

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

ambiguous data), do they learn to generalize hierarchically or do they learn a linear rule (e.g., moving the first auxiliary
to the beginning of the sentence)?

This question has been well-studied in past work for different neural network architectures. In particular, McCoy et al.
(2020) showed that recurrent neural networks fail to generalize hierarchically when trained on ambiguous data, and
only using tree-structured networks (Chen et al., 2017, 2018), which use explicit parses as inputs, leads to hierarchical
generalization. Petty and Frank (2021) and Mueller et al. (2022) observed the same for transformers. However,
Murty et al. (2023a) showed that, surprisingly, when trained for a long time after attaining perfect training accuracy,
transformers do start to generalize hierarchically. They named this phenomenon Structural Grokking, because it
resembles “grokking” as observed by Power et al. (2022) (where neural networks start to generalize long after they have
overfit the training data).

While the results of Murty et al. (2023a) suggest that transformers are capable of exhibiting hierarchical generalization
despite being trained on ambiguous data, it remains unclear why they exhibit such a preference. In our work, we
ask, why do transformers show hierarchical generalization, despite lacking architectural biases towards hierarchical
structure? We first explore if the choice of training objective can influence hierarchical generalization in transformers.
Specifically, we consider five objectives in our study – language modeling, sequence-to-sequence modeling, prefix
language modeling, sequence classification, and cloze completion, and compare the hierarchical generalization exhibited
by transformers under these objectives. As a test for hierarchical generalization, in addition to the English question
formation task described above, we also include German question formation (Mueller et al., 2022); tense-reinflection
(McCoy et al., 2020), which converts a sentence in the past tense to the present; passivization (Mueller et al., 2022), i.e.,
converting a sentence in active voice to passive; and simple agreement, a synthetic task that we construct to check if the
model can predict correct agreement between the verb and subject in a declarative sentence. To better understand how
different generalization behaviors are implemented within the trained networks, we propose two new attention head
pruning strategies to discover subnetworks corresponding to different generalizations (hierarchical and linear rules).

Finally, to understand why language modeling results in bias towards hierarchical structure, we utilize the Bayesian
framework from Perfors et al. (2011) and consider generative probabilistic grammars (PCFGs) modeling the simple
agreement task. Specifically, we construct hierarchical grammars (consistent with the hierarchical rule) as well as
regular grammars that generate the data linearly and hence are consistent with the linear rule. We then compare the
posterior probabilities of the two grammars, to understand which grammar has a better trade-off for the goodness of fit
(measured using the likelihood) and simplicity (by calculating the prior on grammars), thereby explaining the preference
of transformers for hierarchical or linear generalization.

Since our aim is to understand hierarchical generalization in transformers in isolation, following McCoy et al., 2020,
Murty et al., 2023a, we train transformer models from scratch, without any pretraining, eliminating the possibility
of these models having bias towards hierarchical generalization due to having been trained on language data before
(Mueller et al., 2022). For the same reason, we also use synthetic datasets for training and evaluation that exclusively
measure the inductive biases of these models towards hierarchical or linear generalization. Due to the controlled nature
of our setup, the transformer models that we train are small (6 layers and 512 hidden size).

Our contributions:

• We discover that the choice of the training objective affects hierarchical generalization in transformers. Among five
training objectives and five datasets, we find that only the language modeling objective consistently obtains strong
hierarchical generalization across different tasks. This highlights that modeling the entire sequence of tokens (input
and output) is critical for learning hierarchical structure.

• We find that different types of generalizations consistent with the training data (e.g., hierarchical and linear rules)
can be discovered as subnetworks in the trained model, and these subnetworks continue to coexist over the course
of training, despite the overall model performing closer to one kind of generalization over the other. Further, we
find these disparate subnetworks exist due to the ambiguity in the training data, as we find different subnetworks to
disappear upon adding disambiguating examples (i.e., only consistent with the hierarchical rule).

• Finally, utilizing the Bayesian framework from Perfors et al. (2011), we show a correlation between transformer LMs
generalizing hierarchically and hierarchical grammars having higher posterior, compared to regular grammars that
follow the linear rule. This suggests that transformers generalize hierarchically because the hierarchical grammars
that fit the data are often “simpler” compared to regular grammars. We also identify a case where this does not
hold i.e. regular grammars have a higher posterior than hierarchical grammars, and show that transformers fail to
generalize hierarchically in this case.

To the best of our knowledge, the present work is the first to show that the language modeling objective is a source of
inductive bias for hierarchical generalization and to use the Bayesian perspective to explain hierarchical generalization

2

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

in language models. Our work takes steps towards understanding hierarchical generalization in language models, and
we hope that our analysis method will be useful to study other forms of generalization in these models.

2 Background

Hierarchical generalization. Hierarchical generalization is a form of systematic generalization, where given instances
generated from a hierarchical grammar, we evaluate the capability of a model to generalize to unseen syntactic forms.
For example, consider the task of converting a declarative English sentence to a question:

1. (a) Input: My walrus does move .

(b) Output: Does my walrus move ?

2. (a) Input: My walrus does move the dogs that do wait .

(b) Output: Does my walrus move the dogs that do wait ?

Notice that the task can be accomplished by moving one auxiliary verb to the front of the sentence. While for sentences
of type 1a, with only a single auxiliary this is trivial, for sentences of type 2a, as English speakers we know that the
auxiliary to move is the one associated with the head verb in the sentence (i.e., does, which is associated with move,
not do, which is associated with wait). Modeling this rule requires understanding the phrase structure of the language.
We call this Hierarchical Rule. One can alternatively consider a much simpler explanation, the Linear Rule: moving
the first auxiliary in the sentence to the beginning. This linear rule is independent of the hierarchical structure of the
sentence. However, consider sentences of type 3 below:

3. (a) Input: My walrus who doesn’t sing does move .

(b) Linear rule output: Doesn’t my walrus who sing does move ?

(c) Hierarchical rule output: Does my walrus who doesn’t sing move ?

First, notice that sentence 3a has a different syntactic structure compared to the sentence 2a, as the relative clause who
doesn’t sing accompanies the subject, unlike in example 2 where that do wait modified the object (the dogs). In this
case, using the linear rule to form question will result in an ungrammatical sentence, i.e., outputting sentence 3b instead
of sentence 3c. In this work, we study the following question: Consider neural networks trained from scratch on data
consistent with both hierarchical and linear rules (e.g., examples 1, 2). When presented with sentences such as 3a do
they generalize hierarchically (predicting 3c) or do they learn a linear rule (predicting 3b)?

Tasks and datasets. In our study, we consider five tasks, including the question formation task above. Examples from
all the tasks (excluding English question formation) are provided in Table 1. All the tasks follow a common recipe: the
training dataset has examples that are consistent with both hierarchical and linear rules. For evaluation, two variants of
the test data are considered: an in-distribution test set, which follows the same distribution as the training data (i.e., has
the same syntactic forms and is also ambiguous with respect to the correct rule); and a generalization test set, which
consists of examples which are only consistent with the hierarchical rule. Below we provide the details of the five tasks.

1. Question formation. As described above, the task is to transform a declarative sentence into a question. We use the
dataset from McCoy et al. (2020) for this task, which was constructed from a context-free grammar (CFG) with
three sentence types varying in the existence and position of the relative clause (RC) in the sentence: (i) no RC, e.g.,
sentence 1a; (ii) RC attached to the object, e.g., sentence 2a; and (iii) RC attached to the subject, e.g., sentence
3a. The training data includes (a 50-50 split) (i) declarative-question pairs where the task is to take a declarative
sentence and generate a question as output and (ii) auxiliary identity pairs where the task requires copying an input
declarative sentence. The declarative-question pairs in the training set only contain sentences without any RC or
with RC attached to the object. As such, the training dataset is consistent with both the hierarchical and linear rules
and ambiguous in terms of which rule is applicable. Importantly, the auxiliary identity pairs in the training data
also include sentences with RC on the subject, to expose the model to sentences of this type (McCoy et al., 2020).
During training a token quest or decl is added to specify whether to perform question formation task or the copy
task.1 Following McCoy et al. (2020) and Murty et al. (2023a), we evaluate the model on the first-word accuracy,
i.e., given the declarative sentence as the input, we evaluate whether the model predicts the correct auxiliary for the
first word in the question in its generation.

1Notice that the dataset consists of sentences with explicit auxiliary verbs – my walrus does move, instead of the less marked my
walrus moves. This choice was made by McCoy et al. (2020), to study the problem as auxiliary fronting, i.e., moving the auxiliary
verb to the beginning, and thereby studying the two rules (hierarchical and linear).

3

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

Table 1: Examples from the different tasks we study in our work. highlighted text indicates examples in the generaliza-
tion set.

Task Examples

QF
(German)

unsere Papageien können meinen Papagei , der gewartet hat , akzeptieren .
→ können unsere Papageien meinen Papagei , der gewartet hat , akzeptieren ?
ihr Molch , der gegessen hat , kann lächeln .
→ kann ihr Molch , der gegessen hat , lächeln ?

Passivization

some tyrannosaurus entertained your quail behind your newt .
→ your quail behind your newt was entertained by some tyrannosaurus .
the zebra upon the yak confused your orangutans .
→ your orangutans were confused by the zebra upon the yak .

Tense
reinflection

my zebra by the yak swam .
→ my zebra by the yak swims .
my zebras by the yak swam .
→ my zebras by the yak swim .

Simple
Agreement

my zebra by the yak → swims
my zebras by the yak → swim

2. Question formation (German). This is the same task as above, but the sentences are in German instead of English.
We use the dataset from Mueller et al. (2022), consisting of sentences with the modals können/kann (can) or
auxiliaries haben/hat (have/has), together with infinitival or past participle main verbs as appropriate, which can be
moved to the front similar to English to form questions.2 Here again, the linear rule is to move the first modal or
auxiliary to the front, and the hierarchical rule requires moving the token associated with the main verb. The dataset
construction and evaluation metrics remain identical to the English version.

3. Passivization. The task here is to transform an active sentence to passive. The dataset from Müller et al. (2022) is
constructed such that it contains active sentences of three types: (i) without any prepositional phrase (PP), (ii) with a
PP on the object, and (iii) with a PP on the subject. Similar to question formation dataset, the active-passive pairs in
the training dataset are constructed only using the sentences of type (i) and (ii). These two sentence types are again
compatible with both rules: the hierarchical rule which involves identifying the object in the sentence and moving it
to the front, and the linear rule that moves the second noun in the sentence to front. Like question formation, the
training data is augmented with identity active-active pairs which consist of sentences of all the three types. For
evaluation, following Mueller et al. (2022), we consider object noun accuracy, which measures whether the correct
noun was moved to the subject position.

4. Tense reinflection. In tense reinflection, we are given a sentence in the past tense, and the task is to transform
it into present tense. While performing the transformation to present tense, the model has to figure out from the
context whether each verb should be singular or plural (-s suffix) in the present tense. In this case, the hierarchical
rule requires each verb to agree with the hierarchically-determined subject and the linear rule requires a verb to
agree with the most recent noun in the sequence. We use the same dataset as McCoy et al. (2020), where, similar to
question formation, the training dataset contains tense reinflection pairs (past-present) that are consistent with both
rules, and identity pairs (past-past) for copying that include past-form of sentences whose present form can only be
generated using the hierarchical rule. The models are evaluated using main-verb accuracy, which is calculated as the
fraction of examples in the test set for which the generated present tense sentence has the correct main verb.

5. Simple agreement. We also introduce a simplified version of the tense reinflection task. Unlike other tasks, simple
agreement is a single-sentence task where only the present-tense sentences from the tense-inflection are used for
training. In this task ,we evaluate the model’s ability to generate the correct inflection of the verb at the end of the
sentence. E.g., when given the prefix my zebra by the yaks as input, does the model assign higher likelihood to the
singular verb form swims (correct) or the plural form swim (incorrect), as the continuation. The hierarchical and
linear rules are defined in the same way as tense reinflection. For evaluation, since from the context it is no longer
clear what should be the correct verb, we use main-verb contrastive accuracy, which is calculated by considering
each sentence in the test dataset (e.g., my zebra by the yaks swims), forming the prefix (my zebra by the yaks) and
checking if the model assigns the higher probability to the correct inflection of the main verb in the original sentence
(swims vs. swim).

2Note that in German, negation is represented using another word nicht which is not fronted with the auxiliary (can’t becomes
kann nicht), hence Mueller et al. (2022) do not use the auxiliaries with negation for German, like we have for the English version.

4

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

For all tasks excluding simple agreement, there are 100k training examples (50k transformation pairs and 50k identity
pairs) and 1k and 10k examples in in-distribution and generalization test sets respectively. For simple agreement, we
generate 50k training examples (and 1k/10k for test datasets).

3 How the Training Objective Influences Hierarchical Generalization

We now discuss how the choice of training objective can influence hierarchical generalization in transformers. Prior work
by McCoy et al. (2020), Petty and Frank (2021), and Mueller et al. (2022) used a sequence-to-sequence training objective
to train encoder-decoder models and found that RNNs and transformers do not exhibit hierarchical generalization.
More recently, Murty et al. (2023a) used a language modeling objective to train a decoder-only transformer, which they
found did generalize hierarchically when trained for a sufficiently large number of epochs – well beyond the point of
achieving perfect training task accuracy. To the best of our knowledge, this distinction isn’t called out by prior work.
Hence we conduct a systematic study to understand what effect the training objective has on hierarchical generalization.

3.1 Training Objectives

We consider the following five training objectives in our study:

Language modeling. Given a sequence of tokens, the language modeling objective trains the model to predict each
token in a sequence given the preceding tokens. The model is optimized to minimize the negative log-likelihood of
the sequences in the training data. For transformers, the language modeling objective is typically associated with
decoder-only models like GPT (Brown et al., 2020), and the loss is computed over all tokens in the sequence. For the
question formation task and the declarative-question pair from the introduction, if s = ⟨s1, s2, . . . , s21⟩ = ⟨my, walrus,
does, move, the, dogs, that, do, wait, ., quest, does, my, walrus, move, the, dogs, that, do, wait, ?⟩, the cross-entropy loss
is computed over s1 through s21, each given the preceding tokens:

− log p(s) = −

21∑

i=1

log p(si | s1, . . . , si−1). (1)

Sequence-to-sequence modeling. The sequence-to-sequence (seq2seq) modeling objective (Sutskever et al., 2014),
is used to train the model to generate a target sequence (e.g., from the example above, ⟨s12, . . . , s21⟩) given an input
sequence (⟨s1, . . . , s11⟩). This objective, which includes only the terms from i = 12 to 21 in equation 1, is typically
associated with an encoder-decoder model as used in the original transformer architecture (Vaswani et al., 2017). Note
that the seq2seq objective is more suited for tasks with an explicit input and output (like question formation and tense
inflection), but is not suitable for the simple agreement task. Hence, we do not evaluate the seq2seq objective for simple
agreement.

Prefix language modeling. In the prefix language modeling objective (Dong et al., 2019), we again generate the
output text given the input (or “prefix”), but we use a single transformer decoder (similar to language modeling) instead
of an encoder-decoder model. Differing from the original language modeling objective, here the loss is only computed
over the output text and does not include the prefix. One modification that we make to how the prefix-LM objective
is typically used, is that we use a causal mask for the prefix tokens as well instead of having bi-directional attention
over the prefix tokens, since we found the latter to perform subpar in our initial experiments (unstable in-distribution
performance).

Sequence classification. In the sequence classification objective, the model is trained to map the entire sequence to a
discrete label. E.g., for question formation the model is given the input declarative sentence and trained to predict the
correct auxiliary from the set of auxiliary verbs (do, does, don’t, doesn’t) that should occur at the start of the question,
i.e., a four-way classification task.

Cloze completion. In the cloze completion setting, the model is given a sequence of tokens with some tokens masked
and trained to predict the masked tokens. E.g., for the question formation task, we consider the declarative-interrogative
pair and mask out tokens in the interrogative sentence at all positions where the auxiliaries could be present. Specifically,
we have mask tokens where (i) the auxiliary is present in the interrogative sentence or (ii) the auxiliary was present in
the original declarative sentence. The model is trained to predict the correct auxiliary at these positions and <EMPTY>
if an auxiliary is not present at a particular position. Note that this objective is similar to masked language modeling as
in Devlin et al. (2019); however, instead of masking tokens randomly, we mask the specific tokens as described above.3

3Our initial experiments with random-masking resulted in subpar performance, even on in-distribution test sets.

5

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

For the passivization task, we do not evaluate the cloze completion objective, because (unlike other tasks) the output
sequence is significantly different from the input and not just in terms of one or two tokens, which makes defining the
masking strategy in this case non-trivial.

Please refer to §A.1.1 for full details of each objective for all of the five tasks.

3.2 Experimental Setup

We train transformer models from scratch for all of our experiments. We use transformer models with 8 heads and
embedding dimension 512 for all datasets and objectives. Following Murty et al. (2023a), for question formation
and tense reinflection, we train transformer models with 6 layers for the former (18M parameters) and 4 layers (12M
parameters) for the latter task, for all objectives excluding seq2seq. For the remaining tasks, we use 6-layer transformer
encoder/decoder layers (18M parameters) depending on the training objective. For the seq2seq objective, we use a
6-layer encoder/6-layer decoder model (25M parameters) for all tasks.4 For all the tasks, tokenization is performed
at the word level. We use the Adam optimizer (Kingma and Ba, 2015) for training the model with a learning rate
of 0.0001, following Murty et al. (2023a). We use batch size of 8, and train for 300k steps (24 epochs) for all tasks
excluding simple agreement, which we train for 200k steps (32 epochs), since the dataset is half the size of others
(recall that we have 100k training examples for all the tasks except simple agreement for which we have 50k). We run
each experiment with 5 seeds and report the average performance.

Baselines. By design of the test datasets, a model following the linear rule will obtain 100% in-distribution accuracy
and 0% generalization accuracy. Only a model consistent with the hierarchical rule will obtain 100% accuracy on both
test sets for all the tasks.

3.3 Results

We compare the five objectives for the five tasks and show the results in Figure 1. Notice that while all the objectives
obtain close to 100% accuracy on the in-distribution test sets (except sequence classification which performs slightly
worse for simple agreement), there is a lot of variation in the generalization accuracy. Particularly, we observe that
only the language modeling objective consistently obtains high generalization accuracy on all five tasks, while models
trained with other objectives often struggle. While seq2seq and prefix LM perform well on tense reinflection5 and
passivization respectively, they perform much worse on the other tasks.

We believe that the choice of objective might be the reason behind the discrepancy in the results of Murty et al. (2023a)
showing that transformer models with the language modeling objective generalize hierarchically, and the result of Petty
and Frank (2021), Mueller et al. (2023) showing that transformer models with seq2seq objective do not generalize
hierarchically. Interestingly, seq2seq and prefix LM bear the greatest resemblance to the language modeling objective,
as these two also involve generating the whole output sequence. The major difference between language modeling
and these two objectives is that language modeling involves computing the loss over all the tokens, including the
input tokens, which indicates that the corresponding loss terms from modeling the input tokens might be crucial for
hierarchical generalization. Our hypothesis on why that might be important is that when considering loss over all the
tokens, the model cannot just simply learn a trivial transformation (e.g., for question formation, move the first auxiliary
to the beginning and copy rest of the tokens from input) from input sequence to output sequence to minimize the loss
(as it needs to model the input token distribution as well).6

We also provide the training curves depicting the in-distribution and generalization performance of different objectives
over the course of training in Figure 6 in Appendix. Consistent with the findings of Murty et al. (2023a), for all the
tasks, we find a delay in generalization for the LMs – models typically obtain 100% in-distribution accuracy much
earlier than achieving high generalization performance. One might also notice that while LM objective consistently
achieves high generalization performance, it is not perfect, like in the case of question formation and tense reinflection,
where its average performance is roughly 75%. Recall that these reported numbers are averaged across 5 seeds. For all
the tasks we find that there are seeds for which LM models achieve 100% generalization accuracy, and there are also
others with lower accuracy. Apart from the two exceptions discussed above, this is not the case for other objectives,
where none of the five seeds get 100% generalization accuracy.

4We also considered out other choices of number of layers for the seq2seq objectives and found results consistent with our
findings (see Appendix §A.1.3).

5We suspect that the seq2seq model for tense reinflection might not actually be generalizing hierarchically; see discussion in
Appendix §A.1.4.

6This difference corresponds to the classical difference between a generative model, i.e., one trained to model the full distribution
of the data (including inputs) and a discriminative one that models the conditional distribution of outputs given inputs.

6

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

sentence pairs and not just moving of the auxiliary to the beginning, it is the combined simplicity of the hierarchical rule
and the data is greater than the linear rule and the data. Perhaps modeling the hierarchical phrase structure is beneficial
for modeling the distribution over full sequences. We will explore this hypothesis in more depth in §5.

4 Discovering Subnetworks with Different Generalization Behaviors

The results from Murty et al. (2023a), and from §3.3 show that the transformer LM obtains perfect in-domain accuracy
much earlier during the training, while generalization comes later. This implies that the model might be implementing
something akin to the linear rule in the beginning of training and eventually generalizes to the hierarchical rule. In this
section, we explore whether these rules are implemented as subnetworks in the model and ask how these subnetworks
evolve over the course of training.

4.1 Finding Subnetworks

Following Merrill et al. (2023) we use pruning to find the existence of subnetworks or circuits corresponding to
different generalizations. In particular, we use the attention head pruning method from Voita et al. (2019), which
introduces learnable gates for each attention head of a trained transformer model. This introduces number of heads ∗
number of layers learnable parameters, which is typically equal to 48 in our experiments. Pruning is then performed
by training these learnable gates (while freezing the original model parameters) to minimize negative log-likelihood
objective, but also adding an L0-penalty as regularization to ensure sparsity. Since L0-norm is nondifferentiable, a
stochastic relaxation is used, which considers the gates as random variables drawn from head-specific hard concrete
distributions (Louizos et al., 2018). After completion of pruning, all the gates are either fully open or closed,
and a closed gate implies that the output of the corresponding head is zeroed-out in the computation of multi-head
self-attention. In the case that all heads in a layer are zeroed-out, that particular layer is skipped: inputs to the layer pass
through unchanged to the next layer due to the residual connections.

Thus the pruning procedure does not modify any weights of the original model and merely performs subset selection on
attention heads of the model. To find subnetworks consistent with different generalizations (linear-rule and hierarchical
rule) we introduce three pruning strategies which differ in the data used for pruning:

1. Train-prune uses the original ambiguous training dataset to prune the attention heads. The subnetwork thus found
is likely to be a compressed version of the full model.

2. Gen-prune uses a small fraction of the generalization set (1% or 100 examples) to prune the attention heads. If
successful, this pruning would yield a subnetwork consistent with hierarchical generalization—obtaining close to 100%
generalization accuracy.

3. Train\Gen-prune is minimizing the (negative log-likelihood) loss on the training data and maximizing it for the (1%)
generalization data. In this case, successful pruning should yield a subnetwork that exhibits generalization consistent
with the linear rule, i.e., obtains 0% generalization accuracy but obtains 100% in-distribution accuracy.

Experimental setup. Unless specified otherwise, for pruning, we use a learning rate of 0.05, the L0 regularization
penalty coefficient as 0.015, and train for 10k steps, which we found to work well across different pruning settings. Here
we report the experiments for the question formation task and discuss the others in Appendix §A.2, for which we also
obtain consistent results. Note that since we are interested in discovering subnetworks implementing hierarchical and
linear rules, while pruning, we only use the negative log-likelihood of the first auxiliary in the question for computing
the loss. To make sure that the discovered subnetworks are not just a by-product of the pruning procedure, we also
consider control groups, which are obtained by pruning randomly initialized networks.

4.2 Results

In Figure 3, we show the effect of different pruning methods on an intermediate model checkpoint, which does not
yet generalize hierarchically (the model before pruning has a generalization accuracy of 30%). After Train-prune,
roughly 80% heads of the full model are removed and in-distribution performance is conserved, though there is a drop
in generalization performance (30% to 23%). After Gen-prune, we are able to find a subnetwork that achieves 100%
generalization accuracy. This is striking, because the full network performed much worse. After Train\Gen-prune,
we find a subnetwork that achieves 0% generalization accuracy while having 100% in-distribution performance; this
subnetwork is behaviorally equivalent to the linear rule. Hence, these pruning experiments reveal the existence of
subnetworks implementing different generalization behaviors.

8

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

to yield subnetworks that obtain 0% generalization accuracy, in contrast to the ambiguous data case in figure 4(b). To
make sure this is not due to the choice of our pruning hyperparameters, we conduct an extensive hyperparameter search,
consisting of 128 combinations of the pruning learning rate, regularization penalty, and pruning steps (using Bayesian
optimization) and still fail to find the setting where the Train\Gen-prune succeeds for the disambiguated data case
(see Figure 12 in Appendix). This strongly suggests that the “linear-rule” subnetwork is never formed in the language
model when it doesn’t have a reason to be learned – when the alternate generalization behavior (linear rule) is no longer
applicable to the entire training dataset.

We also experiment with the opposite disambiguation setup, where we augment the training data with examples only
consistent with the linear rule, and in line with our findings, we find that the Gen-prune fails to find a subnetwork with
100% generalization accuracy – no subnetwork consistent with hierarchical rule is formed (Figure 13 in Appendix).
Hence, ambiguity in the training data appears to drive the joint existence of these contrasting subnetworks.

5 Why Do Transformer-Based LMs Generalize Hierarchically?

A useful tool for understanding generalization in neural networks has been “simplicity bias”, where the inductive bias
towards simpler functions (De Palma et al., 2019) has been shown to explain why neural networks tend to generalize
instead of overfitting the training data (Valle-Perez et al., 2019, Bhattamishra et al., 2023). In our case, we are not
interested in comparing the learned behavior of the language models (hierarchical rule) with the overfit solution, but
instead with an alternate generalization (linear rule). Can we explain through “simplicity” the preference of the model
towards hierarchical generalization? This might sound counterintuitive, because at least on surface it appears that
the linear-rule should be simpler compared to the hierarchical rule. Our main argument is that when considering
transformers trained with the language modeling objective, since the underlying data-generation process to be modeled
produces each token in the full sequence (not, for instance, just the first auxiliary in the question formation task),
modeling the dependencies between the tokens hierarchically as opposed to learning a linear rule for each dependency,
might be simpler.8 In this section, we present a study showing some evidence for the simplicity of the hierarchical
generalization over the linear-rule based to explain the preference for the former by transformer LMs. We leverage
the Bayesian framework of Perfors et al. (2011), utilizing generative grammars to model data-generation processes
corresponding to the hierarchical and linear rules, and operationalize the notion of simplicity and goodness of fit using
the posterior probabilities of the grammars given the observed data. We then show that there is a correlation between
transformers’ ability to generalize hierarchically and the training dataset being better explained using a hierarchical
grammar than a regular one (which models the linear rule) according to the posterior criterion.

5.1 Background

Operationalizing the notion of simplicity. We make use of Solomonoff’s theory of inductive inference (Solomonoff,
1964), which formalizes Occam’s razor – when two hypotheses explain the data equally well, the simpler one of the
two is likely to be the correct one. This notion is mathematically formalised in Solomonoff’s theory using a Bayesian
approach by computing the posterior probabilities of the competing hypotheses and selecting the one with higher
posterior.

p(h | D) ∝ p(D | h) · p(h)

Here, p(D | h) denotes the likelihood of the observed data D based on the hypothesis h, i.e., how well h explains
the data D. p(h) denotes the prior probability of h, which in Solomonoff’s theory assigned higher values for simpler
hypotheses h. In other words, a more complex hypothesis will entail making more choices (“high program length”) and
hence have a lower prior probability. Hence, by computing the posterior p(h | D), Bayesian inference balances the
tradeoff between the goodness of fit of a hypothesis (likelihood) and its simplicity (prior). This is closely related to
“Bayesian Occam’s razor” and the Minimum Description Length principle (Rissanen, 1978).

Probabilistic grammars. We mentioned in the previous paragraph that computing the posterior over the competing
hypotheses can help us choose the one which better balances the trade-off between goodness of fit and simplicity. But
for our problem, what form should these hypotheses or “programs" take to represent the linear and hierarchical rules?
Note that since our training objective is language modeling, we need to consider the hypotheses that generate the entire
sequence of tokens as represented in the training data. Following Perfors et al. (2011), we use probabilistic generative
grammars to model the data-generation process.

For the purposes of this work we consider probabilistic context-free grammars (PCFGs) that can be represented using a
5-tuple i.e., G = {V,Σ, R, S, P}. Here, V denotes the set of nonterminal symbols that form phrases or constituents

8Such an argument is implicit in the field of theoretical syntax where hierarchical representations are rife.

10

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

in a sentence, Σ denotes the set of terminal symbols or words in the sentences, R ∈ V × {V ∪ Σ}∗ denotes the set
of production rules mapping phrases to sub-phrases or words, S ∈ V is the start symbol that represents the whole
sentence, and P denotes the probabilities on the production rules. Specifically, for a given non-terminal when there are
multiple productions possible, P assigns a probability to each possible production rule. To generate data from a PCFG,
we start from the start symbol S and for each terminal that arises we apply a production rule sampled according to P
and repeat the procedure till we are only left with terminals to generate sentences. PCFGs are typically used to model
the hierarchical phrase structure of a language. We can also apply some constraints to the form of production rules in R
to obtain special cases (subsets) of CFGs. For example, regular grammars form a subset of CFGs, whose production
rules can be put into a right-linear form: A → bC, where A and C are nonterminal symbols and b is a terminal.

A Bayesian view of language generation. We can view the data-generation process that generates dataset D using
the probabalistic grammar G Given the dataset D, we can compute the posterior p(G | D) ∝ p(D | G) · p(G), where
p(D | G) is the likelihood of the data given the probabilistic grammar, and p(G) measures the simplicity of G. To get
an intuitive understanding of the prior probability of a grammar and how it encodes simplicity, recall that grammars that
we consider are 5-tuples {V,Σ, R, S, P}. Hence choosing a grammar G involves making choices like the number of
nonterminal and terminal symbols, number of production rules from each nonterminal, nature of the production rule
etc. By assigning probability distributions to each of these choices, we can compute the prior probability of a given
grammar. We can choose the prior distribution that favours simpler grammars, e.g., following Perfors et al. (2011),
we use geometric distributions for the number of nonterminals and productions, hence a simple grammar with fewer
nonterminals and productions will receive a higher probability compared to a more complex grammar. We can hence
compute the posteriors for the grammars representing the competing generalization hypotheses (hierarchical and linear
rule) to compare how each of these balances the tradeoff between goodness of fit and simplicity.

5.2 Method

We now discuss how we apply the Bayesian Occam’s razor approach discussed above to explain why transformer
language models generalize hierarchically. As an overview of our approach, we start by constructing a PCFG to model
the hierarchical rule (denoted CFG) and a regular grammar (Reg) that generates data based on the linear rule. We then
generate data using both the grammars – DCFG from CFG and DReg from Reg. The intersection of the two datasets,
DCFG∩ DReg, is comprised of ambiguous examples consistent with both the linear rule and hierarchical rule. We will use
this as our training corpus Dtrain. We then compute the posterior probabilities for both CFG and Reg given Dtrain and
select the one with the higher posterior: G∗ = argmaxG∈{CFG,Reg} p(G | Dtrain). We then train a transformer language

model on Dtrain, and check if it generalizes according to G∗. Specifically, if G∗ = CFG, does the transformer follow
the hierarchical rule, and if G∗ = Reg, does the transformer follow the linear rule? The selection of G∗ is intended to
simulate “idealized” Bayesian learning, and to the extent that the transformer’s learning behavior matches G∗ across
different scenarios, we find support for a simplicity bias in the transformer’s training setup. In what follows, we
provide details about each of these steps.

Task. For the purposes of this study we consider the simple agreement task, as constructing hierarchical and linear
grammars for its data is straightforward.9

Constructing grammars for simple agreement. Following Perfors et al. (2011), we hand-construct the CFG and
regular grammars. The CFG is constructed so that each verb agrees with the hierarchically connected subject, while the
regular grammar is constructed to follow the linear rule (each verb in the sentence agrees with the most recent noun).
The constructed grammars are assigned uniform probabilities for the production rules i.e., given a nonterminal, all
the productions are equally likely. For an example of productions from both the grammars see Figures 16 and 17 in
the Appendix. For constructing CFG, we use Chomsky Normal Form for the productions: Each production rule is of
the form A → BC or A → a, where A,B,C are nonterminals and a is a terminal symbol. Similarly, for the regular
grammar Reg, we use the right-linear form of productions: Every rule is of the form A → bC or A → a.

Following Perfors et al. (2011), we adopt a type-based approach for constructing the grammars: terminal symbols Σ
instead of being the word tokens (e.g. walrus, sing) are syntactic categories (e.g., determiner, singular-noun, intransitive-
verb, etc.), so that we can use these grammars to strictly model abstract syntactic structures and not vocabulary-type
frequencies, and it also gives us a manageable number of possible generations by the grammars.

9Question formation and tense reinflection involve pairs of sentences, where the second sentence is a transformed version of the
first. Such sentence pairs would likely require more complex frameworks like synchronous grammars (Aho and Ullman, 1969),
which we leave to future work.

11

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

For both context-free and regular grammars we generate two variants, depending on the diversity of the sentence types
generated by them:

Small grammars CFG-S and Reg-S: Here we construct CFG and regular grammars that only generate 18 sentence
types. Recall that a sentence type is a sequence of syntactic categories, e.g., sentences like The walrus sings can be
represented by sentence type determiner singular-noun intransitive-verb. Different sentence types in this case differ
by the plurality of the nouns (singular or plural), type of verbs (transitive or intransitive), and presence or absence of
prepositional phrases accompanying the nouns. The resulting hand-constructed CFG-S in this case has 15 nonterminals
and 21 production rules and Reg-S has 14 nonterminals and 22 production rules. Both grammars have the same 8
terminals. Out of the 18 sentence types generated by both the grammars, 12 are common between the two (ambiguous)
and 6 remaining in CFG-S that are only consistent with the hierarchical rule and 6 only consistent with linear rule in
Reg-S.

Large grammars CFG-L and Reg-L: In this case we consider larger grammars, which can generate much more diverse
sentence types – 180 sentence types. The major difference with the smaller grammars here is that they are allowed to
generate relative clauses, which can be present at both the subject and object in the sentence. CFG-L has 25 nonterminals
and 38 productions, while Reg-L has 41 nonterminals and 63 productions. Note that based on these numbers alone
it is evident that we need much more complex regular grammars to generate diverse sentence types. Out of the 180
sentence types generated by each grammar, 120 are common between the two, and the remaining sentence types are
only generated by the specific grammars (following either hierarchical or linear rule).

Generating datasets. We generate the sentence types from each of the 4 grammars – DCFG-S, DReg-S, DCFG-L, and
DReg-L. As mentioned before, the training dataset is constructed by considering the sentence types common between
the CFG and corresponding regular grammar. We have Dtrain−S = DCFG-S ∩ DReg-S for the small grammars, and
Dtrain−L = DCFG-L ∩DReg-L for the larger ones. Note that these are the datasets of sentence-types, and transformers are
trained on sentences. To generate sentences from these type corpora, we repeatedly sample sentence types, and replace
the syntactic categories with the allowed tokens for that category (e.g., determiner can be replaced with the, our, my,
etc.). Using this procedure we generate a corpus of 50k sentences from Dtrain−S and 50k sentences from Dtrain−L.
Note that the simple agreement experiments in §3.1, were performed using the latter dataset derived from Dtrain−L.

The generalization test sets are generated by considering the sentence types that are unique to a specific grammar. E.g.,
we can have the test set DHier

test−S
= DCFG-S \ DReg-S, which contains sentence types that are unique to DCFG-S and hence

only consistent with the hierarchical rule and not the linear rule. Similarly, DLin
test−S

= DReg-S \ DCFG-S, consists of

sentence types consistent only with the linear rule. We can equivalently define DHier
test−L

and DLin
test−L

. While talking
about the two datasets in general and not specifically about the small (S) or large (L) variants, we just use the notation
DHier

test and DLin
test.

Computing the posterior for each grammar. Now that we have the four grammars constructed, we can compute
the posteriors for the grammars given the corresponding training datasets. Note that, since we are only interested in
comparing the posteriors of CFG and regular grammars, we can estimate the posterior by computing the likelihood and
prior and taking product of the two, i.e., p(G|D) ∝ p(D | G) p(G). Recall that the prior probability of a grammar can
be computed by calculating the probability of each of the choices that goes into defining that grammar:

p(G) = p(|V |)

|V |∏

k=1

p(Pk) p(θk)

Pk∏

i=1

p(Rk,i). (2)

Here, |V | is the number of nonterminals, Pk is the number of productions from the kth nonterminal with the probabilities
of each production given by θk ∈ [0, 1]Pk , and Rk,i denotes the right hand side of the ith production rule from the kth
nonterminal. Following, Perfors et al. (2011), we use a geometric prior on p(|V |) and p(Pk). Recall that the geometric
distribution is given by p(n; p) = (1− p)n−1p, where p is a parameter of the geometric distribution, often interpreted as
the probability of success, and a geometric distribution models the probability of success after n trials. Hence, choosing
a geometric prior penalizes the grammars with a large number of nonterminals (|V |) and productions per nonterminal
(Pk). In our experiments we use p = 0.5, following Perfors et al. (2011), but we conduct a sensitivity analysis on the
choice of this parameter . For θk, we use a flat (i.e., α = 1) Dirichlet prior, a popular choice for modeling probabilities
for categorical distributions (K − 1 simplex). Note that since the Dirichlet is a continuous distribution, the probability
of any specific θk is zero and we use the discrete relaxation from Perfors et al. (2011) to model p(θk). The probability
of the production rule p(Rk,i), depends on the type of grammar. For CFGs, since we consider them in CNF, the
production rules are of the form A → BC or A → a, hence the probability of the right hand side can be given by,
p(Rk,i) = 1

2

1

|V |21(|Rk,i| = 2) + 1

2

1

|Σ|1(|Rk,i| = 1). Since the regular grammars are in the right linear form i.e.

12

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

productions of the form A → bC or A → a, we can compute p(Rk,i) =
1

2

1

|Σ|
1

|V |1(|Rk,i| = 2) + 1

2

1

|Σ|1(|Rk,i| = 1).

One might notice that we are missing the probability of number of terminal symbols p(Σ) in the prior equation. We
ignore this because both the CFG and regular grammars have the same number of terminals in our experiments, and since
we are interested in just comparing the probabilities, the inclusion or exclusion of p(Σ) doesn’t make a difference.10

The likelihood p(D | G), measures the probability that the dataset D is generated from the grammar G. For m sentence
types in the dataset D, the likelihood is given by

p(D | G) =

m∏

i=1

p(Si | G), (3)

where Si’s denote the sentence types in D. p(Si | G) is computed by taking product of the probabilities of production
rules used to derive Si using G (including adding the probabilities when multiple parses are possible for Si). Note
that computing p(Si | G) requires estimating the production probabilities θk from each nonterminal. We use the
Inside-Outside algorithm (Baker, 1979), to obtain an approximate maximum likelihood estimate of the production
probabilities on the dataset D. Hence, having computed both the prior p(G) and p(D | G), we can compute the
posterior p(G | D).

Other choices of grammars. Given our generated training datasets (Dtrain−S,Dtrain−L), there can be grammars
other than the four we constructed that can generate these datasets. In their analysis, Perfors et al. (2011) also consider
two subsets of the regular grammars: Flat and One-state. Flat grammars have production rules which are the list of
memorized sentences, i.e., of the form S → a1a2 · · · an. Here a′is are terminal symbols and there are no nonterminals
other than S. Hence, flat grammars can be used to model memorization without generalization. One-state grammars are
equivalent to finite state automata with a single state and hence permit any terminal symbol to follow any other. We also
include these two grammars in our analysis.

Further, even among the class of context-free and regular grammars, there might exist grammars with better posteriors
on the training datasets Dtrain−S and Dtrain−L than the ones that we hand-construct. To remedy this, we also experiment
with applying local search on our constructed grammars, using Bayesian model merging (Stolcke and Omohundro,
1994) to minimize the grammars while improving the posterior on the respective training datasets. While in the main
text we discuss the results for hand-constructed grammars, we provide the details on the minimization algorithm and
the corresponding results for minimized grammars in §A.3.

Explaining generalization in transformers. Recall that our goal has been to quantify the notion of simplicity
of the two competing hypotheses (hierarchical and linear rule), which are consistent with the training data used to
train transformer-based LMs. The posterior probabilities of the two types of grammars are a way to measure which
grammar better balances the trade-off between the goodness of fit and simplicity. Our aim is to check whether the
trained transformer LM exhibits generalization consistent with choosing the simpler (i.e., larger posterior) grammar.
We evaluate this by comparing the negative log-likelihood (NLL) assigned by the transformer LM to the test sets
corresponding to the two generalizations. E.g. for the transformer model trained using data derived from Dtrain−L, we
evaluate its NLL on the generalization test sets derived from the two grammars DHier

test−L
and DLin

test−L
, and check if it

assigns a lower NLL to the test data coming from the simpler grammar. Note that we compute the average NLL overall
all examples in a test set for the final value. For a more intuitive metric, we also compute the main-verb accuracy –
fraction of test examples for which the verb predicted by the model agrees with the hierarchically associated noun in
the sentence. A main-verb accuracy of 1 indicates that the model’s generalization is consistent with the hierarchical rule
and an accuracy of 0 when it is consistent with the linear rule.

5.3 Results

Comparing posteriors. The log-probabilities for all the hand-constructed grammars on the two datasets is provided
in Table 2. On both datasets, the one-state grammar gets the highest prior, which is expected as it is the simplest
grammar that we study. However, the one-state grammar also fits the data the worst which is indicated by the lowest
log-likelihood (for both datasets). The flat grammars fit both the datasets the best and have the highest log-likelihood,
which is also expected since a flat grammar memorizes the training data. But it can come at a cost of increased
complexity, especially when the training data is diverse; and so the flat grammar has the lowest log-prior on the full
dataset.

10One might also notice that p(G) allows some probability for generating the same rule more than once; it “leaks” probability
mass. No prior literature, to our knowledge, suggests that this should pose a problem to our analysis.

13

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

For the high diversity dataset Dtrain−L, we observe that the CFG best balances the tradeoff between the simplicity and
goodness of fit, obtaining the highest posterior. This shows why it would be more beneficial to model this dataset using
a hierarchical phrase structured grammar than a linear grammar. However, when we consider the low-diversity dataset
Dtrain−S, while the CFG still obtains a better posterior than the regular grammar, it is the one-state grammar obtains
the highest posterior out of all the grammars. This is consistent with the findings of Perfors et al. (2011), who found
that for small corpora, one-state grammars often obtain higher posteriors than the context-free and regular grammars. In
such cases, learning the distribution of syntactic category sequences, without abstract nonterminals, wins out on the
Bayesian criterion.

We obtain consistent findings with some subtle differences for the grammars minimized using the Bayesian model
merging algorithm, which we detail in §A.3.

Sensitivity to prior. Note that choosing the prior is subjective and can influence these results. Hence, to be extra
careful, we conduct a sensitivity analysis by varying the values of the geometric distribution parameter p. We
experiment with p ∈ {0.01, 0.1, 0.2, 0.3, · · · , 0.9, 0.99} for the probability distribution on the nonterminals (p(|V |))
and number of productions (p(Pk)), and obtain findings consistent with those in Table 2 (see Figure 14 in Appendix).
We also experiment with having different values of p parameter for p(|V |) and p(Pk), and try out 49 combinations
({0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}×{0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}) . For each of these combinations, we find that
for Dtrain−S case, consistent with Table 2 the CFG-S always obtain a lower posterior compared to the One-State
grammar. Similarly for the CFG-L and Reg-L, the findings are also consistent across all 49 combinations i.e. CFG-L
always obtain a higher posterior than Reg-L.

Table 2: Comparing the log-probabilities for each of the 4 grammars given the training datasets Dtrain−L and Dtrain−S.

Grammar
Dtrain−L (120 types) Dtrain−S (12 types)

log-Prior log-Likelihood log-Posterior log-Prior log-Likelihood log-Posterior

CFG -367 -639 -1006 -169 -34 -203
Reg -619 -616 -1235 -190 -30 -220
Flat -4567 -574 -5141 -281 -30 -311
One-State -58 -2297 -2355 -51 -121 -172

Performance of transformer-based LMs. We train the transformer-based LMs on the two datasets
(Dtrain−L,Dtrain−S) and evaluate their generalization based on the DHier

test and DLin
test test sets. Note that for both

datasets, 50k training examples are used. Recall that the two training datasets differ in their diversity (120 types in
Dtrain−L vs. 12 in Dtrain−S). We use the same experimental setup as discussed in §3.2. In Figure 5a, we see for the
models trained on the low-diversity dataset Dtrain−S that the model obtains similar negative log-likelihood values on
both test sets, implying that the model has no preference for generalizing according to the linear rule or the hierarchical
rule. For this dataset, neither the CFG nor the regular grammar were optimal in terms of the posterior probabilities,
so we observe that the transformer’s learning behavior is consistent with the “idealized” setup above. For the models
trained on the Dtrain−L dataset, however, we see that the model learns to generalize hierarchically, with the NLL on the
DHier

test test set being significantly lower than that on the DLin
test test set.

Besides NLL, we also compute the main-verb accuracy, where we check whether the model assigns a higher probability
to the main verb agreeing with the correct inflection form than the incorrect one. As we can see in Figure 5b, the
model trained on the Dtrain−L dataset obtains close to 100% accuracy when evaluated on the DHier

test test set. However,
the model trained on the Dtrain−S dataset obtains close to 50% generalization accuracy, again showing no preference
for a hierarchical or linear rule (the latter would lead to 0% accuracy). We also verify that these results are not just
a by-product of the choice of hyperparameters, and train transformer models with different layers (2, 4, 6, 8, 12),
on the Dtrain−S dataset, and in none of the cases did we observe the models exhibiting preference for hierarchical
generalization (see results in Appendix Figure 18).

We also consider a stricter metric: all-verb generalization accuracy which is obtained by checking whether all predicted
verbs (and not just the main verb) in the sentence have the correct inflection. The reason for considering this metric
is that, for the agreement task, 100% main-verb generalization accuracy can also be obtained without learning the
hierarchical rule and simply agreeing with the first noun in the sentence. Note that the all-verb accuracy is computed by
feeding prefixes preceding each verb in the sentence and obtaining the model’s predictions. We provide the results with
all-verb generalization accuracy in Figure 5c, where we show that a baseline that always selects the verb to agree with

14

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

performance, using attention and training on data with additional syntactic cues can help improve the performance.
McCoy et al. (2020) studied the architectural inductive biases in RNNs influencing hierarchical generalization, and
found that only using a tree-structured model would consistently lead to hierarchical bias. Petty and Frank (2021),
Mueller et al. (2022) corroborated these findings for transformers, finding networks to generalize linearly instead of
hierarchically. In contrast to these findings, recently Murty et al. (2023a), showed that transformers, when trained for
longer duration – way beyond saturating in-distribution performance – started exhibiting hierarchical generalization.

While all of these works train neural network models from scratch, recently there has been work on understanding
hierarchical generalization in transformer models pretrained on large amounts of naturalistic language data. Mueller
and Linzen (2023) found that pretraining encoder-decoder transformers on corpora like Wikipedia or CHILDES
results in hierarchical bias in these models, though training on CHILDES was found to be orders of magnitude more
sample-efficient towards imparting this bias. Mueller et al. (2023) studied hierarchical generalization during in-context
learning in language models, finding large variance in performance across different models. They found this variance to
be explained by the composition of training data and particularly found the models trained on code to generalize better.

Grokking. One puzzle in deep learning generalization is the phenomenon of “grokking,” where neural network
are observed to start generalizing long after having overfit the training data (Power et al., 2022). Numerous efforts
have been made to understand grokking and why it occurs. Millidge (2023) conjecture that for overparameterized
networks the optimal set (i.e., the set of all parameter values resulting in 0 training loss) corresponds to a manifold in
parameter space and stochastic gradient descent essentially acts as a random walk in this manifold, eventually hitting
the parameters that generalize. The other explanations rely on simplicity bias, hypothesizing that the solutions that
generalize are simpler but slower to learn (Shah, 2023, Nanda et al., 2023, Bhattamishra et al., 2023, Varma et al.,
2023). Thilak et al. (2022) explain grokking from an optimization standpoint and show it to happen at the onset of a
phenomenon they call as “slingshot mechanism,” identified by spikes in the training loss which result in increased norm
of the final-layer weights. Liu et al. (2022) attempt to explain grokking through the theory of representation learning,
identifying four phases during training and grokking occurring in a "Goldilocks zone" between two of these phases.

Training dynamics and subnetwork generalization. Merrill et al. (2023), identify dense and sparse subnetworks
in the transformer models trained on a sparse-parity task and found the model starting to generalize as the norm of
the sparse subnetwork undergoes rapid norm growth. Chen et al. (2024) identify emergence of syntactic attention
structure in transformer masked language models, resulting from sudden drops in the loss, leading to the model
subsequently acquiring different linguistic capabilities. In concurrent work, Bhaskar et al. (2024) find, using pruning,
and for BERT-based models finetuned on NLP tasks like natural language inference and paraphrase identification, the
existence of subnetworks that exhibit same in-domain performance but very different out-of-distribution generalization
performance. This finding is in line with our observations about the presence of subnetworks consistent with different
generalization behaviors. However, due to the nature of our problem, we are further able to show what specific
behaviors these subnetworks associate with, how each of these evolves over the course of training, and suggest why
these subnetworks co-exist during training.

7 Conclusion

We showed that language modeling training objective can act as a source of inductive bias towards hierarchical
generalization, by comparing different training objectives on five tasks and finding the LM objective to be the only one
that consistently generalizes hierarchically across all of them. We also find that when the training data is consistent with
two rules, we can find subnetworks in the transformer LM trained on this data corresponding to each of these rules,
which continue to coexist over the course of training. Finally, we provided a Bayesian interpretation to explain why
transformer LMs generalize hierarchically: hierarchical grammars that fit sufficient diverse language data as well as
regular grammars are often, in a sense, simpler.

There are multiple directions that can be explored in the future. While our results indicate language modeling as a source
of hierarchical bias, it still remains unclear why hierarchical generalization is delayed. Further, Murty et al. (2023a)
showed that deeper transformer LMs often fail to generalize hierarchically, which remains unexplored in our setting.
While the experiments concerning our Bayesian interpretation only involved the simple agreement tasks for which it was
possible to construct CFGs, in future it would be interesting to explore methods to model the simplicity and goodness
of fit for competing hypotheses for tasks involving transformation of an input sentence to output sentence. In our work,
we used the Bayesian interpretation to understand hierarchical generalization in transformers. However, the Bayesian
interpretation has been useful to study other forms of generalization in humans as well, including (among others) word
learning (Xu and Tenenbaum, 2007), concept learning (Goodman et al., 2008, Lake et al., 2015), pragmatics (Frank
and Goodman, 2012), and theory of mind (Baker et al., 2011) , and these capabilities have also been observed to some

16

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

extent in transformer based LMs as well Patel et al. (2023), Hu et al. (2023), Shapira et al. (2023) . How well these
interpretations can be applied to explain such capabilities in transformers is another potentially interesting direction.

References

Alfred V. Aho and Jeffrey D. Ullman. Syntax directed translations and the pushdown assembler. J. Comput. Syst. Sci.,
3:37–56, 1969. URL https://api.semanticscholar.org/CorpusID:205894705.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes, 2017. URL
https://openreview.net/forum?id=ryF7rTqgl.

Chris Baker, Rebecca Saxe, and Joshua Tenenbaum. Bayesian theory of mind: Modeling joint belief-desire attribution.
In Proceedings of the annual meeting of the cognitive science society, volume 33, 2011.

James K. Baker. Trainable grammars for speech recognition. Journal of the Acoustical Society of America, 65, 1979.
URL https://api.semanticscholar.org/CorpusID:121084921.

Adithya Bhaskar, Dan Friedman, and Danqi Chen. The heuristic core: Understanding subnetwork generalization in
pretrained language models, 2024.

Satwik Bhattamishra, Arkil Patel, Varun Kanade, and Phil Blunsom. Simplicity bias in transformers and their ability to
learn sparse Boolean functions. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5767–5791, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi:10.18653/v1/2023.acl-long.317. URL https://aclanthology.org/2023.acl-long.317.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Angelica Chen, Ravid Shwartz-Ziv, Kyunghyun Cho, Matthew L Leavitt, and Naomi Saphra. Sudden drops in the loss:
Syntax acquisition, phase transitions, and simplicity bias in MLMs. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=MO5PiKHELW.

Huadong Chen, Shujian Huang, David Chiang, and Jiajun Chen. Improved neural machine translation with a syntax-
aware encoder and decoder. In Regina Barzilay and Min-Yen Kan, editors, Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1936–1945, Vancouver, Canada,
July 2017. Association for Computational Linguistics. doi:10.18653/v1/P17-1177. URL https://aclanthology.
org/P17-1177.

Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program translation. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/
paper_files/paper/2018/file/d759175de8ea5b1d9a2660e45554894f-Paper.pdf.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN encoder–decoder for statistical machine translation. In
Alessandro Moschitti, Bo Pang, and Walter Daelemans, editors, Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar, October 2014. Association for
Computational Linguistics. doi:10.3115/v1/D14-1179. URL https://aclanthology.org/D14-1179.

Noam Chomsky. Language and Mind. Cambridge University Press, 1 edition, 1968.

Noam Chomsky. Language and Learning: The Debate Between Jean Piaget and Noam Chomsky. Harvard University
Press, 1980.

Giacomo De Palma, Bobak Kiani, and Seth Lloyd. Random deep neural networks are biased towards simple functions.
Advances in Neural Information Processing Systems, 32, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics. doi:10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423.

17

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon.
Unified language model pre-training for natural language understanding and generation. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/c20bb2d9a50d5ac1f713f8b34d9aac5a-Paper.pdf.

Michael C. Frank and Noah D. Goodman. Predicting pragmatic reasoning in language games. Science, 336(6084):
998–998, 2012. doi:10.1126/science.1218633. URL https://www.science.org/doi/abs/10.1126/science.
1218633.

Robert Frank and Donald Mathis. Transformational networks. Models of Human Language Acquisition, 22, 2007.

Noah D Goodman, Joshua B Tenenbaum, Jacob Feldman, and Thomas L Griffiths. A rational analysis of rule-based
concept learning. Cognitive science, 32(1):108–154, 2008.

Jennifer Hu, Sammy Floyd, Olessia Jouravlev, Evelina Fedorenko, and Edward Gibson. A fine-grained comparison
of pragmatic language understanding in humans and language models. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4194–4213, Toronto, Canada, July 2023. Association for Computational Linguistics.
doi:10.18653/v1/2023.acl-long.230. URL https://aclanthology.org/2023.acl-long.230.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept learning through probabilistic
program induction. Science, 350(6266):1332–1338, 2015. doi:10.1126/science.aab3050. URL https://www.
science.org/doi/abs/10.1126/science.aab3050.

John D Lewis and Jeffrey L Elman. Learnability and the statistical structure of language: Poverty of stimulus arguments
revisited. In Proceedings of the 26th annual Boston University conference on language development, volume 1,
pages 359–370. Citeseer, 2001.

Yongjie Lin, Yi Chern Tan, and Robert Frank. Open sesame: Getting inside BERT’s linguistic knowledge. In Tal
Linzen, Grzegorz Chrupała, Yonatan Belinkov, and Dieuwke Hupkes, editors, Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 241–253, Florence, Italy, August 2019.
Association for Computational Linguistics. doi:10.18653/v1/W19-4825. URL https://aclanthology.org/
W19-4825.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams. Towards understanding
grokking: An effective theory of representation learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages 34651–34663.
Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
dfc310e81992d2e4cedc09ac47eff13e-Paper-Conference.pdf.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through l_0 regularization.
In International Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=
H1Y8hhg0b.

Brian Macwhinney. The childes project: tools for analyzing talk. Child Language Teaching and Therapy, 8, 01 2000.
doi:10.1177/026565909200800211.

R. Thomas McCoy, Roberta Frank, and Tal Linzen. Revisiting the poverty of the stimulus: hierarchical generalization
without a hierarchical bias in recurrent neural networks. ArXiv, abs/1802.09091, 2018. URL https://api.
semanticscholar.org/CorpusID:3580012.

R. Thomas McCoy, Robert Frank, and Tal Linzen. Does syntax need to grow on trees? sources of hierarchical inductive
bias in sequence-to-sequence networks. Transactions of the Association for Computational Linguistics, 8:125–140,
2020. doi:10.1162/tacl_a_00304. URL https://aclanthology.org/2020.tacl-1.9.

William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: Grokking as competition of sparse and
dense subnetworks. In ICLR 2023 Workshop on Mathematical and Empirical Understanding of Foundation Models,
2023. URL https://openreview.net/forum?id=8GZxtu46Kx.

Beren Millidge. Grokking ‘grokking’, 2023. URL http://www.beren.io/2022-01-11-Grokking-Grokking/.

Aaron Mueller and Tal Linzen. How to plant trees in language models: Data and architectural effects on the emergence
of syntactic inductive biases. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 11237–11252,

18

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

Toronto, Canada, July 2023. Association for Computational Linguistics. doi:10.18653/v1/2023.acl-long.629. URL
https://aclanthology.org/2023.acl-long.629.

Aaron Mueller, Robert Frank, Tal Linzen, Luheng Wang, and Sebastian Schuster. Coloring the blank slate: Pre-training
imparts a hierarchical inductive bias to sequence-to-sequence models. In Smaranda Muresan, Preslav Nakov, and
Aline Villavicencio, editors, Findings of the Association for Computational Linguistics: ACL 2022, pages 1352–1368,
Dublin, Ireland, May 2022. Association for Computational Linguistics. doi:10.18653/v1/2022.findings-acl.106. URL
https://aclanthology.org/2022.findings-acl.106.

Aaron Mueller, Albert Webson, Jackson Petty, and Tal Linzen. In-context Learning Generalizes, But Not Always
Robustly: The Case of Syntax, November 2023. URL http://arxiv.org/abs/2311.07811. arXiv:2311.07811
[cs].

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Transformers can do
bayesian inference. In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=KSugKcbNf9.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher Manning. Grokking of hierarchical structure in
vanilla transformers. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 439–448, Toronto, Canada, July 2023a. Association for Computational Linguistics.
doi:10.18653/v1/2023.acl-short.38. URL https://aclanthology.org/2023.acl-short.38.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher D Manning. Characterizing intrinsic compositionality
in transformers with tree projections. In The Eleventh International Conference on Learning Representations, 2023b.
URL https://openreview.net/forum?id=sAOOeI878Ns.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for grokking via
mechanistic interpretability, January 2023. URL https://arxiv.org/abs/2301.05217v2.

Arkil Patel, Satwik Bhattamishra, Siva Reddy, and Dzmitry Bahdanau. Magnifico: Evaluating the in-context learning
ability of large language models to generalize to novel interpretations. arXiv preprint arXiv:2310.11634, 2023.

Amy Perfors, Terry Regier, and Joshua B Tenenbaum. Poverty of the stimulus? a rational approach. In Proceedings of
the Annual Meeting of the Cognitive Science Society, volume 28, 2006.

Amy Perfors, Joshua B. Tenenbaum, and Terry Regier. The learnability of abstract syntactic principles. Cognition,
118(3):306–338, 2011. ISSN 0010-0277. doi:https://doi.org/10.1016/j.cognition.2010.11.001. URL https://www.
sciencedirect.com/science/article/pii/S0010027710002593.

Matthew E. Peters, Mark Neumann, Luke Zettlemoyer, and Wen-tau Yih. Dissecting contextual word embeddings:
Architecture and representation. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors,
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1499–1509,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi:10.18653/v1/D18-1179.
URL https://aclanthology.org/D18-1179.

Jackson Petty and Robert Frank. Transformers Generalize Linearly, September 2021. URL http://arxiv.org/abs/
2109.12036. arXiv:2109.12036 [cs].

Alethea Power, Yuri Burda, Harrison Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Generalization beyond
overfitting on small algorithmic datasets. ArXiv, abs/2201.02177, 2022. URL https://api.semanticscholar.
org/CorpusID:245769834.

Florencia Reali and Morten H Christiansen. Structure dependence in language acquisition: Uncovering the statistical
richness of the stimulus. In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 26, 2004.

Martin Redington, Nick Chater, and Steven Finch. Distributional information: A powerful cue for acquiring syntactic
categories. Cognitive Science, 22(4):425–469, 1998. doi:https://doi.org/10.1207/s15516709cog2204_2. URL
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog2204_2.

J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978. ISSN 0005-
1098. doi:https://doi.org/10.1016/0005-1098(78)90005-5. URL https://www.sciencedirect.com/science/
article/pii/0005109878900055.

Rohin Shah. [AN #159]: Building agents that know how to experiment, by training on proce-
durally generated games. 2023. URL https://www.lesswrong.com/posts/zvWqPmQasssaAWkrj/
an-159-building-agents-that-know-how-to-experiment-by.

Natalie Shapira, Mosh Levy, Seyed Hossein Alavi, Xuhui Zhou, Yejin Choi, Yoav Goldberg, Maarten Sap, and Vered
Shwartz. Clever hans or neural theory of mind? stress testing social reasoning in large language models. arXiv
preprint arXiv:2305.14763, 2023.

19

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

R.J. Solomonoff. A formal theory of inductive inference. part i. Information and Control, 7(1):1–22, 1964. ISSN 0019-
9958. doi:https://doi.org/10.1016/S0019-9958(64)90223-2. URL https://www.sciencedirect.com/science/
article/pii/S0019995864902232.

Andreas Stolcke and Stephen Omohundro. Inducing probabilistic grammars by bayesian model merging. In International
Colloquium on Grammatical Inference, pages 106–118. Springer, 1994.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. Advances in neural
information processing systems, 27, 2014.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas McCoy, Najoung Kim, Benjamin Van
Durme, Sam Bowman, Dipanjan Das, and Ellie Pavlick. What do you learn from context? probing for sentence
structure in contextualized word representations. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=SJzSgnRcKX.

Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The slingshot mechanism:
An empirical study of adaptive optimizers and the grokking phenomenon, 2022.

Guillermo Valle-Perez, Chico Q. Camargo, and Ard A. Louis. Deep learning generalizes because the parameter-function
map is biased towards simple functions. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rye4g3AqFm.

Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explaining grokking through circuit
efficiency, September 2023. URL https://arxiv.org/abs/2309.02390v1.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is All you Need. In Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017. URL https://papers.nips.cc/paper_files/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head self-attention:
Specialized heads do the heavy lifting, the rest can be pruned. In Anna Korhonen, David Traum, and Lluís Màrquez,
editors, Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5797–
5808, Florence, Italy, July 2019. Association for Computational Linguistics. doi:10.18653/v1/P19-1580. URL
https://aclanthology.org/P19-1580.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. Perturbed masking: Parameter-free probing for analyzing and
interpreting BERT. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault, editors, Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pages 4166–4176, Online, July 2020. Association
for Computational Linguistics. doi:10.18653/v1/2020.acl-main.383. URL https://aclanthology.org/2020.
acl-main.383.

Fei Xu and Joshua B Tenenbaum. Word learning as bayesian inference. Psychological review, 114(2):245, 2007.

20

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

A Appendix

A.1 Training Objectives and Hierarchical Generalization

A.1.1 Details about training objectives

Here we detail the input-output structure for all objectives concerning the five tasks that we study.

Language modeling. As discussed in the main text, for the question formation task we simply con-
sider the sequence s as declarative-question pair (or declarative-declarative pair for copy task), e.g., s =
{my,walrus, · · · , quest, does, · · · ,move, ?}. Similarly, for passivization it is the active-passive sentence pair (or
active-active); for tense reinflection it is the pair of past and present tense sentence (or past-past), and for simple
agreement it is simply the single input sentence.

Sequence-to-sequence modeling and Prefix language modeling. The inputs for the two objectives are the declarative
sentence (or active sentence for passivization and past tense sentence for tense reinflection) and the outputs sequences
are the corresponding questions (or passive sentence/present tense sentence depending on the task). Note that all four
tasks allow identity pairs, hence the outputs can be the same as the inputs when decl token is provided at the end of the
input.

Sequence classification. For question formation, the input is the declarative sentence, and the output is the four
possible auxiliary tokens, {do, does, don′t, doesn′t} for English and {können, kann, haben, hat} for German. For
passivization task, the input is the sentence in active voice and the output is the subject of the passive sentence, which
can be any of the 26 nouns in the datasets vocabulary. For tense reinflection, the input is the sentence in past tense and
the output is the present tense form of the main-verb in the input sentence (18 classes corresponding to the verbs in
dataset). For simple agreement, the input is the sequence of tokens until the main verb and predict the main-verb as
a multi-label (across vocabulary of 18 verbs) classification task. The classification head for all tasks excluding tense
reinflection, is attached to the last token in the sequence. For tense reinflection it is attached to the main-verb in the
input sentence as otherwise the linear-rule which uses the noun most recent to the main-verb might not be appropriate.
We also use causal mask for all tasks, as we found the models to perform better on in-distribution test set in our initial
experiments when using it. Also, note that due to the nature of the objective, identity pairs are not supported.

Cloze completion. For the question formation task, we consider the declarative-interrogative pair and mask out tokens
in the interrogative sentence at all positions where the auxiliaries could be present. Specifically, we have mask tokens
where i) the auxiliary is present in the interrogative sentence or ii) the auxiliary was present in the original declarative
sentence. The model is trained to predict the correct auxiliary at the right positions and <EMPTY> if an auxiliary is not
present at a particular position. Similarly, for tense reinflection, we consider the past-present sentence pair, mask out all
the verbs in the present tense sentence and train the model to predict the right form of the verbs. In the simple agreement
task, we consider only the present tense sentence, mask out all the verbs and train the model to predict them. Here also
we found using causal mask helps in better in-distribution performance and hence use it in all our experiments.

A.1.2 Training curves

The performance of the five objectives on the five datasets across model training is provided in Figure 6.

The effect of identity pairs on hierarchical generalization. As noted in §3.1, the training datasets for tasks like the
question formation and tense reinflection tasks from McCoy et al. (2020), also used by Murty et al. (2023a), include
identity pairs of declaratives (for question formation) and past tense sentences (for tense reinflection) for the auxiliary
copy task. This data also includes input sentences with the same syntax as the inputs in the generalization set, though
the outputs are still unseen. Since the model is exposed to the form of sentences in the generalization set, we would like
to explore if this auxiliary data (identity pairs) contributes to hierarchical generalization: Do models learn hierarchical
rule without having seen the input-types from the generalization set? As can be seen in Figure 7, for the question
formation task removal of identity pairs results in a significant drop in generalization accuracy for transformers trained
with language modeling objective. For tense reinflection, however, the generalization performance remains more or less
similar. We suspect this might be due to the gap between the sentence types in the in-distribution and generalization
set is arguably greater for question formation than tense reinflection. In question formation the generalization set has
sentences with relative clauses attached to the subject and without the identity pairs, such sentences will be completely
unseen during the training. On the other hand for tense reinflection, the training dataset has all nouns of the same
plurality (i.e. either all singular or all plural), while in generalization the nouns have different plurality to break the

21

	Introduction
	Background
	How the Training Objective Influences Hierarchical Generalization
	Training Objectives
	Experimental Setup
	Results

	Discovering Subnetworks with Different Generalization Behaviors
	Finding Subnetworks
	Results

	Why Do Transformer-Based LMs Generalize Hierarchically?
	Background
	Method
	Results

	Related Work
	Conclusion
	Appendix
	Training Objectives and Hierarchical Generalization
	Details about training objectives
	Training curves
	Effect of depth in hierarchical generalization in seq2models.
	Do seq2seq trained transformers really generalize hierarchically for tense reinflection?

	Subnetworks with Different Generalization Behaviors
	Grammar details

