




“Please review the proposed answer and provide a

paragraph of feedback on its correctness. Feed-

back should be in ℓi.” to elicit f i.

• Finally, the LLM employs the multilingual
feedback to reason and make an abstain decision:
LLM(q,a, {f1,f2, · · · ,fk}) → {true, false}.
We specifically use the prompt “Based on the

feedback, is the proposed answer True or False?”

and abstain if the answer a is deemed false.

Language Selection Contrary to English-only
scenarios, it is often challenging to sample diverse
and high-quality feedback in one low-resource lan-
guage. We hypothesize that by generating feedback
in related languages to the language of the question
ℓ, LLMs could better identify internal knowledge
gaps and patch the blind spots with information
across varying cultures, perspectives, and more.
We experiment with four modes of selecting feed-
back languages {ℓ1, · · · , ℓk}.

• monolingual, native (MONO-NATIVE): all feed-
back are sampled in the native language of the
question: ℓ1 = · · · = ℓk = ℓ. This resembles the
previous English-only setting where questions
and feedback are in the same language (English).

• monolingual, English (MONO-ENGLISH): re-
gardless of the language of the question, all feed-
back are sampled in English: ℓ1 = · · · = ℓk =
English. This is because English is the highest-
resource language and is often used as the source
language in cross-lingual transfer (Conneau et al.,
2018; Conneau and Lample, 2019; Hu et al.,
2020; Wang et al., 2020b).

• multilingual, random (MULTI-RANDOM): this
is a control setting where we employ multiple
languages for feedback generation, but the lan-
guages are randomly selected from a language
pool L: ℓi = random_choice(L).

• multilingual, related (MULTI-RELATED): we
propose to employ languages related to the lan-
guage of the question ℓ for feedback generation.
Concretely, we employ Lang2vec (Littell et al.,
2017) to obtain the vector representation of a lan-
guage va

ℓ
in a linguistic attribute a ∈ A.2 We

define the distance between a pair of languages

2Six attributes are considered in Lang2vec: syntactic, geo-
graphic, phonological, genetic, inventory, and featural.

as an average of distances across attributes:

dist(ℓ, ℓ′) =
1

|A|
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∥va
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∥

The k languages with the least distance to
ℓ are then selected for feedback generation:
{ℓ1, · · · , ℓk} = argmin-kℓ′ dist(ℓ, ℓ

′). We em-
ploy k = 3 multilingual feedback by default.

3 Experiment Settings

Models We evaluate existing approaches and the
four proposed monolingual/multilingual feedback
strategies with three LLMs: Aya-13B, a specifically
multilingual instruction-tuned model, ChatGPT

and GPT-4, two general-purpose black-box LLMs.
We employ greedy decoding for QA and making an
abstain decision, and employ a temperature of 0.7
when sampling repeatedly (e.g., consistency-based
baselines and feedback generation).

Datasets We evaluate with the Multilingual
MMLU (M-MMLU) and Hellaswag (M-
Hellaswag) datasets (Lai et al., 2023), featuring
encyclopedic and commonsense knowledge.
Originally in English, these QA problems were
translated into 26 other languages through machine
translation. These languages are characterized
as 8 high-resource languages, 11 mid-resource
languages, and 7 low-resource languages based
on their proportion in pretraining data.3 We also
present evaluation with Belebele (Bandarkar et al.,
2023) in Appendix A, a multilingual reading
comprehension dataset. For the three datasets,
we create random splits with 200 instances for
validation and 800 for test, with minor variation
across languages due to data availability.

Baselines We compare with nine abstain base-
lines that could be adapted in multilingual set-
tings: calibration-based PROBS (token probabil-
ities), TEMP (Jiang et al., 2021), ASK CALI. (Tian
et al., 2023); training-based INSTRUCT (Ouyang
et al., 2022); prompting-based REFLECT (Ka-
davath et al., 2022), MOREINFO (Feng et al.,
2023), BACKTRANS (Edunov et al., 2018); and
consistency-based approaches SCTHRES. (Wang
et al., 2022), CONFLICT (Feng et al., 2024). More
details about the baselines are in Appendix B.

3Full language list in Appendix B.
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Method
M-MMLU M-Hellaswag

Avg-H bn ta ne ml mr te kn Avg-L Avg-H bn ta ne ml mr te kn Avg-L

AYA-13B

PROBS .567 .551 .521 .519 .542 .564 .524 .574 .542 .626 .597 .567 .555 .547 .513 .560 .580 .560
TEMP .547 .515 .439 .485 .526 .547 .518 .432 .495 .614 .610 .556 .543 .489 .559 .527 .556 .549
ASK CALI. .613 .503 .494 .476 .474 .492 .490 .460 .486 .512 .510 .489 .508 .466 .496 .514 .490 .496
INSTRUCT .539 .441 .348 .412 .362 .417 .426 .419 .404 .559 .597 .421 .510 .333 .481 .442 .480 .466
REFLECT .410 .347 .300 .339 .336 .357 .335 .347 .337 .615 .489 .357 .448 .312 .437 .404 .426 .410
MOREINFO .409 .348 .299 .350 .357 .358 .337 .368 .345 .615 .497 .360 .444 .325 .441 .393 .413 .410
BACKTRANS. .450 .421 .333 .453 .346 .354 .411 .411 .390 .542 .571 .393 .484 .300 .487 .442 .474 .450
SCTHRES. .609 .618 .614 .609 .610 .600 .584 .610 .607 .532 .532 .443 .577 .543 .572 .589 .520 .539
CONFLICT .564 .567 .581 .568 .521 .568 .561 .582 .564 .536 .520 .546 .514 .559 .548 .553 .544 .540

MONO-NATIVE .512 .580 .515 .604 .529 .576 .533 .520 .551 .552 .578 .479 .452 .467 .481 .524 .526 .501
MONO-ENGLISH .611 .611 .607 .649 .460 .583 .594 .688 .599 .581 .513 .514 .503 .513 .506 .565 .572 .527
MULTI-RANDOM .540 .597 .615 .561 .524 .549 .628 .605 .583 .481 .403 .650 .497 .627 .565 .565 .553 .551
MULTI-RELATED .631 .621 .704 .595 .661 .590 .643 .628 .635 .603 .468 .636 .542 .693 .578 .558 .566 .577

GPT-4

ASK CALI. .432 .421 .404 .500 .598 .444 .450 .589 .487 .536 .342 .307 .461 .393 .452 .376 .304 .376
INSTRUCT .789 .566 .363 .493 .386 .556 .481 .465 .473 .656 .552 .186 .432 .160 .435 .272 .270 .330
REFLECT .686 .655 .585 .649 .528 .597 .519 .589 .589 .658 .545 .229 .561 .347 .571 .483 .408 .449
MOREINFO .694 .572 .711 .588 .677 .611 .558 .612 .619 .386 .461 .486 .555 .507 .584 .469 .543 .515
BACKTRANS. .764 .634 .563 .696 .535 .660 .620 .636 .621 .538 .522 .576 .564 .677 .558 .555 .582 .576
SCTHRES. .735 .541 .544 .596 .604 .650 .605 .598 .591 .759 .508 .679 .497 .673 .508 .528 .570 .566
CONFLICT .730 .555 .641 .589 .561 .629 .559 .590 .589 .639 .488 .593 .503 .673 .501 .535 .557 .550

MONO-NATIVE .728 .655 .548 .642 .567 .660 .589 .628 .613 .708 .558 .371 .665 .307 .597 .401 .447 .478
MONO-ENGLISH .789 .669 .541 .703 .543 .653 .550 .659 .617 .737 .584 .200 .613 .260 .526 .340 .421 .421
MULTI-RANDOM .698 .710 .570 .655 .567 .681 .581 .651 .631 .714 .532 .300 .606 .380 .532 .408 .441 .457
MULTI-RELATED .785 .752 .659 .730 .638 .674 .636 .659 .678 .722 .532 .543 .706 .647 .610 .531 .572 .592

Table 1: Performance of calibration, training, prompting, consistency, and our proposed feedback-based approaches
on two LLMs and two multilingual datasets. We employ the Abstain Accuracy metric, Avg-H and Avg-L denote
average performance for high and low-resource languages, while we additionally present performance for the seven
low-resource languages (Bengali, Tamil, Nepali, Malayalam, Marathi, Telugu, and Kannada). Best performance in
bold and second-best in underline. Baselines that rely on token probabilities (e.g., Probs) are not compatible with
GPT-4. MULTI-RELATED achieves the best average performance in low-resource languages across all models

and datasets, improving over baselines by up to 9.2%.

Evaluation Metrics We use the Abstain Ac-
curacy metric (A-Acc) proposed in Feng et al.
(2024): LLMs should abstain when it would pro-
vide an incorrect answer and should not abstain
when it would provide a correct answer, concretely
A-Acc = TP+TN

TP+TN+FP+FN
and TP indicates the

LLM should abstain and did. We additionally re-
port other AbstainQA metrics (Reliable Accuracy,
Effective Reliability) in Appendix A.

4 Results

We present the abstain accuracy results with two
LLMs on two multilingual datasets in Table 1.

MULTI-RELATED achieves state-of-the-art per-

formance. MULTI-RELATED achieves the high-
est average performance on low-resource languages
(Avg-L) across all four model and dataset set-
tings, improving over the strongest baseline by
4.9% on average. Out of the 7 low-resource lan-

guages, MULTI-RELATED achieves the best and top-
2 performance in 3.25 and 4.75 languages on aver-
age. This improvement in low-resource languages
comes with on-par performance in high-resource
languages (Avg-H), outperforming baselines in
81% of the times across four (model, dataset) set-
tings. This indicates that by generating and re-
flecting on multilingual feedback from related lan-
guages, LLMs greatly improve in identifying inher-
ent knowledge gaps across languages.

Existing approaches greatly drop beyond high-

resource languages. Ask for Calibration (Tian
et al., 2023), an approach to solicit LLM confi-
dence scores verbally, witness a 12.7% drop from
high to low-resource languages (0.613 → 0.486) on
MMLU using AYA-13B. While it could generate
meaningful confidence scores between 0 and 1 for
high-resource languages, it collapses and repeat-
edly generate the same number (e.g., 0.8) for al-
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most all questions in low-resource languages. Sim-
ilar performance gaps and failure modes could be
observed for previously strong approaches in En-
glish such as Instruction Tuning (35.3% drop, on
average), Self-Reflect (33.3%), and SCthreshold
(12.2%). In comparison, MULT-RELATED has a
smaller drop of 8.5%: we further quantify the fair-
ness of abstain strategies in Section 5.

Abstaining is a language-specific problem. Out
of the seven low-resource languages, we observe
that Tamil (ta) and Malayalam (ml) are consistently
the most challenging languages across models,
datasets, and approaches: an average performance
of 0.484 and 0.492 is achieved on the two lan-
guages, while the global average for low-resource
languages is 0.520. This could be attributed to their
low representation in LLM pretraining data (Lai
et al., 2023) and thus lower utility, meaning that
there is no one-size-fits-all solution for abstaining
across multilingual contexts and robust strategies
should be language-specific. MULTI-RELATED

takes linguistic knowledge into account by employ-
ing related languages for feedback generation, suc-
cessfully achieving the best Avg-L performance
across all models and datasets. We further study
the utility of language relatedness in Section 5.

AYA-13B shows smaller gaps than GPT-4.

While the performance of MULTI-RELATED is
higher on GPT-4, the gap between low and high-
resource languages is smaller with AYA-13B (1.7%
vs. 16.9%). Since MULTI-RELATED specifically
relies on generating and reasoning in multilin-
gual contexts, the explicitly multilingual AYA-13B
would be better than the general-purpose GPT-4 to
this end. This motivates a potential collaboration
between models: using a stronger general-purpose
LLM for QA and a smaller but explicitly multi-
lingual LLM for feedback generation. We further
explore this in Section 5.

5 Analysis

MULTI-RELATED is more equitable. While we
primarily focused on the performance gaps be-
tween high and low-resource languages in Section
4, measuring the fairness of a multilingual system
goes beyond performance averages. Concretely, we
follow Song et al. (2023) to measure utility and eq-
uity, indicating how well multilingual approaches
serve diverse language speakers and performance

Method Demo. (M1, ↑) Ling. (M0, ↑) Equity (G, ↓)

PROBS 0.5613 0.5632 0.0319
ASK CALI. 0.5976 0.5784 0.0488
INSTRUCT 0.4514 0.4280 0.0477
REFLECT 0.3983 0.3877 0.0460
BACKTRANS. 0.4342 0.4261 0.0517
SCTHRES. 0.5974 0.5916 0.0340
CONFLICT 0.5698 0.5630 0.0369

MONO-NATIVE 0.5181 0.5318 0.0472
MONO-ENGLISH 0.6038 0.5651 0.0564
MULTI-RANDOM 0.5442 0.5528 0.0390
MULTI-RELATED 0.6149 0.6027 0.0278

Table 2: Utility and equity metrics of abstain strate-
gies, where ↑/↓ indicates that higher/lower values are
desirable. Best performance in bold and second-best in
underline. MULTI-RELATED offers a fairer abstain

strategy with higher utility and lower Gini coeffi-

cient.

disparity across languages. For utility:

Mτ =
∑

ℓ∈L

dℓ
τ · uℓ, dℓ =

nℓ
∑

ℓ∈L nℓ

where uℓ denotes the utility/performance on lan-
guage ℓ, nℓ denotes the number of native speak-
ers, the exponential τ = 1 indicates demographic

weighted utility and τ = 0 indicates lingustic

weighted utility where all languages are treated
as equals. For equity, performance on various lan-
guages are sorted in non-decreasing order (ui ≤
ui+1) and the Gini coefficient is calculated:

G =
1

| L |

(

| L | +1− 2

∑|L|
i=1

(| L | +1− i)ui
∑|L|

i=1
ui

)

where | L | indicates the total number of languages.
The range of G is 0 to 1 and more equitable abstain
strategies should have lower G values.

We present the demographic utility, linguistic
utility, and equity metrics in Table 2. MULTI-
RELATED outperforms baselines on both utility
modes, while being more equitable across lan-
guages, evident in the 12.9% reduction in Gini Co-
efficient. On the contrary, MONO-ENGLISH have
on-par demographic utility but worse linguistic util-
ity and equity, indicating that generated feedback
in English is unevenly helpful to other languages,
whereas low-resource languages distant from En-
glish benefit much less.

MULTI-RELATED offers relevant, informative,

and conflicting pieces of feedback. To better
understand the quality and role of the generated
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2023a,b). A diverse range of models (Lin et al.,
2022b; Muennighoff et al., 2023; Lai et al., 2023;
Üstün et al., 2024), datasets (Artetxe et al., 2020;
Clark et al., 2020; Longpre et al., 2021; Chalkidis
et al., 2022; Gehrmann et al., 2022; Ebrahimi et al.,
2022; Li et al., 2022; Asai et al., 2023; Ogundepo
et al., 2023; Ahuja et al., 2023; Wang et al., 2024),
and studies on multilingual transfer (Lin et al.,
2019a; Pires et al., 2019; Wu and Dredze, 2019;
Karthikeyan et al., 2019; Wu et al., 2022; Fujinuma
et al., 2022; Üstün et al., 2022; Schmidt et al., 2022;
Asai et al., 2023; Philippy et al., 2023; Tanwar et al.,
2023; Reusens et al., 2023; Li et al., 2024b; Gao
et al., 2024) also contribute to the improvement of
LLM factuality and utility beyond English. In this
work, we present the first study on LLM abstain-
ing in multilingual contexts and make an important
step toward improving the reliability of multilin-
gual LLMs and mitigating hallucinations.

7 Conclusion

We propose to improve the reliability of multilin-
gual LLMs by abstaining via multilingual feedback,
where LLMs generate feedback to their proposed
answer in related languages for self-reflection. Ex-
tensive experiments demonstrate that multilingual

feedback achieves up to 9.2% improvement against
baselines across models and datasets, while pre-
senting a more equitable solution to multilingual
abstention. Further analysis reveals that abstention
is a language-specific problem, that multilingual
feedback in related languages both improves the
accuracy of abstention and calibrates the fairness
across higher- and lower-resource languages, and
that cultural relatedness is an important factor in
the utility and equity of abstention, highlighting
that multilingual modeling is not only a technical
problem but also a social-oriented one.

Limitations

Our study of teaching LLMs to abstain focuses
on the knowledge perspective, i.e., LLMs should
abstain when their parametric knowledge is insuffi-
cient to provide a correct answer. However, the ab-
stain problem also has implications from the safety

perspective (Huang et al., 2023b; Liu et al., 2023b).
We envision future methodologies and evaluations
that tackle both directions of the abstain problem
across diverse language contexts.

Our approach, teaching LLMs to abstain via
multilingual feedback, involves sampling multiple

feedback from related languages to promote self-
reflection. This sampling introduces minor random-
ness in LLMs’ abstain decisions (Appendix A). In
addition, it would incur greater inference costs than
the most simple prompting approaches, but is also
not the most expensive (Feng et al., 2024). When
a black-box LLM with hundreds of billions of pa-
rameters is served behind an API call, our approach
enables the incorporation of one extra multilingual
7B model for stronger reliability (Table 4) and does
not add much to the overall cost.

Ethics Statement

While abstaining in multilingual contexts is a tech-
nical problem, we discover the role of culture in
AbstainQA and that west-centric LLMs (Naous
et al., 2023; Li et al., 2024a; Rao et al., 2024) are
hindering progress on equitable LLM abstention
(§5). This encourages research at the intersection of
multilingualism and culture (Choenni et al., 2024).
We envision future work on not only proposing
technical solutions to the abstain problem, but also
improving the representation of diverse values, per-
spectives, and cultures in LLMs.
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A Analysis (cont.)

MULTI-RELATED helps abstaining in cross-

lingual retrieval. When retrieval corpora are not
readily available in low-resource languages, cross-
lingual retrieval (Asai et al., 2021; Shen et al., 2022;
Huang et al., 2023c; Wieting et al., 2023; Lin et al.,
2023; Thakur et al., 2024) is often necessary for
retrieval-augmented LLMs (Lewis et al., 2020; Shi
et al., 2024; Yasunaga et al., 2023; Xu et al., 2024),
where user queries are translated to high-resource
languages and retrieval is performed with that lan-
guage. We investigate whether our multilingual
feedback approach works in this setting: we use
English Wikipedia for retrieval 5 and prepend back-
translated paragraphs before the query from the
seven low-resource languages. We evaluate various
abstain approaches with CHATGPT and present
performance in Figure 7. Our proposed multilin-

gual feedback approach outperforms baselines for
six of the seven low-resource languages, by 6.9%
on average. This indicates that our Multi-related

approach could also improve multilingual LLM
reliability in retrieval-augmented settings.

FP and FN False positives refer to cases where
the LLM should be able to provide the correct an-
swer but abstained, while false negatives are cases
where the LLM did not abstain but generated an
incorrect answer. We present the false positive and
false negative rates of MULTI-RELATED in Figure
8: we find that on high-resource languages, LLMs
tend to be more “confident” and the FN is usually
higher; for low-resource languages, LLMs tend to
be more “conservative” and the FP is usually higher.
We argue that having a high FP for low-resource
languages is desirable since LLM has diminishing
factuality on the long tail of languages, thus LLMs
should be more cautious and abstain more.

Correlation between QA Performance and Ab-

stain Performance We present the question an-
swering accuracy as well as the abstain accuracy
across various languages in Figure 9. We find that
there is no lock-step synchronization between the
two metrics, indicating that abstaining is an inde-
pendent problem to question answering that needs
further studies.

Another Dataset: Belebele Belebele (Bandarkar
et al., 2023) is a multilingual reading compre-
hensive benchmark featuring parallel questions

5We retrieve Wikipedia with the WikiSearch API.

Method Avg-H Avg-M Avg-L

PROBS 0.8028 0.7550 0.3604
TEMP 0.5988 0.5583 0.4331
ASK CALI. 0.4370 0.4336 0.6163
INSTRUCT 0.8036 0.7534 0.3704
REFLECT 0.5814 0.5231 0.4429
MOREINFO 0.7888 0.7430 0.3814
BACKTRANS. 0.6711 0.6366 0.4396
SCTHRES. 0.8136 0.7688 0.4634
CONFLICT 0.7072 0.6926 0.5741

MONO-NATIVE 0.6955 0.6774 0.4784
MONO-ENGLISH 0.6048 0.5891 0.6009
MULTI-RANDOM 0.7161 0.6807 0.4804
MULTI-RELATED 0.7906 0.7445 0.6386

Table 5: Performance averages for high, mid, and low-
resource languages on Belebele (Avg-H, -M, and -L).

across 122 languages and variants. We evalu-
ate baselines and our feedback-based approaches
on Belebele and present the results in Table 5.
MULTI-RELATED achieves the best performance
on low-resource language, while falling behind the
strongest baselines in this reading comprehension
setting. This motivates using different methodolo-
gies for abstention in different language contexts.

Working Examples We conduct qualitative anal-
ysis to validate the generated feedback and abstain
decisions. We specifically present several working
examples in Tables 14, 15, and 16.

Standard Deviation Since MULTI-RELATED

samples feedback from multiple languages, this
sampling introduces randomness in the feedback
content and potentially different abstain decisions.
We re-run MULTI-RELATED three times with tem-
perature τ = 0.7, and we find that the standard
deviation across runs is 0.0227, 0.0198, and 0.0086
for high, mid, and low-resource languages, indicat-
ing that the abstain performance is largely stable.

AbstainECE Aside from a binary decision of
abstaining or answering, the probabilities of the
abstain decision token (True/False) could be em-
ployed as an indicator for probabilistic abstention.
We present the AbstainECE metric (Feng et al.,
2024) in Table 6, which demonstrates that MONO-
ENGLISH and MULTI-RELATED are stronger while
the latter is best for low-resource languages. We
envision improving LLM calibration with multilin-
gual contexts could also help.

Number of feedback We employ from one to
five pieces of feedback in MULTI-RANDOM and
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Reliable Accuracy Effective Reliability

Avg-H Avg-M Avg-L Avg-H Avg-M Avg-L

PROBS 0.4772 0.4800 0.3868 -0.0269 -0.0232 -0.1220
TEMP 0.4635 0.4651 0.3694 -0.0472 -0.0442 -0.1705
ASK CAL. 0.5297 0.5207 0.4012 0.0209 0.0143 -0.1069
INSTRUCT 0.4255 0.4256 0.3477 -0.1412 -0.1404 -0.2538
REFLECT 0.4069 0.4019 0.3364 -0.1843 -0.1944 -0.3260
BACKTRANS. 0.4277 0.4198 0.3517 -0.1292 -0.1445 -0.2648
SCTHRES. 0.5389 0.5254 0.3878 0.0260 0.0172 -0.0547
CONFLICT 0.4585 0.4559 0.3636 -0.0316 -0.0338 -0.1004

MONO-NATIVE 0.4333 0.4437 0.3973 -0.0705 -0.0604 -0.0821
MONO-ENGLISH 0.4796 0.4594 0.3884 -0.0242 -0.0406 -0.0695
MULTI-RANDOM 0.4565 0.4376 0.3640 -0.0344 -0.0416 -0.0656
MULTI-RELATED 0.5402 0.4973 0.4474 0.0279 -0.0077 -0.0289

Table 9: Other AbstainQA metrics with AYA-13B and MMLU.

the question is also employed to generate feedback;
3) lang var., where the feedback content stays the
same but translated to different related languages.
Table 8 demonstrates that the default setting often
works best, while including the original language
for feedback generation could be beneficial for cer-
tain cases.

Another Interpretation of Abstain Overlap

For Figure 5, another way is to compare the propor-
tion of consensus, where LLMs abstain for zero or
all three of languages. In this definition, the same
conclusion still holds: the first control group has
23.1% vs. 20.9%, while the second control group
has 32.1% vs. 16.2%.

Randomness in Sampling Feedback We ran-
domly sample feedback sets with temperature of 1
and repeat for 3 runs. If the LLM abstains/answers
in all 3 runs, then it is deemed consistent; 1:2 and
2:1 scenarios are then deemed as inconsistent. We
present results in Table 10, showing that learning
to abstain from multilingual feedback is largely
consistent.

bn ml mr ne ta te

MMLU, consistent 103 101 99 117 114 95
MMLU, inconsistent 42 26 35 31 21 34
consistent rate % 71.03 79.53 73.88 79.05 84.44 73.64
Hellaswag, consistent 115 136 115 131 122 122
Hellaswag, inconsistent 39 14 39 24 18 25
consistent rate % 74.68 90.67 74.68 84.52 87.14 82.99

Table 10: Consistency when repeating the feedback
sampling for three times.

B Experiment Details

Dataset Details We employ M-MMLU, M-
Hellaswag (Lai et al., 2023), and Belebele (Ban-
darkar et al., 2023) as evaluations of multilingual
AbstainQA. Specifically, we adopt 26 languages
beyond English: 8 high-resource (Russian, ru; Ger-
man, de; Chinese, zh; French, fr; Spanish, es; Ital-
ian, it; Dutch, nl; Vietnamese, vi), 11 mid-resource
languages (Indonesian, id; Arabic, ar; Hungar-
ian, hu; Romanian, ro; Danish, da; Slovak, sk;
Ukrainian, uk; Catalan, ca; Serbian, sr; Croatian,
hr; Hindi, hi), and 7 low-resource languages (Ben-
gali, bn; Tamil, ta; Nepali, ne; Malayalam, ml;
Marathi, Mr; Telugu, te; Kannada, kn). We follow
the definition of language resourceness based on
pretraining data frequency in Lai et al. (2023). We
randomly sample 200 questions for validation and
800 questions for test from each language, with
minor variation across languages based on data
availability.

Model Details We employ the
“CohereForAI/aya-101” model checkpoint
on Huggingface for AYA-13B, and the Azure
OpenAI API checkpoint of “gpt4” for GPT-4,
and the “GPT-3.5-TURBO-INSTRUCT” model
checkpoint on OpenAI API for CHATGPT.

Baseline Details We refer readers to Feng et al.
(2024) for a complete description of baselines. For
the additional BACKTRANSLATION baseline, we
translate the question to English and make an ab-
stain decision in English, then use that abstain de-
cision for other languages.
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GPT-4 Evaluation Details For quality evalua-
tion, we employ “Question: <question> Proposed

Answer: <answer> Feedback 1: <feedback> Feed-

back 2: <feedback> Which feedback is more rele-

vant to the question?” and “Question: <question>

Proposed Answer: <answer> Feedback 1: <feed-

back> Feedback 2: <feedback> Which feedback

is more informative?”. For role evaluation, we
employ “Question: <question> Proposed Answer:

<answer> Feedback 1: <feedback> Feedback 2:

<feedback> Feedback 3: <feedback >What is the

relationship among the three feedbacks? A. simi-

lar B. complementary C. conflicting D. unrelated

Relationship:”.

Implementation Details We present the related
languages employed for feedback generation in the
Language Relatedness study (§5) in Tables 11, 12,
and 13.
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default:{ "en": ["German", "Dutch", "French"], "ru": ["Ukrainian", "Romanian", "Catalan"], "de":
["Dutch", "English", "French"], "zh": ["Arabic", "Slovak", "Danish"], "fr": ["Catalan", "German",
"Spanish"], "es": ["Catalan", "Romanian", "French"], "it": ["Catalan", "Romanian", "Ukrainian"], "nl":
["German", "Italian", "Ukrainian"], "vi": ["Indonesian", "English", "Bengali"], "id": ["Vietnamese",
"Catalan", "Russian"], "ar": ["Chinese", "Slovak", "Danish"], "hu": ["Romanian", "German", "French"],
"ro": ["Catalan", "Italian", "Spanish"], "da": ["Slovak", "Dutch", "Ukrainian"], "sk": ["Chinese", "Ara-
bic", "Danish"], "uk": ["Russian", "Italian", "Croatian"], "ca": ["Romanian", "Spanish", "Italian"], "sr":
["Slovak", "Danish", "Croatian"], "hr": ["Ukrainian", "Italian", "Dutch"], "hi": ["Bengali", "Talugu",
"Marathi"], "bn": ["Hindi", "Telugu", "Nepali"], "ta": ["Malayalam", "Marathi", "Kannada"], "ne":
["Kanaada", "Telugu", "Hindi"], "ml": ["Tamil", "Marathi", "Kannada"], "mr": ["Tamil", "Malayalam",
"Hindi"], "te": ["Kannada", "Tamil", "Nepali"], "kn": ["Telugu", "Malaayalam", "Tamil"] }

syntactic: "en": ["Spanish", "German", "French"], "ru": ["Ukrainian", "German", "Spanish"], "de":
["Dutch", "English", "Russian"], "zh": ["Arabic", "Slovak", "Hungarian"], "fr": ["Spanish", "English",
"German"], "es": ["English", "French", "Russian"], "it": ["Catalan", "Romanian", "Dutch"], "nl": ["Ger-
man", "Italian", "Danish"], "vi": ["Indonesian", "English", "French"], "id": ["Vietnamese", "English",
"Italian"], "ar": ["Chinese", "Slovak", "Hungarian"], "hu": ["Russian", "Italian", "Romanian"], "ro":
["Italian", "Ukrainian", "Spanish"], "da": ["Dutch", "German", "French"], "sk": ["Chinese", "Arabic",
"Hungarian"], "uk": ["Russian", "Italian", "Romanian"], "ca": ["Italian", "Dutch", "Romanian"], "sr":
["Catalan", "Ukrainian", "German"], "hr": ["Serbian", "Vietnamese", "Danish"], "hi": ["Kannada",
"Russian", "Ukrainian"], "bn": ["Marathi", "Hindi", "Tamil"], "ta": ["Telugu", "Kannada", "Marathi"],
"ne": ["Kannada", "Telugu", "Hindi"], "ml": ["Telugu", "Kannada", "Tamil"], "mr": ["Tamil", "Ben-
gali", "Telugu"], "te": ["Tamil", "Nepali", "Kannada"], "kn": ["Tamil", "Nepali", "Hindi"],

featural: "en": ["German", "Russian", "French"], "ru": ["Romanian", "Ukrainian", "English"], "de":
["English", "French", "Dutch"], "zh": ["Arabic", "Slovak", "English"], "fr": ["German", "English",
"Russian"], "es": ["English", "Russian", "French"], "it": ["Dutch", "Romanian", "Ukrainian"], "nl":
["German", "Italian", "English"], "vi": ["Indonesian", "English", "French"], "id": ["Vietnamese",
"Catalan", "English"], "ar": ["Chinese", "Slovak", "English"], "hu": ["Rominian", "English", "Russian"],
"ro": ["Russian", "Italian", "Hungarian"], "da": ["Serbian", "English", "Russian"], "sk": ["Chinese",
"Arabic", "English"], "uk": ["Russian", "Italian", "Romanian"], "ca": ["Italian", "Dutch", "Romanian"],
"sr": ["Danish", "Russian", "Spanish"], "hr": ["Catalan", "English", "Russian"], "hi": ["Bengali",
"Nepali", "Telugu"], "bn": ["Hindi", "Nepali", "Telugu"], "ta": ["Malayalam", "Marathi", "Telugu"],
"ne": ["Hindi", "Bengali", "Marathi"], "ml": ["Tamil", "Marathi", "Kannada"], "mr": ["Tamil", "Nepali",
"Malayalam"], "te": ["Hindi", "Bengali", "Tamil"], "kn": ["Hindi", "Tamil", "Nepali"],

genetic: "en": ["German", "Dutch", "Danish"], "ru": ["Ukrainian", "Slovak", "Serbian"], "de": ["Dutch",
"English", "Danish"], "zh": ["English", "Russian", "German"], "fr": ["Spanish", "Catalan", "Italian"],
"es": ["Catalan", "Romanian", "French"], "it": ["Romanian", "Catalan", "Spanish"], "nl": ["German",
"English", "Danish"], "vi": ["English", "Russian", "German"], "id": ["English", "Russian", "German"],
"ar": ["English", "Russian", "German"], "hu": ["English", "Russian", "German"], "ro": ["Spanish", "Ital-
ian", "Catalan"], "da": ["German", "English", "Dutch"], "sk": ["Russian", "Ukrainian", "Serbian"], "uk":
["Russian", "Slovak", "Serbian"], "ca": ["Spanish", "Romanian", "Italian"], "sr": ["Croatian", "Rus-
sian", "Ukrainian"], "hr": ["Serbian", "Russian", "Slovak"], "hi": ["Bengali", "Marathi", "German"],
"bn": ["Hindi", "Marathi", "English"], "ta": ["Malayalam", "Kannada", "Telugu"], "ne": ["English",
"Russian", "German"], "ml": ["Tamil", "Kannada", "Telugu"], "mr": ["Hindi", "Bengali", "Russian"],
"te": ["Tamil", "Malayalam", "Kannada"], "kn": ["Malayalam", "Tamil", "Telugu"],

Table 11: Related languages across different method settings, part 1.
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geographic: "en": ["French", "Dutch", "Danish"], "ru": ["English", "German", "French"], "de":
["French", "Italian", "Dutch"], "zh": ["English", "Russian", "German"], "fr": ["English", "German",
"Spanish"], "es": ["French", "Catalan", "English"], "it": ["German", "French", "Hungarian"], "nl":
["English", "German", "French"], "vi": ["Indonesian", "Bengali", "Nepali"], "id": ["Vietnamese",
"Bengali", "Tamil"], "ar": ["English", "Russian", "German"], "hu": ["German", "Italian", "Roma-
nian"], "ro": ["German", "Italian", "Hungarian"], "da": ["English", "German", "French"], "sk": ["Ger-
man", "Italian", "Hungarian"], "uk": ["German", "Hungarian", "Romanian"], "ca": ["French", "Span-
ish", "Italian"], "sr": ["German", "Italian", "Hungarian"], "hr": ["German", "Italian", "Hungarian"],
"hi": ["Nepali", "Marathi", "Telugu"], "bn": ["Nepali", "Vietnamese", "Hindi"], "ta": ["Malayalam",
"Marathi", "Telugu"], "ne": ["Hindi", "Bengali", "Vietnamese"], "ml": ["Tamil", "Marathi", "Tel-
ugu"], "mr": ["Hindi", "Tamil", "Malayalam"], "te": ["Hindi", "Tamil", "Malayalam"], "kn": ["Tamil",
"Malayalam", "Marathi"],

inventory: "en": ["German", "Marathi", "Telugu"], "ru": ["Ukrainian", "Croatian", "Romanian"], "de":
["Dutch", "French", "English"], "zh": ["Arabic", "Danish", "Slovak"], "fr": ["Hungarian", "Dutch",
"German"], "es": ["Hungarian", "German", "Indonesian"], "it": ["Catalan", "Romanian", "Ukrainian"],
"nl": ["German", "French", "Hungarian"], "vi": ["English", "Dutch", "German"], "id": ["Catalan",
"Croatian", "Romanian"], "ar": ["Chinese", "Danish", "Slovak"], "hu": ["French", "Romanian", "Ital-
ian"], "ro": ["Ukranian", "Catalan", "Italian"], "da": ["Chinese", "Arabic", "Slovak"], "sk": ["Chinese",
"Arabic", "Danish"], "uk": ["Romanian", "Russian", "Italian"], "ca": ["Indonesian", "Italian", "Ro-
manian"], "sr": ["Chinese", "Arabic", "Danish"], "hr": ["Catalan", "Indonesian", "Hungarian"], "hi":
["Telugu", "Bengali", "Nepali"], "bn": ["Telugu", "Nepali", "Hindi"], "ta": ["Kannada", "Malay-
alam", "Marathi"], "ne": ["Marathi", "Bengali", "Kannada"], "ml": ["Kannada", "Marathi", "Tamil"],
"mr": ["Kannada", "Malayalam", "Nepali"], "te": ["Hindi", "Bengali", "Nepali"], "kn": ["Malayalam",
"Marathi", "Tamil"],

phonological: "en": ["Indonesian", "Russian", "Catalan"], "ru": ["Catalan", "Hungarian", "Hindi"], "de":
["French", "Hungarian", "English"], "zh": ["Italian", "Dutch", "Arabic"], "fr": ["German", "Hungarian",
"Hindi"], "es": ["English", "Russian", "Catalan"], "it": ["Chinese", "Dutch", "Arabic"], "nl": ["Chinese",
"Italian", "Arabic"], "vi": ["Indonesian", "English", "Russian"], "id": ["English", "Russian", "Catalan"],
"ar": ["Chinese", "Italian", "Dutch"], "hu": ["Russian", "Catalan", "German"], "ro": ["Russian",
"Catalan", "German"], "da": ["Chinese", "Italian", "Dutch"], "sk": ["Chinese", "Italian", "Dutch"],
"uk": ["Chinese", "Italian", "Dutch"], "ca": ["Russian", "Hungarian", "Hindi"], "sr": ["Spanish",
"Chinese", "Italian"], "hr": ["Chinese", "Italian", "Dutch"], "hi": ["Russian", "Catalan", "French"],
"bn": ["Telugu", "Kannada", "Russian"], "ta": ["Chinese", "Italian", "Dutch"], "ne": ["Romanian",
"Telugu", "Kannada"], "ml": ["Chinese", "Italian", "Dutch"], "mr": ["Chinese", "Italian", "Dutch"],
"te": ["Kannada", "Russian", "Catalan"], "kn": ["Kannada", "Russian", "Catalan"],

Table 12: Related languages across different method settings, part 2.
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WVS: "en": ["English", "English", "English"], "ru": ["Ukrainian", "Romanian", "Russian"], "de":
["German", "Dutch", "Danish"], "zh": ["Chinese", "Chinese", "Chinese"], "fr": ["French", "Slovak",
"Hungarian"], "es": ["French", "Slovak", "Hungarian"], "it": ["French", "Slovak", "Hungarian"], "nl":
["German", "Dutch", "Danish"], "vi": ["Vietnamese", "Vietnamese", "Vietnamese"], "id": ["Indone-
sian", "Indonesian", "Indonesian"], "ar": ["Arabic", "Hindi", "Bengali"], "hu": ["French", "Slovak",
"Hungarian"], "ro": ["Ukrainian", "Romanian", "Russian"], "da": ["German", "Dutch", "Danish"], "sk":
["French", "Slovak", "Hungarian"], "uk": ["Ukrainian", "Romanian", "Russian"], "ca": ["Catalan",
"Catalan", "Catalan"], "sr": ["Serbian", "Serbian", "Serbian"], "hr": ["French", "Slovak", "Hungarian"],
"hi": ["Arabic", "Hindi", "Bengali"], "bn": ["Arabic", "Hindi", "Bengali"], "ta": ["Arabic", "Hindi",
"Bengali"], "ne": ["Arabic", "Hindi", "Bengali"], "ml": ["Arabic", "Hindi", "Bengali"], "mr": ["Arabic",
"Hindi", "Bengali"], "te": ["Arabic", "Hindi", "Bengali"], "kn": ["Arabic", "Hindi", "Bengali"],

LLM-generated: "en": ["Frisian", "Dutch", "German"], "ru": ["Belarusian", "Ukrainian", "Rusyn"],
"de": ["Dutch", "Luxembourgish", "Yiddish"], "zh": ["Cantonese", "Shanghainese", "Hokkien"], "fr":
["Italian", "Spanish", "Catalan"], "es": ["Portuguese", "Catalan", "Italian"], "it": ["Sicilian", "Neapoli-
tan", "Tuscan"], "nl": ["Afrikaans", "Frisian", "German"], "vi": ["Muong", "Khmer", "Mon"], "id":
["Malay", "Minangkabau", "Javanese"], "ar": ["Hebrew", "Aramaic", "Amharic"], "hu": ["Finnish", "Es-
tonian", "Udmurt"], "ro": ["Italian", "Spanish", "French"], "da": ["Swedish", "Norwegian", "Icelandic"],
"sk": ["Czech", "Polish", "Slovene"], "uk": ["Russian", "Belarusian", "Rusyn"], "ca": ["Occitan",
"Spanish", "French"], "sr": ["Croatian", "Bosnian", "Montenegrin"], "hr": ["Serbian", "Bosnian",
"Montenegrin"], "hi": ["Urdu", "Punjabi", "Bengali"], "bn": ["Assamese", "Odia", "Maithili"], "ta":
["Kannada", "Telugu", "Malayalam"], "ne": ["Maithili", "Bhojpuri", "Awadhi"], "ml": ["Tamil", "Tulu",
"Kannada"], "mr": ["Konkani", "Sanskrit", "Gujarati"], "te": ["Kannada", "Tamil", "Malayalam"], "kn":
["Telugu", "Tamil", "Tulu"],

Table 13: Related languages across different method settings, part 3.
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