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Abstract4

Ising machines have recently been attracting attention due to their apparent ability to solve5

difficult combinatorial problems using analog operational principles. Oscillator Ising Machines6

(OIM) are especially attractive because they can be implemented easily as integrated circuits (ICs)7

in standard CMOS electronics. We explore the performance of OIM for decoding noisy Multi-User8

MIMO signals, a problem of considerable interest in modern telecommunications. Our results9

indicate that OIM-based decoding achieves error rates almost as good as the optimal Maximum10

Likelihood method, over a wide range of practical signal-to-noise (SNR) values. At high SNR11

values, OIM achieves ~20x fewer errors than LMMSE, a decoding method used widely in industry12

today. We also investigate the influence of parameter precision on decoding performance, finding13

that using 6 or more bits of precision largely retains OIM’s advantages across all SNR values. We14

estimate that straightforward CMOS OIM implementations can easily solve MU-MIMO decoding15

problems in under 10ns, more than 100x faster than current industrial requirements. We conclude16

that oscillator Ising machines can be effective for real-world applications, possibly serving as an17

important enabler for future telecommunication standards. Our results and data provide guidance18

for designing hardware OIM prototypes specialized for MU-MIMO decoding.19

1 Introduction20

Combinatorial optimization (CO) is an enabling technology in many fields that impact modern life,21

including communication networks, drug/vaccine design, healthcare, delivery logistics, smart grids,22

etc.. However, practical problem sizes have kept outpacing available computational power by large23

margins. As a result, there has long been interest in ways to speed up CO.24

Many practically-important CO problems are computationally difficult (e.g., NP-complete [1]). Such25

problems can be recast [2] in a standard mathematical form, the Ising model [3]. The model is simply26

a weighted graph, i.e., a collection of nodes/vertices and branches/edges between pairs of nodes, with27

each branch having a real-number weight. Each node (termed a “spin” in this context) is allowed to28

take one of two values, either 1 or -1. Associated with this graph is a cost function, called the Ising29

Hamiltonian, obtained by multiplying the weight of each branch by the values of the two spins it30

connects to, and summing over all branches. Ising Hamiltonians are sometimes interpreted as an31

“energy” associated with a given configuration of the spins, although in many situations (such as in32

this paper) they are merely a mathematical cost function, with no connection with energy in physics.33

The “Ising problem” is to find spin configurations with the minimum possible Hamiltonian value.34

For many practical problems, finding a spin configuration with a Hamiltonian close to the minimum35

possible is also useful.36

Simple though the Ising problem is to state, it has proven (since its inception nearly 100 years ago)37

to have remarkable power. For example, the Ising model was developed, and first used, to explain38

how ferromagnetic behaviour in magnetic materials emerges [4, 5]. Since then, it was found that39

many difficult computational problems in various disciplines can be translated to the Ising problem.40

Examples include protein folding in biology, finding the optimal artificial neural network for a41

given set of training data, optimal strategies for playing the game Go, and many NP-hard/complete42

graph-theoretic problems, including the discrete maximum-likelihood (M.L.) problem — indeed, all43
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21 of Karp’s list of NP-complete problems [1] have Ising incarnations [2]. (Note that we use M.L. as44

an acronym for Maximum Likelihood throughout this paper, in an attempt to avoid confusion with45

ML, commonly used for Machine Learning.)46

Unsurprisingly, solving the Ising problem computationally is itself NP-hard/complete [6, 7]. However,47

over the last decade, a class of hardware Ising solvers (known as Ising machines) has emerged as a48

promising means to accelerate solutions to these classically difficult computational problems. The49

premise of Ising machines is that specialized hardware implementing the Ising computational model50

can solve many classes of NP-complete problems faster than classical algorithms (such as semidefinite51

programming [8] and simulated annealing [9, 10]) run on digital computers. Ising machines first52

came into prominence with the D-Wave quantum annealer and the Coherent Ising Machine (CIM). A53

D-Wave quantum annealer [11] with 2000 spins has been available commercially for several years,54

with a 5000-spin version recently announced. CIM [12, 13] with 2000 spins has been successfully55

demonstrated at NTT Research Labs [14], with larger systems under active development. Though56

without question tours-de-force of technology and science that have established the field of Ising57

machines and inspired follow-on technologies, D-Wave quantum annealers and CIM are not ideally58

suited for all applications, being physically large, expensive, and difficult to miniaturize or scale to59

larger problems. For example, the CIM/DOPO scheme involves pulsed lasers and frequency doubling60

crystals, and is about the size of a rack for a size-2000 machine [14]; D-Wave machines require an61

operating temperature under 80mK, are the size of several large racks, and are said to cost in the62

range of $15M.63

In 2016, Wang and the first author discovered that networks of oscillators can solve Ising problems64

[15]. In their scheme, each of the N binary variables (spins) of the Ising problem is implemented by65

an oscillator. The information needed to find a solution of the Ising problem is encoded in the phase66

(relative time delay) of each oscillator. The oscillators are coupled together in a network (Figure 1),67

with coupling strengths that correspond to the weights in the Ising Hamiltonian. They proved that68

such systems have an “energy function” (more precisely, Lyapunov function) that matches a given69

Ising problem’s energy landscape; and that the Lyapunov function closely approximates the Ising70

Hamiltonian when the oscillators’ phases are binarized, using a mechanism called sub-harmonic71

injection locking (SHIL). They also showed, crucially, that such Oscillator Ising Machines (OIMs)72

naturally find troughs of their Lyapunov landscapes, and that this innate property can be leveraged73

to find good (i.e., near minimum-Hamiltonian) solutions of Ising problems. This ability stems from74

collective behaviour involving two types of injection locking, a generic synchronization-inducing75

property of oscillators.76

Fig. 1: An example network of 8 oscillators with var-

ious positive or negative coupling strengths Ji j. Each

oscillator can be characterized by its phase relative to a

reference oscillator (e.g., oscillator 8).

In [16, 17], OIM was evaluated on the widely-77

used G-set [18, 19], comprising 51 benchmark78

problems for the NP-complete MAX-CUT prob-79

lem, with sizes ranging from 800 to 3000 spins.80

OIM matched the best results from 4 other al-81

gorithms on 29 of the problems, finding better82

results on 17. Prototype electronic hardware im-83

plementations of OIM have been built that find84

good solutions of Ising problems in milliseconds85

[17, 20]. From a practical deployment perspec-86

tive, OIM has compelling advantages over previ-87

ous Ising machines. It can be implemented using88

plain electronics (in particular, standard CMOS89

in non-cutting-edge technologies) in very small90

form factors, especially compared to CIM and91

quantum annealers. OIMs are orders of magni-92

tude cheaper than prior Ising machines – this, together with small size and easy mass production,93

greatly broadens the potential applicability of Ising machines. Because electronic oscillator frequen-94

cies can be calibrated easily, the impact of ever-present variability in electronic components can95

essentially be eliminated. Importantly, OIM is a purely classical — not quantum — scheme that is96

immediately practical; its power derives primarily from system-level interactions of oscillators, not97

from device technology per se. Hence it can use larger/older/cheaper technology nodes, while being98

able to fully reap the benefits of smaller ones and, indeed, make use of novel nanodevice technologies99
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that become practically viable. (Note that D-Wave’s quantum annealing based Ising machine has not100

shown quantum advantage on practical problems yet; only on carefully designed abstract ones [21].)101

Fig. 2: An illustration of a Multiple User Mul-
tiple In Multiple Out (MU-MIMO) setup. Mul-
tiple users transmit their data, ~x, to a receiver
with multiple antennas, where the signal ~y is
measured. Transmission occurs over several
paths, characterized by the channel matrix H.

In this paper, we report the performance of OIM on102

an important problem in wireless communications,103

the MU-MIMO (Multi-User Multiple-Input-Multiple-104

Output) decoding problem. As shown in Figure 2, mod-105

ern wireless communication settings involve multiple106

users with single/multiple transmit antennas, using the107

same resources (time and frequency) to transmit to a108

receiver equipped with multiple receive antennas. As109

a result, each received signal consists of a noisy super-110

position of several users’ transmitted symbols. Recov-111

ering the originally-sent symbols from received signals112

involves solving a hard CO problem (the MU-MIMO113

decoding problem [22, 23]) to infer the most likely set114

of transmitted symbols, given the set of signals received.115

Solving exactly for the most likely transmitted symbols,116

i.e., the M.L. (Maximum Likelihood) solution, is too117

computationally expensive to be practical; hence, heuristic methods that use much less computation,118

such as LMMSE (“linear minimum mean-square error”), are universally used even though they do119

not recover transmitted symbols as accurately as M.L..120

From a hardware perspective, it is highly desirable for MU-MIMO decoders to be physically small121

and inexpensive so that they are practical for size- and cost-sensitive products, such as cellular122

basestations. For example, in modern cellular network installations, space constraints dictate that123

units must fit in a fraction of a standard rackmount unit, even in configurations where they are124

implemented remotely. These considerations, which place strong constraints on MU-MIMO decoding125

technologies, favour OIM over other Ising machine schemes.126

2 Results127

We evaluate OIM (in simulation) on an extensive set of 550,000 MU-MIMO decoding problems128

(for a 16× 64 QPSK setup) and compare our results against M.L. and LMMSE. Because of their129

suitability for CMOS IC fabrication, we use ring oscillators [24–26] for OIM’s spins. We find that130

OIM achieves symbol error rates (SER) that are very close to optimal results from M.L.; both are131

more than an order of magnitude better than those from LMMSE at high SNR values (i.e., for the132

more challenging problems). These results indicate the promise of OIM for solving real, practical133

problems and provide motivation for integrated circuit (IC) realizations of OIM specialized for134

MU-MIMO decoding, which may benefit 6G and future standards. Towards this end, we also evaluate135

ring-oscillator OIM with the coupling coefficients Ji j quantized to varying numbers of discrete levels,136

since quantized coupling is typically necessary for chip implementation. We find that using 256137

levels (8 bits of quantization) results in essentially no performance degradation, while 64 levels (6138

bits) leads to acceptable performance, especially when the SNR (Signal-to-Noise Ratio) of received139

MU-MIMO signals is low. Our results, and conclusions about the promise of OIM for MU-MIMO140

decoding, differ considerably from those reported in [27], wherein poor BER performance observed141

for OIM (as well as CIM) motivates the authors to devise a Regularized Ising (RI) formulation that is142

reported to improve BER performance, but still not to the extent of approaching our results.143

2.1 Performance of OIM on practical MU-MIMO decoding problems144

We evaluate OIM on 11 sets of test problems. Each set corresponds to a specific SNR (signal-to-noise145

ratio) at the receiving antennas; the 11 sets of problems have SNR (in dB, i.e., 10 log10(actual SNR))146

varying from −1 to 9. Problem sets with lower SNRs generally have more symbol errors; those with147

higher SNRs have fewer. For each SNR value, the test problem set consists of 1000 different channel148

matrices H, for each of which 50 pairs of transmitted symbol vectors~x and received signal vectors~y149

are available. Thus, there are 50,000 decoding problems for each SNR value, or a total of 550,000150

problems in all.151

The channel matrices H for the problems, generated following [28, Section IV-A], capture correlations152

between users in a fading environment more realistically than the commonly-used independent,153
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identically distributed (i.i.d.) Rayleigh fading model in the literature — in essence, [28] takes into154

account the fact that users closer to one another tend to have more-correlated channels than further-155

away users. The data symbol vector ~x for each problem was generated randomly, each being a156

QPSK (Quadrature Phase Shift Keying, [29]) symbol chosen independently with a probability of 0.25.157

Synthetically-generated additive white Gaussian noise (AWGN) ~w was added to form the received158

signal, as~y = H~x+~w.159

The MU-MIMO modulation scheme from which the problems are derived is QPSK with 16 users160

transmitting independently. Each QPSK symbol, which can take 4 values, is encoded as 2 binary161

symbols/spins; thus,~x consists of 16 pairs of binary spins stacked one over the other. 64 receiving162

antennas, each capable of producing a complex number in the QPSK constellation, are used. The163

problem thus becomes identical to a BPSK one (converted to all-real matrices/vectors) with Nt = 32164

and Nr = 128 (using terminology from Sec. 4.3, below). More precisely, the transmitted symbol165

vector ~x for each problem consists of Nt = 32 binary symbols, while each received signal vector166

~y consists of Nr = 128 real numbers; i.e., ~x ∈ {±1}32, ~y ∈ R128, H ∈ R128×32, Ĥ ∈ R128×33 and167

J ,−ĤT Ĥ ∈ R33×33. QPSK encoding needs to be taken into account in the calculation of symbol168

error rates (SER), i.e., any change to a symbol (a single or double bit error) should be counted as a169

single “symbol error”.170
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Fig. 3: Decoding performance of OIM vs. other methods. The symbol error rate (SER) is shown as a function of

signal-to-noise ratio (SNR) for M.L., LMMSE and OIM decoders (data given in Table 1). OIM decoding closely

matches the performance of the M.L. decoder over the whole range of signal to noise ratios and surpasses the

LMMSE decoder at high SNR by more than an order of magnitude.

Figure 3 and Table 1 shows the average SER (over all problems in each SNR set) from ML, LMMSE,171

and OIM. For OIM, SER numbers were obtained by numerical simulation of the generalized Kuramoto172

equations [16, 17], using a C++ implementation of the code in [15].173

Examining the data reveals several interesting features:174

1. For high SNR values, the absolute number of errors over all 50000 test cases is very low. For175

example, at SNR=9, the optimal result from Maximum Likelihood features only two bit errors (out176

of 32×50000 = 1,600,000 possibilities). At lower SNR values, there are many more bit errors,177

e.g., at SNR=−1, there are 160,240 bit errors. It is helpful to keep these absolute numbers of bit178

errors in mind when assessing performance; high-SNR cases are much more challenging than179

low-SNR ones.180

2. The performance of LMMSE varies from about 16% worse than M.L. at the lowest SNR of −1, to181

almost 20× worse for the SNR=9 set.182
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3. In contrast, SER numbers from OIM using ring oscillators are very close to M.L. for all SNR183

sets, i.e., not more than 4% over M.L., which is significantly better than LMMSE for every SNR184

set. At higher SNRs (the more challenging cases with few bit errors) in particular, OIM does185

particularly well, e.g., matching M.L. exactly at SNR=9; indeed, each of 11 runs of the SNR=9 set186

of 50,000 problems yielded exactly the same SER of 2.5×10−6. Interestingly, for SNR=8 and 7,187

OIM features fewer bit errors than M.L.; though surprising, this is possible since OIM features a188

judicious amount of noise/randomness in its operation [17].189

2.2 Effect of coupling quantization on OIM performance190

As noted in the Introduction, hardware implementations of OIM offer considerable promise on191

account of miniaturizability/small size, low cost, etc., compared to other prevailing Ising machine192

schemes. For integrated circuit implementation, it is usually necessary to quantize continuous-valued193

couplings (Ji j); in hardware, these couplings are implemented using a set of B resistors, where B is the194

number of bits used to choose a resistance/coupling value from one of L = 2B quantized possibilities.195

While values as high as B∼ 12 can be realized in practice, lowering B makes IC design and fabrication196

significantly easier. Below, we examine the effect of changing B on the SER performance of OIM.197

Figure 4 shows the absolute values of the 33×33 coupling matrices for one of the 50,000 problems198

from the SNR 9 set. As can be seen, the entries in the last row and column (which stem from the199

“external magnetic field” terms H~y), are about a factor of 4 larger than the other values in the matrix.200

Similar patterns are seen in the coupling matrices of all the problems. This suggests that from an201

accuracy standpoint, it is advantageous to use one set of quantized values for the last row and column,202

and another set for the remainder of the matrix — this is easy to implement in IC hardware. We adopt203

this quantization scheme, i.e., with the same B but different sets of resistance values for the two sets.204

A.U.

Fig. 4: Absolute value of an example coupling matrix used in the decoding (for SNR 9; all the other SNR sets

are virtually identical in pattern). The terms in the last row and column are realized as coupling to the last

oscillator and are typically much larger than the remaining ones. This justifies using a different quantization

scale for the last row and column.

Figure 5 (data in Tables 2 and 3) shows ring-oscillator-based OIM’s performance with quantized205

couplings; B, the number of bits used for quantization, is varied from 9 down to 4. It can be seen206

that SER performance degradation (over Maximum Likelihood with no quantization) is essentially207

negligible for 9 and 8 bits of quantization. Using 6 bits of quantization still yields significant208

improvements over LMMSE across all the problems, while B = 5 remains competitive against209

LMMSE. These results, indicating that implementing OIM in IC hardware is practical, can help guide210

design tradeoffs.211

3 Discussion212

The results presented above show the suitability of oscillator Ising machines for real-world decoding213

tasks in telecommunications. For the problem sizes investigated, we achieve decoding performance214

identical or close to the optimal Maximum Likelihood decoder. Our results differ considerably from215

those of Singh et. al. [27, Appendix D]. Their implementation of OIM is reportedly unable to achieve216

bit error rates (BER) less than about 2×10−2 at any value of SNR. Singh et. al. also report similar217

behaviour from the Coherent Ising Machine, motivating them to devise regularization schemes (aided218

by cheaply-computed approximate solutions) to improve the performance of CIM and OIM. Even219
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Fig. 5: Symbol error rate as a function of signal-to-noise ratio for different quantizations of the OIM coupling

weights, compared to OIM with coupling weights in double precision, LMMSE and M.L. (data in Tables 2

and 3). OIM with 9-bit through 6-bit quantizations yields SERs from near-optimal to acceptable. Decoding

performance deteriorates quickly below 6 bits of quantization.

with regularization, they report a BER at SNR 9 for OIM that is more than an order of magnitude220

larger than from the Sphere Decoder, an implementation of M.L. [27, Fig. 15, Appendix D]. In221

contrast, our results (Figure 3 and Table 1), which achieve SERs in the range ∼ [10−6,10−1] on a222

large set of realistic benchmark problems spanning a range of SNR values actually encountered in223

practice, are within 4% of M.L.’s across all SNR values.224

Modern communication systems operate at high data rates, requiring a decoding problem to be solved225

in, e.g., 1µs (this is an aggressive decoding time target, applicable, e.g., to 6G with enhanced data226

rate requirements). From Figure 8 below, it is apparent that OIM solves the decoding problem in well227

under 10 cycles of oscillation. CMOS ring oscillators with frequencies in excess of 1GHz are easily228

fabricated in well-established, widely used, industrial technologies today — e.g., more than 15 years229

ago, oscillation frequencies of 3.5GHz were achieved in 65nm CMOS technology [30].230

The above considerations suggest that decoding performance very similar to M.L. can easily be231

achieved by OIM in under 10ns, using today’s hardware technologies and circuits — this is 100×232

faster than 1µs, itself an aggressive target by current standards. Note that the complexity of M.L.233

varies for different data samples even within the same MU-MIMO configuration, making practical234

implementation difficult if fixed decoding delay, within reasonable limits of computation, is required.235

OIM’s 10ns decoding times would be a significant improvement, and a powerful enabler for future236

standards such as 6G, which stipulates much greater data rates than current 5G specifications. For237

example, while current 5G standards support 12 transmission layers (total number of transmit antennas238

for all simultaneously transmitting users), 6G is expected to expand this by a factor of ~5, e.g., to 64239

transmission layers. Our results indicate that OIM will easily be able to handle such expansion. Our240

work thus provides concrete motivation for building and demonstrating CMOS IC implementations241

of OIMs specialized to solve the MU-MIMO decoding problem. If such hardware designs achieve242

results similar to this work, we believe it will be the first demonstration of an Ising machine solving243

an important real-world problem competitively.244
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4 Methods245

4.1 The Ising Hamiltonian246

The Ising Hamiltonian is obtained by multiplying the weight of each branch by the values of the two247

spins it connects to and summing over all branches, i.e.,248

C(s1, · · · ,sn),−
1

2

n

∑
i, j=1

Ji j sis j, (1)

where si ∈ {−1, +1}, i = 1, · · · ,n, are the n spins, with the weights Ji j obeying Ji j = J ji and Jii = 0.249

Note that an alternative version of the Ising Hamiltonian uses so-called “external magnetic field”250

terms comprised of a linear combination of the spins, i.e.,251

C̃(s1, · · · ,sn),−

[

1

2

n

∑
i, j=1

Ji j sis j +
n

∑
i=1

Bisi

]

. (2)

By adding one more spin, sn+1 ≡ 1 and defining252

Jn+1,i = Ji,n+1 , Bi, i = 1, · · · ,n, with Jn+1,n+1 , 0, (3)

it is easily shown that (2) is equivalent to (1), i.e.,253

C̃(s1, · · · ,sn)≡C(s1, · · · ,sn,sn+1 = 1). (4)

Thus the form (1), which we use here, is general enough to capture external magnetic field terms.254

4.2 Oscillator Ising Machines255

As mentioned in the Introduction and illustrated in Figure 1, an OIM (Oscillator Ising Machine)256

is a networked (i.e., coupled) group of oscillators. If properly designed, such a system can serve257

as an effective Ising machine due to collective behaviour enabled by injection locking, a nonlinear258

synchronization phenomenon generically exhibited by oscillators. In fact, Oscillator Ising Machines259

embody the power of synchronization as an enabler for “complex, self-organizing systems, where260

vast numbers of components interact simultaneously”, as prophesied by Steven Strogatz [31, 32]261

almost 20 years ago. Below, we outline the key ideas behind making networked oscillators solve262

Ising problems.263

FHIL off

D=1.02 0

O= 0

FHIL on

D=1.02 0

O=1.02 0

Fig. 6: Illustration of fundamental-harmonic injection
locking (FHIL). The interaction of a self-sustaining non-
linear oscillator (with free-running frequency ωO = ω0)
with a driving signal of slightly higher frequency (ωD =
1.02ω0), leads to a shift in frequency of the oscillator
(ωO = ωD) and locking of the oscillators’ phases.

An oscillator (more precisely, a self-sustaining,264

asymptotically orbitally stable nonlinear oscil-265

lator [33]) is anything that generates periodic266

signals “on its own”. Examples abound in en-267

gineering and nature, from grandfather clocks268

to flashing fireflies to LC and ring oscillators in269

electronics. For example, the waveform on the270

bottom left of Figure 6 depicts the output of an271

undisturbed sinusoidal oscillator, with natural272

angular frequency ω0; though in many practi-273

cal oscillators, the periodic waveform generated274

is not sinusoidal but is often, e.g., square- or275

sawtooth-like in shape. Under the right circum-276

stances, if an oscillator is disturbed by an exter-277

nal input with a frequency ω1 close to ω0, as278

illustrated by the waveform at the top left of Fig-279

ure 6, it will spontaneously change its natural280

frequency to exactly match that of the external281

input. When this happens, moreover, the exter-282

nal input and the oscillator’s output waveform283

become synchronized (“phase locked”) to each284

other, as illustrated at the right of Figure 6. This phenomenon, which has a long and rich history dating285

back to at least 1672 [34], is known today as injection locking, or more precisely, as fundamental-286

harmonic injection locking (FHIL). It can be shown [35] that if FHIL occurs, the phase difference287

between the injection and the oscillation waveforms will be a single fixed number, i.e., there cannot288

be two or more different phases at which the waveforms lock stably. Moreover, if the difference289

between the frequency of the external input and the oscillator’s natural frequency is small, the level290

of external injection required to induce locking is typically also small, e.g., often much smaller than291
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the natural oscillation it influences [36].292

φ✶
φ2

φ✶=0φ2=

Fig. 7: Illustration of 2nd-subharmonic injec-
tion locking (2-SHIL). Without the SUNC
signal, interacting self-sustaining oscillators
settle in a fixed phase relationship according
to their coupling. When a 2-SHIL signal of
sufficient amplitude is introduced, the phases
lock at either π or 0.

FHIL is only one possible type of injection locking; in-293

teresting synchronization behaviours also manifest when294

the injected signal’s frequency is near an integral multiple295

of the oscillator’s natural frequency ω0. For example,296

if the injection frequency is close to twice the natural297

frequency, i.e., ω1 ≃ 2ω0, frequency- and phase-locking298

can also occur; this is called 2-SHIL (2nd sub-harmonic299

injection locking). In 2-SHIL, the oscillator changes its300

natural frequency to precisely half of ω1; the resulting301

waveform is also phase locked to the injection signal, as302

illustrated in Figure 7. A key difference between FHIL303

and 2-SHIL is that in the latter, there are two possible304

values of relative phase between the injection and oscil-305

lation waveforms at which (stable) lock can occur [35];306

moreover, these two phase locks are always separated307

by 180◦. In OIM, the two 180◦-separated phase locks in308

2-SHIL correspond to Ising spins +1 and −1. FHIL and309

2-SHIL are both crucial for making networked oscillator310

systems function as Ising machines.311

For a system of coupled oscillators, such as the one shown312

in Figure 1, the external injection to each oscillator is a313

sum of the perturbations from each neighbour to which314

it is coupled. In an electronic context, with couplings315

implemented by resistors, the sum of currents entering316

the oscillator through the coupling resistors serves as its317

external injection. If the frequencies of the oscillators are close enough to each other, FHIL will318

make all lock to a common frequency [37]. For OIM, however, an additional common external signal,319

of fixed frequency set to about twice that of the average natural frequency of the oscillators, is also320

injected into each oscillator. This injection, termed SYNC, is used to induce 2-SHIL, i.e., phase321

lock at one of two binary values separated by 180◦. If the amplitude of SYNC is low (or 0), then322

FHIL between the oscillator dominates; if it is high, then 2-SHIL, ie, phase binarization, dominates.323

Making the two types of injection lock “compete”, by increasing and decreasing the amplitude of324

SYNC periodically, is an important facet of OIM’s operation.325

A useful mathematical model for the coupled oscillator system with SYNC injection is the generalized326

Kuramoto equation [38],327

1

ω0

dφi

dt
= Ks zs (2φi(t))+

N

∑
j=1

Ji j zc (φi(t)−φ j(t)) , (5)

shown for the simplified case where all oscillators have the same natural (angular) frequency, ω0. N328

is the number of oscillators in the system; φi(t) is the phase of the ith oscillator; zc(·) is a 2π-periodic329

function that captures the FHIL dynamics of the system, with its shape determined by the nature of330

the oscillators, the shape of oscillation waveforms, etc.; zs(·), is, similarly, a function that captures331

2-SHIL dynamics; with Ks represents the amplitude of the SYNC signal; and Ji j is the coupling332

between the ith and jth oscillator, the same as in (1). If Ks, the amplitude of SYNC, is kept constant333

with time, it can be shown that the phases in (5) always evolve to naturally minimize the Lyapunov334

function335

L(φ1, · · · ,φN),
N

∑
i=1

N

∑
k=1

[
Is(2φi)+ Is(2φk)

2N
+ Jik Ic(φi −φk)

]

, (6)

where Is(·) and Ic(·) are integrals of fs(·) and fc(·), respectively [38]. Such minima, reached naturally336

for any fixed value of Ks, are local minima. The importance of varying Ks periodically between337

low and high values lies in that it enables the system to progress to lower and lower local minima.338

Crucially, it can be shown that when Ks is high, the Lyapunov function approximates the Ising339

Hamiltonian. Thus, the coupled oscillator system, with periodic variation of Ks, evolves to find good340

solutions of the Ising problem.341
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4.3 Casting the MU-MIMO decoding problem in Ising form342

A succinct development of the relation between the MU-MIMO and Ising problems follows (a more343

detailed exposition can be found in [23]). Given a BPSK MU-MIMO system with Nt transmitters344

(users) and Nr receivers, define a vector of transmitted symbols to be345

~x =
[
x1, · · · ,xNt

]T
, (7)

where xi ∈ {±1} are Nt simultaneously transmitted symbols. Define H ∈ RNr×Nt to be the channel346

transmission matrix, and ~y ∈ RNr to be the vector of received signals. In an ideal situation, the347

received signal would be~y = H~x. However, in reality, the received signal deviates from this ideal due348

to corruption by noise, i.e.,349

~y = H~x+~w, (8)

where ~w represents additive white Gaussian noise (AWGN).350

An optimal solution of the MU-MIMO decoding problem, i.e., the Maximum Likelihood (M.L.)351

solution, is a transmitted symbol vector~x∗ that minimizes the error from the ideally-received signal,352

i.e.353

~x∗ = argmin
~x∈{±1}Nt

‖~y−H~x‖2. (9)

To frame the MU-MIMO decoding problem in Ising form, we first augment the number of transmitted354

symbols by one to define the spin vector355

~s ,

[

x1
︸︷︷︸

s1

, · · · , xNt
︸︷︷︸

sNt

, 1
︸︷︷︸

sNt+1

]T

=

[
~x
1

]

, (10)

where we use the terminology si ≡ xi, i = 1, · · · ,Nt to emphasize that the transmitted symbols serve356

as spins for the Ising version of the problem. Note that the last spin of~s, sNt+1, is fixed at 1. Using357

this, define the Ising Hamiltonian to be358

CI(~s),−
1

2

1+Nt

∑
k=1

1+Nt

∑
j=1

Jk j sks j. (11)

Next, define the matrices359

Ĥ =
[
H,~y

]
∈ RNt×(Nt+1), J =−Ĥ

T
Ĥ ∈ R(Nt+1)×(Nt+1). (12)

With the above definitions, it is easily shown that the Ising Hamiltonian CI(~s), as given by (11), equals360

the error being minimized by M.L. in (9), i.e.,361

CI(~s) = ‖H~x−~y‖2, (13)

where Jk j in (11) is the (k, j)th element of J in (12). (13) implies that solving the Ising problem, i.e.,362

finding363

~s∗ = argmin
~s∈{±1}Nt+1

CI(~s), subject to sNt+1 = 1, (14)

is equivalent to finding the Maximum Likehood solution (9) of the MU-MIMO decoding problem364

[22]. Because the Hamiltonian remains unchanged when all spins are flipped, any solution with365

sNt+1 =−1 is easily converted to one with sNt+1 = 1, simply by flipping all the spins.366

4.4 Simulating OIM367

The results in Sec. 2 were obtained by simulating (5). The functions zc(·) and zs(·) were based on368

circuit simulations of a ring oscillator circuit. The numerical simulation algorithm in [15], recoded in369

C++ for efficiency and usability, was used for the simulations. The SYNC signal’s amplitude was370

varied from low to high once over the length of the simulations (about 5 oscillation cycles). Each SNR371

set (50000 problems) was run in parallel on a 40-processor Linux system with Intel Xeon E5-2670372

CPUs running at 2.5GHz; each problem required about 3s of wall time (single threaded) to complete.373

Figure 8 shows a sample phase evolution plot for one of the problems with SNR=−1, started with374

random initial phases. The time t is in units of 1
ω0

, i.e., one cycle of oscillation corresponds to 2π such375

time units, with each simulation run corresponding to about 5 cycles of oscillation. Synchronization376

of groups of oscillators due to FHIL can be seen in the regions t < 10 and t > 25 or so, when the377

amplitude of SYNC is low. For t roughly in the range [12,22], phase binarization due to SHIL can378

be clearly seen, with phases clustering into two groups separated by π . Note that phases should be379

interpreted modulo 2π , e.g., a phase of −π is the same as π , and a phase of 0 is the same as 2π . The380

final Ising solution is obtained simply by thresholding the phases at the end of the simulation to the381

nearest 2π shift of 0 (spin = −1) or π (spin = +1), followed by flipping all the spins if the last spin is382
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Fig. 8: Phase evolution of all 33 oscillators for an example problem from the SNR=−1 set. Time is measured in

units of 1/ω0, i.e., one cycle of oscillation corresponds to t = 2π . Once SYNC is ramped up, the oscillators

settle to “binarized” solutions over just a few oscillations.
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A Data (Tables)469

SNR SER: M.L.
LMMSE OIM (ring osc)

SER %>M.L. SER %>M.L.

-1 1.0015E-01 1.1605E-01 15.88% 1.0392E-01 3.76%

0 6.4646E-02 8.2568E-02 27.72% 6.6638E-02 3.08%

1 3.7364E-02 5.5036E-02 47.30% 3.8319E-02 2.56%

2 1.9318E-02 3.4112E-02 76.58% 1.9800E-02 2.50%

3 8.6775E-03 1.9469E-02 124.36% 8.8700E-03 2.22%

4 3.5025E-03 9.7750E-03 179.09% 3.5713E-03 1.96%

5 1.1775E-03 4.3238E-03 267.20% 1.2038E-03 2.23%

6 3.3375E-04 1.8463E-03 453.20% 3.3500E-04 0.37%

7 6.8750E-05 6.3500E-04 823.64% 6.6250E-05 -3.64%

8 1.5000E-05 1.9750E-04 1216.67% 1.2500E-05 -16.67%

9 2.5000E-06 5.0000E-05 1900.00% 2.5000E-06 0.00%

Table 1: Comparison of Symbol Error Rates between Maximum Likelihood (M.L.) decoding, Linear Minimum

Mean Squared Error (LMMSE) decoding, and OIM using CMOS ring oscillators. Double precision accuracy is

used to represent the OIM coupling weights. The “%>M.L.” columns indicate how much greater SERs are over

Maximum Likelihood decoding.

SNR
9 bits 8 bits 7 bits

SER %>M.L. SER %>M.L. SER %>M.L.

-1 1.0413E-01 3.97% 1.0406E-01 3.91% 1.0432E-01 4.16%

0 6.6559E-02 2.96% 6.6634E-02 3.07% 6.7040E-02 3.70%

1 3.8499E-02 3.04% 3.8456E-02 2.92% 3.8799E-02 3.84%

2 1.9768E-02 2.33% 1.9964E-02 3.34% 2.0014E-02 3.60%

3 8.8513E-03 2.00% 8.8738E-03 2.26% 9.0188E-03 3.93%

4 3.5888E-03 2.46% 3.5525E-03 1.43% 3.7063E-03 5.82%

5 1.2000E-03 1.91% 1.2063E-03 2.44% 1.2438E-03 5.63%

6 3.3250E-04 -0.37% 3.3625E-04 0.75% 3.6750E-04 10.11%

7 7.1250E-05 3.64% 7.1250E-05 3.64% 8.6250E-05 25.45%

8 1.1250E-05 -25.00% 1.3750E-05 -8.33% 1.7500E-05 16.67%

9 1.2500E-06 -50.00% 1.2500E-06 -50.00% 3.7500E-06 50.00%

Table 2: SER results from ring oscillator OIM using 9, 8 and 7 bits to represent coupling weights. The “%>M.L.”

columns indicate how much greater quantized-coupling-OIM SERs are over Maximum Likelihood decoding.
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SNR
6 bits 5 bits 4 bits

SER %>M.L. SER %>M.L. SER %>M.L.

-1 1.0531E-01 5.16% 1.1017E-01 10.01% 1.2946E-01 29.26%

0 6.8118E-02 5.37% 7.2540E-02 12.21% 9.1473E-02 41.50%

1 3.9763E-02 6.42% 4.3665E-02 16.86% 6.1594E-02 106.56%

2 2.0663E-02 6.96% 2.3853E-02 23.47% 3.9904E-02 106.56%

3 9.4813E-03 9.26% 1.1715E-02 35.00% 2.4290E-02 179.92%

4 3.8800E-03 10.78% 5.4975E-03 56.96% 1.5149E-02 332.51%

5 1.4188E-03 20.49% 2.1250E-03 80.47% 8.9675E-03 661.57%

6 4.6125E-04 38.20% 8.9750E-04 168.91% 5.6838E-03 1603.00%

7 9.6250E-05 40.00% 3.2750E-04 376.36% 4.0525E-03 5794.55%

8 1.8750E-05 25.00% 9.6250E-05 541.67% 2.5825E-03 17116.67%

9 5.0000E-06 100.00% 4.3750E-05 1650.00% 1.8575E-03 74200.00%

Table 3: SER results from ring oscillator OIM using 6, 5 and 4 bits to represent coupling weights. The “%>M.L.”

columns indicate how much greater quantized-coupling-OIM SERs are over Maximum Likelihood decoding.
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