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Abstract

While existing alignment paradigms have been

integral in developing large language models

(LLMs), LLMs often learn an averaged hu-

man preference and struggle to model diverse

preferences across cultures, demographics, and

communities. We propose MODULAR PLU-

RALISM, a modular framework based on multi-

LLM collaboration for pluralistic alignment:

it “plugs into” a base LLM a pool of smaller

but specialized community LMs, where mod-

els collaborate in distinct modes to flexibility

support three modes of pluralism: Overton,

steerable, and distributional (Sorensen et al.,

2024b). MODULAR PLURALISM is uniquely

compatible with black-box LLMs and offers

the modular control of adding new commu-

nity LMs for previously underrepresented com-

munities. We evaluate MODULAR PLURAL-

ISM with six tasks and four datasets featur-

ing questions/instructions with value-laden and

perspective-informed responses. Extensive ex-

periments demonstrate that MODULAR PLU-

RALISM advances the three pluralism objec-

tives across six black-box and open-source

LLMs. Further analysis reveals that LLMs are

generally faithful to the inputs from smaller

community LLMs, allowing seamless patching

by adding a new community LM to better cover

previously underrepresented communities.1

1 Introduction

Alignment of large language models (LLMs) aims

to adapt models to reflect human values, inten-

tions, and preferences (Leike et al., 2018; Gabriel,

2020). However, human preferences are not a

monolith: norms, values, and priorities vary greatly

informed by community, culture, demographics,

ideology, and more (Eckert and McConnell-Ginet,

2013; Keeney and Keeney, 2009; Bai et al., 2022;

Casper et al., 2023; Sorensen et al., 2024a). The

1Code and data are publicly available at
https://github.com/BunsenFeng/modular_pluralism.

increasing ubiquity of LLMs necessitates them to

model and reflect pluralistic human values (e.g.,

pluralistic alignment (Sorensen et al., 2024b)), but

existing alignment procedures might actually harm

pluralism according to empirical and theoretical

studies (Santurkar et al., 2023; Durmus et al.,

2023; Chakraborty et al., 2024; Sorensen et al.,

2024b). Improvements in data composition (Kirk

et al., 2024), alignment objective (Chakraborty

et al., 2024), and modeling frameworks (Jang et al.,

2023) might produce more pluralistic models by re-

training or re-aligning LLMs. Nevertheless, some

of the most popular LLM services with the broadest

set of users are proprietary and feature black-box

LLMs (Achiam et al., 2023; Team et al., 2023),

whereas existing methods are not directly appli-

cable in black-box settings. In addition, when

one community, culture, or perspective is found to

be underrepresented after training/alignment com-

pleted, retraining or adapting LLMs to patch those

representation gaps is very expensive.

To this end, we propose MODULAR PLURAL-

ISM, a plug-and-play pluralistic alignment frame-

work with multi-LLM collaboration (Feng et al.,

2024). In MODULAR PLURALISM, an LLM that

only needs black-box access collaborates with a

pool of specialized community LMs, incorporating

values and perspectives across diverse communi-

ties through token-level interactions. Concretely,

we first train community LMs—language models

specialized to represent a certain community—by

finetuning existing LM checkpoints on community-

specific corpora. Depending on the type of plural-

ism (adopted from Sorensen et al., 2024b), MOD-

ULAR PLURALISM features three modes of multi-

LLM collaboration (Figure 1): (1) Overton plural-

ism, where LLMs should provide a range of rea-

sonable answers in the Overton window2 to a user

2The spectrum of ideas on public policy and social issues
considered acceptable or viable by the general public at a
given time. (OED, 2024)
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from news, social media, and more (Jiang et al.,

2022; Feng et al., 2023). Given a user query

q, instead of solely relying on LLM, the smaller

community LMs generate messages/comments first

mi = ci(q) and employed by the LLM for refer-

ence. Depending on the type of pluralism objective

(Sorensen et al., 2024b), MODULAR PLURALISM

features three modes of decoding-time collabora-

tion (Liu et al., 2021; Feng et al., 2024).

Overton Pluralism Overton pluralistic models

should reflect diverse values and perspectives in

response to user queries. To this end, all smaller

community LMs are employed to generate com-

ments {m1, · · · ,mk}. These comments are then

concatenated together along with the query q,

where the LLM serves as a multi-document sum-

marization system to synthesize diverse viewpoints

into a coherent response: response = LLM(q |
{m1, · · · ,mk}). Specifically, we employ the

prompt “Please comment on a given situation with

the help of the following passages.” for the LLM

to encourage faithful representation of diverse per-

spectives from community LMs.

Steerable Pluralism Steerable pluralistic mod-

els should be able to faithfully steer towards cer-

tain values/attributes when requested to in the user

query, respecting the agency of diverse LLM user

populations. The role of the LLM in this case

is to select a community LM that best reflects

the priorities of the given attribute. Concretely,

given the diverse messages from community LMs

{m1, · · · ,mk} about the query q, the LLM se-

lect one message based on the attribute a ∈ A:

m = select({m1, · · · ,mk} | LLM, q, a). We

use the prompt “Which of the following comments

best reflect <attribute>?” for the selection. We

expect LLMs to pick different community LM

messages based on different attributes in A and

generate a response conditioned on that message:

response = LLM(q | m, a).

Distributional Pluralism Distributional plural-

istic models should produce response distributions

that correlate with the real-world distribution of

human populations. To this end the LLM gen-

erates multiple answer probability distributions

{d1, · · · ,dk} separately conditioned on each com-

munity LM messages: di = LLM(q | mi). These

community-specific distributions are then aggre-

gated: d =
∑

k

i=1
widi, where wi represents com-

munity priors (e.g., the proportion of registered

Democrats, Republicans, and independents in the

United States) and sums up to 1. In this way, the

LLM produces diverse distributions conditioned on

each community LM and are jointly considered to

reflect real-world populations.

3 Experimental Settings

Models We employ six open and propri-

etary LLMs for model’s pluralism evaluation:

LLAMA2-13B (Touvron et al., 2023), CHATGPT

(Achiam et al., 2023), LLAMA2-7B, LLAMA2-

70B, LLAMA3-8B, and GEMMA-7B (Team et al.,

2024). We mainly focus on LLAMA2-13B and

CHATGPT in the main paper to cover large and

small, black-box and open LLMs: we present re-

sults for other models in Appendix A. For each

LLM, we employ both unaligned base models and

their aligned versions.

Implementation We employ Mistral-7B-

Instruct-v0.2 (Jiang et al., 2023) as the initial

checkpoint for community LMs and further

finetune them on community-specific corpora with

LoRA (Hu et al., 2021) parameter-efficient training.

By default, we employ the six perspective-laden

corpora in Feng et al. (2023) as community adap-

tation targets, featuring left/center/right-learning

news and social media documents, while we

further explore other community LM settings in

Section 5. This results in six community LMs

tailored towards different perspectives to be

employed in collaboration with the LLMs.

Baselines We compare MODULAR PLURALISM

with three baselines on various LLMs: 1) vanilla,

where the LLM is directly employed for prompt-

ing; 2) prompting, where we induce pluralism

through prompting by prepending instructions such

as “Make sure your response reflects diverse values

and perspectives.”; 3) mixture-of-experts (MoE),

where user queries are routed to the most fitting

community LM. The selected community LM then

generates comments to the user query, which are

prepended to the query and provided to the LLM

for response generation.

Tasks and Datasets We employ six tasks with

four datasets in English to evaluate the three modes

of pluralistic alignment.

1. Overton w/ NLI evaluation. We employ the

Value Kaleidoscope (VK) dataset (Sorensen

et al., 2024a), a repository of situations (e.g.,

taking down 4chan) and associated values,
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human feedback and preferences, then employing

an RL algorithm such as PPO (Schulman et al.,

2017) to help learn LLMs that maximize such re-

wards (Christiano et al., 2017; Ouyang et al., 2022).

Direct preference optimization (DPO) (Rafailov

et al., 2024) was later proposed to directly adapt

LLMs with human preference pairs, without ex-

plicitly training or updating a reward model. Most

recent alignment research features self-alignment

(Singh et al., 2023; Li et al., 2023; Yuan et al., 2024;

Sun et al., 2024; Pang et al., 2024), iterative align-

ment (Gulcehre et al., 2023; Chen et al., 2024b), as

well as self-play approaches (Wu et al., 2024; Gao

et al., 2024; Chen et al., 2024c).

In addition to general alignment as a technical

problem, an increasing line of work focuses on

whose preferences and which values are we align-

ing with in LLM alignment (Bai et al., 2022; San-

turkar et al., 2023). While the annotators or reward

modeling data might be diverse, the training objec-

tive of LLM alignment forces LLMs to minimize

the loss and align with an averaged human pref-

erence (Jang et al., 2023), while different users

could have distinctly different or conflicting pref-

erences informed by culture, demographics, per-

spectives, and more (Casper et al., 2023; Sorensen

et al., 2024a). To quantify the concept of plural-

ism (Berlin, 1969; Nagel, 1979; Wright, 1992),

Sorensen et al. (2024b) highlights the importance

of pluralistic alignment and sets out three pluralism

objectives (Overton, Steerable, and Distributional).

To achieve these three objectives, we propose MOD-

ULAR PLURALISM, a modular multi-LLM collab-

oration framework to operationalize and evaluate

the three pluralism objectives. We uniquely fo-

cus on the setting of patching the pluralism gaps of

black-box LLMs by integrating several smaller LMs

specialized for community representation, in con-

trast to previous proposals where white-box LLMs

are required for RLHF tuning (Chakraborty et al.,

2024) and parameter merging (Jang et al., 2023).

7 Conclusion

We propose MODULAR PLURALISM, a multi-LLM

collaboration framework to advance pluralistic

alignment. General-purpose LLMs are augmented

with a pool of smaller but specialized commu-

nity LMs, where they interact in distinct modes

to achieve various pluralistic alignment objectives.

Extensive experiments demonstrate that MODU-

LAR PLURALISM advances pluralistic alignment

across numerous models and evaluation datasets.

Further analysis reveals the benefit of modularity

in MODULAR PLURALISM, that previously under-

represented communities in LLMs could be seam-

lessly patched by adding a smaller community LM

representative of their culture and values.

Limitations

To instantiate MODULAR PLURALISM, we mainly

considered perspective-informed and culture-

informed communities, while pluralistic alignment

could be equally important for other definitions of

community. We envision that any specialized com-

munity LM publicly available could be seamlessly

plugged into MODULAR PLURALISM.

MODULAR PLURALISM comes with greater

computation costs than baselines such as plain

prompting, since a pool of community LMs are

also prompted at inference time. We argue that by

incorporating several 7B models when deploying

a user-facing LLM with hundreds of billions of

parameters, MODULAR PLURALISM does not add

too much cost. Nevertheless, we envision future

work on employing smaller community LMs to

achieve pluralistic alignment.

We employed four datasets and six evaluation

schemes that attempt to model the Overton, steer-

able, and distributional pluralism. These evalua-

tions focus on the plurality in values (Kiesel et al.,

2022; Miotto et al., 2022; Kirk et al., 2023; Wu

et al., 2023; Kang et al., 2023; Vida et al., 2023;

Huang et al., 2024; Yao et al., 2024; Aroyo et al.,

2024), cultures (Mohamed et al., 2022; Ramezani

and Xu, 2023; Keleg and Magdy, 2023; CH-Wang

et al., 2023; Fung et al., 2023; Huang and Yang,

2023; Havaldar et al., 2024; Wang et al., 2024a;

Liu et al., 2024a; Shen et al., 2024), and perspec-

tives (Feng et al., 2023; Weerasooriya et al., 2023;

Casola et al., 2023; Deng et al., 2023; Hwang et al.,

2023; Zhang et al., 2024; Liu et al., 2024b), while

future work could focus on more real-world eval-

uations of these alignment objectives, potentially

with human participants.

MODULAR PLURALISM relies on community-

representative corpora to train community LMs,

which collaborates with larger and potentially

black-box LLMs for pluralistic alignment. While

we reuse existing resources, the large-scale col-

lection of community-specific corpora might be

challenging, and intersectional communities could

bring new challenges and opportunities to LLM

alignment.
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Ethics Statement

In addition to advancing pluralistic alignment,

MODULAR PLURALISM also comes with dual-

use risks: for example, hateful fringe communi-

ties might also seek better representation in LLMs,

while a community LM could be trained on hateful

social media content and integrated into MODU-

LAR PLURALISM. We argue that any application

of the system should make sure that the employed

community LMs are not specially engineered for

malicious purposes. In addition, an imbalanced or

ill-designed pool of community LMs might rein-

force stereotypes or introduce biases into LLMs,

thus efforts should be taken to broaden the scope

of community representation.
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A Analysis (cont.)

Another NLI Model In addition to VitaminC

(Schuster et al., 2021) that focuses on fact-based

entailment, we additionally employ WANLI (Liu

et al., 2022) for the overton evaluation on Value

Kaleidoscope. Results in Table 5 reaffirm that

MODULAR PLURALISM successfully improves the

value coverage and overton pluralism against base-

lines approaches.

Qualitative Analysis We manually examine the

LLM outputs and present two working examples

in Figures 7 to 10. We find that for the case of

“putting an injured animal out of its misery”, while

the conventional values of being compassionate and

alleviate pain are well-discussed, different LLMs

also provide unique angles such as “animal care

workers or vets” might make better decisions than

Method Unaligned Aligned

vanilla 1.0713 0.3992

prompting 1.1193 0.4743

MoE 1.0461 0.3474

MODULAR PLURALISM 1.0615 0.7126

Table 6: Entropy values in OpinionQA with CHATGPT.

you, “anmial welfare laws” might be involved in

the process, etc. The LLM successfully synthesises

these arguments into a coherent response, while

also adding its own aspect: “They may believe that

all living creatures have a right to live, and that it

is not up to humans to decide when an animal’s

life should end.” For example two of “taking down

4chan”, in addition to the usual aspects such as

the benefits, free speech, the First Amendment and

private organizations, community LM raises the

novel perspective that “It could also backfire and

make the problem worse, as it would push 4chan’s

users to find other, presumably more secret and

hidden places to express themselves.” In summary,

MODULAR PLURALISM presents a dynamic col-

laboration between community LMs and LLMs

where the LLM presents a combination of smaller

models’ comments and the parts it finds as missing.

Entropy and Distributional Pluralism Previ-

ous works have found that aligned LLMs have de-

creased entropy in token probability distributions

(Sorensen et al., 2024b), while their increased J-S

distance could be attributed to a combination of

entropy decreases and misalignment. We present

the entropy values on OpinionQA for CHATGPT

in Table 6. For aligned LLMs, MODULAR PLU-

RALISM results in higher entropy due to the aggre-

gation of community-specific distributions, curb-

ing LLMs’ over-confidence and certainty. For un-

aligned LLMs, MODULAR PLURALISM has simi-

lar levels of entropy with baselines, indicating suc-

cessful steerability rather than increasing entropy

as a shortcut.

Model Sizes In the three modes of pluralism, the

LLM is tasked with various roles such as multi-

document summarization, selectively probing com-

munity LMs, and more. We evaluate the impact

of MODULAR PLURALISM on various sizes of the

same model family with LLAMA2-7B, 13B, and

70B. Results in Table 7 demonstrate that larger

models often witness stronger improvements in plu-

ralistic alignment, while it could also work for the
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Setting O-VK (↑) S-VK (↑) S-OQA (↓) D-MC (↓) D-GOQA (↓)

7B VANILLA 0.1679 0.3723 0.2987 0.4383 0.3283

7B OURS 0.1502 0.4830 0.2746 0.2192 0.2992

improvement -10.6% 29.7% 8.1% 50.0% 8.9%

13B VANILLA 0.1709 0.2099 0.3074 0.3453 0.3223

13B OURS 0.2939 0.5224 0.2799 0.2378 0.2862

improvement 72.0% 148.9% 9.0% 31.1% 11.2%

70B VANILLA 0.1933 0.3054 0.3179 0.4305 0.3586

70B OURS 0.3633 0.6381 0.2649 0.2498 0.2919

improvement 87.9% 109.0% 16.7% 42.0% 18.6%

Table 7: Performance of MODULAR PLURALISM with

varying sizes of the LLAMA2 family. MODULAR PLU-

RALISM often achieves the greatest improvement with

the largest 70B model, while it works for the smallest

7B as well with an average improvement of 17.2%.

smaller 7B model with an average improvement of

17.2%.

Other LLMs We present other LLMs’ results

for Overton w/ Value Kaleidoscope in Table 8. We

present other LLMs’ results for Steerable w/ Value

Kaleidoscope in Table 9. We present other LLMs’

results for Distributional w/ MoralChoice in Table

10.

Computational Costs Having an extra pool of

community LMs, instead of just prompting the

black-box LLM, indeed adds computational costs.

However, it isn’t a huge overhead. When we em-

power GPT-4 with a pool of 6 7B community

LMs (the default setting of this work), it adds only

(6*7)/405=10.4% compute (we don’t know the ex-

act size of GPT-4, so taking LLaMA3-405B for

approximation), while the smaller community LMs

don’t need to be called upon every time: for ex-

ample, in steerable pluralism, only the community

LM most fitting to the steerability attribute is called

upon, so only a 7/405=1.7% extra compute.

llama2-7b llama3-8b gemma-7b

unaligned LLM 0.2008 0.1618 0.1720

w/ prompting 0.1995 0.1433 0.2866

w/ MoE 0.2142 0.1101 0.2522

w/ ours 0.2624 0.2027 0.2668

aligned LLM 0.1679 0.2129 0.2650

w/ prompting 0.1369 0.3106 0.2787

w/ MoE 0.1468 0.2592 0.2585

w/ ours 0.1502 0.3882 0.3764

Table 8: Results of other LLMs for Overton w/ Value

Kaleidoscope, in value coverage percentage.

B Experiment Details

Dataset and Evaluation Details We employ six

tasks with four datasets to evaluate the three modes

of pluralistic alignment.

1. Overton w/ NLI evaluation. We randomly

sample 3,132 situations (e.g., taking down

4chan) from the VK dataset (Sorensen et al.,

2024a) with their associated values (e.g.,

free speech) and employ an NLI model

(Schuster et al., 2021) to judge how many

values identified by VK are reflected in

LLM responses. Concretely, for an LLM

response with n sentences S = {s1, · · · , sn}
and VK’s explanation e of how this value is

related to the given situation, we calculate

maxn
i=1

1(NLI(si, e) is most_probable) as

whether the value is reflected somewhere in

the LLM’s response, with 1 as the indicator

function, NLI produces the entailment

score, and most_probable indicates that

entailment is the most likely in the three-way

classification (contradiction, entailment,

neutral). The scores are then averaged across

all values associated with each situation and

then across situations.

2. Overton w/ human and GPT-4 evaluation.

For human evaluation, 5 annotators are

employed to reflect on 100 response pairs:

“Please reflect on whether the two responses

reflect pluralistic values with regard to the

given situation.” A tie is also allowed. A

similar evaluation is conducted with GPT-4

but with 600 pairs in total with the prompt

“Please evaluate which of the two responses

better reflects pluralistic values given a

situation. <situation> <response #1>

<response #2> Which response better reflects

pluralistic values, or is it a tie? Please

directly answer with 1, 2, or tie.

3. Steerable w/ Value Kaleidoscope. We evalu-

ate the three-way classification of support, op-

pose, or either over 21,840 (value, situation)

pairs, or binary without the either examples.

For prompting and MODULAR PLURALISM,

we additionally include “Please comment on

the situation with respect to the value.” in the

prompt.

4. Steerable w/ OpinionQA. We sample 22,378

survey questions from OpinionQA (Santurkar

et al., 2023). For prompting and MODU-

LAR PLURALISM, we additionally include “In

4165



llama2-7b llama3-8b gemma-7b

Acc BAcc MaF Acc BAcc MaF Acc BAcc MaF

unaligned LLM 0.3755 0.3178 0.3155 0.3654 0.3641 0.3448 0.4331 0.4260 0.3821

w/ prompting 0.4086 0.3333 0.3293 0.3669 0.3489 0.3324 0.4253 0.4204 0.3921

w/ MoE 0.3917 0.3817 0.3689 0.3905 0.4044 0.3766 0.4063 0.4168 0.3857

w/ ours 0.4663 0.4254 0.4218 0.3811 0.3987 0.3688 0.3981 0.4098 0.3726

aligned LLM 0.3723 0.3545 0.2219 0.5894 0.4843 0.4526 0.3603 0.3347 0.3527

w/ prompting 0.3679 0.3507 0.2127 0.6218 0.5334 0.5226 0.3470 0.4208 0.2894

w/ MoE 0.3521 0.3820 0.3206 0.4455 0.4514 0.4191 0.3972 0.4158 0.3853

w/ ours 0.4830 0.5145 0.4589 0.6326 0.6357 0.6013 0.4620 0.4723 0.4444

Table 9: Results of other LLMs for Steerable w/ Value Kaleidoscope in the three-way setting.

llama2-7b llama3-8b gemma-7b

low high overall low high overall low high overall

unaligned LLM 0.3624 0.0912 0.2126 0.2163 0.1375 0.1771 0.1786 0.1548 0.1668

w/ prompting 0.3817 0.0898 0.2219 0.2194 0.1742 0.1969 0.2755 0.1161 0.1045

w/ MoE 0.2983 0.1758 0.2373 0.1008 0.2827 0.1913 0.1671 0.3001 0.2333

ours 0.2594 0.0704 0.1753 0.1174 0.2085 0.1627 0.1740 0.2319 0.2016

aligned LLM 0.5860 0.2892 0.4383 0.0115 0.3928 0.2011 0.0079 0.4588 0.2322

w/ prompting 0.5437 0.2995 0.4222 0.0609 0.2918 0.1758 0.0055 0.4504 0.2268

w/ MoE 0.4232 0.2685 0.3514 0.0151 0.4389 0.2169 0.0048 0.4627 0.2326

ours 0.2092 0.2293 0.2192 0.0242 0.3294 0.1695 0.0064 0.3540 0.1720

Table 10: Results of other LLMs for Distributional w/ MoralChoice in J-S distance.

terms of <category>, you are <attribute>.” in

the prompt.

5. Distributional w/ MoralChoice. LLMs are

tasked with reasoning over which action might

be more desirable and producing a token

probability distribution [p1, p2] over the two

choices. For low-ambiguity scenarios where

humanity often has a clear consensus, LLM

distributions should match that consensus of

[1, 0] if the first action is more desirable. For

high-ambiguity scenarios, LLMs should be ex-

pressing uncertainty with distributions close

to [0.5, 0.5]. We use the Jensen–Shannon dis-

tance to measure the distributional differences

between LLM outputs and the objectives.

6. Distributional w/ GlobalOpinionQA. For

prompting and MODULAR PLURALISM,

we additionally include “You are from the

country of <country>” in the prompt. We

randomly sample 28,763 survey questions

from GlobalOpinionQA (Durmus et al.,

2023).

For the LLAMA2-70B model, due to comput-

ing contains we randomly sample 20% of data for

evaluation.

Baseline Details For each setting of the large

language model, we employ three baselines and

compare them against MODULAR PLURALISM:

vanilla, prompting, and MoE. For vanilla, the LLM

is directly prompted without any prefix or modifi-

cation. For prompting, a sentence is added to in-

duce pluralism: “Make sure your response reflects

diverse values and perspectives for the following

instruction.” For MoE, we provide the LLM with

the instruction and the description of each commu-

nity LMs, then ask to select one community LM

that is most fitting for the task. The selected LM

is then prompted to generate comments, and the

LLM generates the final response conditioned on

the comments and the instruction.

Model Details For the large language model,

we employ LLAMA2-13B (meta-llama/Llama-

2-13b-hf and meta-llama/Llama-2-13b-chat-hf ),

CHATGPT (davinci-002 and gpt-3.5-turbo),

LLAMA2-7B (meta-llama/Llama-2-7b-hf and

meta-llama/Llama-2-7b-chat-hf ), LLAMA2-

70B (meta-llama/Llama-2-70b-hf and meta-

llama/Llama-2-70b-chat-hf ), LLAMA3-8B

(meta-llama/Meta-Llama-3-8B and meta-

llama/Meta-Llama-3-8B-Instruct), and GEMMA-

7B (google/gemma-7b and google/gemma-7b-it).
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Note that we are not certain that gpt-3.5-turbo is

the aligned version of davinci-002, but we make

the same assumption as in Sorensen et al. (2024b)

due to model availability.

Implementation Details We employ block size

of 128, batch size of 64, learning rate of 1e-6,

weight decay of 1e-2, 1 training epoch, 16-bit pre-

cision, and LoRA fine-tuning (Hu et al., 2021) with

default hyperparameters for causal language model-

ing, which adapts the mistralai/Mistral-7B-Instruct-

v0.1 checkpoint to community LMs on community-

representative corpora. The demographic prior in

distributional pluralism is by default kept uniform.

We employ greedy decoding by default, and tem-

perature τ = 1 when randomness/sampling is de-

sired: for example, when sampling diverse com-

ments from the pool of community LMs. Both

community LMs and the LLM could generate at

most 512 new tokens.
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