




We train Matformer-based decoder-only Language Models (MatLM) up to 2.6B parameters and
observe that: (a) MatLMs explicitly trained with g exponentially spaced granularities almost match
validation loss and one-shot downstream evals of respective g baseline models trained independently
from scratch, (b) our extracted models using Mix’n’Match lie on the accuracy-vs-parameters trade-
off curve generated by the g explicitly trained models, (c) through scaling experiments we observe
that the loss vs compute law for different MatFormer models remains similar to vanilla Transformer
models across different granularities and (d) the submodels extracted from MatLM have highly
consistent behavior that is highly desirable for inference optimizations and deployment across scales.

We further studied MatFormer-based ViT models (MatViT) and have similar observations as
MatLM. For example, MatViT-L/16 improves the accuracy of the standard ViT-L/16 model on
ImageNet-1K, and the extracted sub-models all match or even perform better than the independently
trained baselines. Furthermore, we demonstrate that, due to high consistency, MatViT models can
be used as “elastic encoders” for adaptive image retrieval. That is, the metric-space of an image en-
coded by the universal (i.e. the largest) MatViT model is roughly preserved by the nested submodels.
Hence, based on query complexity, system load, and various other considerations, we can use one
of the extracted MatViT encoders at inference time for retrieval on a fixed corpus encoded by the
universal model – providing over 40% lesser compute overhead with < 0.5% drop in accuracy.

We make these key contributions:

1. We introduce MatFormer, which incorporates a nested sub-structure within the standard Trans-
former and jointly optimizes all the g granularities to produce a single, universal elastic model.

2. Employing Mix’n’Match of granularities across layers in a universal MatFormer model yields
hundreds of accurate and consistent submodels without any additional training cost (Section 3).

3. MatFormer generalizes effectively to both decoder-only language models (MatLM) and vision
encoders (MatViT), scaling as reliably and accurately as the standard Transformer, while enabling
significantly faster autoregressive generation and large-scale adaptive dense retrieval (Section 4).

2 Related Work

A standard Transformer (Vaswani et al., 2023) has become the unifying model architecture for foun-
dation models (Bommasani et al., 2021) across modalities like language (Brown et al., 2020), vi-
sion (Dehghani et al., 2023) and audio (Radford et al., 2023). While extremely powerful, the stan-
dard Transformer block is not natively elastic in a way that enables large-scale adaptive and flexible
deployment across various resource constraints. To cater to the plethora of deployment requirements,
existing solutions include training a family of models of varying sizes (Anil et al., 2023; Touvron
et al., 2023b), post-hoc efficiency techniques like quantization (Dettmers & Zettlemoyer, 2023),
pruning (Lagunas et al., 2021), distillation (Sanh et al., 2019) and mixture of varying capacity ex-
perts (MoE) (Zhang & Ma, 2012). However, these solutions often are specific to the single constraint
at hand, and require additional training or trade-off memory/compute during inference making them
far from being a truly elastic solution for adaptive deployment. Lastly, Transformer based LLMs are
often sped-up during inference with techniques like speculative decoding (Leviathan et al., 2023;
Chen et al., 2023) – that benefits from the smaller draft & the larger verifier models having similar
behavior – or early exiting (Schuster et al., 2022) to enable real-time deployment.

Obtaining multiple smaller models from a single model has been explored in the past (Yu et al., 2018;
Yu & Huang, 2019; Cai et al., 2019; Grimaldi et al., 2022; Cai et al., 2021) with most works focus-
ing on CNN encoders. Specifically, OFA (Cai et al., 2019) creates a universal CNN model which
is used to extract and finetune submodels for a handful of deployment constraints while slimmable
networks (Yu et al., 2018) optimize for limited preset widths and require explicit training to interpo-
late for a few more intermediate widths (Yu & Huang, 2019). NAS techniques that sample random
(not nested) subnetworks during training at each step, and then find the subnetwork architecture
to retrain from scratch before deployment have been explored (Wang et al., 2020b). These tech-
niques fall short of being truly elastic and come with significant training overheads. More recently
some of them have been extended to Transformer encoders (Chavan et al., 2022; Hou et al., 2020;
Salehi et al., 2023) for extracting sub-models in both static or dynamic settings but fail at extending
further to decoder-only language models. While not in the weight space, matryoshka representa-
tion learning (Kusupati et al., 2022) & FlexiViT (Beyer et al., 2023) showcase elasticity in output
& input spaces respectively by smoothly spanning deployment constraints with minimal overhead.
MatFormer, in contrast, builds upon these works by nested the weight space instead to enable truly

3



elastic and adaptive Transformer-based (decoder & encoder) models that span all the accuracy-vs-
compute tradeoff (statically or dynamically) with minimal changes and training overhead (Figure 1).
Finally, we also point the readers to SortedNet (Valipour et al., 2023), a concurrent work with similar
goals applied to encoders, which optimizes many sampled submodels (akin to prior works) unlike
MatFormer’s joint optimization of a few (typically 4) nested submodels.

3 MatFormer

In this section, we define MatFormer’s nested substructure (Section 3.1) and discuss its training
procedure for a chosen g model granularities (Section 3.2). We then discuss elastic inference using
Mix’n’Match models (Section 3.3) from MatFormer along with its deployment considerations.

3.1 MatFormer Structure

MatFormer defines g Transformer blocks Ti, such that, T1 ⊂ T2 ⊂ · · · ⊂ Tg where Ti ⊂ Ti+1

indicates that the parameters of Ti are contained in those of Ti+1. While it is possible to impose
such a structure on any part of the Transformer, we select the FFN block to define our method and
present our experiments, as the model size and computational cost of a Transformer is dominated
(around 60% for LLMs and ViTs) by the FFN block (see Appendix B).

The Transformer FFN block has a single hidden layer with dff neurons and both input and outputs
in R

dmodel , and fixed FFN ratio := dff/dmodel (typically ≥ 4). MatFormer introduces the matryoshka
nested structure with g granularities on the hidden representation of the FFN block. Concretely, a
nested sub-block of the Transformer, Ti contains the first mi neurons of the FFN and 1 ≤ m1 ≤
· · · ≤ mg = dff represent the number of neurons for each granularity or sub-model. So, depending

on the chosen granularity the FFN operation of Ti i.e., T FFN
i on an input x ∈ R

dmodel is:

T FFN
i (x) = σ(x ·W1[0 : mi]

⊤) ·W2[0 : mi], (1)

where the weight matrices of FFN are W1,W2 ∈ R
dff×dmodel and bias terms are omitted for sim-

plicity. W1[0 : k] denotes the submatrix with the first k rows of W1. Finally, σ is a non-linearity
often set to GELU (Hendrycks & Gimpel, 2016) or squared ReLU (So et al., 2021). In this work, we
chose the g = 4 exponentially spaced granularities with FFN ratios of {0.5, 1, 2, 4} i.e., the nested

hidden neurons are of the sizes {dff

8
,
dff

4
,
dff

2
, dff}.

With the nested MatFormer blocks T1, T2 . . . Tg , we can combine these to form a MatFormer model,

with g nested submodels M1 ⊂ M2 . . . ,⊂ Mg where Mi ← [Ti]
×l, i.e., Mi is formed by

stacking Ti for l layers. The input and output embedding matrices are shared across the models.

3.2 Training

For a Transformer modelM, the forward pass on an input x is denoted byM(x) and let L denote
the loss function between the output and the target y: L(M(x), y).

MatFormer relies on a simple training strategy of jointly optimizing all the g nested submodels
together. To this end, we set the MatFormer loss as a weighted average of loss of g submodels and
train for it using the standard stochastic gradient-based optimizers (Shazeer & Stern, 2018):

LJOINT(x, y) =

g∑

i=1

λi · L(Mi(x), y), (2)

where λi > 0 is the weight of i-th granular submodel. In this paper, we set {λi}i=1...g to be uniform
i.e., 1/g but explore tuning {λi}i=1...g in Appendix E.4 to further improve MatFormer.

The joint training in MatFormer involves one forward pass per each of the g submodels and ben-
efits from portions of shared computation during backpropagation. MatFormer training results in
g accurate nested submodels M1...g inside the universal MatFormer model (Mg). Note that this
simple strategy outperforms various other training techniques (Appendix E.2). Finally, instead of
pretraining models with MatFomer structure, we can also induce this structure via finetuning.

MatFormer training is ∼ 15% faster (for g = 4) than training all the Transformer based equiva-
lent submodels independently (Appendix B). However, MatFormer also enables the extraction of

4



hundreds of smaller submodels along the accuracy-vs-compute curve traced by the g explicitly opti-
mized submodels (Section 3.3). These models emerge for free using Mix’n’Match during inference
and drastically reduce the amortized training cost per model obtained through MatFormer. The joint
optimization, even without self-distillation fromMg , results in smaller submodels that have highly
consistent behavior (Section 3.4) with the universal model. Finally, in Appendix B.1, we argue that
the training efficiency of MatFormer can be significantly improved through various optimizations.

3.3 Mix’n’Match

At inference time, it is trivial to extract one of the g submodelsM1 ⊂ M2 . . . ,⊂ Mg by stacking
the corresponding Transformer block Ti across layers. However, by selecting different granular-
ity for each MatFormer layer, it is possible to generate a combinatorially large number of accurate
smaller models for free. We call this simple procedure Mix’n’Match and observe that these addi-
tional model granularities –which were never explicitly optimized – are highly performant.

In fact, we can further increase the number of extracted models by generating interpolating blocks

between fixed granulaties (Kusupati et al., 2022). For example, we can generate a T̃ block that uses
first 1

2
(mi +mi+1) neurons in the FFN layer which still tends to be highly accurate.

To summarize, given a computational budget, we can extract a highly accurate model with
Mix’n’Match for the constraints rather than using a smaller less accurate model or training a model
for this specific constraint (Sections 4.1.1 & 4.2). We note that a compute constraint can be satisfied
by various Mix’n’Match models with different accuracies, making identifying the best Mix’n’Match
configurations without downstream validation is an exciting direction for future work.

3.4 Deployment

During deployment, all we need to store is the single universal MatFormer model for different types
of elastic inference depending on the constraints. In the case of static workloads, where compute
resources are known beforehand and the inputs remain relatively similar in difficulty, one can choose
the most accurate static submodel for the constraints using Mix’n’Match. This eliminates the usage
of a less accurate preexisting model or training of a new one for the specific constraints.

For dynamic workloads, where the compute resources or the input hardness change on the fly, we
can use the universal MatFormer model to dynamically extract the optimal submodel for token-
based routing in LLMs akin to MoE (Kudugunta et al., 2021; Li et al., 2022) and elastic encoders
in dense retrieval (Section 4.2.2). This works largely because all the extracted submodels have high
behavioral consistency with universal MatFormer model (Section 4.1) – minimizing the drift across
predictions from various submodels. We measure the consistency between two generative models as
the percentage of matching tokens generated by them for the same prefix or using the KL divergence
of the smaller model outputs with the larger model outputs – this accounts for potential sampling
strategies in decoding. This highly consistent nature of MatFormer results in superior inference time
speedups for techniques like speculative decoding (Leviathan et al., 2023) (Section 4.1.1) and can
assist in reducing prediction drift between cross platform deployments. We also show that higher
model consistency also aids metric-space structure preservation in encoder models (Section 4.2.2).

4 Experiments

In this section, we empirically evaluate MatFormer across modalities (language and vision), model
classes (decoder and encoder), and scales (up to 2.6B parameters). Specifically, we train and ana-
lyze MatFormer-based decoder-only Language Models – MatLMs (Section 4.1) – and encoder-only
Vision Transformers – MatViT (Section 4.2) models with g = 4 nested granularities across various
model sizes. For a fair comparison, we also independently train the Transformer baseline for the
submodel of each granularity across model sizes for the same tasks. We primarily focus on the elas-
tic deployment of MatFormer-based models (Sections 4.1.1 & 4.2) for tasks spanning from one-shot
generative evals to adaptive image retrieval. Additionally, we also investigate the reliable scaling
behavior (Kaplan et al., 2020) of the MatFormer models (Section 4.1.2).

4.1 MatLM: MatFormer Language Models

We build MatFormer-based decoder-only Language Models – MatLMs – and contrast them to their
vanilla Transformer counterparts (LMs) (Liu et al., 2018). The LMs broadly follow the training

5











References

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
arXiv preprint arXiv:2305.10403, 2023.

Jonathan Berant, Andrew K. Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase
from question-answer pairs. In Conference on Empirical Methods in Natural Language Process-
ing, 2013. URL https://api.semanticscholar.org/CorpusID:6401679.

Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde Caron, Simon Kornblith, Xiaohua
Zhai, Matthias Minderer, Michael Tschannen, Ibrahim Alabdulmohsin, and Filip Pavetic. Flex-
ivit: One model for all patch sizes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14496–14506, 2023.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language, 2019.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Han Cai, Chuang Gan, Ji Lin, and Song Han. Network augmentation for tiny deep learning. arXiv
preprint arXiv:2110.08890, 2021.

Arnav Chavan, Zhiqiang Shen, Zhuang Liu, Zechun Liu, Kwang-Ting Cheng, and Eric P Xing. Vi-
sion transformer slimming: Multi-dimension searching in continuous optimization space. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4931–
4941, 2022.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Wei Chen, Yu Liu, Weiping Wang, Erwin M Bakker, Theodoros Georgiou, Paul Fieguth, Li Liu, and
Michael S Lew. Deep learning for instance retrieval: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, et al. Palm: Scaling lan-
guage modeling with pathways, 2022.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Mostafa Dehghani, Alexey Gritsenko, Anurag Arnab, Matthias Minderer, and Yi Tay. Scenic: A jax
library for computer vision research and beyond. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 21393–21398, 2022.

10



Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp. 7480–7512. PMLR, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. In
International Conference on Machine Learning, pp. 7750–7774. PMLR, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten Bosma,
Zongwei Zhou, Tao Wang, Yu Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kath-
leen Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc V Le, Yonghui Wu, Zhifeng
Chen, and Claire Cui. Glam: Efficient scaling of language models with mixture-of-experts, 2022.

Matteo Grimaldi, Luca Mocerino, Antonio Cipolletta, and Andrea Calimera. Dynamic convnets on
tiny devices via nested sparsity. IEEE Internet of Things Journal, 10(6):5073–5082, 2022.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic
bert with adaptive width and depth. Advances in Neural Information Processing Systems, 33:
9782–9793, 2020.

Ajay Jaiswal, Zhe Gan, Xianzhi Du, Bowen Zhang, Zhangyang Wang, and Yinfei Yang. Compress-
ing llms: The truth is rarely pure and never simple, 2023.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale dis-
tantly supervised challenge dataset for reading comprehension. In Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1601–1611, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi:
10.18653/v1/P17-1147. URL https://aclanthology.org/P17-1147.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. 2020.

Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan Yan, Hasan Genc,
Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W Mahoney, et al. Full stack optimization of
transformer inference: a survey. arXiv preprint arXiv:2302.14017, 2023.

Alex Krizhevsky. Convolutional neural networks for object classification in cuda. University of
Toronto, EECE1742S: Programming Massively Parallel Multiprocessors Using CUDA, 2009.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226, 2018.

Sneha Kudugunta, Yanping Huang, Ankur Bapna, Maxim Krikun, Dmitry Lepikhin, Minh-Thang
Luong, and Orhan Firat. Beyond distillation: Task-level mixture-of-experts for efficient inference.
arXiv preprint arXiv:2110.03742, 2021.

11



Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In
International Conference on Machine Learning, pp. 5544–5555. PMLR, 2020.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ra-
manujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka
representation learning. Advances in Neural Information Processing Systems, 35:30233–30249,
2022.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–466, 2019. doi: 10.1162/tacl a 00276. URL
https://aclanthology.org/Q19-1026.

François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. Block pruning for faster
transformers. arXiv preprint arXiv:2109.04838, 2021.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations, 2017.

Hector J. Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In Pro-
ceedings of the Thirteenth International Conference on Principles of Knowledge Representation
and Reasoning, KR’12, pp. 552–561. AAAI Press, 2012. ISBN 9781577355601.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. 2023.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A Smith, and Luke
Zettlemoyer. Branch-train-merge: Embarrassingly parallel training of expert language models.
arXiv preprint arXiv:2208.03306, 2022.

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser,
and Noam Shazeer. Generating wikipedia by summarizing long sequences. arXiv preprint
arXiv:1801.10198, 2018.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Van-
derwende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper under-
standing of commonsense stories. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
839–849, San Diego, California, June 2016. Association for Computational Linguistics. doi:
10.18653/v1/N16-1098. URL https://aclanthology.org/N16-1098.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adver-
sarial nli: A new benchmark for natural language understanding, 2020.

R OpenAI. Gpt-4 technical report. arXiv, pp. 2303–08774, 2023.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context, 2016.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International Conference on Ma-
chine Learning, pp. 28492–28518. PMLR, 2023.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 784–789, Melbourne, Australia, July
2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-2124. URL https:

//aclanthology.org/P18-2124.

12



Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019.

Mohammadreza Salehi, Sachin Mehta, Aditya Kusupati, Ali Farhadi, and Hanna Hajishirzi. Sharcs:
Efficient transformers through routing with dynamic width sub-networks. Findings of Empirical
Methods in Natural Language Processing, 2023.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. Advances in Neural Information Processing
Systems, 35:17456–17472, 2022.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

David R So, Wojciech Mańke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V Le. Primer:
Searching for efficient transformers for language modeling. arXiv preprint arXiv:2109.08668,
2021.

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas
Beyer. How to train your vit? data, augmentation, and regularization in vision transformers. arXiv
preprint arXiv:2106.10270, 2021.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Mojtaba Valipour, Mehdi Rezagholizadeh, Hossein Rajabzadeh, Marzieh Tahaei, Boxing Chen, and
Ali Ghodsi. Sortednet, a place for every network and every network in its place: Towards a
generalized solution for training many-in-one neural networks. arXiv preprint arXiv:2309.00255,
2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. 2023.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems, 2020a.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han.
Hat: Hardware-aware transformers for efficient natural language processing. arXiv preprint
arXiv:2005.14187, 2020b.

Xiaofang Wang, Dan Kondratyuk, Kris M Kitani, Yair Movshovitz-Attias, and Elad Eban. Multiple
networks are more efficient than one: Fast and accurate models via ensembles and cascades. arXiv
preprint arXiv:2012.01988, 2020c.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

13



Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training techniques.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 1803–1811,
2019.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
arXiv preprint arXiv:1812.08928, 2018.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence?, 2019.

Cha Zhang and Yunqian Ma. Ensemble machine learning: methods and applications. Springer,
2012.

14



A Implementation Details

A.1 Architecture and Training

For our experiments, we train a range of MatLMs varying from size 78M to 2.6B for 10B-
160B tokens – we scale model size equally with the number of training tokens (Hoffmann et al.,
2022). For each MatLM granularity, we also train a corresponding baseline vanilla Transformer
model. That is, for each model size we train Baseline-XL, L, M, S with dff = 4 ∗ dmodel, 2 ∗
dmodel, dmodel, dmodel/2. All models have 16 layers, 16 attention heads, and a dmodel : dff ratio of
1 : 4. We train a 256k vocabulary using the SentencePiece library (Kudo & Richardson, 2018), use
a maximum context length of 1024 tokens, and a batch size of 1M tokens. We pretrained the 2.6B
on 256 v3 TPU chips. We provide further details on these models in Table 3. For further details on
training data, we point the reader to (Thoppilan et al., 2022).

Table 3: Model details for the models scales used to conduct the experiments described in Section
4.1, with a breakdown of total parameter counts, non-embedding parameter counts and FFN param-
eter counts for each model granularity.

Parameter Count (full / spliced) Non-Embedding Params (full / spliced) FFN Params (full) dmodel N(tokens)

78M (74M / 72M / 71M) 12.6M (8.4M/6.3M/ 5.3M) 8.4M 256 10B
180M (164M / 157M / 152M) 50M (33.7M/25.3M/21.1M) 33.6M 512 20B
310M (272M / 253M / 244M) 113M (75M/56M/47M) 75.6M 768 30B
463M (397M / 363M / 346M) 201M (134M/100M/84M) 134M 1024 40B
850M (696M / 620M / 582M) 453M (302M/227M/189M) 302M 1536 80B

1.3B (1B / 927M / 860M) 805M (537M/403M/335M) 537M 2048 120B
2.6B (2B / 1.7B / 1.54B) 1.8B (1.2B/0.9B/0.7B) 1.2B 3072 160B

A.2 Downstream Evaluation

We evaluate all the LM models trained on set of 26 English tasks similar to (Brown et al., 2020; Du
et al., 2022; Chowdhery et al., 2022; Anil et al., 2023), including:

1. Open-Domain Closed-Book Question Answering tasks: TriviaQA (Joshi et al., 2017), Natural
Questions (Kwiatkowski et al., 2019), and WebQuestions (Berant et al., 2013).

2. Cloze and completion tasks: LAMBADA (Paperno et al., 2016), HellaSwag (Zellers et al.,
2019), and StoryCloze (Mostafazadeh et al., 2016).

3. Winograd-style tasks: Winograd (Levesque et al., 2012) and WinoGrande (Sakaguchi et al.,
2019).

4. Reading comprehension: SQuAD v2 (Rajpurkar et al., 2018) and RACE (Lai et al., 2017).

5. Common sense reasoning: PIQA (Bisk et al., 2019), ARC (Clark et al., 2018), and Open-
BookQA (Mihaylov et al., 2018).

6. SuperGLUE (Wang et al., 2020a)

7. Natural language inference: Adversarial NLI (Nie et al., 2020).

Among all the downstream datasets, we classify LAMBADA, Natural Questions, SQuAD v2, We-
bQuestions, and TriviaQA under “GEN” tasks as these require generating a few tokens, and the
remaining tasks under “RANK” tasks as they consist of choosing an option among the choices given
along with the input. For all the granularities corresponding to each model, we present evaluation
numbers along with development set log perplexity loss on all the 26 tasks in Tables 9 to 15. We
also perform evaluation on 2.6B Mix’n’Match models and provide it in Table 16.

B Training and Inference Costs

We currently make minimal changes and optimizations to the training scripts of vanilla Transformer
architecture. In other words, we use the same code for both Baselime and MatFormer, except using
different sized splices of FFN block for each forward pass. Note that this implementation is subop-
timal, as it involves added communication costs of FFN weight matrices when using model parallel

15



Table 4: 2.6B MatLM and Baseline training time per step, GFLOPs per step, and forward pass
latencies. Each model is trained on 256 v3 TPU chips. Note that MatLM Fwd pass latency for any
granularity will be same as corresponding Baseline granularity latency.

Model Time (s) / step GFLOPs / step Fwd pass latency (s)

MatLM 2.326 470841 -
Baseline-XL 0.728 186884 0.234
Baseline-L 0.670 147317 0.215
Baseline-M 0.652 125517 0.198
Baseline-S 0.630 117556 0.190

training (discussed in more details in Appendix B.1). Though using a suboptimal implementation,
we achieve the wall-clock time for MatLM training ∼ 15% less to sum of wall-clock times to train
all the 4 granulatities baseline counterparts. We also note that at train time, the peak memory usage
is roughly equal to the sum of memory usage for the independently trained baselines. On the other
hand, at inference time, both baseline and MatFormer have the same memory footprint. We give
exact FLOP count, wall-clock time, and forward pass time (inference cost) of each baseline and
MatLM 2.6B model (or its corresponding smaller granularities) in Table 4. During serving, we ob-
serve the 2.6B model FFN latency to attention latency ratio = 56 : 44. We note that this FFN:MHA
latency ratio depends highly on scale and sequence length. More specifically, for a given sequence
length FFN latency dominates the overall latency at scale, while the attention heads’ cost increases
with sequence length. We refer the reader to Kim et al. (2023) for a more extensive illustration
of this. We emphasize that though we trained one MatFormer and compare its training time with
Baselines combined, we get many more models than the 4 model granularities we explicitly trained.

B.1 Improving MatFormer Training Efficiency

While MatFormer training uses asymptotically 2× FLOPs compared to a regular Transformer, op-
timizations are necessary to also realize a 2× runtime training performance. We discuss a few
strategies here, leaving exact experimental testing to future work.

Delayed gradient synchronization via local accumulation. Since multiple forward and backward
passes are made for each mini-batch in common implementations of data parallelism, this induces a
gradient synchronization across all device for each backward pass with additional gradient accumu-
lation. As such, for MatFormers a minimum of 2× the parameters worth of gradients are exchanged
for the MLP layers, thus increasing the communication overhead. Additionally, for some frame-
works, such as PyTorch, gradients of the full-weight matrix size need to be exchanged, leading to
4× more communication for our default experimental setup. A more efficient way to communicate
gradients is to keep a local gradient accumulation buffer, which is used to accumulate all gradient
from all subnetworks into the main, full-sized weight gradient. After all forward-backward passes
have been completed, synchronization of gradients – with additional overall of computation and
communication – can ensue. This saves 2× communication overhead, reducing communication
overhead to the same cost as a regular Transformer.

Fused MatFormer kernels. Depending on the accelerator (GPU/TPU), the smallest MatFormer
forward and backward pass can be inefficient in that the matrices are too small to fully utilize the
accelerator. To improve utilization at the cost of additional memory for activations, it is possible
to run the following computational fusion strategy for MatFormer computation: (a) duplicate mini-
batch 4×, (b) do the forward/backward pass for each layer for all MatFormer stages at the same
time, (c) in doing so, load the tile for the weight matrix once, and reuse it for all relevant MatFormer
stages. This strategy is similar to tiling strategies in FlashAttention (Dao et al., 2022) or convo-
lution (Krizhevsky, 2009) which increase the arithmetic intensity for small weights by reusing of
matrix multiplication tiles written to SRAM.

B.2 Speculative Decoding Attention Sharing

An additional benefit of MatLM is that the attention cache is shared between the draft and verifier
model. When the XL model verifies S model’s draft, it overwrites the attention cache with its richer
latent representation compared to the one generated by the drafter model. Note that 1) this does

16







E.2 Ablations on Training Method

We experiment with several aspects of our training method on a 850M parameter MatLM. Our
training procedure is unique compared to others (further discussed in Section 2) in 2 ways: (a) we
learn all granularities in the same weight space and (b) we use joint optimization as described in
Section 3. To assess the effect of these differences on performance, first we train a Transformer
model with independent FFN modules with {S, M, L, XL} granularites using joint optimization
(Independent modules). Next, we train a MatLM model with the only difference being that at each
step, we optimize for a single granularity chosen uniformly at random (Subsampling). We find that
joint optimizing a MatLM performs significantly better than these baselines, implying efficacy of
both aspects of our training method.

Table 5: We compared the validation loss of models from Joint Optimization to training MatLMs
with independent MLP modules for each granularity (Independent modules) and sampling a single
granularity to optimize for at each step (Subsampling) for 850M parameter models. We find that
Joint Optimization performs significantly better than both these methods.

Model Training Strategy XL L M S

Baseline - 2.840 2.910 2.9710 3.017

MatFormer

Joint Optimization 2.874 2.928 2.980 3.030
Independent MLP modules 2.894 2.942 2.985 3.030

Subsampling 2.929 2.946 2.999 3.049

We discuss additional ablations such as re-weighting losses to improve the performance of the XL
model in Appendix E.4, and additionally studied scaling trends for these ablations. We found the
reweighting loss trick to be especially powerful, bringing the performance on downstream evals
within 0.1% for the XL model. This also nudges us towards finding better hyperparameters and
weight initializations for reliable scaling of MatLMs (Yang et al., 2022).

E.3 Changing Embedding Size

Because of the ubiquity of 64k vocabs size (Brown et al., 2020) we additionally train models upto
201M non-embedding parameters similar to those described in Appendix A, except that the embed-
ding size is 64k (the largest model corresponds to the 463M parameter model). We plot the scaling
trends in Figure 13. Though 4 models is not enough to extrapolate a trend, we observe that the
scaling trend for validation loss appears to be similar.

E.4 Reweighting Strategies

We additionally experiment with reweighting the losses for the individual granularities in order to
boost the performance of the largest granularity while minimally impacting the performance of the
smaller granularities. We present the relative weights used in Table 6 as λ4 : λ3 : λ2 : λ1, and find
that in general, upweighting the largest granularity greatly improves quality. Another interesting
related direction for improving MatFormer performance further is granularity appropriate initializa-
tion (Yang et al., 2022).

E.5 Scaling Laws for Reweighted Strategy

We conduct scaling experiments similar to those described in Section 4.1 for the reweighed models,
specifically for models with the ratio 2 : 1.5 : 1.25 : 1, and plot the results in Figure 14. We note
that the scaling trend is similar to the MatLM with a 1 : 1 : 1 : 1 relative weighting (a = 19.889, b =
−0.130, c = 1.374), but with a slightly better validation loss .

F Further Analysis on Vision Encoders

F.1 Decoupling Effect of MatFormer on Pretraining and Finetuning

Table 7 investigates the effect of MatFormer on pretaining and finetuning phases of ViT-L/16 model.
ViT-L/16 is typically pretrained on ImageNet-21K and then finetuned on ImageNet-1K for the final

19



Table 6: For 850M model, we experiment with modifying LJOINT to use a weighted average as
opposed to an unweighted average, and report the results across all granularities. We find that all
strategies that upweight the loss for the largest granularity perform well, with modest degradation
on the M and S granularties.

Model Relative Weights XL L M S

Baseline N/A 2.840 2.910 2.971 3.017

MatFormer

1:1:1:1 2.874 2.928 2.980 3.030
2 : 1.5 : 1.25 : 1 2.867 2.927 2.986 3.051
1 : 1.25 : 1.5 : 2 2.883 2.936 2.982 3.026

2 : 1 : 1 : 1 2.863 2.929 2.985 3.043√
8 :
√
4 :
√
2 : 1 2.862 2.924 2.990 3.063

evaluation. Table 7 shows that having a MatFormer during pretraining generates a better model for
downstream finetuning compared to regular ViT pertaining. At the same time, finetuning a vanilla
pretrained ViT with MatFormer results in flexibility being induced into the model. Despite being
up to 2% less accurate than its counterparts at some granularities, a fine-tuned MatViT learned to
reallocate the information to provide strong nested models. Considering that this is insignificant
compared to pretaining costs, possible to take the largest pretrained ViT model and finetune with
MatFormer to obtain a deployable MatViT variant.

Table 7: 2 × 2 grid of pairs to evaluate (top-1 accuracy (%)) the effects of MatFormer and standard
training on the pretraining (PT) on ImageNet-21K and finetuning (FT) on ImageNet-1K using a L/16
architecture. Using a MatFormer during pretraining helps bring more accurate, and elastic encoders
for downstream uses.

PT↓ / FT→ # Params (M) ViT MatViT

ViT

306 85.26 85.57
206 85.12 84.27
156 85.02 82.79
131 84.42 82.1

MatViT

306 85.58 85.61
206 – 85.40
156 – 85.02
131 – 84.41

F.2 Traditional Image Retrieval Evaluation

Table 8 showcases traditional image retrieval evaluation on ImageNet-1K where the query and the
document encoders are the same for nearest neighbor retrieval. The 1-nearest neighbor (NN) based
evaluation closely follows one-vs-all classification results shown in Figure 4. Both MatViT variants
B/16 and L/16 have submodels that have as good or better retrieval performance compared to their
independently trained counterparts. Concretely, MatViT-based retrieval can be up to 0.5% more
accurate than the baselines while a 200M parameter MatViT submodel can be more accurate than
the 300M parameter ViT baseline.

20















Table 9: Downstream Eval numbers and development set log perplexity loss on 78M model size
granularities.

Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 0.14 0.16 0.19 0.25 0.14 0.3 0.19 0.28
NaturalQuestions (EM) 0.06 0.03 0.03 0.06 0.03 0.03 0.03 0.03

WebQuestions (EM) 0.1 0.2 0.15 0.2 0.2 0.3 0.3 0.3
LAMBADA 0.06 0.02 0.02 0 0.02 0 0 0
HellaSwag 25.42 26.28 26 25.87 25.95 25.9 25.95 25.94
StoryCloze 52.81 53.39 53.13 53.34 54.46 53.5 54.46 54.36

WSC 52.98 51.93 53.68 50.88 55.79 54.04 52.28 52.63
WinoGrande 48.46 51.54 51.54 47.99 50.99 48.46 48.86 49.41
Winograd 53.11 52.75 52.38 53.85 55.31 55.31 52.75 55.68

SQuAD v2 (EM) 11.19 36.71 33.14 33.77 20.08 29.17 22.78 30.97
RACE-H 25.53 25.84 24.73 25.44 26.07 25.9 25.96 25.84
RACE-M 29.18 30.15 28.83 29.94 28.83 30.43 29.74 31.48

PIQA 55.77 55.22 54.62 55.28 54.52 54.79 56.86 54.08
ARC-C 21.5 20.9 21.08 21.67 21.59 21.33 22.35 22.1
ARC-E 34.55 35.48 34.3 35.73 34.89 36.11 34.55 35.98
OpenBookQA 25.4 28.6 27.6 28 28.2 28 29.8 29

BoolQ 48.72 44.89 51.87 47.37 51.28 46.85 52.11 45.87
COPA 62 64 62 61 63 63 60 60
RTE 53.79 52.35 52.35 51.99 51.26 54.51 51.99 52.71
WiC 49.53 47.34 49.06 47.34 47.34 47.34 47.65 47.34
MultiRC (F1) 53.17 51.72 53.42 53.28 56.86 53.82 55.46 53.42
ReCoRD 39.52 39.22 40.03 39.95 40.55 40.42 40.8 40.83
CB 41.07 42.86 44.64 39.29 44.64 41.07 42.86 44.64

ANLI-R1 30.9 32 32.3 31.9 32.5 32.3 32.5 31.7
ANLI-R2 31.1 30.9 31.1 30.1 30.7 30.8 30.6 30.3
ANLI-R3 31.75 30.75 30.58 30.25 30.33 29.67 30 30.17

Average 33.76 34.82 34.95 34.41 34.83 34.74 34.65 34.81

Avg over GEN Taks 2.31 7.42 6.7 6.85 4.09 5.96 4.66 6.31

Avg over RANK Tasks 41.25 41.34 41.68 40.97 42.15 41.6 41.79 41.59

Dev set log pplx 4.010 4.012 3.97 3.96 3.905 3.908 3.83 3.868

Table 10: Downstream Eval numbers and development set log perplexity loss on 180M model size granulari-
ties.
Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 1.04 0.9 0.98 1.26 1.16 1.89 1.86 2.00
NaturalQuestions (EM) 0.08 0.11 0.14 0.08 0.3 0.11 0.28 0.11

WebQuestions (EM) 0.59 0.94 0.44 0.98 1.28 0.89 1.33 0.79
LAMBADA 0.16 0.68 0.43 1.16 1.51 0.95 0.49 0.99
HellaSwag 27.77 27.3 27.45 27.61 27.58 27.84 28.86 28.56
StoryCloze 56.33 56.07 57.03 56.87 57.3 57.78 58.63 58.52

WSC 55.44 55.44 56.49 60.35 58.25 58.6 57.54 58.6
WinoGrande 52.01 50.12 50.28 49.17 51.22 50.43 51.54 49.09
Winograd 54.21 55.68 56.78 57.51 61.54 58.61 60.44 61.17

SQuAD v2 (EM) 22.13 17.28 20.05 18.02 26.42 11.42 25.76 16.53
RACE-H 27.93 27.9 27.5 28.53 28.7 28.82 28.73 28.73
RACE-M 33.29 34.47 34.19 34.05 34.54 33.91 33.29 34.19

PIQA 57.13 58.05 56.91 57.94 57.94 58.00 59.52 58.92
ARC-C 22.53 22.61 23.63 22.27 24.06 22.1 24.66 23.55
ARC-E 40.24 39.39 40.19 40.49 41.71 40.74 41.62 41.16
OpenBookQA 30.60 31.00 30.80 31.80 31.00 32.80 34.00 32.6

BoolQ 54.13 52.23 52.45 52.05 55.63 52.17 55.9 48.44
COPA 62 61 61 61 61 64 64 65
RTE 52.71 53.07 52.35 53.43 50.54 52.71 52.71 52.71
WiC 47.34 51.41 47.34 49.37 47.96 47.81 47.65 47.34
MultiRC (F1) 54.34 53.34 45.65 56.12 47.47 52.62 47.62
ReCoRD 48.58 49.4 48.99 50.13 50.56 51.25 52.82 52.51
CB 42.86 44.64 42.86 44.64 39.29 44.64 42.86 42.86

ANLI-R1 31.8 32.6 31.8 32.4 32.4 32.8 32.2 32.1
ANLI-R2 30.5 29.8 31.1 29.8 32.00 30.5 30.5 30.1
ANLI-R3 30.08 30.25 30.5 32.00 33.5 31.42 30.67 30.42

Average 35.99 35.51 35.96 36.1 37.06 36.14 37.33 36.33

GPT3-GEN 4.8 3.98 4.41 4.3 6.14 3.05 5.94 4.08

GPT3-RANK 43.42 43.02 43.48 43.67 44.42 44.02 44.8 44.01

Dev set log pplx 3.55 3.55 3.512 3.505 3.456 3.458 3.354 3.40

27



Table 11: Downstream Eval numbers and development set log perplexity loss on 310M model size granulari-
ties.

Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 2.09 2.4 2.2 3.17 2.84 2.73 5.18 3.12
NaturalQuestions (EM) 0.11 0.28 0.28 0.5 0.58 0.3 0.91 0.61

WebQuestions (EM) 2.12 1.38 1.08 1.67 1.67 1.43 2.41 1.57
LAMBADA 0.29 1.79 0.66 1.92 1.9 2.46 2.76 2.64
HellaSwag 29.89 29.69 30.05 30.02 31.18 30.63 32.52 31.58
StoryCloze 59.17 58.85 59.54 60.13 60.24 60.5 61.68 61.36

WSC 61.05 59.65 59.3 58.6 61.75 56.84 58.95 57.19
WinoGrande 51.46 52.88 49.57 50.91 52.41 50.75 50.91 52.01
Winograd 55.68 56.04 57.88 59.71 63 59.71 61.17 60.07

SQuAD v2 (EM) 22.38 22.79 13.38 17.83 20.03 18.66 22.03 21.81
RACE-H 29.45 28.33 28.9 28.67 29.22 29.07 29.67 28.79
RACE-M 35.31 36.14 36.14 36.91 36.42 36.14 37.6 36.07

PIQA 58.98 59.9 59.58 59.85 59.79 60.45 62.19 60.61
ARC-C 23.38 20.82 23.21 21.33 23.81 23.21 25 22.95
ARC-E 42.3 42.34 44.11 43.52 44.53 44.44 46.8 45.62
OpenBookQA 32.8 35.2 34.6 36.4 35.2 35.8 36.8 36.6

BoolQ 53.43 59.05 55.32 58.72 52.87 57.22 54.22 55.6
COPA 61 61 61 66 64 63 60 66
RTE 52.71 54.51 53.43 51.62 51.62 53.07 54.15 49.46
WiC 47.18 48.43 47.65 49.22 47.65 50.16 47.34 51.25
MultiRC (F1) 53.07 51.69 53.5 51.36 48.46 47.14 45.72 46.23
ReCoRD 54.34 53.86 55.18 55.33 56.75 56.79 58.39 58.07
CB 42.86 46.43 42.86 46.43 42.86 46.43 50 51.79

ANLI-R1 32 31.3 32 32.2 32.5 32.3 32.2 32.8
ANLI-R2 32.6 30.2 30.9 29.8 30.6 31.2 29.8 30.9
ANLI-R3 32.08 29.25 30.75 30.08 32.17 31.25 31.5 32.17

Average 37.22 37.47 37.04 37.77 37.85 37.76 38.46 38.34

Avg over GEN Taks 5.4 5.73 3.52 5.02 5.41 5.12 6.66 5.95

Avg over RANK Tasks 44.8 45.03 45.02 45.56 45.57 45.53 46.03 46.05

Dev set log pplx 3.31 3.33 3.30 3.285 3.224 3.235 3.15 3.18

Table 12: Downstream Eval numbers and development set log perplexity loss on 463M model size granulari-
ties.
Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 4.63 3.87 4.87 4.55 6.11 5.63 8.09 6.48
NaturalQuestions (EM) 0.61 0.58 0.8 0.89 0.94 1.16 1.66 1.25

WebQuestions (EM) 2.31 1.62 2.26 2.02 2.85 2.31 2.85 2.56
LAMBADA 2.1 1.65 2.6 2.1 3.94 2.93 3.49 3.49
HellaSwag 32.12 31.57 32.83 32.16 33.8 33.48 36.21 35.08
StoryCloze 61.25 60.98 61.36 61.46 63.66 62.21 64.24 64.08

WSC 57.54 64.91 61.4 62.11 66.32 62.11 61.05 63.16
WinoGrande 52.33 51.38 49.09 50.99 52.64 50.36 53.12 52.64
Winograd 60.07 63.74 60.07 62.27 67.4 61.54 68.5 63.74

SQuAD v2 (EM) 21.7 21.85 25.8 19.71 24.69 21.85 23.08 18.28
RACE-H 29.85 29.45 29.47 29.79 30.56 29.79 30.7 30.02
RACE-M 37.53 37.6 37.33 38.93 40.39 39.62 40.95 39.21

PIQA 61.26 61.53 61.48 62.08 60.99 63.22 63.17 63.71
ARC-C 23.04 22.7 24.06 22.35 24.49 22.18 23.72 23.63
ARC-E 45.83 44.44 46.3 45.62 47.73 47.85 51.73 49.12
OpenBookQA 37.2 36.4 37 37.8 36.4 39.2 41 38.4

BoolQ 52.39 52.69 56.12 52.05 50.28 51.28 54.98 47.95
COPA 67 62 73 63 71 63 67 66
RTE 52.35 53.07 53.43 52.71 52.35 52.71 52.35 51.99
WiC 47.34 47.34 47.34 47.34 47.34 47.34 47.34 47.34
MultiRC (F1) 45.63 46.02 54.4 46.38 52.79 49.28 52.34 41.71
ReCoRD 57.58 58.65 59.31 59.71 60.87 61 63.42 61.77
CB 42.86 42.86 44.64 42.86 44.64 42.86 42.86 42.86

ANLI-R1 32.6 32.5 31.7 33.1 31.4 32.3 32.5 32.6
ANLI-R2 30.7 30.7 28.4 30.5 30.4 30.6 31.2 31.8
ANLI-R3 30.83 30.67 30.08 30.75 30.83 30.67 30.92 30.75

Average 38.02 38.11 39.04 38.2 39.8 38.71 40.33 38.83

Avg over GEN Taks 6.27 5.91 7.27 5.85 7.71 6.78 7.84 6.41

Avg over RANK Tasks 45.59 45.77 46.61 45.9 47.44 46.31 48.06 46.55

Dev set log pplx 3.205 3.217 3.16 3.16 3.096 3.11 3.023 3.06

28



Table 13: Downstream Eval numbers and development set log perplexity loss on 850M model size granulari-
ties.
Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 9.26 6.62 10.82 9.78 11.07 11.72 13.31 13.76
NaturalQuestions (EM) 1.66 0.89 1.69 1.58 2.24 2.38 2.66 2.74

WebQuestions (EM) 3.89 3.35 4.08 4.18 3.74 4.43 4.08 5.31
LAMBADA 3.2 8.25 6.97 10.83 8.19 10.44 14.03 10.83
HellaSwag 36.11 36.64 38.26 37.7 40.63 39.64 43.4 42.55
StoryCloze 64.78 65.26 66.33 66.17 68.25 67.13 71.25 69.64

WSC 66.32 65.96 63.16 64.21 69.82 69.12 70.53 68.42
WinoGrande 52.17 51.54 52.25 52.57 55.17 52.96 54.14 54.62
Winograd 68.13 69.23 67.03 71.43 71.06 70.33 72.16 72.89

SQuAD v2 (EM) 29.9 23.79 29.07 25.51 25.07 26.39 33.41 28.46
RACE-H 30.39 30.76 31.93 31.88 32.53 31.88 33.79 32.73
RACE-M 40.95 40.95 42.06 41.16 42.27 42.55 44.64 42.48

PIQA 64.04 63.98 64.64 64.91 65.45 65.23 67.25 66.21
ARC-C 24.49 24.15 26.71 24.91 26.71 26.54 27.13 27.47
ARC-E 52.15 51.01 53.66 52.95 56.27 54.92 57.11 56.57
OpenBookQA 38.2 40.4 40.8 41.2 42.8 40.8 43 42

BoolQ 52.63 50.31 51.9 47.8 56.73 50.15 55.6 48.41
COPA 68 73 68 73 71 73 73 76
RTE 51.62 51.99 52.71 52.35 51.62 51.99 53.07 52.71
WiC 47.34 47.18 47.34 47.18 47.34 47.18 47.34 47.18
MultiRC (F1) 44.37 51.32 52.11 50.46 54.7 53 37.58 47.16
ReCoRD 63.52 64.27 65.03 65.36 67.55 66.53 69.56 68.03
CB 42.86 37.5 42.86 42.86 42.86 42.86 46.43 39.29

ANLI-R1 30.9 31.8 33.7 32.1 31.7 32.2 32.6 32.4
ANLI-R2 31.8 31.5 31.5 30.9 31.1 30.6 30.4 30.8
ANLI-R3 32 30.25 32.83 30.17 30.75 30 30.58 30.25

Average 40.41 40.46 41.44 41.27 42.56 42.08 43.39 42.65

Avg over GEN Taks 9.58 8.58 10.53 10.38 10.06 11.07 13.5 12.22

Avg over RANK Tasks 47.75 48.05 48.8 48.63 50.3 49.46 50.5 49.9

Dev set log pplx 3.017 3.03 2.971 2.98 2.91 2.928 2.84 2.874

Table 14: Downstream Eval numbers and development set log perplexity loss on 1.3B model size granularities.

Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 11.92 12 14.68 13.09 16.48 14.91 20.14 17.62
NaturalQuestions (EM) 1.88 2.19 2.24 2.47 3.07 2.99 4.79 4.13

WebQuestions (EM) 3.84 5.02 4.72 5.36 5.07 5.76 6.05 6.15
LAMBADA 7.3 9.94 13.55 12.34 17.97 13.51 22.65 19.21
HellaSwag 40.53 40.35 42.86 42.5 46 44.48 49.78 47.69
StoryCloze 67.29 68.2 69.75 69.91 72.37 71.14 73.81 72.8

WSC 64.56 65.96 64.91 69.12 67.72 69.82 72.63 69.82
WinoGrande 55.8 53.99 56.67 55.25 56.12 57.7 58.25 58.41
Winograd 71.06 68.5 67.77 70.7 73.99 70.33 72.53 72.89

SQuAD v2 (EM) 29.63 35.47 28.85 34.64 36.55 34.47 39.48 36.39
RACE-H 32.19 33.19 33.08 34.39 34.48 35.11 36.59 35.25
RACE-M 43.8 44.22 44.22 45.96 47.7 45.75 50.07 46.59

PIQA 66.49 64.36 66.05 66.38 67.52 66.97 69.1 67.68
ARC-C 27.99 25.77 27.65 27.22 29.01 28.75 30.55 31.48
ARC-E 56.44 54.08 58.54 57.03 59.85 58.84 63.26 61.83
OpenBookQA 41.4 42.2 41 42 43.4 42.8 44.8 45.4

BoolQ 52.57 49.85 54.86 52.42 53.76 56.06 55.35 53.52
COPA 70 75 69 77 74 74 77 75
RTE 52.35 53.07 53.07 52.35 54.15 53.43 52.35 49.82
WiC 47.34 47.34 47.18 47.34 47.34 47.34 48.43 47.02
MultiRC (F1) 42.98 46.69 43.82 49.09 45.29 48.2 40.99 46.42
ReCoRD 67.32 67 69.02 68.61 71.13 70.26 73.4 71.49
CB 42.86 44.64 46.43 42.86 48.21 44.64 42.86 37.5

ANLI-R1 32.5 33.5 31.9 33.8 33 33.3 32.4 32.1
ANLI-R2 30.3 34.7 30.5 34.6 30.6 33.1 31.5 33.5
ANLI-R3 30.5 33.17 31.5 33.67 31.33 33.5 32.58 33.67

Average 41.96 42.71 42.84 43.85 44.85 44.51 46.21 45.13

Avg over GEN Taks 10.91 12.92 12.81 13.58 15.83 14.33 18.62 16.7

Avg over RANK Tasks 49.35 49.8 49.99 51.06 51.76 51.69 52.77 51.9

Dev set log pplx 2.90 2.923 2.856 2.867 2.79 2.81 2.718 2.76

29



Table 15: Downstream Eval numbers and development set log perplexity loss on 2.6B model size granularities.
Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 18.58 18.64 19.83 21.41 25.17 24.9 28.84 28.01
NaturalQuestions (EM) 3.05 3.13 3.19 3.66 4.76 4.24 6.73 5.01

WebQuestions (EM) 5.61 6.74 4.43 6.3 6.1 6.74 8.27 7.78
LAMBADA 18.46 13.74 29.92 19.89 27.34 24.84 27.94 29.98
HellaSwag 46.41 46.01 49.04 48.94 52.87 52.2 57.14 55.33
StoryCloze 72.26 72.1 73.54 73.22 75.09 75.04 77.02 75.79

WSC 71.23 69.82 70.88 71.58 75.09 74.39 80 77.54
WinoGrande 56.83 57.85 57.62 56.91 60.93 59.19 62.19 59.59
Winograd 76.56 71.43 72.89 74.36 76.56 74.73 81.68 78.75

SQuAD v2 (EM) 34.89 37.97 34.33 40.07 34.89 42.24 43.47 42.59
RACE-H 33.62 34.76 35.59 35.85 36.91 36.82 38.91 37.28
RACE-M 47.63 47.49 49.44 49.51 50.77 50.07 53.34 51.67

PIQA 67.74 67.79 68.39 68.28 69.21 69.59 71.49 71.11
ARC-C 29.95 30.29 31.83 31.91 32.51 34.22 35.67 35.41
ARC-E 60.82 59.97 61.2 62.42 63.51 64.56 67.76 64.86
OpenBookQA 45.6 43.8 45.4 44.8 49 46.4 49 49.4

BoolQ 53.58 52.87 53.15 53.52 59.36 54.89 60.8 57.22
COPA 74 74 77 76 75 78 82 81
RTE 49.1 53.07 49.82 54.15 48.01 54.51 48.01 52.35
WiC 47.34 47.34 47.18 47.34 47.34 47.18 47.02 47.49
MultiRC (F1) 43.4 52.28 43.65 51.64 46.99 53.7 39.24 53.77
ReCoRD 71.34 71.9 72.79 72.97 74.86 74.57 76.71 75.32
CB 28.57 44.64 46.43 46.43 41.07 50 50 44.64

ANLI-R1 32.4 32.3 30.4 32.3 32.5 32.1 31.2 31.5
ANLI-R2 30.4 30.1 30.6 31 30.1 30.2 31.7 30.8
ANLI-R3 30.75 30.83 31.25 31 33.5 30.92 32 31.92

Average 44.23 45.03 45.76 46.36 47.29 47.93 49.54 49.08

Avg over GEN Taks 16.12 16.04 18.34 18.26 19.66 20.59 23.05 22.68

Avg over RANK Tasks 50.93 51.94 52.29 53.05 53.86 54.44 55.85 55.37

Dev set log pplx 2.77 2.787 2.722 2.732 2.66 2.68 2.592 2.63

30



Table 16: Downstream eval numbers and development set log perplexity on 2.6B MatLM
Mix‘n’Match granularities. For original granularities, please refer to Table 15. First row repre-
sents the non-embedding parameters of the model.

Downstream Task 830M 1B 1.11B 1.32B 1.43B 1.55B 1.65B

TriviaQA (EM) 18.89 22.43 23.8 25.77 26.26 26.15 26.6
NaturalQuestions (EM) 3.49 3.77 4.02 4.07 4.46 4.65 5.12
WebQuestions (EM) 5.95 6.1 6.64 6.69 6.94 6.69 6.69
LAMBADA 16.34 20.16 23.07 24.8 24.32 25.87 29.13
HellaSwag 47.98 50.46 51.29 52.78 53.75 54.16 54.56
StoryCloze 73.01 73.33 74.83 75.2 75.68 75.41 75.63
WSC 70.88 70.53 74.04 72.98 74.74 73.33 77.19
WinoGrande 57.85 58.88 60.93 58.88 59.67 60.06 59.91
Winograd 73.26 73.26 76.19 74.36 76.56 77.66 78.02
SQuAD v2 (EM) 36.49 39.72 38.05 41.33 41.08 40.26 41.36
RACE-H 34.71 35.93 35.48 36.74 36.62 36.22 36.96
RACE-M 46.59 48.89 49.44 50.28 50.42 51.32 50.91
PIQA 68.5 69.04 69.53 70.4 70.46 70.51 70.29
ARC-C 31.06 33.11 33.19 34.81 35.75 35.84 34.56
ARC-E 62.29 62.58 62.63 64.86 65.99 65.49 64.69
OpenBookQA 44.6 46.2 46.8 47 47.4 47.4 47.6
BoolQ 54.86 55.08 54.46 55.78 58.38 57.19 56.88
COPA 76 76 75 80 77 80 80
RTE 53.43 53.79 53.79 52.71 53.79 54.51 53.79
WiC 47.34 47.34 47.18 47.34 47.18 47.34 48.12
MultiRC (F1) 53.34 53.85 52.97 54.23 57.57 55.09 54.91
ReCoRD 72.21 73.25 73.98 74.43 74.72 75.05 75.37
CB 48.21 46.43 48.21 50 50 44.64 55.36
ANLI-R1 32.4 32.1 32 32.4 32.3 31.4 32.4
ANLI-R2 30.5 30.6 30.6 30.6 30.7 30.4 31.4
ANLI-R3 31.17 31.17 31.17 31.5 31 31.5 31.33
Average 45.82 46.69 47.28 48.07 48.57 48.39 49.18
Avg over GEN Taks 16.23 18.44 19.12 20.53 20.61 20.72 21.78
Avg over RANK Tasks 52.87 53.42 53.99 54.63 55.22 54.98 55.71

Dev set log pplx 2.774 2.729 2.706 2.68 2.675 2.663 2.65

31


	Introduction
	Related Work
	MatFormer
	MatFormer Structure
	Training
	Mix'n'Match
	Deployment

	Experiments
	MatLM: MatFormer Language Models
	Elastic Inference with MatLM
	MatLM Scales as well as Vanilla Transformer LMs

	MatViT: MatFormer Vision Transformers
	Image Classification
	Adaptive Image Retrieval


	Conclusions
	Implementation Details
	Architecture and Training
	Downstream Evaluation

	Training and Inference Costs
	Improving MatFormer Training Efficiency
	Speculative Decoding Attention Sharing

	Mix'n'Match
	Scaling Laws for Language Decoders
	Scaling laws of MatFormers vs Transformers.

	Further Analysis on Language Decoders
	KL Divergence Between S, M, L and XL Models
	Ablations on Training Method
	Changing Embedding Size
	Reweighting Strategies
	Scaling Laws for Reweighted Strategy

	Further Analysis on Vision Encoders
	Decoupling Effect of MatFormer on Pretraining and Finetuning
	Traditional Image Retrieval Evaluation


