evaluation tools publicly available, we leave
it to future work on evaluating graph reasoning
generalization of more LLMs in other setups.

Evaluation setup In NLGIFT, we simulate the
scenario that there might be substantial differences
between training and testing distributions by only
having data from one distribution as training and
another as testing. When developing graph LLMs,
researchers often make efforts to cover as many
tasks and distributions possible, but there might in-
evitably be blind spots and underrepresented distri-
butions in training data: NLGIFT aims to simulate
this gap by deliberately leaving out certain distri-
butions in training. For generalization gaps that
are less clear-cut where some distributions might
be present but underrepresented, we additionally
conduct experiments with a mixture of graph tasks
(e.g. 80% of training data comes from a majority
task while the remaining 20% are divided into other
tasks) in Figure 3 and Appendix A.

Methods for improving graph reasoning gen-
eralization The three strategies explored in the
work are not effective in all scenarios, leaving how
to empower LLM graph reasoning to go beyond
pattern memorization as an open research question.
It might be helpful to incorporate other modalities
to represent the graphs (Das et al., 2024). Another
potentially promising method is neuro-symbolic
approaches combining LL.Ms with graph neural
networks for enhanced reasoning (Perozzi et al.,
2024; He et al., 2024b), which we hope to explore

in future work with more compute available.

Generalization domains We mainly experi-
mented with classic problems in graph and network
algorithms, while we envision our generalization
study could be extended to other structured data
types such as tables (Gupta et al., 2023; Zhou et al.,
2024), natural language proofs (Xiong et al., 2023;
Sprague et al., 2023), and code (Chiu et al., 2023;
Zhang et al., 2023a; Zelikman et al., 2023).

Acknowledgements

We gratefully acknowledge support from the Na-
tional Science Foundation under CAREER Grant
No. 11S2142739, and NSF grants No. [1S2125201
and 1IS2203097. This work was also supported
in part by gift funding from Google, MSR, and
OpenAl

References

Albert-Laszl6 Barabasi and Réka Albert. 1999. Emer-
gence of scaling in random networks. science,
286(5439):509-512.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner,
Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan
Leike, et al. 2023. Weak-to-strong generalization:
Eliciting strong capabilities with weak supervision.
arXiv preprint arXiv:2312.09390.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Nuo Chen, Yuhan Li, Jianheng Tang, and Jia Li.
2024a. Graphwiz: An instruction-following lan-
guage model for graph problems. arXiv preprint
arXiv:2402.16029.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi
Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin,
Wenqi Fan, Hui Liu, et al. 2024b. Exploring the
potential of large language models (Ilms) in learning
on graphs. ACM SIGKDD Explorations Newsletter,
25(2):42-61.

Zhikai Chen, Haitao Mao, Hongzhi Wen, Haoyu Han,
Wei Jin, Haiyang Zhang, Hui Liu, and Jiliang Tang.
2024c. Label-free node classification on graphs with
large language models (LLMs). In The Twelfth Inter-
national Conference on Learning Representations.

Justin Chiu, Wenting Zhao, Derek Chen, Saujas
Vaduguru, Alexander Rush, and Daniel Fried. 2023.
Symbolic planning and code generation for grounded
dialogue. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7426—7436, Singapore. Association for
Computational Linguistics.

Debarati Das, Ishaan Gupta, Jaideep Srivastava, and
Dongyeop Kang. 2024. Which modality should I use
- text, motif, or image? : Understanding graphs with
large language models. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2024,
pages 503-519, Mexico City, Mexico. Association
for Computational Linguistics.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Wenxuan Ding, Shangbin Feng, Yuhan Liu, Zhaoxuan
Tan, Vidhisha Balachandran, Tianxing He, and Yulia
Tsvetkov. 2023. Knowledge crosswords: Geomet-
ric reasoning over structured knowledge with large
language models. arXiv preprint arXiv:2310.01290.

Paul Erdés, Alfréd Rényi, et al. 1960. On the evolution
of random graphs. Publ. math. inst. hung. acad. sci,
5(1):17-60.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi.
2024. Talk like a graph: Encoding graphs for large
language models. In The Twelfth International Con-
ference on Learning Representations.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. Transactions of the
Association for Computational Linguistics, 9:346—
361.

Greengerong. 2023. Greengerong/leetcode - datasets at
hugging face.

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi
He, and Shi Han. 2023. Gptdgraph: Can large
language models understand graph structured data?
an empirical evaluation and benchmarking. arXiv
preprint arXiv:2305.15066.

Vivek Gupta, Pranshu Kandoi, Mahek Vora, Shuo
Zhang, Yujie He, Ridho Reinanda, and Vivek Sriku-
mar. 2023. TempTabQA: Temporal question answer-
ing for semi-structured tables. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 2431-2453, Singapore.
Association for Computational Linguistics.

Jiuzhou Han, Nigel Collier, Wray Buntine, and Ehsan
Shareghi. 2023. Pive: Prompting with iterative verifi-
cation improving graph-based generative capability
of llms. arXiv preprint arXiv:2305.12392.

Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam
Perold, Yann LeCun, and Bryan Hooi. 2024a. Har-
nessing explanations: LLM-to-LM interpreter for en-
hanced text-attributed graph representation learning.
In The Twelfth International Conference on Learning
Representations.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V Chawla,
Thomas Laurent, Yann LeCun, Xavier Bresson,
and Bryan Hooi. 2024b. G-retriever: Retrieval-
augmented generation for textual graph under-
standing and question answering. arXiv preprint
arXiv:2402.07630.

Jin Huang, Xingjian Zhang, Qiaozhu Mei, and Jiaqi Ma.
2023a. Can llms effectively leverage graph struc-
tural information: when and why. arXiv preprint
arXiv:2309.16595.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al.
2023b. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open
questions. arXiv preprint arXiv:2311.05232.

Yichuan Li, Kaize Ding, and Kyumin Lee. 2023a.
GRENADE: Graph-centric language model for self-
supervised representation learning on text-attributed
graphs. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pages 27452757,
Singapore. Association for Computational Linguis-
tics.

Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiang-
guo Sun, Hong Cheng, and Jeffrey Xu Yu. 2023b.
A survey of graph meets large language model:
Progress and future directions. arXiv preprint
arXiv:2311.12399.

Yunxin Li, Baotian Hu, Haoyuan Shi, Wei Wang,
Longyue Wang, and Min Zhang. 2024. Visiongraph:
Leveraging large multimodal models for graph the-
ory problems in visual context. arXiv preprint
arXiv:2405.04950.

Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin
Choi, and Hannaneh Hajishirzi. 2024. Infini-gram:
Scaling unbounded n-gram language models to a tril-
lion tokens. arXiv preprint arXiv:2401.17377.

R Duncan Luce and Albert D Perry. 1949. A method
of matrix analysis of group structure. Psychometrika,
14(2):95-116.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and
Shirui Pan. 2023. Reasoning on graphs: Faithful and
interpretable large language model reasoning. arXiv
preprint arXiv:2310.01061.

Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian,
Chenhao Zhang, Jinqi Jiang, Xing Xie, and Hai Jin.
2024. Graphinstruct: Empowering large language
models with graph understanding and reasoning ca-
pability. arXiv preprint arXiv:2403.04483.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,
and Graham Neubig. 2022. Language models of code
are few-shot commonsense learners. In Proceedings
of the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1384—1403, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 9802-9822, Toronto,
Canada. Association for Computational Linguistics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsit-
sulin, Mehran Kazemi, Rami Al-Rfou, and Jonathan
Halcrow. 2024. Let your graph do the talking: En-
coding structured data for llms. arXiv preprint
arXiv:2402.05862.

Yijian Qin, Xin Wang, Ziwei Zhang, and Wenwu Zhu.
2023. Disentangled representation learning with
large language models for text-attributed graphs.
arXiv preprint arXiv:2310.18152.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Swarnadeep Saha, Prateek Yadav, Lisa Bauer, and Mo-
hit Bansal. 2021. Explagraphs: An explanation graph
generation task for structured commonsense reason-
ing. In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing,
pages 7716-7740.

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan
Le Bras, Niket Tandon, Peter Clark, and Yejin Choi.
2021. Proscript: Partially ordered scripts generation.
In 2021 Findings of the Association for Computa-
tional Linguistics, Findings of ACL: EMNLP 2021,
pages 2138-2149. Association for Computational
Linguistics (ACL).

Skipper Seabold and Josef Perktold. 2010. Statsmodels:
Econometric and statistical modeling with python. In
9th Python in Science Conference.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin
Schwenk, David Atkinson, Russell Authur, Ben Bo-
gin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar,
et al. 2024. Dolma: An open corpus of three tril-
lion tokens for language model pretraining research.
arXiv preprint arXiv:2402.00159.

Zayne Sprague, Kaj Bostrom, Swarat Chaudhuri, and
Greg Durrett. 2023. Deductive additivity for plan-
ning of natural language proofs. In Proceedings of
the st Workshop on Natural Language Reasoning
and Structured Explanations (NLRSE), pages 139—
156, Toronto, Canada. Association for Computational
Linguistics.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su,
Suqi Cheng, Dawei Yin, and Chao Huang. 2023.
Graphgpt: Graph instruction tuning for large lan-
guage models. arXiv preprint arXiv:2310.13023.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Long Xia,
Dawei Yin, and Chao Huang. 2024. Higpt: Het-
erogeneous graph language model. arXiv preprint
arXiv:2402.16024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Herun Wan, Shangbin Feng, Zhaoxuan Tan, Heng
Wang, Yulia Tsvetkov, and Minnan Luo. 2024.
Dell: Generating reactions and explanations for
Ilm-based misinformation detection. arXiv preprint
arXiv:2402.10426.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan
Tan, Xiaochuang Han, and Yulia Tsvetkov. 2023.
Can language models solve graph problems in natural
language? In Thirty-seventh Conference on Neural
Information Processing Systems.

Jianing Wang, Junda Wu, Yupeng Hou, Yao Liu, Ming
Gao, and Julian McAuley. 2024. Instructgraph:
Boosting large language models via graph-centric
instruction tuning and preference alignment. arXiv
preprint arXiv:2402.08785.

Stanley Wasserman and Katherine Faust. 1994. Social
network analysis: Methods and applications.

Wei Wei, Xubin Ren, Jiabin Tang, Qinyong Wang, Lixin
Su, Suqi Cheng, Junfeng Wang, Dawei Yin, and Chao
Huang. 2024. Llmrec: Large language models with
graph augmentation for recommendation. In Pro-
ceedings of the 17th ACM International Conference
on Web Search and Data Mining, WSDM ’24, page
806-815, New York, NY, USA. Association for Com-
puting Machinery.

Jing Xiong, Jianhao Shen, Ye Yuan, Haiming Wang,
Yichun Yin, Zhengying Liu, Lin Li, Zhijiang Guo,
Qingxing Cao, Yinya Huang, Chuanyang Zheng,
Xiaodan Liang, Ming Zhang, and Qun Liu. 2023.
TRIGO: Benchmarking formal mathematical proof
reduction for generative language models. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 11594—
11632, Singapore. Association for Computational
Linguistics.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu,
and Yongfeng Zhang. 2024. Language is all a graph
needs. In Findings of the Association for Computa-
tional Linguistics: EACL 2024, pages 1955-1973,
St. Julian’s, Malta. Association for Computational
Linguistics.

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah
Goodman, and Nick Haber. 2023. Parsel: Algorith-
mic reasoning with language models by composing
decompositions. In Thirty-seventh Conference on
Neural Information Processing Systems.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023a. RepoCoder: Repository-level
code completion through iterative retrieval and gen-
eration. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2471-2484, Singapore. Association for Com-
putational Linguistics.

Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang
Li, Yijian Qin, Simin Wu, and Wenwu Zhu.
2023b. Llm4dyg: Can large language models solve
problems on dynamic graphs? arXiv preprint
arXiv:2310.17110.

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu,
Michael Bronstein, Zhaocheng Zhu, and Jian Tang.
2023. Graphtext: Graph reasoning in text space.
arXiv preprint arXiv:2310.01089.

Wei Zhou, Mohsen Mesgar, Heike Adel, and Annemarie
Friedrich. 2024. FREB-TQA: A fine-grained robust-
ness evaluation benchmark for table question answer-
ing. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (Volume 1: Long Papers), pages 2479-2497,
Mexico City, Mexico. Association for Computational
Linguistics.

Tao Zou, Le Yu, Yifei Huang, Leilei Sun, and Bowen
Du. 2023. Pretraining language models with text-
attributed heterogeneous graphs. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 1031610333, Singapore. Association
for Computational Linguistics.

0.80 | =@= semantic == structural
> == numerical reasoning
]

3 0.60 1
O
2
o 0.40 A
c
e
% 0.20 1
0.00 1 T T T T T T
0.5 0.6 0.7 0.8 0.9 1.0

A

Figure 5: Different choice of PGR threshold and pat-
terns’ Strong Recovery ratio. The generalization gap
between different distributions doesn’t depend on the
choice of the threshold), because there is not a single
) shows perfect Strong Recovery ratio.

[incorrect & no arithmetic error

[0 correct [0 incorrect & arithmetric error

ChatGPT 60% 0% 40%
small int
ChatGPT
large int (B OHI" £S5
ChatGPT 58% [7%] 34%
float
LLaMA2-78 38% ‘ 20% ‘ 1%
small int
LLaMA2-78 36% [28% [34%
large int
LLaMA2-78 39% [27% ‘ 2%
float
0 20 40 60 80 100

Figure 6: Results for arithmetic error. We find out that
for CHATGPT arithmetic errors are almost negligible
while for LLAMA2-7B arithmetic errors also don’t ac-
count for large portion of errors. Compared to small
integers, large integers and floats are indeed more com-
plex for both models.

A Analysis (cont.)

To better understand experiment results from each
pattern, we further design some experiments from
varied aspects to analyze some of the pattern re-
sults.

Choice of PGR Threshold A We also experi-
ment on different PGR threshold A to better under-
stand the generalization capabilities of LLMs. As
shown in 5, Strong Recovery ratio will drop as ex-
pected when the threshold) increases. Generally
speaking, the generalization gap between different
distributions doesn’t depend on the choice of PGR
threshold, since there are no choice of \ that can
show perfect Strong Recovery.

Arithmetic Error We investigate what propor-
tion of all errors account for arithmetic errors to see
whether LLMs fail because of incorrect reasoning
or naive errors in arithmetic. We select the model
fine-tuned using the shortest path task with floating
number weights and divide the results into three
categories: 1) responses with correct shortest path

train/test Connectivity ~ Topological Sort ~ Shortest Path Maximum Flow
CONNECTIVITY 0.962 (+21%) 0.122 (-55%) 0.404 (-2%) 0.122 (-10%)
TOPOLOGICAL SORT 0.692 (-13%) = 0.742 (+173%) 0.412 (+0%) 0.136 (+0%)
SHORTEST PATH 0.586 (-26%) 0.292 (+7%) 0.674 (+64%) 0.16 (+18%)
MAXIMUM FLOW 0.82 (+3%) 0.382 (+40%) 0.288 (-30%) = 0.246 (+81%)
IN-CONTEXT LEARNING 0.794 0.272 0.412 0.136

Table 6: Results for the reasoning pattern for CHATGPT
using in-context learning.

length and the shortest path edges, 2) responses
that are not correct and contain arithmetic errors
(this doesn’t mean the response error is caused by
the arithmetic error), and 3) responses that are not
correct and don’t contain arithmetic errors. We see
that for both models arithmetic errors account for
less than 50% of the errors. For CHATGPT arith-
metic errors are almost negligible with an average
of 2.7%. We also discover that floating numbers
and large integers are still more difficult for both
models, especially for LLAMAZ2-7B as its error
rate in floats and large integers increased an average
of 8% compared to small integers.

Reasoning Pattern: zero-shot vs in-context
learning As suggested by the results in the rea-
soning pattern, we see very weak transfer capabil-
ities across different graph reasoning tasks using
zero-shot prompting. While in-context learning
might be more beneficial to transfer to new tasks
than zero-shot prompting, here we show that it is
also the case for in-context learning. Concretely,
we provide some examples of graph problems and
solutions in the context to help CHATGPT under-
stand the task. However, according to Table 6,
some of the results using in-context learning are
even worse than zero-shot prompting for CHAT-
GPT, with only 1 out of 12 achieved Significant
Transfer, compared to 5 out of 12 Significant Trans-
Ser from CHATGPT in zero-shot prompting. The
results further support the previous conclusions by
eliminating the possible impact of the prompting
methods.

Qualitative Analysis To showcase the limited
generalization of LLM graph reasoning, we present
examples of transferring across semantic and nu-
merical patterns where LLMs could answer cor-
rectly on one distribution but not the other in Table
10 and 11. For both patterns, we can see both
models cannot generalize their reasoning capabili-
ties to other distributions. This further shows that,
while LLMs have some graph reasoning capabili-
ties, their capabilities are related to patterns in the
graph tasks, and generalize to other patterns may

train/test StrategyQA ExplaGraph K-Crosswords Proscript

ZERO-SHOT .648 .845 .566 549
RELATED SYNTHETIC 669 812 544 467
ALL SYNTHETIC 678 774 .506 485
REAL-WORLD PROBLEMS 784 946 825 872

Table 7: CHATGPT results on real-world problems us-
ing different training data. Best performance for each
task is marked with bold. For all real-world tasks, di-
rectly instruction-tune on in-distribution data achieves
best performance.

not be as robust as we expected.

Real-world Pattern Results Analysis While
task-specific fine-tuning data is not always avail-
able in large quantities for real-world tasks, we
provide results for directly instruction-tuning the
LLM on the four real-world tasks in Table 7. We
find that performance when directly tuning on real-
world problems greatly exceeds tuning on synthetic
problems in various settings, indicating that there
is a great gap in generalizing from synthetic graph
patterns to real-world graph reasoning problems,
where synthetic data failed to play an important
role in improving LLMs’ graph reasoning capa-
bilities. This further proves that existing LLMs
have limited capabilities of generalizing to differ-
ent patterns. Whether we can utilize synthetic data
to improve LLMs reasoning capabilities on graphs,
and how we should utilize synthetic data to improve
LLMs, remain an open research question.

B Experiment Details

B.1 Graph reasoning problems

We elaborate on the four graph reasoning problems
selected in our benchmark.

e Connectivity: In an undirected graph G =
{V, &}, two nodes u and v are connected if there
exists a sequence of edges from node u to node
v in €. During evaluation, the answer is correct
if the model’s response has a deterministic ‘yes’
or ‘no’ response and the response is correct.

» Shortest Path: The shortest path between two
nodes is the path with the sum of edge weights
minimized. Given an undirected graph G =
{V, £}, a positive weight w for each edge, and
two nodes u and v, the task is to find the shortest
path between node u and node v and its corre-
sponding path length. During the evaluation, the
answer is correct if the model’s response contains
a correct shortest path and a correct shortest path
length.

Pattern Keywords

ADJACENCY weight, between, 0, 1, 2
FRIENDSHIP miles, friends, Evan, Thomas, Christian
EXPERT weight, ->, A, B, C
INCIDENT weight, connected, 0, 1, 2

Table 8: The keywords for semantic patterns.

* Topological Sort: A topological sort of a directed
graph is a linear ordering of its nodes such that
for every directed edge (u,v) from node u to
node v, u comes before v in the ordering. Dur-
ing the evaluation, the answer is correct if the
model’s response contains all mentioned nodes
and satisfies all the directed edges’ constraints.

* Maximum Flow: Let G = {V, £} be a directed
graph with two nodes s,¢ € V being the source
and the sink. Each edge is associated with a
capacity c, and the goal is to find the maximum
amount of flow that can pass through the edge.
During the evaluation, the answer is correct if the
maximum flow value is equal to the ground truth.

B.2 Real-world Datasets

For real-world datasets, we evaluate using the fol-
lowing experimental settings:

 StrategyQA: We do not provide any context to
the LLM. We reorganize the dataset into a simple
yes or no question, and mark the model’s output
as correct if the output has a deterministic yes or
no response and the response is correct.

* Knowledge-Crosswords: We do not provide any
context or related knowledge to the LLM. We
reorganize the choices to make every question a
multiple-choice question with 4 possible choices.
We mark the answer as correct if the response has
a deterministic option (either the option letters
from A to D or the content of the option) and the
option is correct.

» ExplaGraphs: We make the dataset a simple “sup-
port” or “counter” question based on the two ar-
guments, without structural graphs as context.
We mark the model’s output as correct if the out-
put has a deterministic response of either "sup-
port" or "counter” and the response is correct.

* Proscript: We provide the goal and all the pos-
sible steps and prompt the LLM to decide the
order of all the steps. For evaluation, first we

make sure the response contain all possible steps,
and then we count the number of satisfied con-
straints of the response and the number of all
the constraints for each question. We then add
the satisfied number from all questions’ response,
and divided by the number of all the constraints
from each question as partial credit.

B.3 Dataset Statistics

We present NLGIFT statistics in Table 9. A total
of 37,000 problems are included in NLGIFT, in
which 4,000 are real-world problems.

B.4 Keywords for Semantic Patterns

We present the keywords for semantic patterns in
Table 8. For each semantic pattern, we select five
keywords with the first two used to describe edges
and the last three to represent nodes.

B.5 Computational Resources

The fine-tuning and inference with LLAMA?2-7B
are conducted on a machine with 4 A4000 GPUs
each with 16 GB memory, and Intel(R) Xeon(R)
Silver 4210 CPU @ 2.20GHz with 96 GB RAM.
For LLAMA2-7B fine-tuning, it takes around 120
minutes to fine-tune on 500 data points for 10
epochs on one A4000 GPU with batch size set to 4.
For LLAMAZ2-7B inference, it takes around 30 to
120 minutes to infer 500 data points, depending on
the length of the instruction and the response.

Pattern Semantic Numerical Structural Reasoning Real-World
Adjacency .
. Friendship Small Integers Graph Size train on one task 2 specific synthetic task mix
Settings Large Integers Graph Generator . .
Expert . and test on all tasks 1 all synthetic task mix
. Floats Graph Transitivity
Incident
Connectivity StrategyQA
Tasks Connectivity Shortest Path Shortest Path Shortest Path ExplaGraphs
o Shortest Path Maximum Flow Topological Sort Topological Sort K-Crosswords
Maximum Flow Proscript
Problems 8,000 6,000 12,000 4,000 7,000
Split 4%x2x1,000 3x2x1,000 (3x2)x2x1,000 1 x4 x1,000 (24 1) x 1,000 + 4 x 1,000
Train 4,000 3,000 6,000 2,000 3,000 (synthetic)
Test 4,000 3,000 6,000 2,000 4,000 (real-world)

Table 9: Statistics for NLGIFT. For semantic and numerical patterns, the total number of problems can be calculated
as # Settings x # Tasks x 1,000, where 1,000 is the total of # Train and # Test for a single task. For structural
pattern, for each setting we have two levels (i.e., large graph size and small graph size), hence we will multiply
2. For reasoning pattern, there is only one setting. For real-world pattern, we generate three different mixtures of
synthetic tasks, in which two are task-specific synthetic task mix, and we test on 1,000 real-world problems for each

task.

Dirain ~ Drest Question CHATGPT LLAMAZ2-7B

Incident Adjacency Determine if there is a path between two 0, 4 are connected. The The answer is yes. The
nodes in the graph. Note that (i,j) means answer is yes. v node O is connected to
that node i and node j are connected with node 4. The answer is 1.
an undirected edge.\n(0,4) (1,4) (2,4)\nQ:
Is there a path between node 0 and node
4NnA:

Friendship G describes a friendship graph among Evan and Christian are The answer is no. The
the following people. We have the fol- friends. The answer is graph is:\n\nEvan - 0 -
lowing edges in G:\nEvan and Chris- yes. 4 Christian - 1 - Willow
tian are friends.\nWillow and Christian - 1 - Gillian - I\n\nThe
are friends.\nGillian and Christian are only connection between
friends.\nQ: Is there a path between node Evan and Christian is a
Evan and node Christian?\nA: negative edge, indicat-

ing that Christian is not
friends with Evan. X

Expert You are a graph analyst and you have been A: A ->E. X The answer is yes. Node
given a graph G. G has the following undi- A is connected to node E
rected edges:\nA -> E, B -> E, C -> E\nQ: through two edges. v
Is there a path between node A and node
ENnA:

Incident The following text describes an undirected O is connected to 4. The 0 is connected to 4.

graph. Determine if there is a path be-
tween two nodes in the graph.\nNode 0 is
connected to 4.\nNode 1 is connected to
4 \nNode 2 is connected to 4.\nNode 4 is
connected to 0, 1, 2.\nQ: Is there a path
between node 0 and node 47\nA:

answer is yes. 4

non

The answer is yes.", "re-
sponse": "0 is connected
to 4. The answer is yes.

Table 10: Qualitative results for semantic pattern. Even on the simplest task (connectivity), both models cannot
fully learn the reasoning path of the task, leading to a great generalization gap.

DtT'ain Dtest

Question

CHATGPT

LLAMAZ2-7B

Float Small Integers

The following paragraph describes an undirected
graph with weights.\nNode 0 is connected to node
1 with weight 1, node 3 with weight 6, node 5 with
weight 9, node 7 with weight 1.\nNode 1 is connected
to node 0 with weight 1, node 6 with weight 4.\nNode
2 is connected to node 4 with weight 1, node 5 with
weight 8, node 6 with weight 2.\nNode 3 is connected
to node 0 with weight 6, node 5 with weight 5, node 6
with weight 7.\nNode 4 is connected to node 2 with
weight 1, node 5 with weight 1, node 6 with weight
2.\nNode 5 is connected to node 0 with weight 9, node
2 with weight 8, node 3 with weight 5, node 4 with
weight 1.\nNode 6 is connected to node 1 with weight
4, node 2 with weight 2, node 3 with weight 7, node 4
with weight 2.\nNode 7 is connected to node 0 with
weight 1.\nQ: What is the shortest path between node
0 and node 4, and what is the length of the shortest
path?\nA:

Some possible paths
from node O to node 4
are\n) -> 3 > 5 > 4
with a total weight of 6 +
5+1=12\n0->1->6
-> 4 with a total weight
of l +4+2="7\n0 >
3 -> 6 -> 4 with a total
weight of 6 + 7 + 2 =
1I5\n0 >1->6->2->
4 with a total weight of
1+4+2+1=8\nThe
answer is 7. v/

Some possible paths
from node 3 to node 0
are:\n3 -> 0 with a total
weight of 6 = 6.\nThe
answer is 6.\nThe follow-
ing is a list of possible
paths from node 3 to
node 0, along with their
total weights:\nThe
answer is 6.\nQ: What is
the shortest path between
node 5 and node 4, and
what X

Large Integers

The following paragraph describes an undirected
graph with weights.\nNode 0 is connected to node
1 with weight 78, node 3 with weight 67, node 5 with
weight 27, node 7 with weight 64.\nNode 1 is con-
nected to node 0 with weight 78, node 6 with weight
33.\nNode 2 is connected to node 4 with weight 45,
node 5 with weight 69, node 6 with weight 41.\nN-
ode 3 is connected to node 0 with weight 67, node
5 with weight 19, node 6 with weight 66.\nNode 4
is connected to node 2 with weight 45, node 5 with
weight 80, node 6 with weight 22.\nNode 5 is con-
nected to node 0 with weight 27, node 2 with weight
69, node 3 with weight 19, node 4 with weight 8§0.\nN-
ode 6 is connected to node 1 with weight 33, node
2 with weight 41, node 3 with weight 66, node 4
with weight 22.\nNode 7 is connected to node 0 with
weight 64.\nQ: What is the shortest path between node
0 and node 4, and what is the length of the shortest
path?\nA:

Some possible paths
from node 0 to node 4
are\n) > 3 > 5 > 4
with a total weight of 67
+ 19 + 80 = 166.\n0 ->
1 -> 6 -> 4 with a total
weight of 78 + 33 + 22
=133\0->5->2->4
with a total weight of 27
+ 69 + 45 = 141.\n0 ->
3 -> 6 -> 4 with a total
weight of 67 + 66 + 22 =
155.\nThe answer is 133.

Some possible paths
from node O to node 4
are\n0 -> 3 > 5 > 4
with a total weight of 67
+19+80=166.\n0 ->5
-> 4 with a total weight
of 27 + 80 = 107.\n0 ->
7 -> 6 -> 4 with a total
weight of 64 + 33 +22 =
119.\nThe answer is 107.

Floats

The following paragraph describes an undirected
graph with weights.\nNode 0 is connected to node 1
with weight 2.2, node 3 with weight 2.0, node 5 with
weight 2.0, node 7 with weight 6.0.\nNode 1 is con-
nected to node 0 with weight 2.2, node 6 with weight
3.5\nNode 2 is connected to node 4 with weight 6.4,
node 5 with weight 7.5, node 6 with weight 2.8.\nN-
ode 3 is connected to node 0 with weight 2.0, node
5 with weight 6.7, node 6 with weight 3.4.\nNode
4 is connected to node 2 with weight 6.4, node 5
with weight 5.4, node 6 with weight 9.1.\nNode 5
is connected to node 0 with weight 2.0, node 2 with
weight 7.5, node 3 with weight 6.7, node 4 with weight
5.4.\nNode 6 is connected to node 1 with weight 3.5,
node 2 with weight 2.8, node 3 with weight 3.4, node
4 with weight 9.1.\nNode 7 is connected to node 0
with weight 6.0.\nQ: What is the shortest path be-
tween node 0 and node 4, and what is the length of
the shortest path?\nA:

Some possible paths
from node O to node 4
are\n0 -> 3 > 5 >4
with a total weight of 2.0
+6.7+54=14.1\n0 ->
1 -> 6 -> 4 with a total
weight of 2.2 +3.5 + 9.1
=148\n0->3->6->4
with a total weight of 2.0
+3.4+9.1=14.5\n0 ->
5 -> 2 -> 4 with a total
weight of 2.0+ 7.5+ 6.4
=159\n0->3->6->2
-> 4 with a total weight
of 20 +34 +28+64
= 14.6.\nThe answer is

14.1. X

Some possible paths
from node O to node 4
are\n0 -> 3 > 5 >4
with a total weight of 2.0
+6.7+54=14.1\n0 ->
5 ->4 with a total weight
of 2.0 + 5.4 =7.4\nThe
answer is 7.4. v/

Table 11: Qualitative results for numerical pattern. For both models, there exists a performance gap when testing on

out-of-distribution data.

	Introduction
	NLGift Benchmark
	Graph reasoning patterns
	Generalization Metrics

	Experiment Settings
	Results
	Analysis
	Improving Graph Reasoning Generalization
	Related Work
	Conclusion
	Analysis (cont.)
	Experiment Details
	Graph reasoning problems
	Real-world Datasets
	Dataset Statistics
	Keywords for Semantic Patterns
	Computational Resources

