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Abstract. We propose 3D Congealing, a novel problem of 3D-aware
alignment for 2D images capturing semantically similar objects. Given
a collection of unlabeled Internet images, our goal is to associate the
shared semantic parts from the inputs and aggregate the knowledge
from 2D images to a shared 3D canonical space. We introduce a general
framework that tackles the task without assuming shape templates, poses,
or any camera parameters. At its core is a canonical 3D representation
that encapsulates geometric and semantic information. The framework
optimizes for the canonical representation together with the pose for
each input image, and a per-image coordinate map that warps 2D pixel
coordinates to the 3D canonical frame to account for the shape matching.
The optimization procedure fuses prior knowledge from a pre-trained
image generative model and semantic information from input images.
The former provides strong knowledge guidance for this under-constraint
task, while the latter provides the necessary information to mitigate the
training data bias from the pre-trained model. Our framework can be used
for various tasks such as pose estimation and image editing, achieving
strong results on real-world image datasets under challenging illumination
conditions and on in-the-wild online image collections. Project page at
https://ai.stanford.edu/~yzzhang/projects/3d-congealing/.

1 Introduction

We propose the task of 3D Congealing, where the goal is to align a collection of
images containing semantically similar objects into a shared 3D space. Specifically,
we aim to obtain a canonical 3D representation together with the pose and a
dense map of 2D-3D correspondence for each image in the collection. The input
images may contain object instances belonging to a similar category with varying
shapes and textures, and are captured under distinct camera viewpoints and
illumination conditions, which all contribute to the pixel-level di!erence as shown
in Figure 1. Despite such inter-image di!erences, humans excel at aligning such
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Fig. 1: Objects with di!erent shapes and appearances, such as these sculptures, may
share similar semantic parts and a similar geometric structure. We study 3D Congealing,
inferring and aligning such a shared structure from an unlabeled image collection.
Such alignment can be used for tasks such as pose estimation and image editing. See
Appendix A for full results.

images with one another in a geometrically and semantically consistent manner
based on their 3D-aware understanding.

Obtaining a canonical 3D representation and grounding input images to the
3D canonical space enable several downstream tasks, such as 6-DoF object pose
estimation, pose-aware image filtering, and image editing. Unlike the task of 2D
congealing [11,29,31], where the aim is to align the 2D pixels across the images,
3D Congealing requires aggregating the information from the image collection
altogether and forming the association among images in 3D. The task is also
closely related to 3D reconstruction from multiview images, with a key distinction
in the problem setting, as inputs here do not necessarily contain identical objects
but rather semantically similar ones. Such a di!erence opens up the possibility
of image alignment from readily available image collections on the Internet, e.g .,
online search results, landmark images, and personal photo collections.

3D Congealing represents a challenging problem, particularly for arbitrary
images without camera pose or lighting annotations, even when the input images
contain identical objects [1,4, 20,44], because the solutions for pose and shape
are generally entangled. On the one hand, the definition of poses is specific to
the coordinate frame of the shape; on the other hand, the shape optimization
is typically guided by the pixel-wise supervision of images under the estimated
poses. To overcome the ambiguity in jointly estimating poses and shapes, prior
works mostly start from noisy pose initializations [20], data-specific initial pose
distributions [25,44], or rough pose annotations such as pose quadrants [1]. They
then perform joint optimization for a 3D representation using an objective of
reconstructing input image pixels [1, 20,44] or distribution matching [25].

In this work, instead of relying on initial poses as starting points for shape
reconstruction, we propose to tackle the joint optimization problem from a
di!erent perspective. We first obtain a plausible 3D shape that is compliant with
the input image observations using pre-trained generative models, and then use
semantic-aware visual features, e.g ., pre-trained features from DINO [2,30] and
Stable-Di!usion [36], to register input images to the 3D shape. Compared to
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photometric reconstruction losses, these features are more tolerant of variance in
object identities among image inputs.

We make deliberate design choices to instantiate such a framework that fuses
the knowledge from pre-trained text-to-image (T2I) generative models with real
image inputs. First, to utilize the prior knowledge from generative models, we
opt to apply a T2I personalization method, Textual Inversion [7], which aims
to find the most suitable text embedding to reconstruct the input images via
the pre-trained model. Furthermore, a semantic-aware distance is proposed to
mitigate the appearance discrepancy between the rendered image and the input
photo collection. Finally, a canonical coordinate mapping is learned to find the
correspondence between 3D canonical representation and 2D input images.

To prove the e!ectiveness of the proposed framework, we compare the proposed
method against several baselines on the task of pose estimation on a dataset
with varying illuminations and show that our method surpasses all the baselines
significantly. We also demonstrate several applications of the proposed method,
including image editing and object alignment on web image data.

In summary, our contributions are:
1. We propose a novel task of 3D Congealing that involves aligning images of

semantically similar objects in a shared 3D space.
2. We develop a framework tackling the proposed task and demonstrate sev-

eral applications using the obtained 2D-3D correspondence, such as pose
estimation and image editing.

3. We show the e!ectiveness and applicability of the proposed method on a
diverse range of in-the-wild Internet images.

2 Related Works

Image Congealing. Image congealing methods [12,13,18,27] aim to align a
collection of input images based on the semantic similarity of parts. To tackle
this task, Neural Congealing [29] proposes to use neural atlases, which are 2D
feature grids, to capture common semantic features from input images and
recover a dense mapping between each input image and the learned neural
atlases. GANgealing [31] proposes to use a spatial transformer to map a randomly
generated image from a GAN [8] to a jointly aligned space. These 2D-warping-
based methods are typically applied to source and target image pairs with no
or small camera rotation, and work best on in-plane transformation, while our
proposed framework handles a larger variation of viewpoints due to 3D reasoning.

Object Pose Estimation. Object pose estimation aims to estimate the pose of
an object instance with respect to the coordinate frame of its 3D shape. Classical
methods for pose estimation recover poses from multi-view images using pixel- or
feature-level matching to find the alignment between di!erent images [38]. These
methods are less suitable in the in-the-wild setting due to the increasing variance
among images compared to multi-view captures. Recent methods proposed to
tackle this task by training a network with pose annotations as supervision [19,
42, 48], but it remains challenging for these methods to generalize beyond the
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training distribution. Another class of methods propose to use an analysis-by-
synthesis framework to estimate pose given category-specific templates [3] or
a pre-trained 3D representation [46]; these assumptions make it challenging to
apply these methods to generic objects in the real world. ID-Pose [5] leverages
Zero-1-to-3 [21], a view synthesis model, and optimizes for the relative pose given
a source and a target image. Goodwin et al . [9] use pre-trained self-supervised
features for matching, instead of doing it at the pixel level, but require both
RGB and depth inputs; in contrast, we assume access to only RGB images.

Shape Reconstruction from Image Collections. Neural rendering ap-
proaches [26,43,45] use images with known poses to reconstruct the 3D shape
and appearance from a collection of multiview images. The assumptions of known
poses and consistent illumination prevent these methods from being applied in the
wild. Several works have extended these approaches to relax the pose assumption,
proposing to handle noisy or unknown camera poses of input images through
joint optimization of poses and 3D representation [4, 20,44]. SAMURAI [1] also
proposes to extend the NeRF representation to handle scenes under various
illuminations, provided with coarse initial poses in the form of pose quadrant
annotations. Unlike these methods, we do not have any assumption on the camera
pose of input images, and handle image inputs with variations in illumination
conditions. Moreover, our framework allows for aligning multiple objects of the
same category with geometric variations into a common coordinate frame.

3D Distillation from 2D Di!usion Models. Recently, text-to-image dif-
fusion models have shown great advancement in 2D image generation, and
DreamFusion [32] has proposed to distill the prior on 2D images from pre-trained
text-to-image models to obtain text-conditioned 3D representations. Other meth-
ods have extended this idea to optimize for 3D assets conditioned on image
collections [33]. DreamFusion uses a full 3D representation, while Zero-1-to-3 [21]
extracts the 3D knowledge using view synthesis tasks. Specifically, it finetunes
Stable-Di!usion [36] on synthetic data from Objaverse [6] to generate a novel
view conditioned on an image and a relative pose. The fine-tuned model can
be further combined with gradients proposed in DreamFusion to obtain full
3D assets. MVDream [39] extends the idea of fine-tuning with view synthesis
tasks, but proposes to output 4 views at once and has shown better view con-
sistency in the final 3D asset outputs. DreamBooth3D [33] proposed to utilize
fine-tuned di!usion model [37] for the image-conditioned 3D reconstruction task.
Their goal is to faithfully reconstruct the 3D shape; therefore, the model re-
quires a multi-stage training that involves applying di!usion model guidance and
photometric-reconstruction-based updates. These works provide a viable solution
for 3D reconstruction from image collections, but they do not ground the input
images to the 3D space as in ours.

3 Method

Problem Formulation. We formulate the problem of 3D Congealing as follows.
Given a set of N object-centric images D = {xn}Nn=1 that captures objects sharing
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Fig. 2: Pipeline. Given a collection of in-the-wild images capturing similar objects
as inputs, we develop a framework that “congeals” these images in 3D. The core
representation consists of a canonical 3D shape that captures the geometric structure
shared among the inputs, together with a set of coordinate mappings that register the
input images to the canonical shape. The framework utilizes the prior knowledge of
plausible 3D shapes from a generative model, and aligns images in the semantic space
using pre-trained semantic feature extractors.

semantic components, e.g ., objects from one category, we seek to align the object
instances in these images into a canonical 3D representation, e.g ., NeRF [26],
parameterized by ω. We refer to the coordinate frame of this 3D representation
as the canonical frame. We also recover the camera pose of each observation
x → D in the canonical frame, denoted using a pose function ε : x ↑↓ (ϑ,ϖ) where
ϑ represents the object pose in SE(3) and ϖ is the camera intrinsic parameters.
We assume access to instance masks, which can be easily obtained using an
o!-the-shelf segmentation method [16].

The 3D representation should be consistent with the physical prior of ob-
jects in the natural world, and with input observations both geometrically and
semantically. These constraints can be translated into an optimization problem:

max
ω,ε

pϑ(ω), s.t. x = R(ε(x), ω), ↔x → D, (1)

where pϑ is a prior distribution for the 3D representation parameter ω that
encourages physically plausible solutions, R is a predefined rendering function
that enforces geometric consistency, and the equality constraint on image recon-
struction enforces compliance with input observations.

In the following sections, we will describe an instantiation of the 3D prior pϑ

(Sec. 3.1), an image distance function that helps enforce the equality constraint
(Sec. 3.2), followed by the 3D Congealing optimization (Sec. 3.3).

3.1 3D Guidance from Generative Models

As illustrated in the left part of Figure 2, we extract the prior knowledge for
3D representations pϑ(·) from a pre-trained text-to-image (T2I) model such as
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Stable-Di!usion [36]. DreamFusion [32] proposes to turn a text prompt y into
a 3D representation ω using the following Score Distillation Sampling (SDS)
objective, leveraging a T2I di!usion model with frozen parameters ϱ,

min
ε

Ex→D(ε)Lϖ
di!

(x, y). (2)

Here D(ω) := {R(ε, ω) | ε ↗ pϱ(·)} contains images rendered from the 3D
representation ω under a prior camera distribution pϱ(·), and Lϖ

di!
is the training

objective of image di!usion models specified as follows:

Lϖ
di!

(x, y) := Et↑U([0,1]),ς↑N (0,I)

[
ς(t)↘φϖ(↼tx+ ↽tφ, y, t)≃ φ↘22

]
, (3)

where φϖ is the pre-trained denoising network, ς(·) is the timestep-dependent
weighting function, t is the di!usion timestep and and ↼t,↽t are timestep-
dependent coe"cients from the di!usion model schedule.

The above loss can be used to guide the optimization of a 3D representation
ω, whose gradient is approximated by

⇐εLϖ
di!

(x = R(ϑ,ϖ, ω), y) ⇒ Et,ς

[
ς(t)(φϖ(↼tx+ ↽tφ, y, t)≃ φ)

⇀x

⇀ω

]
, (4)

where ϑ and ϖ are the extrinsic and intrinsic camera parameters, respectively. The
derived gradient approximation is adopted by later works such as MVDream [39],
which we use as the backbone.

The original SDS objective is optimizing for a text-conditioned 3D shape
with a user-specified text prompt y and does not consider image inputs. Here,
we use the technique from Textual Inversion [7] to recover the most suitable text
prompt y

↓ that explains input images, defined as follows:

y
↓ = argmin

y
Ex→DLϖ

di!
(x, y). (5)

Eq. (2) and Eq. (5) di!er in that both the sources of the observations x (an
infinite dataset of rendered images D(ω) for the former, and real data D for the
latter) and the parameters being optimized over (ω and y, respectively). In our
framework, we incorporate the real image information to the SDS guidance via
first solving for y

↓ (Eq. (5)) and keep it frozen when optimizing for ω (Eq. (2)).
The di!usion model parameter ϱ is frozen throughout the process, requiring
significantly less memory compared to the alternative of integrating input image
information via finetuning ϱ as in DreamBooth3D [33].

3.2 Semantic Consistency from Deep Features

The generative model prior from Sec. 3.1 e!ectively constrains the search space for
the solutions. However, the objectives from Eqs. (2) and (5) use the input image
information only indirectly, via a text embedding y

↓. To explain the relative
geometric relation among input images, we explicitly recover the pose of each
input image w.r.t. ω, as illustrated in Figure 2 (middle) and as explained below.
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To align input images, we use an image distance metric defined by semantic
feature dissimilarity. In particular, pre-trained deep models such as DINO [2,30]
have been shown to be e!ective semantic feature extractors. Denote such a model
as f parameterized by ⇁. The similarity of two pixel locations u1 and u2 from
two images x1 and x2, respectively, can be measured with

d
u1,u2

φ (x1, x2) := 1≃
⇑[fφ(x1)]u1

, [fφ(x2)]u2
⇓

↘ [fφ(x1)]u1
↘2↘ [fφ(x2)]u2

↘2
, (6)

where [·] is an indexing operator. It thereafter defines an image distance function

↘x1 ≃ x2↘dω :=
1

HW

∑

u

d
u,u
φ (x1, x2), (7)

where x1 and x2 have resolution H⇔W , and the sum is over all image coordinates.
The choice of semantic-aware image distance, instead of photometric di!er-

ences as in the classical problem setting of multiview 3D reconstruction [38,43,45],
leads to solutions that maximally align input images to the 3D representation
with more tolerance towards variance in object shape, texture, and environmental
illuminations among input images, which is crucial in our problem setting.

3.3 Optimization

The Canonical Shape and Image Poses. Combining Secs. 3.1 and 3.2, we
convert the original problem in Eq. (1) into

min
ω,ε

Ex→D(ε)Lϖ
di!

(x, y↓)
︸ ︷︷ ︸

generative model guidance

+λEx→D↘R(ε(x), ω)≃ x↘d︸ ︷︷ ︸
data reconstruction

,
(8)

where y
↓ come from Eq. (5) and λ is a loss weight. Compared to Eq. (5), here the

first term instantiates the generative modeling prior and the second term is a soft
constraint of reconstructing input observations. Specifically, d = λφdφ + λIoUdIoU,
where dφ is the semantic-space distance metric from Sec. 3.2, and dIoU is the
Intersection-over-Union (IoU) loss for masks, ↘m1 ≃ m2↘dIoU := 1 ≃ (↘m1 ↖
m2↘1)/(↘m1↘1 + ↘m2↘1 ≃ ↘m1 ↖ m2↘1), where m1 and m2 are image masks,
which in Eq. (8) are set to be the mask rendering and the instance mask for x.
The use of both dφ and dIoU tolerates shape variance among input instances.

For the shape representation, we follow NeRF [26] and use neural networks
↽ε : R3 ↓ R and cε : R3 ↓ R3 to map a 3D spatial coordinate to a density
and an RGB value, respectively. The rendering operation R is the volumetric
rendering operation specified as follows:

R(r, ϑ, ω; cε) =

∫
T (t)↽ε(ϑr(t))cε(ϑr(t)) dt, (9)

where T (t) = exp
(
≃
∫
↽ε(r(t↔))dt↔

)
, r : R ↓ R3 is a ray shooting from the

camera center to the image plane, parameterized by the camera location and
the ray’s direction, and ϑ is the relative pose that transforms the ray from the
camera frame to the canonical frame.
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Forward Canonical Coordinate Mappings. After the above optimization,
each image x from the input image collection can be “congealed” to the shape ω via
a canonical coordinate mapping, i.e., a forward warping operation Φ

fwd
x : R2 ↓ R3

that maps a 2D image coordinate to a 3D coordinate in the canonical frame of
reference as illustrated in Figure 2. Φfwd

x consists of the following two operations.
First, we warp a coordinate u from the real image x to the rendering of the

canonical shape under its pose ε(x), denoted as x̃ := R(ε(x), ω). Specifically,

Φ
2D↗2D

x̃↗x (u) := argmin
ũ

d
ũ,u
φ (x̃, x) + λ↼2↘ũ≃ u↘22 + λsmoothLsmooth(ũ, u), (10)

where dφ follows Eq. (6), the 2D coordinates u and ũ are normalized into range
[0, 1] before computing the ▷2 norm, the smoothness term Lsmooth is specified
in Appendix B, and λ↼2 and λsmooth are scalar weights. This objective searches
for a new image coordinate ũ (from the rendering x̃) that shares a semantic
feature similar to u (from the real image x), and ensures that ũ stays in the local
neighborhood of u via a soft constraint of the coordinate distance. Afterward, a
2D-to-3D operation takes in the warped coordinate from above and outputs its
3D location in the normalized object coordinate space (NOCS) [41] of ω:

Φ
3D↗2D

x (ũ) := [RNOCS(ε(x), ω)]ũ , (11)

where RNOCS is identical to R from Eq. (9), but replacing the color field cε with a
canonical object coordinate field, cNOCS : R3 ↓ R3

, p ↑↓ (p≃pmin)/(pmax≃pmin),
where pmin and pmax are the two opposite corners of the canonical shape’s
bounding box. These bounding boxes are determined by the mesh extracted from
the density neural field ↽ε using the Marching Cube [22] algorithm.

Combining the above, given an input image coordinate u, Φfwd
x (u) := Φ

3D↗2D
x ↙

Φ
2D↗2D

x̃↗x (u) identifies a 3D location in the canonical frame corresponding to u.

Reverse Canonical Coordinate Mappings. Each image can be “uncon-
gealed” from the canonical shape using Φ

rev
x : R3 ↓ R2, which is the reverse

operation of Φfwd
x (u) and is approximately computed via nearest-neighbor inver-

sion as explained below.
Given a 3D location within a unit cube, p → [0, 1]3, Φrev

x (p) := Φ
2D↗2D

x↗x̃ ↙
Φ

2D↗3D
x (p). In particular,

Φ
2D↗3D

x (p) := argmin
ũ

↘p≃ Φ
3D↗2D

x (ũ)↘2 (12)

is an operation that takes in a 3D coordinate p in the canonical frame and
searches for a 2D image coordinate whose NOCS value is the closest to p, and
Φ

2D↗2D

x↗x̃ is computed via inverting Φ
2D↗2D

x̃↗x from Eq. (10),

Φ
2D↗2D

x↗x̃ (ũ) := argmin
u

↘ũ≃ Φ
2D↗2D

x̃↗x (u)↘2. (13)

In summary, the above procedure establishesthe 2D-3D correspondence be-
tween an input image x and the canonical shape via Φ

fwd
x , and defines the dense

2D-2D correspondences between two images x1, x2 via Φ
rev
x2

↙ Φfwd
x1

which enables
image editing (Figure 8). The full framework is described in Algorithm 1.
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3.4 Implementation Details

1: procedure RUN(D = {xn}N
n=1)

2: y→ ↗ Solution to Eq. (5)

3: Optimize ε with Eq. (8)

4: Sample pose candidates {↽i}i

5: for n ↗ 1 to N do ⇀ Pose initialization

6: ω(xn) ↗ argminεi
↘R(↽, ε) ≃ xn↘dω

7: end for
8: Optimize ω(xn) with Eq. (8) for all n
9: Determine ⇁fwd

xn
and ⇁rev

xn
for all n

10: return ε, ω, {⇁fwd
xn

}N
n=1,{⇁

rev
xn

}N
n=1

11: end procedure

Algorithm 1: Overview.

Input images are cropped with the
tightest bounding box around the fore-
ground masks. The masks come from
dataset annotations, if available, or
from Grounded-SAM [16, 35], an o!-
the-shelf segmentation model, for all
Internet images.

Across all experiments, we opti-
mize for y

↓ (Algorithm 1, line 2) for
1, 000 iterations using an AdamW [23]
optimizer with learning rate 0.02 and
weight decay 0.01. We optimize for ω (line 3) with λ = 0 for 10, 000 iterations,
with AdamW and learning rate 0.001. The NeRF model ω has 12.6M parameters.
It is frozen afterwards and defines the coordinate frame for poses.

Since directly optimizing poses and camera parameters with gradient descents
easily falls into local minima [20], we initialize ε using an analysis-by-synthesis
approach (Algorithm 1, line 5-7). Specifically, we parameterize the camera in-
trinsics using a pinhole camera model with a scalar Field-of-View (FoV) value,
and sample the camera parameter (ϑ,ϖ) from a set of candidates determined by
an exhaustive combination of 3 FoV values, 16 azimuth values, and 16 elevation
values uniformly sampled from [15⇐, 60⇐], [≃180⇐, 180⇐], and [≃90⇐, 90⇐], respec-
tively. In this pose initialization stage, all renderings use a fixed camera radius
and are cropped with the tightest bounding boxes, computed using the rendered
masks, before being compared with the real image inputs. We then select the
candidate with the lowest error measured by the image distance function d from
Sec. 3.2, with λφ = 1 and λIoU = 0.

After pose initialization, we use the se(3) Lie algebra for camera extrinsics
parameterization following BARF [20], and optimize for the extrinsics and in-
trinsics of each input image (Algorithm 1, line 8), with λφ = 0 and λIoU = 1, for
1, 000 iterations with the Adam [15] optimizer and learning rate 0.001. Since ω is
frozen, the optimization e!ectively only considers the second term from Eq. (8).
Finally, to optimize for the canonical coordinate mappings (Algorithm 1, line
9), for each input image, we run 4, 000 iterations for Eq. (10) with AdamW and
learning rate 0.01. All experiments are run on a single 24GB A5000 GPU.

4 Experiments

In this section, we first benchmark the pose estimation performance of our method
on in-the-wild image captures (Sec. 4.1), and then show qualitative results on
diverse input data and demonstrate applications such as image editing (Sec. 4.2).

4.1 Pose Estimation

Dataset. While our method does not require input object instances to be
identical, we use a dataset of multi-illumination object-centric image captures
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Fig. 3: Pose Estimation from Multi-Illumination Captures. The figure shows
4 example scenes from the NAVI dataset, displaying the real image inputs, canonical
shapes under estimated poses, and the canonical coordinate maps.

with ground truth camera poses for evaluation. Specifically, we use the in-the-
wild split of the NAVI [14] dataset, which contains 35 object image collections
in its o"cial release. Each image collection contains an average of around 60
casual image captures of an object instance placed under di!erent illumination
conditions, backgrounds and cameras with ground truth poses.

We use identical hyperparameters for all scenes. We do not introduce addi-
tional semantic knowledge for objects contained in the scene and use a generic
text prompt, “a photo of sks object”, for initialization for all scenes. The text
embeddings corresponding to the tokens for “sks object” are being optimized
using Eq. (5) with the embeddings for others being frozen. For each scene, it
takes around 1 hr to optimize for the NeRF model, 15 min for pose initialization,
and 45 min for pose optimization.

Baselines. We compare with several multiview reconstruction baselines. In
particular, NeROIC [17] uses the poses from COLMAP, and NeRS [47] and
SAMURAI [1] require initial camera directions. GNeRF [25] is a pose-free multi-
view 3D reconstruction method that is originally designed for single-illumination
scenes, and is adapted as a baseline using the same input assumption as ours.
PoseDi!usion [42] is a learning-based framework that predicts relative object
poses, using ground truth pose annotations as training supervision. The original
paper takes a model pre-trained on CO3D [34] and evaluates the pose prediction
performance in the wild, and we use the same checkpoint for evaluation.

Metrics. The varying illuminations pose challenges to classical pose estimation
methods such as COLMAP [38]. We use the o"cial split of the data which
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Labels Methods
Rotation°⇒ Translation⇒

SC ↑ SC SC ↑ SC

Pose

NeROIC [17] 42.11 - 0.09 -

NeRS [47] 122.41 123.63 0.49 0.52
SAMURAI [1] 26.16 36.59 0.24 0.35

None

GNeRF [25] 93.15 80.22 1.02 1.04
PoseDi!usion [42] 46.79 46.34 0.81 0.90
Ours (3 seeds) 26.97±2.24 32.56±2.90 0.40±0.01 0.41±0.04

Ours (No Pose Init) 53.45 57.87 0.97 0.96
Ours (No IoU Loss) 31.29 31.15 0.87 0.85

Table 1: Pose Estimation from Multi-Illumination Image Captures. Our
method performs better than both GNeRF and PoseDi!usion with the same input
information, and on par with SAMURAI which additionally assumes camera pose
direction as inputs. Di!erent random seeds lead to di!erent canonical shapes, but our
method is robust to such variations. ± denotes means followed by standard deviations.
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Fig. 4: Pose Estimation for Tourist Landmarks. This is a challenging problem
setting due to the varying viewpoints and lighting conditions, and the proposed method
can successfully align online tourist photos taken at di!erent times and possibly at
di!erent geographical locations, into one canonical representation.

partitions the 35 scenes into 19 scenes where COLMAP converges (SC in Table 1),
and 16 scenes where COLMAP fails to converge (↗ SC). Following [14], we report
the absolute rotation and translation errors using Procrustes analysis [10], where
for each scene, the predicted camera poses are aligned with the ground truth pose
annotations using a global transformation before computing the pose metrics.

Results. Handling di!erent illumination conditions is challenging for all base-
lines using photometric-reconstruction-based optimization [1,17,47] even with
additional information for pose initialization. As shown in Table 1, our approach
significantly outperforms both GNeRF and PoseDi!usion and works on par with
SAMURAI which requires additional pose initialization. We run our full pipeline
with 3 random seeds and observe a consistent performance across seeds. As shown
in Figure 3 results, across a wide range of objects captured in this dataset, our



12 Y. Zhang et al.

Millennium Falcon

In
pu
ts

Po
se
s

Ironman

Crocs

In
pu
ts

Po
se
s

In
pu
ts

Po
se
s

Office Chairs

Caps

Donkeys

Fig. 5: Object Alignment from Internet Images. Results of an online image search
may contain various appearances, identities, and articulated poses of the object. Our
method can successfully associate these in-the-wild images with one shared 3D space.

method accurately estimates the poses for the input images and associates all
inputs together in 3D via the canonical coordinate maps.

Ablations. Table 1 also shows ablation for the pose fitting objectives. The
initialization is critical (“No Pose Init”), which is expected as pose optimization
is susceptible to local optima [20]. “No IoU Loss”, which is equivalent to using
the initialized poses as final predictions, also negatively a!ects the performance.

4.2 Applications

We show qualitative results on various in-the-wild image data. Inputs for Figures 4
and 5 are crawled with standard online image search engines and are CC-licensed,
each consisting of 50 to 100 images. Inputs for Figures 6 and 7 come from the
SPair-71k dataset [28]. We use identical hyperparameters for all datasets, except
for text prompt initialization where we use a generic description of the object,
e.g ., “a photo of sks sculpture”, or “a photo of cats plus dogs” for Figure 6.

Single-Instance. Figure 4 shows the result on Internet photos of tourist
landmarks, which may contain a large diversity in illuminations (e.g ., the Rio)
and styles (e.g ., the sketch of the Sydney Opera House). The proposed method
can handle such variances and align these photos or art pieces, which are abundant
from the Internet image database, to the same canonical 3D space and recover
the relative camera poses.
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Fig. 6: Cross-Category Results. The method can associate images from di!erent
categories, such as cats and dogs, by leveraging a learned average shape.
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Fig. 7: Results on Deformable Objects. The method can be applied to images
with highly diverse articulated poses and shapes as shown in the examples above.

Cross-Instance, Single-Category. Internet images from generic objects may
contain more shape and texture variations compared to the landmarks. Figure 5
shows results for various objects. Our framework consistently infers a canonical
shape from the input images to capture the shared semantic components being
observed. For example, the corresponding semantic parts of faces of humans and
the Ironman are identified as similar and are aligned with each other.

Cross-Category. The method does not make an assumption on the category
of inputs. Given cross-category inputs, such as a mixture of cats and dogs as
shown in Figure 6, the method e!ectively infers an average shape as an anchor to
further reason about the relative relation among images from di!erent categories.

Inputs with Deformable Shapes. To test the robustness of the method,
we run the pipeline on images of humans with highly diverse poses. Figures 1
and 7 show that the method assigns plausible poses to the inputs despite the
large diversity of shapes and articulated poses contained in the inputs.

Image Editing. The proposed method finds image correspondence and can be
applied to image editing, as shown in Figure 8 (a-b). Figure 8 (c) shows that our
method obtains more visually plausible results compared to the Nearest-Neighbor
(NN) baseline using the same DINO features. The baseline matches features in 2D
for each pixel individually and produce noisy results, as discussed in Appendix C.
Quantitative evaluation of correspondence matching is included in Appendix D.
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Input Edited Input Edited Input Edited Input Edited
(a) Texture Propagation

Input Ours Input Ours

Input Ours Input Ours

(c) Baseline Comparisons(b) Editing Propagation

NN NN

NNNN

Fig. 8: Image Editing. Our method propagates (a) texture and (b) regional editing
to real images, (c) achieving smoother results compared to the nearest-neighbor (NN)
baseline thanks to the 3D geometric reasoning.

Real Input Real Feat Pred Pose Pred Feat

(b) Ambiguous Features

Real Input Real Feat Pred Pose Pred Feat

(a) Incorrect Canonical Shape

Fig. 9: Failure Modes. Our method inherits the failure from (a) canonical shape
optimization and (b) pre-trained feature extractors.

4.3 Failure Modes

We have identified two failure modes of the proposed method: (1) incorrect shapes
from the generative model distillation process, e.g ., the incorrect placement
of the water gun handle from Figure 9 (a), and (2) incorrect poses due to
feature ambiguity, e.g ., the pumpkin is symmetric and DINO features cannot
disambiguate sides from Figure 9 (b).

5 Conclusion

We have introduced 3D Congealing, 3D-aware alignment for 2D images capturing
semantically similar objects. Our proposed framework leverages a canonical
3D representation that encapsulates geometric and semantic information and,
through optimization, fuses prior knowledge from a pre-trained image generative
model and semantic information from input images. We show that our model
achieves strong results on real-world image datasets under challenging identity,
illumination, and background conditions.
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A Additional Qualitative Results

The complete set of input images used for the sculpture dataset from Figure 1 and
the corresponding results are shown in Figure 10. Images come from a personal
photo collection.

B Implementation Details

Feature Extractors. We use the ViT-G/14 variant of DINO-V2 [30] as the
feature extractor fφ from Sec. 3.2 and extract tokens from its final layer for all
quantitative experiments. For qualitative results from Figure 1, following [40], we
use features from the first upsampling block of the UNet from Stable Di!usion 2.1
with di!usion timestep 261 as fφ , as these features are similar for semantically-
similar regions [24,40,49] but are locally smoother compared to DINO, which is
consistent with the observations from [49].

Smoothness Loss. The smoothness loss from Eq. (10) is specified as follows.
Following [29], we define

Lrigidity,⇑(T ) := ↘J⇑(T )TJ⇑(T )↘F + ↘(J⇑(T )TJ⇑(T ))≃1↘F , (14)

where T jointly considers all neighboring coordinates u, instead of only one
coordinate u at once. We define [T ]u = ũ ≃ u, where ũ is the optimization
variable for input u from Eq. (10), and J⇑(T ) computes the Jacobian matrix
of T approximated with finite di!erences with pixel o!set ⇐. Following [31], we
denote huber loss with Lhuber and define the total variation loss as

LTV(T ) = Lhuber(⇐xT ) + Lhuber(⇐yT ), (15)

where ⇐x and ⇐y are partial derivatives w.r.t. x and y coordinates, approximated
with finite di!erences. The final smoothness loss is defined as

Lsmooth = λrigidity,⇑=10 + 0.1Lrigidity,⇑=1 + 10LTV. (16)

C Feature Visualizations

Matching features independently for each pixel gives noisy similarity heatmaps
(Figure 12 (b)), due to the noise of feature maps (Figure 12 (d-e)), and the lack
of geometric reasoning in the matching process. Our method is robust to such
noises as it seeks to align the input with a posed rendering considering all pixel
locations in the input altogether.
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Aero Bike Boat Bus Car Chair Motor Train TV Mean

GANgealing. [31] - 37.5 - - - - -
Neural Congealing [29] - 29.1 - - - - - - - -
ASIC [11] 57.9 25.2 24.7 28.4 30.9 21.6 26.2 49.0 24.6 32.1
DINOv2-ViT-G/14 [30] 72.5 67.0 45.5 54.6 53.5 40.7 71.8 53.5 36.3 55.0
Ours 70.0 70.3 40.0 65.8 72.1 50.1 77.0 26.1 43.1 57.2

Table 2: Semantic Correspondence Evaluation on SPair-71k [28]. Our method
achieves an overall better keypoint transfer accuracy compared to prior 2D congealing
methods and a 2D-matching baseline using the same semantic feature extractor as ours.

D Semantic Correspondence Matching

We provide additional quantitative evaluation of our method on the task of
semantic correspondence matching. Given a pair of source and target image
(xsource, xtarget), and given a keypoint in the source image usource, the goal of this
task is to find its most semantically similar keypoint utarget in the target image.

The matching process using our method is specified as follows. We first map
the 2D keypoints being queried to the 3D coordinates in the canonical space,
and then project these 3D coordinates to the 2D image space of the target image.
Formally, given an image pair (xsource, xtarget) and a 2D keypoint usource, the
corresponding keypoint utarget is computed with

utarget = Φ
rev

xtarget
↙ Φfwd

xsource
(usource), (17)

with notations defined in Sec. 3.3.
For all experiments in this section, for Eq. (10), we set λ↼2 = 10 and for

simplicity set λsmooth = 0.

Dataset. We use SPair-71k [28], a standard benchmark for semantic correspon-
dence matching for evaluation. We evaluate our method on 9 rigid, non-cylindrical-
symmetric categories from this dataset. The images for each category may contain
a large diversity in object shape, texture, and environmental illumination.

Following prior works [29, 31], we report the Percentage of Correct Keypoints
(PCK@↼) with ↼ = 0.1, a standard metric that evaluates the percentage of
keypoints correctly transferred from the source image to the target image with
a threshold ↼. A predicted keypoint is correct if it lies within the radius of
↼ ·max(Hbbox,Wbbox) of the ground truth keypoint in the object bounding box
in the target image with size Hbbox ⇔Wbbox.

Baselines. We compare with a 2D-correspondence matching baseline. Formally,
for this baseline, for each querying keypoint uquery, we compute the keypoint
prediction with

utarget = argmin
u

d
u,u
φ (xtarget, xsource), (18)

where the distance metric dφ is defined in Eq. (6) and is induced from a pre-
trained features extractor fφ . We use the same DINO feature extractor for our
method and this baseline.
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We further compare with previous congealing methods, GANgealing [31],
which uses pre-trained GAN for supervision, and Neural Congealing [29] and
ASIC [11], which are both self-supervised.

Results. Results are shown in Tab. 2. The performance gain over the DINOv2
baseline, which uses the same semantic feature extractor backbone as ours,
suggests the e!ectiveness of 3D geometric consistency utilized by our framework.

Qualitative results are shown in Figure 11. Our method is the only one that
performs correspondence matching via reasoning in 3D among all baselines. Such
3D reasoning o!ers an advantage especially when the relative rotation between
the objects from the source and target image is large. Our method transforms
the 3D coordinate from source to target in the canonical frame, where the 3D
shape guarantees the 3D consistency. In comparison, as shown on the right of
Figure 11, the baseline performs 2D matching and incorrectly matches the front
of a plane with its rear, and incorrectly matches the front wheel of a bicycle with
its back wheel.
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Fig. 10: Results on the Sculpture Dataset.
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Fig. 11: Semantic Correspondence Matching. The figure shows results on 4
example categories from SPair-71k [28]. To match a given keypoint from the source
image, our method first warps the keypoint to the rendered image space (2D-to-2D),
then identifies the warped coordinate’s location in the canonical frame in 3D (2D-to-
3D), then projects the same 3D location to the rendering corresponding to the target
image (3D-to-2D), and finally warps the obtained coordinate to the target image space
(2D-to-2D). The learned 3D canonical shape serves as an intermediate representation
that aligns the source and target images, and it better handles scenarios when the
viewpoint changes significantly compared to matching features in 2D.

(a) Input (d) Features 
of Inputs

(c) Aligned 
Rendering

(e) Features 
of Rendering(b) Feature Similarity Heatmaps

Fig. 12: Feature Visualizations. Despite that DINO features tend to be noisy, our
approach assigns a plausible pose to the input, as shown in the aligned rendering.
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