MatFormer: Nested Transformer for
Elastic Inference

Devvrit*~° Sneha Kudugunta*'® Aditya Kusupati*f°+
Tim Dettmers! Kaifeng Chen® Inderjit Dhillon®® Yulia Tsvetkov! Hannaneh Hajishirzif
Sham Kakade! Ali Farhadi’ Prateek Jain®*t

°Google Research “University of Texas at Austin TUniversity of Washington Harvard University

Abstract

Transformer models are deployed in a wide range of settings, from multi-
accelerator clusters to standalone mobile phones. The diverse inference con-
straints in these scenarios necessitate practitioners to train foundation models such
as PaLM 2, Llama, & ViTs as a series of models of varying sizes. Due to signifi-
cant training costs, only a select few model sizes are trained and supported, limit-
ing more fine-grained control over relevant tradeoffs, including latency, cost, and
accuracy. This work introduces MatFormer?, a nested Transformer architecture
designed to offer elasticity in a variety of deployment constraints. Each Feed For-
ward Network (FFN) block of a MatFormer model is jointly optimized with a few
nested smaller FEN blocks. This training procedure allows for the Mix’n’Match
of model granularities across layers — i.e., a trained universal MatFormer model
enables extraction of hundreds of accurate smaller models, which were never ex-
plicitly optimized. We empirically demonstrate MatFormer’s effectiveness across
different model classes (decoders & encoders), modalities (language & vision),
and scales (up to 2.6B parameters). We find that a 2.6B decoder-only MatFormer
language model (MatLM) allows us to extract smaller models spanning from 1.5B
to 2.6B, each exhibiting comparable validation loss and one-shot downstream
evaluations to their independently trained counterparts. Furthermore, we observe
that smaller encoders extracted from a universal MatFormer-based ViT (MatViT)
encoder preserve the metric-space structure for adaptive large-scale retrieval. Fi-
nally, we showcase that speculative decoding with the accurate and consistent
submodels extracted from MatFormer can further reduce inference latency.

1 Introduction

Large Foundation models (Anil et al., 2023; OpenAl, 2023; Dehghani et al., 2023) are deployed in
a variety of settings like real-time response on mobile phones or in batch setting on multi-cluster
GPUs for web-scale serving. To handle such varied settings, each model family provides a few
independently trained models of different sizes. In order to cover a wide range of applications,
typically these models’ sizes are nearly linear on log-scale. For example, Llama family provides
models with 7B, 13B, 33B and 65B parameters (Touvron et al., 2023a).

Such an approach has two key drawbacks: (a) as the models are independently trained, they in-
cur significant overhead for colocation during inference and are not behaviorally consistent with

*Equal technical contribution. ™ Aditya Kusupati and Prateek Jain led the project.
Correspondence: devvrit@cs.utexas.edu, snehakuduguntalgoogle.com,
kusupati@cs.washington.edu, prajain@google.com

*MatFormer stands for @ Matryoshka Transformer due to the model’s inherent nested nature.

Workshop on Advancing Neural Network Training at 37th Conference on Neural Information Processing Sys-
tems (WANT @NeurIPS 2023).

1

h

W, € R%dmodel .
1

Training

| Matryoshka Structure |

Add & Norm
Attention

Inference

S
[MatFormer Block J

Figure 1: MatFormer introduces nested structure into the Transformer’s FFN block & jointly trains
all the submodels, enabling free extraction of hundreds of accurate submodels for elastic inference.

each other which are detrimental to inference optimization techniques like speculative decod-
ing (Leviathan et al., 2023) and model cascades (Wang et al., 2020c), and (b) due to training over-
head, practitioners typically train only a few models which do not cover the entire set of downstream
use-cases. For example, a deployment setup might, say, have the latency budget to support 40B pa-
rameter Llama model, but can only host a 33B variant because the next bigger model (65B) has
significantly higher latency. So, one would need to settle for a less accurate model despite the larger
latency budget. While model compression approaches aim to address this issue, they typically re-
quire additional training for each model that needs to be extracted. Furthermore, when applied to
LLMs, these techniques are known to significantly drop the accuracy (Jaiswal et al., 2023).

In this paper, we propose MatFormer, a natively elastic Transformer (Vaswani et al., 2023) architec-
ture that allows for training one universal model which can be used to extract hundreds of smaller
submodels without any additional training (Figure 1). MatFormer is a general architecture that can
be applied to both encoders and decoders, is domain agnostic, and is compatible with most design
choices and training pipelines of large Transformer-based models — LLMs & ViTs.

MatFormer follows the principle of matryoshka representation learning (Kusupati et al., 2022), to
introduce nested substructure inside the standard Transformer block. Formally, MatFormer defines a
Transformer blocks T, such that, 77 C Ty C --- C T}, where g is the number of nested transformer
blocks, and T; C T;4; relation indicates that the parameters of 7; are contained in those of 7T} ;.
MatFormer can induce such sub-structure in both the attention and the feedforward network (FFN)
blocks of the Transformer (see Figure 1). Consider a FFN block that has dg neurons in the hidden
layer. Then, MatFormer induces matryoshka structure on these neurons, where 7; contains the first
m; neurons and 1 < m; < mg--- < my = dg represent the number of neurons for each granularity
or sub-model. Intuitively, this implies that the first 7m; neurons are “most significant” neurons as
they belong to all the blocks followed by the next my — m, and so on. We can form a similar sub-
structure on the attention heads, with the heads being organized from “most” to “least” significant,
where the more significant heads are shared by more sub-models. That is, we use only the first m;
attention heads for the ith granularity. In fact, we can also introduce this sub-structure in the token
embedding (dnodel) Supplied to each Transformer block.

However, in most LLLMs and ViTs, the FEN block in the Transformer accounts for more than 60%
non-embedding parameters and is responsible for the largest chunk of latency during inference. So,
in this work, we focus on inducing the MatFormer’s nested sub-structure in the FFN block. We then
stack the individual blocks (for [layers) to form ¢ nested models (M g) with shared parameters
ie., M; C M. Finally, we jointly train these g models by combining each model’s loss.

This leads to a natural question: can one extract more than g models after inducing the MatFormer
structure? Yes, in fact, it is possible to extract exponentially many models. Using the trained Mat-
Former blocks T, ..., Ty at each layer, one can form new models by Mix’n’Match, i.e., by taking
an arbitrary combination of these blocks across layers. For example, in the first layer, one can select
T,, the largest block, choose 7% in the second layer, and so on, forming gl different models. As we
explicitly optimized only for g models, instead of the exponentially many models, are the extracted
models accurate? Surprisingly, in multiple settings, and for a various model sizes, we observe that
the extracted models indeed are accurate, with accuracy scaling with the size of the extracted model.

We train Matformer-based decoder-only Language Models (MatLM) up to 2.6B parameters and
observe that: (a) MatLMs explicitly trained with g exponentially spaced granularities almost match
validation loss and one-shot downstream evals of respective g baseline models trained independently
from scratch, (b) our extracted models using Mix’n’Match lie on the accuracy-vs-parameters trade-
off curve generated by the g explicitly trained models, (c) through scaling experiments we observe
that the loss vs compute law for different MatFormer models remains similar to vanilla Transformer
models across different granularities and (d) the submodels extracted from MatLM have highly
consistent behavior that is highly desirable for inference optimizations and deployment across scales.

We further studied MatFormer-based ViT models (MatViT) and have similar observations as
MatLM. For example, MatViT-L/16 improves the accuracy of the standard ViT-L/16 model on
ImageNet-1K, and the extracted sub-models all match or even perform better than the independently
trained baselines. Furthermore, we demonstrate that, due to high consistency, MatViT models can
be used as “elastic encoders” for adaptive image retrieval. That is, the metric-space of an image en-
coded by the universal (i.e. the largest) MatViT model is roughly preserved by the nested submodels.
Hence, based on query complexity, system load, and various other considerations, we can use one
of the extracted MatViT encoders at inference time for retrieval on a fixed corpus encoded by the
universal model — providing over 40% lesser compute overhead with < 0.5% drop in accuracy.

We make these key contributions:

1. We introduce MatFormer, which incorporates a nested sub-structure within the standard Trans-
former and jointly optimizes all the g granularities to produce a single, universal elastic model.

2. Employing Mix’n’Match of granularities across layers in a universal MatFormer model yields
hundreds of accurate and consistent submodels without any additional training cost (Section 3).

3. MatFormer generalizes effectively to both decoder-only language models (MatLM) and vision
encoders (MatViT), scaling as reliably and accurately as the standard Transformer, while enabling
significantly faster autoregressive generation and large-scale adaptive dense retrieval (Section 4).

2 Related Work

A standard Transformer (Vaswani et al., 2023) has become the unifying model architecture for foun-
dation models (Bommasani et al., 2021) across modalities like language (Brown et al., 2020), vi-
sion (Dehghani et al., 2023) and audio (Radford et al., 2023). While extremely powerful, the stan-
dard Transformer block is not natively elastic in a way that enables large-scale adaptive and flexible
deployment across various resource constraints. To cater to the plethora of deployment requirements,
existing solutions include training a family of models of varying sizes (Anil et al., 2023; Touvron
et al., 2023b), post-hoc efficiency techniques like quantization (Dettmers & Zettlemoyer, 2023),
pruning (Lagunas et al., 2021), distillation (Sanh et al., 2019) and mixture of varying capacity ex-
perts (MoE) (Zhang & Ma, 2012). However, these solutions often are specific to the single constraint
at hand, and require additional training or trade-off memory/compute during inference making them
far from being a truly elastic solution for adaptive deployment. Lastly, Transformer based LLMs are
often sped-up during inference with techniques like speculative decoding (Leviathan et al., 2023;
Chen et al., 2023) — that benefits from the smaller draft & the larger verifier models having similar
behavior — or early exiting (Schuster et al., 2022) to enable real-time deployment.

Obtaining multiple smaller models from a single model has been explored in the past (Yu et al., 2018;
Yu & Huang, 2019; Cai et al., 2019; Grimaldi et al., 2022; Cai et al., 2021) with most works focus-
ing on CNN encoders. Specifically, OFA (Cai et al., 2019) creates a universal CNN model which
is used to extract and finetune submodels for a handful of deployment constraints while slimmable
networks (Yu et al., 2018) optimize for limited preset widths and require explicit training to interpo-
late for a few more intermediate widths (Yu & Huang, 2019). NAS techniques that sample random
(not nested) subnetworks during training at each step, and then find the subnetwork architecture
to retrain from scratch before deployment have been explored (Wang et al., 2020b). These tech-
niques fall short of being truly elastic and come with significant training overheads. More recently
some of them have been extended to Transformer encoders (Chavan et al., 2022; Hou et al., 2020;
Salehi et al., 2023) for extracting sub-models in both static or dynamic settings but fail at extending
further to decoder-only language models. While not in the weight space, matryoshka representa-
tion learning (Kusupati et al., 2022) & FlexiViT (Beyer et al., 2023) showcase elasticity in output
& input spaces respectively by smoothly spanning deployment constraints with minimal overhead.
MatFormer, in contrast, builds upon these works by nested the weight space instead to enable truly

elastic and adaptive Transformer-based (decoder & encoder) models that span all the accuracy-vs-
compute tradeoff (statically or dynamically) with minimal changes and training overhead (Figure 1).
Finally, we also point the readers to SortedNet (Valipour et al., 2023), a concurrent work with similar
goals applied to encoders, which optimizes many sampled submodels (akin to prior works) unlike
MatFormer’s joint optimization of a few (typically 4) nested submodels.

3 MatFormer

In this section, we define MatFormer’s nested substructure (Section 3.1) and discuss its training
procedure for a chosen g model granularities (Section 3.2). We then discuss elastic inference using
Mix’n’Match models (Section 3.3) from MatFormer along with its deployment considerations.

3.1 MatFormer Structure

MatFormer defines g Transformer blocks T;, such that, Ty C 1% C --- C T, where T; C T4y
indicates that the parameters of 7; are contained in those of T; ;. While it is possible to impose
such a structure on any part of the Transformer, we select the FFN block to define our method and
present our experiments, as the model size and computational cost of a Transformer is dominated
(around 60% for LLMs and ViTs) by the FFN block (see Appendix B).

The Transformer FEN block has a single hidden layer with dg neurons and both input and outputs
in Rl and fixed FEN ratio := djt/dmoder (typically > 4). MatFormer introduces the matryoshka
nested structure with g granularities on the hidden representation of the FFN block. Concretely, a
nested sub-block of the Transformer, 7; contains the first m; neurons of the FFN and 1 < m; <
.-+ < mg = dj represent the number of neurons for each granularity or sub-model. So, depending
on the chosen granularity the FFN operation of 7T} i.e., T'™ on an input z € R%md jg:

TFN(2) = o(z - W1[0: my]T) - W[0 1 my), (1)

where the weight matrices of FFN are W1, Wy € Réuxdmoet and bias terms are omitted for sim-
plicity. W[0 : k] denotes the submatrix with the first k& rows of W. Finally, o is a non-linearity
often set to GELU (Hendrycks & Gimpel, 2016) or squared ReLLU (So et al., 2021). In this work, we
chose the g = 4 exponentially spaced granularities with FEN ratios of {0.5,1,2,4} i.e., the nested
hidden neurons are of the sizes {d%, %, d%, dist.

With the nested MatFormer blocks 77,75 . . . T,;, we can combine these to form a MatFormer model,
with g nested submodels My C M,...,C M, where M; < [T;]%, i.e., M; is formed by

stacking T; for [layers. The input and output embedding matrices are shared across the models.

3.2 Training

For a Transformer model M, the forward pass on an input 2 is denoted by M (z) and let £ denote
the loss function between the output and the target y: £L(M(z), y).

MatFormer relies on a simple training strategy of jointly optimizing all the g nested submodels
together. To this end, we set the MatFormer loss as a weighted average of loss of g submodels and
train for it using the standard stochastic gradient-based optimizers (Shazeer & Stern, 2018):

g

£JOINT(~T73/) = Z i £(Mi(x>7y)> (2)

=1

where A; > 0 is the weight of i-th granular submodel. In this paper, we set {\; };—1.._¢ to be uniform
i.e., 1/g but explore tuning {\; };=1.. 4 in Appendix E.4 to further improve MatFormer.

The joint training in MatFormer involves one forward pass per each of the g submodels and ben-
efits from portions of shared computation during backpropagation. MatFormer training results in
g accurate nested submodels M 4 inside the universal MatFormer model (M,). Note that this
simple strategy outperforms various other training techniques (Appendix E.2). Finally, instead of
pretraining models with MatFomer structure, we can also induce this structure via finetuning.

MatFormer training is ~ 15% faster (for g = 4) than training all the Transformer based equiva-
lent submodels independently (Appendix B). However, MatFormer also enables the extraction of

hundreds of smaller submodels along the accuracy-vs-compute curve traced by the g explicitly opti-
mized submodels (Section 3.3). These models emerge for free using Mix’n’Match during inference
and drastically reduce the amortized training cost per model obtained through MatFormer. The joint
optimization, even without self-distillation from M, results in smaller submodels that have highly
consistent behavior (Section 3.4) with the universal model. Finally, in Appendix B.1, we argue that
the training efficiency of MatFormer can be significantly improved through various optimizations.

3.3 Mix’n’Match

At inference time, it is trivial to extract one of the g submodels M; C Ms ..., C M, by stacking
the corresponding Transformer block 7; across layers. However, by selecting different granular-
ity for each MatFormer layer, it is possible to generate a combinatorially large number of accurate
smaller models for free. We call this simple procedure Mix’n’Match and observe that these addi-
tional model granularities —which were never explicitly optimized — are highly performant.

In fact, we can further increase the number of extracted models by generating interpolating blocks

between fixed granulaties (Kusupati et al., 2022). For example, we can generate a 1" block that uses
first %(ml -+ m;+1) neurons in the FFN layer which still tends to be highly accurate.

To summarize, given a computational budget, we can extract a highly accurate model with
Mix’n’Match for the constraints rather than using a smaller less accurate model or training a model
for this specific constraint (Sections 4.1.1 & 4.2). We note that a compute constraint can be satisfied
by various Mix’n’Match models with different accuracies, making identifying the best Mix’n’Match
configurations without downstream validation is an exciting direction for future work.

3.4 Deployment

During deployment, all we need to store is the single universal MatFormer model for different types
of elastic inference depending on the constraints. In the case of static workloads, where compute
resources are known beforehand and the inputs remain relatively similar in difficulty, one can choose
the most accurate static submodel for the constraints using Mix’n’Match. This eliminates the usage
of a less accurate preexisting model or training of a new one for the specific constraints.

For dynamic workloads, where the compute resources or the input hardness change on the fly, we
can use the universal MatFormer model to dynamically extract the optimal submodel for token-
based routing in LLMs akin to MoE (Kudugunta et al., 2021; Li et al., 2022) and elastic encoders
in dense retrieval (Section 4.2.2). This works largely because all the extracted submodels have high
behavioral consistency with universal MatFormer model (Section 4.1) — minimizing the drift across
predictions from various submodels. We measure the consistency between two generative models as
the percentage of matching tokens generated by them for the same prefix or using the KL divergence
of the smaller model outputs with the larger model outputs — this accounts for potential sampling
strategies in decoding. This highly consistent nature of MatFormer results in superior inference time
speedups for techniques like speculative decoding (Leviathan et al., 2023) (Section 4.1.1) and can
assist in reducing prediction drift between cross platform deployments. We also show that higher
model consistency also aids metric-space structure preservation in encoder models (Section 4.2.2).

4 Experiments

In this section, we empirically evaluate MatFormer across modalities (language and vision), model
classes (decoder and encoder), and scales (up to 2.6B parameters). Specifically, we train and ana-
lyze MatFormer-based decoder-only Language Models — MatL.Ms (Section 4.1) — and encoder-only
Vision Transformers — MatViT (Section 4.2) models with g = 4 nested granularities across various
model sizes. For a fair comparison, we also independently train the Transformer baseline for the
submodel of each granularity across model sizes for the same tasks. We primarily focus on the elas-
tic deployment of MatFormer-based models (Sections 4.1.1 & 4.2) for tasks spanning from one-shot
generative evals to adaptive image retrieval. Additionally, we also investigate the reliable scaling
behavior (Kaplan et al., 2020) of the MatFormer models (Section 4.1.2).

4.1 MatLM: MatFormer Language Models

We build MatFormer-based decoder-only Language Models — MatLMs — and contrast them to their
vanilla Transformer counterparts (LMs) (Liu et al., 2018). The LMs broadly follow the training

3.0

60
S
28 [g g55 *_.--a--*—-*--*'"’
-k o T
0 i b bt S 5 ¢
- |9}
226 b S 50
] <
A MatFormer S A MatFormer
24 | % Mix'n'Match g 45 | % Mix'n'Match
v Baseline g: v Baseline
2.2 40
0.8 1.0 1.2 1.4 1.6 1.8 0.8 1.0 1.2 1.4 1.6 1.8
N(Non-Embedd. Parameters) 1e9 N(Non-Embedd. Parameters) 1e9
(a) Validation loss (b) 1-shot RANK Evals
30 100 *
g _ .
g xX
§25 S; 90 _r“ * *
z r‘i";—‘_—‘l e & il
2 - 4
20 P Y 80 v
< &KX ¥ I v Y
S scd A MatFormer 2 A MatFormer
g 15 * Mix'n'Match S 70 * Mix'n'Match
g: v Baseline v Baseline
10 60
0.8 1.0 1.2 1.4 1.6 1.8 0.8 1.0 1.2 1.4 1.6
N(Non-Embedd. Parameters) 1e9 N(Non-Embedd. Parameters) 1e9
(c) 1-shot GEN Evals (d) Consistency with the XL model

Figure 2: Validation loss & one-shot downstream evaluation scores for the 2.6B MatLM & baseline
models. Mix’n’Match helps generate accurate and more consistent models from MatLLM that lie on
the performance-vs-compute curve spanned by the explicitly optimized submodels.

pipeline and procedure outlined by Thoppilan et al. (2022). For each MatLM model with a set
dmode1, We jointly optimize for g = 4 nested granularities represented by FFN ratios of {0.5,1,2,4}
—i.e., only the hidden representation size of the FFN block changes. We denote these submodels as
MatLM - {S, M, L, XL} in increasing order of model size and refer to MatLM-XL as the universal
MatLM. For baselines, we train vanilla Transformer models with comparable architectures. That is,
for each MatLM, we train 4 separate baseline models with FFN ratios of {0.5,1, 2,4} for a fixed
dmodel denoted as Baseline — {S, M, L, XL}. We evaluate these models on validation loss (= log
perplexity) and average accuracy on 26 English tasks similar to (Brown et al., 2020; Du et al., 2022;
Anil et al., 2023). Of these 26 tasks, we group 5 tasks that require generating multiple tokens under
“GEN” and the remaining tasks that involve choosing an option from the input text under “RANK”.
Please see Appendix A for further details on training, evaluation, and the datasets.

4.1.1 Elastic Inference with MatLM

To showcase elastic inference, we evaluate the 2.6B parameter MatLM models on its ability (a) to
provide models spanning the accuracy-vs-compute curve using Mix’n’Match (Section 3.3) and (b)
to improve post-hoc inference optimization techniques like Speculative Decoding (Leviathan et al.,
2023) to further speed-up accurate auto-regressive generation.

Accurate MatLM submodels for every constraint for free with Mix’n’Match. Leveraging
Mix’n’Match, a MatLM can provide accurate models for every compute constraint (between S
and XL), not just the explicitly optimized granularities {S, M, L, XL}. We evaluate the impact
of Mix’n’Match on the 2.6B parameter MatLM in Figure 2 through validation loss and downstream
evals and contrast them to four granularities {S, M, L, XL} of the 2.6B baseline LM (all trained in-
dependently). In Figures 2a, 2b & 2¢, we show that all MatLM - {S, M, L, XL} models all perform
as well as their corresponding baselines — with marginal improvements and drops across the scale.

In Figure 2a we see that Mix’n’Match helps obtain many models on the optimal loss-vs-compute
curve at zero cost. Moreover, downstream eval tasks on these Mix’n’Match models also mimic this
trend, as shown in Figures 2c & 2b. In a deployment setting that only has 55% of the required
compute resources needed for the MatLM-XL model, it is now possible to have a Mix’n’Match sub-
model with < 2% accuracy drop on RANK evals. Without elastic deployment due to Mix’n’Match,
we would see a > 2.5% accuracy drop due to the use of the MatLM-M model. Note that we high-
light only a few of the hundreds of accurate Mix’n’Match models along the curves. We discuss
additional details and results on the Mix’n’Match procedure in Appendix C.

MatLLM submodels speed up speculative decoding. Speculative decoding leverages an accurate
lightweight LM as a draft model to autoregressively generate a few tokens, followed by verifying
these drafts with a larger model through parallel decoding on the generated tokens. When the draft
is inaccurate, the draft model is rolled back and reset to the larger model’s output. This results in
considerable inference speed-up for the same accuracy as the large model. We point the reader to
the original paper for a more detailed explanation (Leviathan et al., 2023).

Slow down of this algorithm stems from cases where the smaller model’s predictions disagree
with the larger model. A draft model that is significantly more consistent with the larger veri-
fier model would lead to less rollbacks of the draft predictions and therefore lower latency. As
seen in Figure 2d the MatLM submodels can be
up to 8.5% more consistent than the baselines to
their corresponding XL model. The significant
gap persists even in the KL divergence variant
of consistency with the XL model’s outputs (see
Figure 8 in Appendix). This improved consis-

Table 1: Inference time speed-ups over a standard
2.6B model through speculative decoding using a
1.5B (S) draft and 2.6B (XL) verifier model.

Speculative Decoding LAMBADA TriviaQA

tency along with the need for only a single uni- ~ baseline 1.10x 1.08x
1 del .. MatLM f: bl . MatLM 1.14x 1.11x
versal model positions Mat avorably to 1m- + shared attention cache 1.16x 1.14x

prove techniques that require draft and verifier
models such as speculative decoding.

Table 1 shows the inference time speed-ups from speculative decoding using the S and XL submod-
els of the 2.6B language model for drafting and verification respectively. Speculative decoding with
independently trained baseline LMs results in a speed-up of up to 10% over the standard autoregres-
sive decoding of the 2.6B-XL model. But MatLM-based speculative decoding is up to 6% faster
than traditional speculative decoding. This additional speed-up can be primarily attributed to the
more consistent nature of MatLM-based drafter and verifier models and is further boosted by the
ability to share attention cache across models from MatLM which is infeasible for the baselines (see
Appendix B.2). Finally, MatLM further reduces the memory overhead for inference by removing
the need to have two models during resource-constrained deployment.

3.75 A MatFormer 4.0 ¥ A MatFormer
v Baseline Vv Baseline
3.50 .
P 225 @ 3.5
RN &
3.00 Q%' 3.0
2.75 S tgemaa -y
: ~--‘====:::. eg’k#}e:_—e
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
N(Non-Embedd. Parameters) 1e9 N(Non-Embedd. Parameters) 1e9
(a) Validation loss for XL-models (b) Validation loss for all models
— ~25 .
{55 ’__,_—*“x 3 X
g X~ o g20 vt
o v o P =
350 315 v o’*
o o ’
¥ ¥
< < A
) A o 10 v
o 45 o
g A MatFormer g A A MatFormer
z v Baseline z 5 v Baseline
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
N(Non-Embedd. Parameters) 1e9 N(Non-Embedd. Parameters) 1e9
(¢) 1-shot RANK Evals (d) 1-shot GEN Evals

Figure 3: We train decoder-only MatLM models at a range of sizes from 78M to 2.6B parame-
ters and observe the scaling trends of all granularities (S, M, L, XL) for validation loss and 1-shot
downstream evaluation scores. We find that the MatLM-XL models across scales mimic the training
trends of Baseline-XL models. Interestingly, we also note that that validation loss and downstream
evaluations follow the scaling trends of the XL-models across all granularities.

4.1.2 MatLM Scales as well as Vanilla Transformer LMs

Now that we have established that a 2.6B MatLM model and its submodels are as accurate as the
baseline Transformer LMs, we want to examine the scalability of training MatLM models. So, we
study the scaling properties (Kaplan et al., 2020; Hoffmann et al., 2022) of MatLMs and compare
them to vanilla Transformer baseline LMs trained for the same number of tokens. We train models
ranging from 78M to 2.6B parameters on 10B to 160B tokens and plot the validation loss for MatLM
—{S,M, L, XL} compared against their baselines in Figure 9.

First, in Figure 3a, we observe that the training of MatLM-XL models across model sizes scale as re-
liably as the Baseline-XL LMs for loss vs. number of parameters. However, Figure 3b interestingly
shows that it is not just the XL models but rather all the nested submodels, irrespective of granular-
ity {S, M, L, XL}, of MatLM and Baseline that follow the same scaling trend. Therefore, we fit a
scaling law according to the number of non-embedding parameters (/V) and training tokens (D) for
all possible submodels for both MatLMs and the baselines in Table 2. We observe that the fitted pa-
rameters are extremely similar, suggesting that MatL.Ms scale similarly to vanilla Transformer LMs.
In Figures 3c & 3d we also find that the downstream Table 2: Fitted parameters for the Sca]ing
evals for MatLM are within 0.5% of the baselines, equation: Loss(N, D) = a- (ND)® 4 ¢

with the smaller submodels even outperforming the
baselines at scale. Finally, Figure 9f in the Appendix
shows that the MatLM submodels are more consis- Baseline 20917 -0.119 1.868
tent with their XL model compared to the baseline Matformer 17.516 -0.114 1.845
counterparts across scales.

a b ¢

We note that the scaling law equation does not capture how (1) MatLMs have been optimized for
multiple submodels and even have performant submodels that have not been explicitly optimized for
(Section 4.1.1), and (2) MatLMs and baselines of the same size have different training FLOPs per
step. We leave formulations that capture these subtleties to future work and further discuss this in
Appendix D.1. We provide full results split by granularity in Appendix D.

4.2 MatViT: MatFormer Vision Transformers

In this section, we extend MatFormer to Vision Transformer (ViT) (Dosovitskiy et al., 2020) based
computer vision encoder models. MatFormer-based ViT — MatViT — enables elastic inference for
fundamental tasks like image classification and retrieval. To this end, we train the MatFormer variant
of the standard ViT-B/16 and ViT-L/16 models — MatViT-B/16 and MatViT-L/16 that are trained
with ¢ = 4 prechosen nested granularities (FFN ratios of {0.5,1,2,4}). B/16 models are trained
on ImageNet-1K (Russakovsky et al., 2015) with AugReg (Steiner et al., 2021) while L/16 models
are pretrained on ImageNet-21K (Deng et al., 2009) followed by finetuning on ImageNet-1K. All
models are trained with the training setup and optimal hyperparameters of the standard ViT variants
from the Scenic library (Dehghani et al., 2022).

4.2.1 Image Classification

For image classification, we evaluate both ViT & MatViT models on ImageNet-1K. Figure 4a shows
that the explicitly optimized granularities in MatViT result in as accurate models as the indepen-
dently trained baselines for the B/16. However for L/16, as shown in Figure 4b, we see that the
MatViT models are up to 0.35% more accurate than the baseline for the same inference cost.

©
o

% 85.50 —=="

~
o
%
»*
[o2]
w
N
w
AY
i\\
*.
2 |

~
o]
N

~

~

~
»

-A- MatFormer
A¥ * Mix'n'Match
V¥ Baseline

-A- MatFormer

/ % Mix'n'Match

84.50 ! V¥ Baseline
X

[e2]
g
~
[9,]
¢

Top-1 Accuracy (%)
Top-1 Accuracy (%
&

o
o
»

~
o

35 45 55 65 75 85 125 150 175 200 225 250 275 300
Total Parameters (M) Total Parameters (M)

(a) B/16 trained on ImageNet-1K with AugReg (b) L/16 pretrained on IN-21K — ImageNet-1K.

Figure 4: MatViT variants match or outperform standard ViT models on ImageNet-1K classification
and provide free extracted models that span the accuracy-compute curve through Mix’n’Match.

8

78 X
- SEEPTL '3 <= -A
S A HowES 835 *_ oK
=76 o / -
g A / g * _AxH v
© Ve] fud - H
574 y * I,l 3 83.0 A’* !
Q *,/] 2 */ i
<z(K4 -A-" MatFormer { = / -A-' MatFormer !
z 72 | 4% % Mix'n'Match II’ z 82.5 / % Mix'n'Match 1:
- -¥- Baseline ! ~ & -¥-- Baseline !
70 . 82.0 L
35 45 55 65 75 85 125 150 175 200 225 250 275 300
Total Parameters (M) in Query Encoder Total Parameters (M) in Query Encoder
(a) B/16 trained on ImageNet-1K with AugReg (b) L/16 pretrained on IN-21K — ImageNet-1K.

Figure 5: MatViT natively enables elastic encoders for adaptive retrieval that can be used for real-
time query side computation while retaining strong accuracy on ImageNet-1K, unlike the baselines.

We then explore using MatFormer at different training stages with a 2 x 2 grid of pretraining-
finetuning pairs (Table 7 in Appendix F.1) and find that using a MatFormer during pretraining helps
bring more accurate and flexible encoders for downstream use. Further, finetuning using MatFormer
enhances elastic deployment depending on the constraints at hand through Mix’n’Match.

Adaptive Encoders with Mix’n’Match. Furthermore, our Mix’n’match models’ accuracy almost
lies on the line joining accuracy of explicitly trained granularities. In scenarios where, say, an
application can host 50M parameter B/16 model, MatViT can provide 0.8% more accurate model
than the current approach which would host the largest baseline model with < 50M parameters.

During deployment, the universal MatViT model can be stored in memory and depending on the
compute constraints be used to extract an adaptable smaller model to maximize accuracy with the
available resources at that moment. Currently, we find the Mix’n’Match models on the accuracy-
compute curve through a quick inference on the validation set. While relatively scalable, this points
to the need for optimal budget allocation across layers in neural networks (Kusupati et al., 2020).

4.2.2 Adaptive Image Retrieval

The goal of image retrieval is to find semantically similar images — e.g. images from the same class
— using representations obtained from a pretrained encoder (Chen et al., 2022). Standard approach
is to encode the database images as well as query image with same encoder and run nearest neighbor
retrieval for the query embedding. While we can embed database images with an expensive encoder,
the query encoder generally has to be real-time. Furthermore, the setting of query encoding might
be varied, e.g., on-device vs. cloud processing, varying query load and query complexity. Current
solutions have to stick to a fixed encoder thus compromising on accuracy or cost for various settings.

Given the elastic nature of MatViT, it is a good candidate for query encoder. However, retrieval
also requires that submodels preserve distances between fixed database (with large encoder) and
query embeddings across all the granularities. If we use smaller baseline ViT models only for query
encoding, these distances are not preserved and lead to nearly O retrieval accuracy (see Figure 5).

We evaluate both ViT and MatViT encoders on ImageNet-1K for image retrieval. We compute
1-nearest neighbor (NN) accuracy using the representation vector of the [CLS] token (also see Ap-
pendix F.2). Figure 5 shows that submodels extracted from MatViT can approximately preserve
distances and provide significantly more flexibility. For example, with a loss of < 0.5% accuracy,
MatViT-L/16 can reduce compute cost by 40%. To our knowledge, this is the first result of its kind
and opens up a wide variety of adaptive inference strategies for large-scale semantic search.

5 Conclusions

In this work we presented MatFormer, a natively elastic Transformer architecture that allows training
a single universal model which can be used to extract hundreds of smaller accurate submodels at zero
additional cost at deployment time We find that the MatFormer Language Model (MatLM) matches
the perplexity & 1-shot accuracy of independently trained models. In fact, MatLM demonstrates an
interesting loss-vs-compute scaling curve that is nearly independent of trained granularity indicat-
ing robust generalization to extremely large models as well. Finally, MatFormer submodels enable
diverse inference time speedups like faster autoregressive generation with speculative decoding and
elastic query encoders for adaptive dense retrieval across modalities.

References

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
arXiv preprint arXiv:2305.10403, 2023.

Jonathan Berant, Andrew K. Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase
from question-answer pairs. In Conference on Empirical Methods in Natural Language Process-
ing,2013. URL https://api.semanticscholar.org/CorpusID:6401679.

Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde Caron, Simon Kornblith, Xiaohua
Zhai, Matthias Minderer, Michael Tschannen, Ibrahim Alabdulmohsin, and Filip Pavetic. Flex-
ivit: One model for all patch sizes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14496-14506, 2023.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piga: Reasoning about
physical commonsense in natural language, 2019.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Han Cai, Chuang Gan, Ji Lin, and Song Han. Network augmentation for tiny deep learning. arXiv
preprint arXiv:2110.08890, 2021.

Arnav Chavan, Zhigiang Shen, Zhuang Liu, Zechun Liu, Kwang-Ting Cheng, and Eric P Xing. Vi-
sion transformer slimming: Multi-dimension searching in continuous optimization space. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4931—
4941, 2022.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Wei Chen, Yu Liu, Weiping Wang, Erwin M Bakker, Theodoros Georgiou, Paul Fieguth, Li Liu, and
Michael S Lew. Deep learning for instance retrieval: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, et al. Palm: Scaling lan-
guage modeling with pathways, 2022.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,

35:16344-16359, 2022.
Mostafa Dehghani, Alexey Gritsenko, Anurag Arnab, Matthias Minderer, and Yi Tay. Scenic: A jax

library for computer vision research and beyond. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 21393-21398, 2022.

10

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp- 7480-7512. PMLR, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. In
International Conference on Machine Learning, pp. 7750-7774. PMLR, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten Bosma,
Zongwei Zhou, Tao Wang, Yu Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kath-
leen Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc V Le, Yonghui Wu, Zhifeng
Chen, and Claire Cui. Glam: Efficient scaling of language models with mixture-of-experts, 2022.

Matteo Grimaldi, Luca Mocerino, Antonio Cipolletta, and Andrea Calimera. Dynamic convnets on
tiny devices via nested sparsity. IEEE Internet of Things Journal, 10(6):5073-5082, 2022.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Lu Hou, Zhigi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic
bert with adaptive width and depth. Advances in Neural Information Processing Systems, 33:
9782-9793, 2020.

Ajay Jaiswal, Zhe Gan, Xianzhi Du, Bowen Zhang, Zhangyang Wang, and Yinfei Yang. Compress-
ing llms: The truth is rarely pure and never simple, 2023.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale dis-
tantly supervised challenge dataset for reading comprehension. In Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1601-1611, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi:
10.18653/v1/P17-1147. URL https://aclanthology.org/P17-1147.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. 2020.

Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan Yan, Hasan Genc,
Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W Mahoney, et al. Full stack optimization of
transformer inference: a survey. arXiv preprint arXiv:2302.14017, 2023.

Alex Krizhevsky. Convolutional neural networks for object classification in cuda. University of
Toronto, EECE1742S: Programming Massively Parallel Multiprocessors Using CUDA, 2009.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226, 2018.

Sneha Kudugunta, Yanping Huang, Ankur Bapna, Maxim Krikun, Dmitry Lepikhin, Minh-Thang
Luong, and Orhan Firat. Beyond distillation: Task-level mixture-of-experts for efficient inference.
arXiv preprint arXiv:2110.03742, 2021.

11

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In
International Conference on Machine Learning, pp. 5544-5555. PMLR, 2020.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ra-
manujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka
representation learning. Advances in Neural Information Processing Systems, 35:30233-30249,
2022.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452-466, 2019. doi: 10.1162/tacl_a_00276. URL
https://aclanthology.org/Q19-1026.

Francois Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. Block pruning for faster
transformers. arXiv preprint arXiv:2109.04838, 2021.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations, 2017.

Hector J. Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In Pro-
ceedings of the Thirteenth International Conference on Principles of Knowledge Representation
and Reasoning, KR’12, pp. 552-561. AAAI Press, 2012. ISBN 9781577355601.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. 2023.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A Smith, and Luke
Zettlemoyer. Branch-train-merge: Embarrassingly parallel training of expert language models.
arXiv preprint arXiv:2208.03306, 2022.

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser,
and Noam Shazeer. Generating wikipedia by summarizing long sequences. arXiv preprint
arXiv:1801.10198, 2018.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Van-
derwende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper under-
standing of commonsense stories. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
839-849, San Diego, California, June 2016. Association for Computational Linguistics. doi:
10.18653/v1/N16-1098. URL https://aclanthology.org/N16-1098.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adver-
sarial nli: A new benchmark for natural language understanding, 2020.

R OpenAl. Gpt-4 technical report. arXiv, pp. 2303-08774, 2023.

Denis Paperno, Germén Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Ferndndez. The lambada dataset:
Word prediction requiring a broad discourse context, 2016.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International Conference on Ma-
chine Learning, pp. 28492-28518. PMLR, 2023.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 784-789, Melbourne, Australia, July
2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-2124. URL https:
//aclanthology.org/P18-2124.

12

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211-252, 2015.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019.

Mohammadreza Salehi, Sachin Mehta, Aditya Kusupati, Ali Farhadi, and Hanna Hajishirzi. Sharcs:
Efficient transformers through routing with dynamic width sub-networks. Findings of Empirical
Methods in Natural Language Processing, 2023.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. Advances in Neural Information Processing
Systems, 35:17456-17472, 2022.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596—4604. PMLR, 2018.

David R So, Wojciech Marike, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V Le. Primer:
Searching for efficient transformers for language modeling. arXiv preprint arXiv:2109.08668,
2021.

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas
Beyer. How to train your vit? data, augmentation, and regularization in vision transformers. arXiv
preprint arXiv:2106.10270, 2021.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Mojtaba Valipour, Mehdi Rezagholizadeh, Hossein Rajabzadeh, Marzieh Tahaei, Boxing Chen, and
Ali Ghodsi. Sortednet, a place for every network and every network in its place: Towards a
generalized solution for training many-in-one neural networks. arXiv preprint arXiv:2309.00255,
2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. 2023.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems, 2020a.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han.
Hat: Hardware-aware transformers for efficient natural language processing. arXiv preprint
arXiv:2005.14187, 2020b.

Xiaofang Wang, Dan Kondratyuk, Kris M Kitani, Yair Movshovitz-Attias, and Elad Eban. Multiple
networks are more efficient than one: Fast and accurate models via ensembles and cascades. arXiv
preprint arXiv:2012.01988, 2020c.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

13

Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training techniques.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 1803—-1811,
2019.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
arXiv preprint arXiv:1812.08928, 2018.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence?, 2019.

Cha Zhang and Yungian Ma. Ensemble machine learning: methods and applications. Springer,
2012.

14

A Implementation Details

A.1 Architecture and Training

For our experiments, we train a range of MatLMs varying from size 78M to 2.6B for 10B-
160B tokens — we scale model size equally with the number of training tokens (Hoffmann et al.,
2022). For each MatLM granularity, we also train a corresponding baseline vanilla Transformer
model. That is, for each model size we train Baseline-XL, L, M, S with dyy = 4 * dpoder, 2 *
Aimodels Amodels modet /2. All models have 16 layers, 16 attention heads, and a dy,0qe; : d s ratio of
1 : 4. We train a 256k vocabulary using the SentencePiece library (Kudo & Richardson, 2018), use
a maximum context length of 1024 tokens, and a batch size of 1M tokens. We pretrained the 2.6B
on 256 v3 TPU chips. We provide further details on these models in Table 3. For further details on
training data, we point the reader to (Thoppilan et al., 2022).

Table 3: Model details for the models scales used to conduct the experiments described in Section
4.1, with a breakdown of total parameter counts, non-embedding parameter counts and FFN param-
eter counts for each model granularity.

Parameter Count (full / spliced) Non-Embedding Params (full / spliced) FFN Params (full) dpoqer N(tokens)

78M (74M / 72M | TIM) 12.6M (8.4M/6.3M/ 5.3M) 8.4M 256 10B
180M (164M / 157TM / 152M) 50M (33.7M/25.3M/21.1M) 33.6M 512 20B
310M (272M / 253M / 244M) 113M (75M/56M/4TM) 75.6M 768 30B
463M (397M / 363M / 346M) 201M (134M/100M/84M) 134M 1024 40B
850M (696M / 620M / 582M) 453M (302M/227M/189M) 302M 1536 80B
1.3B (1B /927M / 860M) 805M (537M/403M/335M) 53M 2048 120B
2.6B (2B/1.7B /1.54B) 1.8B (1.2B/0.9B/0.7B) 1.2B 3072 160B

A.2 Downstream Evaluation

We evaluate all the LM models trained on set of 26 English tasks similar to (Brown et al., 2020; Du
etal.,, 2022; Chowdhery et al., 2022; Anil et al., 2023), including:

1. Open-Domain Closed-Book Question Answering tasks: TriviaQA (Joshi et al., 2017), Natural
Questions (Kwiatkowski et al., 2019), and WebQuestions (Berant et al., 2013).

2. Cloze and completion tasks: LAMBADA (Paperno et al., 2016), HellaSwag (Zellers et al.,
2019), and StoryCloze (Mostafazadeh et al., 2016).

3. Winograd-style tasks: Winograd (Levesque et al., 2012) and WinoGrande (Sakaguchi et al.,
2019).

4. Reading comprehension: SQuAD v2 (Rajpurkar et al., 2018) and RACE (Lai et al., 2017).

5. Common sense reasoning: PIQA (Bisk et al., 2019), ARC (Clark et al., 2018), and Open-
BookQA (Mihaylov et al., 2018).

6. SuperGLUE (Wang et al., 2020a)

7. Natural language inference: Adversarial NLI (Nie et al., 2020).

Among all the downstream datasets, we classify LAMBADA, Natural Questions, SQuAD v2, We-
bQuestions, and TriviaQA under “GEN” tasks as these require generating a few tokens, and the
remaining tasks under “RANK?” tasks as they consist of choosing an option among the choices given
along with the input. For all the granularities corresponding to each model, we present evaluation
numbers along with development set log perplexity loss on all the 26 tasks in Tables 9 to 15. We
also perform evaluation on 2.6B Mix’n’Match models and provide it in Table 16.

B Training and Inference Costs

We currently make minimal changes and optimizations to the training scripts of vanilla Transformer
architecture. In other words, we use the same code for both Baselime and MatFormer, except using
different sized splices of FFN block for each forward pass. Note that this implementation is subop-
timal, as it involves added communication costs of FFN weight matrices when using model parallel

15

Table 4: 2.6B MatLM and Baseline training time per step, GFLOPs per step, and forward pass
latencies. Each model is trained on 256 v3 TPU chips. Note that MatLM Fwd pass latency for any
granularity will be same as corresponding Baseline granularity latency.

Model | Time (s)/step GFLOPs/step Fwd pass latency (s)
MatLM 2.326 470841 -
Baseline-XL 0.728 186884 0.234
Baseline-L 0.670 147317 0.215
Baseline-M 0.652 125517 0.198
Baseline-S 0.630 117556 0.190

training (discussed in more details in Appendix B.1). Though using a suboptimal implementation,
we achieve the wall-clock time for MatLM training ~ 15% less to sum of wall-clock times to train
all the 4 granulatities baseline counterparts. We also note that at train time, the peak memory usage
is roughly equal to the sum of memory usage for the independently trained baselines. On the other
hand, at inference time, both baseline and MatFormer have the same memory footprint. We give
exact FLOP count, wall-clock time, and forward pass time (inference cost) of each baseline and
MatLM 2.6B model (or its corresponding smaller granularities) in Table 4. During serving, we ob-
serve the 2.6B model FFN latency to attention latency ratio = 56 : 44. We note that this FFN:MHA
latency ratio depends highly on scale and sequence length. More specifically, for a given sequence
length FFN latency dominates the overall latency at scale, while the attention heads’ cost increases
with sequence length. We refer the reader to Kim et al. (2023) for a more extensive illustration
of this. We emphasize that though we trained one MatFormer and compare its training time with
Baselines combined, we get many more models than the 4 model granularities we explicitly trained.

B.1 Improving MatFormer Training Efficiency

While MatFormer training uses asymptotically 2x FLOPs compared to a regular Transformer, op-
timizations are necessary to also realize a 2x runtime training performance. We discuss a few
strategies here, leaving exact experimental testing to future work.

Delayed gradient synchronization via local accumulation. Since multiple forward and backward
passes are made for each mini-batch in common implementations of data parallelism, this induces a
gradient synchronization across all device for each backward pass with additional gradient accumu-
lation. As such, for MatFormers a minimum of 2x the parameters worth of gradients are exchanged
for the MLP layers, thus increasing the communication overhead. Additionally, for some frame-
works, such as PyTorch, gradients of the full-weight matrix size need to be exchanged, leading to
4x more communication for our default experimental setup. A more efficient way to communicate
gradients is to keep a local gradient accumulation buffer, which is used to accumulate all gradient
from all subnetworks into the main, full-sized weight gradient. After all forward-backward passes
have been completed, synchronization of gradients — with additional overall of computation and
communication — can ensue. This saves 2Xx communication overhead, reducing communication
overhead to the same cost as a regular Transformer.

Fused MatFormer kernels. Depending on the accelerator (GPU/TPU), the smallest MatFormer
forward and backward pass can be inefficient in that the matrices are too small to fully utilize the
accelerator. To improve utilization at the cost of additional memory for activations, it is possible
to run the following computational fusion strategy for MatFormer computation: (a) duplicate mini-
batch 4x, (b) do the forward/backward pass for each layer for all MatFormer stages at the same
time, (c) in doing so, load the tile for the weight matrix once, and reuse it for all relevant MatFormer
stages. This strategy is similar to tiling strategies in FlashAttention (Dao et al., 2022) or convo-
lution (Krizhevsky, 2009) which increase the arithmetic intensity for small weights by reusing of
matrix multiplication tiles written to SRAM.

B.2 Speculative Decoding Attention Sharing

An additional benefit of MatLLM is that the attention cache is shared between the draft and verifier
model. When the XL model verifies S model’s draft, it overwrites the attention cache with its richer
latent representation compared to the one generated by the drafter model. Note that 1) this does

16

Log(Dev Pplx) - 2.6B Model

3.0 _30 _60
28 | st g2 %55 PR S |
a2 E > ¥ £ M
ko 2 2 ."—1‘1&!';’- 2
826 L) G20 it 850
A MatFormer I3 x{,{* A MatFormer g A MatFormer
241 % Mix'n'Match £ * Mix'n'Match £a5 * Mix'n'Match
v Baseline z v Baseline E v Baseline
2.2 10 40
08 10 12 14 16 18 08 10 1 - 16 18 08 10 1 . 16 18
N(Non-Embedd. Parameters) 1e9 N(Non-Embedd. Parameters) 1e9 N(Non-Embedd. Parameters) 1e9
(a) Validation loss (b) 1-shot RANK Evals (¢) 1-shot GEN Evals

Figure 6: Validation loss & one-shot downstream evaluation scores for the 2.6B MatLM & baseline
models. Mix’n’Match helps generate accurate models from MatLM that lie on the performance-vs-
compute curve spanned by the explicitly optimized submodels.

Log(Dev Pplx) - 2.6B Model
*

*
12 v Baseline
10 % Baseline - Mix'n'Match
*
o 8
P *
-6 *
4 s
, | ¥ | TR Xy

0.8 1.0 1.2 1.4 1.6 1.8
N(Non-Embedd. Parameters) 1e9

Figure 7: Validation loss for the 2.6B baseline models and their Mix’n’Match counterparts. Unlike
MatLM, these extracted subnetworks perform poorly.

not involve extra computation since MatLM has a single universal model including both draft and
verifier model; 2) attention sharing isn’t possible in the Baseline since they are not explicitly trained
together. Hence, latent representation of one model is quite meaningless to the other model. Thus,
attention sharing gives further improvement over vanilla speculative decoding as shown in Table 1.

C Mix’n’Match

To implement Mix’n’Match, we experimented with several heuristics to select the best subnetwork,
but consistently observed that gradually using larger granularities in deeper layers worked the best.
More formally, we use non-decreasing hidden dimensions with the least slope (change in hidden
dimensions across consecutive layers) across layers. Given that this choice behaves nearly opti-
mally (performance lies on the pareto-optimal curve), we did not focus on search techniques. For
completeness, we have plotted additional extracted subnetworks (in addition to what we have plot-
ted in Figure 2) in Figure 6. These additional datapoints follow a similar trend. In Figure 7, we
plot the validation loss of applying Mix’n’Match to vanilla Transformer baselines, and find the abil-
ity to Mix’n’Match granularities is restricted to MatLMs. In future work, we plan to extend the
nested substructure to other components of the Transformer - attention heads, model dimensions,
and n(layers). This would combinatorially expand the search space, warranting the use of more
advanced search methods. We leave this exploration to future work.

D Scaling Laws for Language Decoders

We provide results split by granularities for validation loss, average score on RANK tasks, average
score on GEN tasks, and consistency in Figures 9, 10, 11, and 12 respectively. We observe that
while the gap in validation loss between MatLMs and Baselines appears to be constant, the gap for
downstream evaluations reduces with scale - in fact, granularities L, M and S have better downstream
performance for models larger than 1B. For consistency, the gap appears to reduce with scale, but
one would need to scale the models by many orders of magnitude beyond what’s possible today for
baselines to have comparable consistency with MatLMs.

17

D.1 Scaling laws of MatFormers vs Transformers.

Scaling laws are essential tools to estimate optimality under as the cost of training or inference is
increased. Scaling laws can take diverse viewpoints such as overall training cost in FLOPS, training
data and parameter efficiency, and inference mean FLOPS utilization vs latency for deployments.

The scaling relationship of MatFormers versus Transformers is both simple and complex. Simple,
because MatFormers scaling curves for pretraining are only slightly offset from Transformers — thus
MatFormers only require a fixed relative amount of additional compute and the same hyperparame-
ters that work for Transformers are effective for MatFormers. For the setting where we use the same
hyperparameters as Transformers, MatFormers need at most 10 — 20% more training tokens to reach
the same loss as a regular Transformer. Initial experiments where we tune hyperparameters for the
individual forward/backward passes and by performing more careful initialization of the subslices
the gap appears to shrink. While we do not have enough data to make definite statements, it appears
MatFormer scaling can be improved to be close to Transformers scaling needing less than 0 — 5%
additional training tokens.

The complex scaling relationship comes from the fact that MatFormers allow the training of multiple
models with a single training run which is a qualitative different from Transformers and difficult to
factor into scaling equations. Essentially, in terms of efficiency, if we compare the training FLOPs
equivalent of all the extractable models from MatFormers, then MatFormer training alone has a
clear advantage in any case where all parameters used to train standard Transformer models on the
same dataset exceed 2.58 P, where P is the number of parameters of the MatFormer and the largest
Transformer model. This is so because MatFormers use 2.58 times more FLOPs per token for a
training run than a Transformers: 4x more FLOPs for attention layers parameters and {1 + 1/2 +
1/4+1/8 = 1.875} x more FLOPs for MLP layers.

E Further Analysis on Language Decoders

E.1 KL Divergence Between S, M, L. and XL. Models

Figure 8 showcases the smoother consistency calculation between two generative models measured
with KL-divergence of the smaller model’s outputs with the larger model outputs. Similar to the
exact match style hard consistency metric used in the main paper, there is a significant gap between
the consistency of MatLM’s submodels with the MatLM-XL model and between that of the corre-
sponding baseline models. This points to how sampling strategies based on the output probabilities
do not change the behavioral consistency between two models and that it still follows the trend of
generating the token with the highest probability. This smoother notion of consistency argues for
the metric-space preservation given that the output classifier/embedding matrix is shared across all
the submodels of MatLM.

v

< 03 v - M.atFormer
'g * Mix'n'Match
€ 1 V¥ Baseline
- 0.2
x

S Py
'.50.1 \“~t
- Tk
v A x,

* |
0.0

0.8 1.0 1.2 1.4 1.6
N(Non-Embedd. Parameters) 1e9

Figure 8: The smoother variant of consistency measures the KL divergence between the smaller
models and the corresponding XL model. This metric, unlike the exact match accuracy variant,
also accounts for different sampling strategies on the output distribution during deployment. In this
figure, we plot KL divergence of S, M, L granularities with respect to XL for the 2.6B parameter
model.

18

E.2 Ablations on Training Method

We experiment with several aspects of our training method on a 850M parameter MatLM. Our
training procedure is unique compared to others (further discussed in Section 2) in 2 ways: (a) we
learn all granularities in the same weight space and (b) we use joint optimization as described in
Section 3. To assess the effect of these differences on performance, first we train a Transformer
model with independent FFN modules with {S, M, L, XL} granularites using joint optimization
(Independent modules). Next, we train a MatLM model with the only difference being that at each
step, we optimize for a single granularity chosen uniformly at random (Subsampling). We find that
joint optimizing a MatLM performs significantly better than these baselines, implying efficacy of
both aspects of our training method.

Table 5: We compared the validation loss of models from Joint Optimization to training MatLMs
with independent MLP modules for each granularity (Independent modules) and sampling a single
granularity to optimize for at each step (Subsampling) for 850M parameter models. We find that
Joint Optimization performs significantly better than both these methods.

Model Training Strategy XL L M S
Baseline - 2.840 2910 29710 3.017
Joint Optimization 2.874 2928 2980 3.030
MatFormer Independent MLP modules 2.894 2942 2985 3.030
Subsampling 2929 2946 2999 3.049

We discuss additional ablations such as re-weighting losses to improve the performance of the XL
model in Appendix E.4, and additionally studied scaling trends for these ablations. We found the
reweighting loss trick to be especially powerful, bringing the performance on downstream evals
within 0.1% for the XL model. This also nudges us towards finding better hyperparameters and
weight initializations for reliable scaling of MatLMs (Yang et al., 2022).

E.3 Changing Embedding Size

Because of the ubiquity of 64k vocabs size (Brown et al., 2020) we additionally train models upto
201M non-embedding parameters similar to those described in Appendix A, except that the embed-
ding size is 64k (the largest model corresponds to the 463M parameter model). We plot the scaling
trends in Figure 13. Though 4 models is not enough to extrapolate a trend, we observe that the
scaling trend for validation loss appears to be similar.

E.4 Reweighting Strategies

We additionally experiment with reweighting the losses for the individual granularities in order to
boost the performance of the largest granularity while minimally impacting the performance of the
smaller granularities. We present the relative weights used in Table 6 as A4 : A3 : A2 : A1, and find
that in general, upweighting the largest granularity greatly improves quality. Another interesting
related direction for improving MatFormer performance further is granularity appropriate initializa-
tion (Yang et al., 2022).

E.5 Scaling Laws for Reweighted Strategy

We conduct scaling experiments similar to those described in Section 4.1 for the reweighed models,
specifically for models with the ratio 2 : 1.5 : 1.25 : 1, and plot the results in Figure 14. We note
that the scaling trend is similar to the MatLM witha 1 : 1 : 1 : 1 relative weighting (¢ = 19.889,b =
—0.130, ¢ = 1.374), but with a slightly better validation loss .

F Further Analysis on Vision Encoders

F.1 Decoupling Effect of MatFormer on Pretraining and Finetuning

Table 7 investigates the effect of MatFormer on pretaining and finetuning phases of ViT-L/16 model.
ViT-L/16 is typically pretrained on ImageNet-21K and then finetuned on ImageNet-1K for the final

19

Table 6: For 850M model, we experiment with modifying L;onr to use a weighted average as
opposed to an unweighted average, and report the results across all granularities. We find that all
strategies that upweight the loss for the largest granularity perform well, with modest degradation
on the M and S granularties.

Model Relative Weights XL L M S
Baseline N/A 2.840 2910 2971 3.017
1:1:1:1 2.874 2928 2980 3.030
2:15:1.25:1 2.867 2927 2986 3.051
MatFormer

1:125:1.5:2 2883 2936 2982 3.026
2:1:1:1 2.863 2929 2985 3.043

V8:VA:/2:1 2862 2924 2990 3.063

evaluation. Table 7 shows that having a MatFormer during pretraining generates a better model for
downstream finetuning compared to regular ViT pertaining. At the same time, finetuning a vanilla
pretrained ViT with MatFormer results in flexibility being induced into the model. Despite being
up to 2% less accurate than its counterparts at some granularities, a fine-tuned MatViT learned to
reallocate the information to provide strong nested models. Considering that this is insignificant
compared to pretaining costs, possible to take the largest pretrained ViT model and finetune with
MatFormer to obtain a deployable MatViT variant.

Table 7: 2 x 2 grid of pairs to evaluate (top-1 accuracy (%)) the effects of MatFormer and standard
training on the pretraining (PT) on ImageNet-21K and finetuning (FT) on ImageNet-1K using a L/16
architecture. Using a MatFormer during pretraining helps bring more accurate, and elastic encoders
for downstream uses.

PT|/FT— #Params (M) ViT | MatViT

306 8506 | 85.57
it 206 85.12 | 84.27
156 85.02 | 82.79

131 8442 | 82.1

306 8558 | 85.61

. 206 = | 8540
MatViT 156 ~ | 85.02
131 _ | 8441

F.2 Traditional Image Retrieval Evaluation

Table 8 showcases traditional image retrieval evaluation on ImageNet-1K where the query and the
document encoders are the same for nearest neighbor retrieval. The 1-nearest neighbor (NN) based
evaluation closely follows one-vs-all classification results shown in Figure 4. Both MatViT variants
B/16 and L/16 have submodels that have as good or better retrieval performance compared to their
independently trained counterparts. Concretely, MatViT-based retrieval can be up to 0.5% more
accurate than the baselines while a 200M parameter MatViT submodel can be more accurate than
the 300M parameter ViT baseline.

20

Table 8: Image retrieval 1-NN accuracy (%) when the query and document encoders are the same
model. Similar to the image classification results, MatViT variants either match or outperform the
corresponding standard ViT counterparts. Note that all the smaller models of a given model in
MatViT are extracted for free while the baselines have to be explicitly trained for the constraints.

Encoder # Params (M) ViT MatViT

85 77.46 77.38
57 76.58 76.41
B/16
43 7490 < 74.49
36 71.44 71.72
300 83.17 83.67
200 82.92 83.23
L/16
150 82.81 82.89
125 82.22 82.14
3.75 A MatFormer ‘l A MatFormer
v Baseline 375 |1 v Baseline
3.50 3.50 |*
8325 8 \
S 9325 &‘
3.00 A N [N
\§’~ 3.00 ’~“
~3I=~ =,
275 S¥eEzzzaaoo 2.75 %""’-‘-‘-a-ae“_-e
TTEEI =g
0.0 0.5 1.0 1.5 0.00 0.25 050 075 1.00 1.25
N(Non-Embedd. Parameters) 1e9 N(Non-Embedd. Parameters) 1e9
(a) XL-model Loss (b) L-model Loss
4.00
x| A MatFormer 4.00 '| A MatFormer
3.75 ‘|| v Baseline 3.75 '|l v Baseline
g 350 i‘ 2 3.50 i‘
S35 i‘ . \k
\~ -
3.00 b S 3.00 T
e LTS \M‘_._‘-‘
275 T TTTmsean - 575
0 2 4 6 8 0 2 4 6
N(Non-Embedd. Parameters) 1e8 N(Non-Embedd. Parameters) 1e8
(c) M-model Loss (d) S-model Loss
4.0 ; A MatFormer Wyl r oA /’,A
v Baseline 85 | hii [/ -7
! > e £ A A
3.5 g #lf " ’ e
g Zeo |t 4 £ K v
S a bl vy v
c '" vy \
3.0 S5 | W V¥
- y A MatFormer
%e:&‘;;;eeg: -+ 70 | ¥ Vv Baseline
0.0 0.5 1.0 1.5 0.00 025 050 075 1.00 1.25
N(Non-Embedd. Parameters) 1e9 N(Non-Embedd. Parameters) 1e9
(e) Loss for all granularities - XL, L, M, S. (f) Consistency with the XL-models

Figure 9: We train various decoder-only MatLM models at a range of sizes from 78M to 2.6B pa-
rameters and observe the scaling trends for each model granularity on validation loss. We observe
that the gap between MatLM and the baseline appears to be constant at each granularity. The con-
sistency between the submodels of granularities and the XL models shows the effect of MatFormer
joint training on natively ensuring similar behavior across submodels.

21

A MatFormer o |
v Baseline "

N
o

A MatFormer)
v Baseline P

N
o

._.

w
<

3
Y

Average Accuracy (%)
= =
o w
\\
\
\\\
AY
\\\\\
\\
\
\
Average Accuracy (%)
=
o
\

o
P y,;{
wi4 5 ”l
504 i
0.0 0.5 1.0 1.5 0.00 0.25 0.50 0.75 1.00 1.25
N(Non-Embedd. Parameters) 1e9 N(Non-Embedd. Parameters) 1e9
(a) XL-model Average Score on GEN tasks (b) L-model Average Score on GEN tasks
9 A MatFormer /r"' 9 15 ’::;1
= v Baseline i g =5
g1s re | e g .
o Prad © s
=] t’ =] 2. 4
(o Pid U 10 P
[v] ’ [v])2
<10) 4 < A
o s [} A _s
o ’, o /i
g XA g 5 ?V A MatFormer
3: 5 ﬁ: 3: v v Baseline
0 2 4 6 8 0 2 4 6
N(Non-Embedd. Parameters) 1e8 N(Non-Embedd. Parameters) 1e8
(c) M-model Average Score on GEN tasks (d) S-model Average Score on GEN tasks
~25 .
S X
520 vet
© ¥
315 \ 4 ‘r
] 7 gl
< A
v 10 v
(o)
c A A MatFormer
v 5 =
z v Baseline
0.0 0.5 1.0 1.5

N(Non-Embedd. Parameters) 1e9

(e) Average Score on GEN tasks for all granulari-
ties - XL, L, M, S.

Figure 10: We train various decoder-only MatLM models at a range of sizes from 78M to 2.6B
parameters and observe the scaling trends for each model granularity for the average score on GEN
tasks 1-shot evaluation. We observe that the gap between MatLM and the baseline reduces with
scale, outperforming the baselines for S, M, L granularities for the largest models.

22

3 -, 55.0
83 ,.—::—':":x S _oez==d
> w--22-7 525 o
® ok o X
550 ool 50,0)
v} ,z: 3 ,,,’}'
< X £4715 {/
] A i
2 ¥ 945.0
© 45 .
5 i’ A MatFormer 5 A MatFormer
z ! Baselin =425 v Baseline
Z £ v Baseline z
0.0 0.5 1.0 1.5 0.00 0.25 050 075 1.00 1.25
N(Non-Embedd. Parameters) 1e9 N(Non-Embedd. Parameters) 1e9

(a) XL-model Average Score on RANK Evals (b) L-model Average Score on RANK Evals

. — ~52 oA
$s25 e S P
> A_--zZEe-T >50 —mn e
> -z -
2'50.0 Loz¥T @ /::”'
3 47.5 ” é 48 N
o Cd

. 4
< 246 | 4
$45.0 S aa ¥
8125 A MatFormer g i A MatFormer
3: v Baseline g: 42 " v Baseline

0 2 4 6 8 0 2 4 6

N(Non-Embedd. Parameters) 1e8 N(Non-Embedd. Parameters) 1e8

(¢) M-model Average Score on RANK Evals (d) S-model Average Score on RANK Evals

{55 . =X

3 > o 2l

g -/

5 50 W

o

<

o A

245

5 A MatFormer

z v Baseline
0.0 0.5 1.0 1.5

N(Non-Embedd. Parameters) 1e9

(e) Average Score on RANK Evals for all granu-
larities - XL, L, M, S

Figure 11: We train various decoder-only MatLM models at a range of sizes from 78M to 2.6B
parameters and observe the scaling trends for each model granularity for the average score on RANK
1-shot evaluation. We observe that the gap between MatLM and the baseline reduces with scale,
outperforming the baselines for S, M, L granularities for the largest models.

23

____________ A
‘.A-A-—-""“l'
.85
o
=
[
g0 v
g v v
Q v
O v
75 | ¥ A MatFormer
v Baseline
v
0.00 0.25 050 0.75 1.00 1.25

(a) Consistency of L-model with XL-model

N(Non-Embedd. Parameters) 1e9

Consistency

~ ~ ~ 2]
N o N o
w o w o

~
o
o

(c) Consistency of L-model with XL-model

Figure 12: We train various decoder-only MatLM models at a range of sizes from 78M to 2.6B
parameters and observe the scaling trends for each submodel S, M, L for the consistency with the
XL model. We observe that the gap between MatLM and the baseline reduces with scale, but one
would need to scale the baseline by many orders of magnitude to have consistency comparable to

that of MatLMs

A oodeommmmmT T 2
P
v
v v
v
v
v
A MatFormer
v Baseline
v
0 > 2 .

N(Non-Embedd. Parameters) 1le8

(d) Consistency of all model granularities with

Y S A
82.5 x~
> e
580.0
v
o
é 77.5 v v
§750 vy
72 M A MatFormer
? v Baseline
v
0 8

2 4 6
N(Non-Embedd. Parameters) 1e8

(b) Consistency of L-model with XL-model

s o
85 | 1y ; / -7
g |y £ e
] *lf [£
Zeo |yt a 4 v
7 | v Y v
g "vv v Y
Q75
;' A MatFormer
70| ¥ v Baseline
0.00 025 050 0.75 1.00 1.25

N(Non-Embedd. Parameters) 1e9

XL-model -L, M, S

24

(9]
(%]

Figure 13: We train various decoder-only MatLM models at a range of sizes from 29M to 267M
parameters with an embedding size of 64k and observe the scaling trends for each model granularity
on validation loss. We observe that the gap between MatLM and the baseline appears to be constant

3.8 QQ\ A MatFormer 38 ‘\ A MatFormer
N\ v Baseline ' \ v Baseline
3.6 *\ \\\ A MatFormer - 64k 3.6 A\ \\\ A MatFormer - 64k
34 | ¥ N v Baseline - 64k @ N v Baseline - 64k
. \\‘::\\ o 34 N e
RN s Nuy
3.2 | YRS EE 3.2 L Trazaoo_
3.0 Bt S 3.0 L
2.8 b, *
0.5 1.0 1.5 2.0 0.25 0.50 0.75 1.00 1.25
N(Non-Embedd. Parameters) 1e8 N(Non-Embedd. Parameters) 1e8
(a) XL-model Loss (b) L-model Loss
4.0
l\ A MatFormer 4.0 ‘\ A MatFormer
3.8 AN v Baseline 3.8 ‘\‘ v Baseline
36 | % \\ A MatFormer - 64k X A MatFormer - 64k
’ N v Baseline - 64k w36 |\ v Baseline - 64k
3.4 NoSe Si4 \ N
! \ s . .
x y L x e
3.2 S~< e —— . S
S~o | 4 3.2 ., ST T
B *~\~ i C
3.0 Bt ¢ 3.0 % R
0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5
N(Non-Embedd. Parameters) 1e8 N(Non-Embedd. Parameters) 1e8
(c) M-model Loss (d) S-model Loss
4.00 % A MatFormer
3.75 v Baseline
: N A MatFormer - 64k
£ 3.50 % v Baseline - 64k
3 \ ~'¥
3.25
i‘ “t’\.*t_)
-~ =S
3.00 W'I¢=a========.
0.0 0.5 1.0 1.5 2.0
N(Non-Embedd. Parameters) 1e8

(e) Loss for all granularities - XL, L, M, S

at each granularity, similar to what is observed in Figure 9.

25

3.75 A MatFormer " A MatFormer
v Baseline 375 1 v Baseline
3.50 A MatFormer - Decreasing 3.50 A MatFormer - Decreasing
m
9325
3.00
2.75

0.0 0.5 1.0 1.5
N(Non-Embedd. Parameters) 1e9

0.00 0.25 050 075 1.00 1.25
N(Non-Embedd. Parameters) 1e9

(a) S-model Loss (b) S-model Loss
4.00
‘l A MatFormer 4.00 ‘. A MatFormer
3.75 “ v Baseline 3.75 '. v Baseline
! A MatFormer - Decreasing | A MatFormer - Decreasing
350 | & ¥
0 un 3.50 1
825 | X g)
—3.25 % =305
o, "’&\
3.00 %o %=
3.00 Sas
‘*‘h"""""’-u-.m" .4;#'-‘;""-‘-?:_—__*
2.75 2.75
0 2 4 6 8 0 2 4 6

N(Non-Embedd. Parameters) 1e8 N(Non-Embedd. Parameters) le8

(¢) S-model Loss (d) Loss for all granularities - XL, L, M, S

4.0 i A MatFormer
i v Baseline
. A MatFormer - Decreasing
w35
wn
o
|
3.0
z "’"'*'*-PA--:-_-:-_.4
0.0 0.5 1.0 1.5
N(Non-Embedd. Parameters) 1e9
(e) All

Figure 14: We train various decoder-only MatLM models at a range of sizes from 78M to 2.6B
parameters with a reweighing ratio of 2 : 1.5 : 1.25 : 1 and observe the scaling trends for each
model granularity on validation loss. We observe that the gap between MatLM and the baseline
appears to be constant at each granularity, similar to what is observed in Figure 9.

26

Table 9: Downstream Eval numbers and development set log perplexity loss on 78M model size
granularities.

Downstream Task ‘ Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L. MatLM-L Baseline-XL. MatLM-XL
TriviaQA (EM) 0.14 0.16 0.19 0.25 0.14 0.3 0.19 0.28
NaturalQuestions (EM) | 0.06 0.03 0.03 0.06 0.03 0.03 0.03 0.03
WebQuestions (EM) 0.1 0.2 0.15 0.2 0.2 0.3 0.3 0.3
LAMBADA 0.06 0.02 0.02 0 0.02 0 0 0
HellaSwag 25.42 26.28 26 25.87 25.95 259 25.95 25.94
StoryCloze 52.81 53.39 53.13 53.34 54.46 53.5 54.46 54.36
WSC 52.98 51.93 53.68 50.88 55.79 54.04 52.28 52.63
WinoGrande 48.46 51.54 51.54 47.99 50.99 48.46 48.86 49.41
Winograd 53.11 52.75 52.38 53.85 55.31 55.31 52.75 55.68
SQuAD v2 (EM) 11.19 36.71 33.14 33.77 20.08 29.17 22.78 30.97
RACE-H 25.53 25.84 24.73 25.44 26.07 25.9 25.96 25.84
RACE-M 29.18 30.15 28.83 29.94 28.83 30.43 29.74 31.48
PIQA 55.77 55.22 54.62 55.28 54.52 54.79 56.86 54.08
ARC-C 215 20.9 21.08 21.67 21.59 21.33 22.35 22.1
ARC-E 34.55 35.48 343 35.73 34.89 36.11 34.55 35.98
OpenBookQA 254 28.6 27.6 28 28.2 28 29.8 29
BoolQ 48.72 44.89 51.87 47.37 51.28 46.85 52.11 45.87
COPA 62 64 62 61 63 63 60 60
RTE 53.79 52.35 52.35 51.99 51.26 54.51 51.99 52.71
WiC 49.53 47.34 49.06 47.34 47.34 47.34 47.65 47.34
MultiRC (F1) 53.17 51.72 53.42 53.28 56.86 53.82 55.46 53.42
ReCoRD 39.52 39.22 40.03 39.95 40.55 40.42 40.8 40.83
CB 41.07 42.86 44.64 39.29 44.64 41.07 42.86 44.64
ANLI-R1 30.9 32 323 31.9 325 323 325 31.7
ANLI-R2 31.1 30.9 31.1 30.1 30.7 30.8 30.6 30.3
ANLI-R3 31.75 30.75 30.58 30.25 30.33 29.67 30 30.17
Average \ 33.76 34.82 34.95 34.41 34.83 34.74 34.65 34.81
Avg over GEN Taks \ 2.31 7.42 6.7 6.85 4.09 5.96 4.66 6.31
Avg over RANK Tasks \ 41.25 41.34 41.68 40.97 42.15 41.6 41.79 41.59
Dev set log pplx \ 4.010 4.012 3.97 3.96 3.905 3.908 3.83 3.868

Table 10: Downstream Eval numbers and development set log perplexity loss on 180M model size granulari-

f1es

Downstream Task \ Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L. MatLM-L Baseline-XL ~MatLM-XL
TriviaQA (EM) 1.04 0.9 0.98 1.26 1.16 1.89 1.86 2.00
NaturalQuestions (EM) | 0.08 0.11 0.14 0.08 0.3 0.11 0.28 0.11
WebQuestions (EM) 0.59 0.94 0.44 0.98 1.28 0.89 1.33 0.79
LAMBADA 0.16 0.68 0.43 1.16 1.51 0.95 0.49 0.99
HellaSwag 27.77 273 27.45 27.61 27.58 27.84 28.86 28.56
StoryCloze 56.33 56.07 57.03 56.87 57.3 57.78 58.63 58.52
WSC 55.44 55.44 56.49 60.35 58.25 58.6 57.54 58.6
WinoGrande 52.01 50.12 50.28 49.17 51.22 50.43 51.54 49.09
Winograd 54.21 55.68 56.78 57.51 61.54 58.61 60.44 61.17
SQuAD v2 (EM) 22.13 17.28 20.05 18.02 26.42 11.42 25.76 16.53
RACE-H 27.93 27.9 27.5 28.53 28.7 28.82 28.73 28.73
RACE-M 33.29 34.47 34.19 34.05 34.54 3391 33.29 34.19
PIQA 57.13 58.05 56.91 57.94 57.94 58.00 59.52 58.92
ARC-C 22.53 22.61 23.63 22.27 24.06 22.1 24.66 23.55
ARC-E 40.24 39.39 40.19 40.49 41.71 40.74 41.62 41.16
OpenBookQA 30.60 31.00 30.80 31.80 31.00 32.80 34.00 32.6
BoolQ 54.13 52.23 52.45 52.05 55.63 52.17 55.9 48.44
COPA 62 61 61 61 61 64 64 65
RTE 52.71 53.07 52.35 53.43 50.54 52.71 52.71 52.71
WiC 47.34 51.41 47.34 49.37 47.96 47.81 47.65 47.34
MultiRC (F1) 54.34 53.34 45.65 56.12 47.47 52.62 47.62

ReCoRD 48.58 49.4 48.99 50.13 50.56 51.25 52.82 52.51
CB 42.86 44.64 42.86 44.64 39.29 44.64 42.86 42.86
ANLI-R1 31.8 32.6 31.8 324 324 32.8 322 32.1
ANLI-R2 30.5 29.8 31.1 29.8 32.00 30.5 30.5 30.1
ANLI-R3 30.08 30.25 30.5 32.00 335 31.42 30.67 30.42
Average | 35.99 35.51 35.96 36.1 37.06 36.14 37.33 36.33
GPT3-GEN | 4.8 3.98 4.41 43 6.14 3.05 5.94 4.08
GPT3-RANK | 43.42 43.02 43.48 43.67 44.42 44.02 44.8 44.01
Dev set log pplx | 3.55 3.55 3.512 3.505 3.456 3.458 3.354 3.40

27

Table 11: Downstream Eval numbers and development set log perplexity loss on 310M model size granulari-

ties.

Downstream Task

| Baseline-S ~MatLM-S

Baseline-M MatLM-M Baseline-. MatLM-L Baseline-XL. MatLM-XL

TriviaQA (EM) 2.09 2.4 22 3.17 2.84 2.73 5.18 3.12
NaturalQuestions (EM) | 0.11 0.28 0.28 0.5 0.58 0.3 091 0.61
WebQuestions (EM) 2.12 1.38 1.08 1.67 1.67 1.43 2.41 1.57
LAMBADA 0.29 1.79 0.66 1.92 1.9 2.46 2.76 2.64
HellaSwag 29.89 29.69 30.05 30.02 31.18 30.63 32.52 31.58
StoryCloze 59.17 58.85 59.54 60.13 60.24 60.5 61.68 61.36
wsC 61.05 59.65 59.3 58.6 61.75 56.84 58.95 57.19
WinoGrande 51.46 52.88 49.57 50.91 52.41 50.75 50.91 52.01
Winograd 55.68 56.04 57.88 59.71 63 59.71 61.17 60.07
SQuAD v2 (EM) 22.38 22.79 13.38 17.83 20.03 18.66 22.03 21.81
RACE-H 29.45 28.33 28.9 28.67 29.22 29.07 29.67 28.79
RACE-M 35.31 36.14 36.14 36.91 36.42 36.14 37.6 36.07
PIQA 58.98 59.9 59.58 59.85 59.79 60.45 62.19 60.61
ARC-C 23.38 20.82 23.21 21.33 23.81 23.21 25 22.95
ARC-E 423 42.34 44.11 43.52 44.53 44.44 46.8 45.62
OpenBookQA 32.8 35.2 34.6 36.4 352 35.8 36.8 36.6
BoolQ 53.43 59.05 55.32 58.72 52.87 57.22 54.22 55.6
COPA 61 61 61 66 64 63 60 66
RTE 52.71 54.51 53.43 51.62 51.62 53.07 54.15 49.46
WiC 47.18 48.43 47.65 49.22 47.65 50.16 47.34 51.25
MultiRC (F1) 53.07 51.69 535 51.36 48.46 47.14 45.72 46.23
ReCoRD 54.34 53.86 55.18 55.33 56.75 56.79 58.39 58.07
CB 42.86 46.43 42.86 46.43 42.86 46.43 50 51.79
ANLI-R1 32 31.3 32 322 325 323 322 32.8
ANLI-R2 32.6 30.2 30.9 29.8 30.6 31.2 29.8 30.9
ANLI-R3 32.08 29.25 30.75 30.08 32.17 31.25 31.5 32.17
Average | 37.22 37.47 37.04 37.77 37.85 37.76 38.46 38.34
Avg over GEN Taks | 54 5.73 3.52 5.02 541 5.12 6.66 5.95
Avg over RANK Tasks | 44.8 45.03 45.02 45.56 45.57 45.53 46.03 46.05
Dev set log pplx \ 3.31 3.33 3.30 3.285 3.224 3.235 3.15 3.18

Table 12: Downstream Eval numbers and development set log perplexity loss on 463M model size granulari-

Downstream Task \ Baseline-S MatLM-S Baseline-M MatLM-M Baseline-. MatLM-L Baseline-XL. MatLM-XL
TriviaQA (EM) 4.63 3.87 4.87 4.55 6.11 5.63 8.09 6.48
NaturalQuestions (EM) | 0.61 0.58 0.8 0.89 0.94 1.16 1.66 1.25
WebQuestions (EM) 2.31 1.62 2.26 2.02 2.85 2.31 2.85 2.56
LAMBADA 2.1 1.65 2.6 2.1 3.94 2.93 3.49 3.49
HellaSwag 32.12 31.57 32.83 32.16 33.8 33.48 36.21 35.08
StoryCloze 61.25 60.98 61.36 61.46 63.66 62.21 64.24 64.08
WsSC 57.54 64.91 61.4 62.11 66.32 62.11 61.05 63.16
WinoGrande 5233 51.38 49.09 50.99 52.64 50.36 53.12 52.64
Winograd 60.07 63.74 60.07 62.27 67.4 61.54 68.5 63.74
SQuAD v2 (EM) 21.7 21.85 25.8 19.71 24.69 21.85 23.08 18.28
RACE-H 29.85 29.45 29.47 29.79 30.56 29.79 30.7 30.02
RACE-M 37.53 37.6 37.33 38.93 40.39 39.62 40.95 39.21
PIQA 61.26 61.53 61.48 62.08 60.99 63.22 63.17 63.71
ARC-C 23.04 22.7 24.06 22.35 24.49 22.18 23.72 23.63
ARC-E 45.83 44.44 46.3 45.62 47.73 47.85 51.73 49.12
OpenBookQA 372 36.4 37 37.8 36.4 39.2 41 38.4
BoolQ 52.39 52.69 56.12 52.05 50.28 51.28 54.98 47.95
COPA 67 62 73 63 71 63 67 66
RTE 52.35 53.07 53.43 52.71 52.35 52.71 52.35 51.99
wiC 47.34 47.34 47.34 47.34 47.34 47.34 47.34 47.34
MultiRC (F1) 45.63 46.02 54.4 46.38 52.79 49.28 52.34 41.71
ReCoRD 57.58 58.65 59.31 59.71 60.87 61 63.42 61.77
CB 42.86 42.86 44.64 42.86 44.64 42.86 42.86 42.86
ANLI-R1 32.6 32.5 31.7 33.1 314 323 325 32.6
ANLI-R2 30.7 30.7 28.4 30.5 30.4 30.6 31.2 31.8
ANLI-R3 30.83 30.67 30.08 30.75 30.83 30.67 30.92 30.75
Average | 38.02 38.11 39.04 38.2 39.8 38.71 40.33 38.83
Avg over GEN Taks | 6.27 591 7.27 5.85 7.71 6.78 7.84 6.41
Avg over RANK Tasks | 45.59 45.77 46.61 45.9 47.44 46.31 48.06 46.55
Dev set log pplx | 3.205 3.217 3.16 3.16 3.096 3.11 3.023 3.06

28

Table 13: Downstream Eval numbers and development set log perplexity loss on 850M model size granulari-

ties

Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L. MatLM-L Baseline-XL MatLM-XL
TriviaQA (EM) 9.26 6.62 10.82 9.78 11.07 11.72 13.31 13.76
NaturalQuestions (EM) 1.66 0.89 1.69 1.58 2.24 2.38 2.66 2.74
WebQuestions (EM) 3.89 3.35 4.08 4.18 3.74 4.43 4.08 5.31
LAMBADA 32 8.25 6.97 10.83 8.19 10.44 14.03 10.83
HellaSwag 36.11 36.64 38.26 37.7 40.63 39.64 434 42.55
StoryCloze 64.78 65.26 66.33 66.17 68.25 67.13 71.25 69.64
WSC 66.32 65.96 63.16 64.21 69.82 69.12 70.53 68.42
WinoGrande 52.17 51.54 52.25 52.57 55.17 52.96 54.14 54.62
Winograd 68.13 69.23 67.03 71.43 71.06 70.33 72.16 72.89
SQuAD v2 (EM) 29.9 23.79 29.07 25.51 25.07 26.39 33.41 28.46
RACE-H 30.39 30.76 31.93 31.88 32.53 31.88 33.79 32.73
RACE-M 40.95 40.95 42.06 41.16 42.27 42.55 44.64 42438
PIQA 64.04 63.98 64.64 64.91 65.45 65.23 67.25 66.21
ARC-C 24.49 24.15 26.71 2491 26.71 26.54 27.13 27.47
ARC-E 52.15 51.01 53.66 52.95 56.27 54.92 57.11 56.57
OpenBookQA 38.2 404 40.8 41.2 42.8 40.8 43 42
BoolQ 52.63 50.31 51.9 47.8 56.73 50.15 55.6 48.41
COPA 68 73 68 73 71 73 73 76
RTE 51.62 51.99 52.71 52.35 51.62 51.99 53.07 52.71
WiC 47.34 47.18 47.34 47.18 47.34 47.18 47.34 47.18
MultiRC (F1) 44.37 51.32 52.11 50.46 54.7 53 37.58 47.16
ReCoRD 63.52 64.27 65.03 65.36 67.55 66.53 69.56 68.03
CB 42.86 37.5 42.86 42.86 42.86 42.86 46.43 39.29
ANLI-R1 30.9 31.8 337 32.1 31.7 322 32.6 324
ANLI-R2 31.8 31.5 31.5 30.9 31.1 30.6 30.4 30.8
ANLI-R3 32 30.25 32.83 30.17 30.75 30 30.58 30.25
Average 40.41 40.46 41.44 41.27 42.56 42.08 43.39 42.65
Avg over GEN Taks 9.58 8.58 10.53 10.38 10.06 11.07 13.5 12.22
Avg over RANK Tasks 47.75 48.05 48.8 48.63 50.3 49.46 50.5 49.9
Dev set log pplx 3.017 3.03 2971 2.98 291 2.928 2.84 2.874

Table 14: Downstream Eval numbers and development set log perplexity loss on 1.3B model size granularities.

Downstream Task \ Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L. MatLM-L Baseline-XL MatLM-XL
TriviaQA (EM) 11.92 12 14.68 13.09 16.48 1491 20.14 17.62
NaturalQuestions (EM) | 1.88 2.19 2.24 247 3.07 2.99 4.79 4.13
WebQuestions (EM) 3.84 5.02 4.72 5.36 5.07 5.76 6.05 6.15
LAMBADA 7.3 9.94 13.55 12.34 17.97 13.51 22.65 19.21
HellaSwag 40.53 40.35 42.86 425 46 44.48 49.78 47.69
StoryCloze 67.29 68.2 69.75 69.91 72.37 71.14 73.81 72.8
WSC 64.56 65.96 64.91 69.12 67.72 69.82 72.63 69.82
WinoGrande 55.8 53.99 56.67 55.25 56.12 57.7 58.25 58.41
Winograd 71.06 68.5 67.77 70.7 73.99 70.33 72.53 72.89
SQuAD v2 (EM) 29.63 3547 28.85 34.64 36.55 34.47 39.48 36.39
RACE-H 32.19 33.19 33.08 34.39 34.48 35.11 36.59 35.25
RACE-M 43.8 44.22 44.22 45.96 47.7 45.75 50.07 46.59
PIQA 66.49 64.36 66.05 66.38 67.52 66.97 69.1 67.68
ARC-C 27.99 25.77 27.65 27.22 29.01 28.75 30.55 31.48
ARC-E 56.44 54.08 58.54 57.03 59.85 58.84 63.26 61.83
OpenBookQA 414 422 41 42 434 42.8 44.8 454
BoolQ 52.57 49.85 54.86 52.42 53.76 56.06 55.35 53.52
COPA 70 75 69 77 74 74 77 75
RTE 52.35 53.07 53.07 52.35 54.15 53.43 52.35 49.82
WiC 47.34 47.34 47.18 47.34 47.34 47.34 48.43 47.02
MultiRC (F1) 42.98 46.69 43.82 49.09 45.29 48.2 40.99 46.42
ReCoRD 67.32 67 69.02 68.61 71.13 70.26 73.4 71.49
CB 42.86 44.64 46.43 42.86 48.21 44.64 42.86 37.5
ANLI-R1 325 33.5 31.9 33.8 33 333 324 32.1
ANLI-R2 30.3 34.7 30.5 34.6 30.6 33.1 31.5 335
ANLI-R3 30.5 33.17 31.5 33.67 31.33 33.5 32.58 33.67
Average \ 41.96 42.71 42.84 43.85 44.85 44.51 46.21 45.13
Avg over GEN Taks \ 1091 12.92 12.81 13.58 15.83 14.33 18.62 16.7
Avg over RANK Tasks \ 49.35 49.8 49.99 51.06 51.76 51.69 52.77 51.9
Dev set log pplx \ 2.90 2.923 2.856 2.867 2.79 2.81 2.718 2.76

29

HIH2 o am-Eval numbersan e entse i oss-on2-68 apularities-
Downstream Task Baseline-S MatLM-S Baseline-M MatL eline-L MatLM-L MatLM-XL
TriviaQA (EM) 18.58 18.64 19.83 21.41 25.17 24.9 28.84 28.01
NaturalQuestions (EM) 3.05 3.13 3.19 3.66 4.76 4.24 6.73 5.01
WebQuestions (EM) 5.61 6.74 4.43 6.3 6.1 6.74 8.27 7.78
LAMBADA 18.46 13.74 29.92 19.89 27.34 24.84 27.94 29.98
HellaSwag 46.41 46.01 49.04 48.94 52.87 52.2 57.14 55.33
StoryCloze 72.26 72.1 73.54 73.22 75.09 75.04 77.02 75.79
WSC 71.23 69.82 70.88 71.58 75.09 74.39 80 77.54
WinoGrande 56.83 57.85 57.62 56.91 60.93 59.19 62.19 59.59
Winograd 76.56 71.43 72.89 74.36 76.56 74.73 81.68 78.75
SQuAD v2 (EM) 34.89 37.97 34.33 40.07 34.89 42.24 43.47 42.59
RACE-H 33.62 34.76 35.59 35.85 36.91 36.82 38.91 37.28
RACE-M 47.63 47.49 49.44 49.51 50.77 50.07 53.34 51.67
PIQA 67.74 67.79 68.39 68.28 69.21 69.59 71.49 71.11
ARC-C 29.95 30.29 31.83 3191 32.51 34.22 35.67 3541
ARC-E 60.82 59.97 61.2 62.42 63.51 64.56 67.76 64.86
OpenBookQA 45.6 43.8 45.4 44.8 49 46.4 49 494
BoolQ 53.58 52.87 53.15 53.52 59.36 54.89 60.8 57.22
COPA 74 74 77 76 75 78 82 81
RTE 49.1 53.07 49.82 54.15 48.01 54.51 48.01 52.35
WiC 47.34 47.34 47.18 47.34 47.34 47.18 47.02 47.49
MultiRC (F1) 434 52.28 43.65 51.64 46.99 53.7 39.24 53.77
ReCoRD 71.34 71.9 72.79 72.97 74.86 74.57 76.71 75.32
CB 28.57 44.64 46.43 46.43 41.07 50 50 44.64
ANLI-R1 324 32.3 30.4 323 325 32.1 31.2 31.5
ANLI-R2 304 30.1 30.6 31 30.1 30.2 31.7 30.8
ANLI-R3 30.75 30.83 31.25 31 335 30.92 32 31.92
Average 44.23 45.03 45.76 46.36 47.29 47.93 49.54 49.08
Avg over GEN Taks 16.12 16.04 18.34 18.26 19.66 20.59 23.05 22.68
Avg over RANK Tasks 50.93 51.94 52.29 53.05 53.86 54.44 55.85 55.37
Dev set log pplx 2.77 2.787 2.722 2.732 2.66 2.68 2.592 2.63

30

Table 16: Downstream eval numbers and development set log perplexity on 2.6B MatLM
Mix ‘n’Match granularities. For original granularities, please refer to Table 15. First row repre-
sents the non-embedding parameters of the model.

Downstream Task \ 830M 1B 1.11B 132B 143B 1.55B 1.65B
TriviaQA (EM) 18.89 2243 23.8 2577 2626 26.15 26.6
NaturalQuestions (EM) | 3.49 3.77 4.02 4.07 4.46 4.65 5.12
WebQuestions (EM) 5.95 6.1 6.64 6.69 6.94 6.69 6.69
LAMBADA 16.34 20.16 23.07 24.8 2432 2587 29.13
HellaSwag 4798 50.46 51.29 52.78 53.75 54.16 54.56
StoryCloze 73.01 7333 74.83 752 7568 7541 75.63
WSC 70.88 70.53 74.04 7298 7474 7333 77.19
WinoGrande 57.85 58.88 60.93 58.88 59.67 60.06 59.91
Winograd 7326 7326 76.19 7436 76.56 77.66 78.02
SQuAD v2 (EM) 36.49 39.72 38.05 41.33 41.08 40.26 41.36
RACE-H 3471 3593 3548 36.74 36.62 36.22 36.96
RACE-M 46.59 48.89 49.44 50.28 5042 51.32 5091
PIQA 68.5 69.04 69.53 704 70.46 70.51 70.29
ARC-C 31.06 33.11 33.19 34.81 3575 35.84 34.56
ARC-E 62.29 6258 62.63 64.86 6599 6549 64.69
OpenBookQA 44.6 46.2 46.8 47 47.4 47.4 47.6
BoolQ 54.86 55.08 5446 55778 58.38 57.19 56.88
COPA 76 76 75 80 77 80 80
RTE 53.43 5379 53.79 5271 53.79 5451 53.79
WiC 4734 4734 4718 4734 47.18 47.34 48.12
MultiRC (F1) 53.34 5385 5297 5423 57.57 55.09 5491
ReCoRD 7221 7325 7398 7443 7472 75.05 75.37
CB 4821 46.43 48.21 50 50 44.64 55.36
ANLI-R1 32.4 32.1 32 324 32.3 31.4 324
ANLI-R2 30.5 30.6 30.6 30.6 30.7 30.4 314
ANLI-R3 31.17 31.17 31.17 315 31 31.5 31.33
Average 4582 46.69 47.28 48.07 48.57 4839 49.18
Avg over GEN Taks 16.23 1844 19.12 20.53 20.61 20.72 21.78
Avg over RANK Tasks | 52.87 53.42 5399 54.63 5522 5498 55.71
Dev set log pplx \ 2774 2.729 2.7706 2.68 2.675 2.663 2.65

31

	Introduction
	Related Work
	MatFormer
	MatFormer Structure
	Training
	Mix'n'Match
	Deployment

	Experiments
	MatLM: MatFormer Language Models
	Elastic Inference with MatLM
	MatLM Scales as well as Vanilla Transformer LMs

	MatViT: MatFormer Vision Transformers
	Image Classification
	Adaptive Image Retrieval

	Conclusions
	Implementation Details
	Architecture and Training
	Downstream Evaluation

	Training and Inference Costs
	Improving MatFormer Training Efficiency
	Speculative Decoding Attention Sharing

	Mix'n'Match
	Scaling Laws for Language Decoders
	Scaling laws of MatFormers vs Transformers.

	Further Analysis on Language Decoders
	KL Divergence Between S, M, L and XL Models
	Ablations on Training Method
	Changing Embedding Size
	Reweighting Strategies
	Scaling Laws for Reweighted Strategy

	Further Analysis on Vision Encoders
	Decoupling Effect of MatFormer on Pretraining and Finetuning
	Traditional Image Retrieval Evaluation

