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Abstract

Ising machines have recently been attracting attention due to their apparent ability to solve
difficult combinatorial problems using analog operational principles. Oscillator Ising Machines
(OIM) are especially attractive because they can be implemented easily as integrated circuits (ICs)
in standard CMOS electronics. We explore the performance of OIM for decoding noisy Multi-User
MIMO signals, a problem of considerable interest in modern telecommunications. Our results
indicate that OIM-based decoding achieves error rates almost as good as the optimal Maximum
Likelihood method, over a wide range of practical signal-to-noise (SNR) values. At high SNR
values, OIM achieves ~20x fewer errors than LMMSE, a decoding method used widely in industry
today. We also investigate the influence of parameter precision on decoding performance, finding
that using 6 or more bits of precision largely retains OIM’s advantages across all SNR values. We
estimate that straightforward CMOS OIM implementations can easily solve MU-MIMO decoding
problems in under 10ns, more than 100x faster than current industrial requirements. We conclude
that oscillator Ising machines can be effective for real-world applications, possibly serving as an
important enabler for future telecommunication standards. Our results and data provide guidance
for designing hardware OIM prototypes specialized for MU-MIMO decoding.

1 Introduction

Combinatorial optimization (CO) is an enabling technology in many fields that impact modern life,
including communication networks, drug/vaccine design, healthcare, delivery logistics, smart grids,
etc.. However, practical problem sizes have kept outpacing available computational power by large
margins. As a result, there has long been interest in ways to speed up CO.

Many practically-important CO problems are computationally difficult (e.g., NP-complete [1]). Such
problems can be recast [2] in a standard mathematical form, the Ising model [3]. The model is simply
a weighted graph, i.e., a collection of nodes/vertices and branches/edges between pairs of nodes, with
each branch having a real-number weight. Each node (termed a “spin” in this context) is allowed to
take one of two values, either 1 or -1. Associated with this graph is a cost function, called the Ising
Hamiltonian, obtained by multiplying the weight of each branch by the values of the two spins it
connects to, and summing over all branches. Ising Hamiltonians are sometimes interpreted as an
“energy” associated with a given configuration of the spins, although in many situations (such as in
this paper) they are merely a mathematical cost function, with no connection with energy in physics.
The “Ising problem” is to find spin configurations with the minimum possible Hamiltonian value.
For many practical problems, finding a spin configuration with a Hamiltonian close to the minimum
possible is also useful.

Simple though the Ising problem is to state, it has proven (since its inception nearly 100 years ago)
to have remarkable power. For example, the Ising model was developed, and first used, to explain
how ferromagnetic behaviour in magnetic materials emerges [4, 5]. Since then, it was found that
many difficult computational problems in various disciplines can be translated to the Ising problem.
Examples include protein folding in biology, finding the optimal artificial neural network for a
given set of training data, optimal strategies for playing the game Go, and many NP-hard/complete
graph-theoretic problems, including the discrete maximum-likelihood (M.L.) problem — indeed, all
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21 of Karp’s list of NP-complete problems [1] have Ising incarnations [2]. (Note that we use M.L. as
an acronym for Maximum Likelihood throughout this paper, in an attempt to avoid confusion with
ML, commonly used for Machine Learning.)

Unsurprisingly, solving the Ising problem computationally is itself NP-hard/complete [6, 7]. However,
over the last decade, a class of hardware Ising solvers (known as Ising machines) has emerged as a
promising means to accelerate solutions to these classically difficult computational problems. The
premise of Ising machines is that specialized hardware implementing the Ising computational model
can solve many classes of NP-complete problems faster than classical algorithms (such as semidefinite
programming [8] and simulated annealing [9, 10]) run on digital computers. Ising machines first
came into prominence with the D-Wave quantum annealer and the Coherent Ising Machine (CIM). A
D-Wave quantum annealer [11] with 2000 spins has been available commercially for several years,
with a 5000-spin version recently announced. CIM [12, 13] with 2000 spins has been successfully
demonstrated at NTT Research Labs [14], with larger systems under active development. Though
without question fours-de-force of technology and science that have established the field of Ising
machines and inspired follow-on technologies, D-Wave quantum annealers and CIM are not ideally
suited for all applications, being physically large, expensive, and difficult to miniaturize or scale to
larger problems. For example, the CIM/DOPO scheme involves pulsed lasers and frequency doubling
crystals, and is about the size of a rack for a size-2000 machine [14]; D-Wave machines require an
operating temperature under 80mK, are the size of several large racks, and are said to cost in the
range of $15M.

In 2016, Wang and the first author discovered that networks of oscillators can solve Ising problems
[15]. In their scheme, each of the N binary variables (spins) of the Ising problem is implemented by
an oscillator. The information needed to find a solution of the Ising problem is encoded in the phase
(relative time delay) of each oscillator. The oscillators are coupled together in a network (Figure 1),
with coupling strengths that correspond to the weights in the Ising Hamiltonian. They proved that
such systems have an “energy function” (more precisely, Lyapunov function) that matches a given
Ising problem’s energy landscape; and that the Lyapunov function closely approximates the Ising
Hamiltonian when the oscillators’ phases are binarized, using a mechanism called sub-harmonic
injection locking (SHIL). They also showed, crucially, that such Oscillator Ising Machines (OIMs)
naturally find troughs of their Lyapunov landscapes, and that this innate property can be leveraged
to find good (i.e., near minimum-Hamiltonian) solutions of Ising problems. This ability stems from
collective behaviour involving two types of injection locking, a generic synchronization-inducing
property of oscillators.

In [16, 17], OIM was evaluated on the widely-
used G-set [18, 19], comprising 51 benchmark
problems for the NP-complete MAX-CUT prob-
lem, with sizes ranging from 800 to 3000 spins.
OIM matched the best results from 4 other al-
gorithms on 29 of the problems, finding better
results on 17. Prototype electronic hardware im-
plementations of OIM have been built that find
good solutions of Ising problems in milliseconds
[17, 20]. From a practical deployment perspec-
tive, OIM has compelling advantages over previ-
ous Ising machines. It can be implemented using Js
plain electronics (in particular, standard CMOS

! . ’ . Fig. 1: An example network of 8 oscillators with var-
in non-cutting-edge technologies) in very small ;¢ positive or negative coupling strengths J;;. Each
form factors, especially compared to CIM and  oq¢il1ator can be characterized by its phase relative to a
quantum annealers. OIMs are orders of magni-  reference oscillator (e. g., oscillator 8).

tude cheaper than prior Ising machines — this, together with small size and easy mass production,
greatly broadens the potential applicability of Ising machines. Because electronic oscillator frequen-
cies can be calibrated easily, the impact of ever-present variability in electronic components can
essentially be eliminated. Importantly, OIM is a purely classical — not quantum — scheme that is
immediately practical; its power derives primarily from system-level interactions of oscillators, not
from device technology per se. Hence it can use larger/older/cheaper technology nodes, while being
able to fully reap the benefits of smaller ones and, indeed, make use of novel nanodevice technologies
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that become practically viable. (Note that D-Wave’s quantum annealing based Ising machine has not
shown quantum advantage on practical problems yet; only on carefully designed abstract ones [21].)

In this paper, we report the performance of OIM on
an important problem in wireless communications,
the MU-MIMO (Multi-User Multiple-Input-Multiple-
Output) decoding problem. As shown in Figure 2, mod-
ern wireless communication settings involve multiple
users with single/multiple transmit antennas, using the
same resources (time and frequency) to transmit to a
receiver equipped with multiple receive antennas. As
a result, each received signal consists of a noisy super-
position of several users’ transmitted symbols. Recov-
ering the originally-sent symbols from received signals  Fig, 2: An illustration of a Multiple User Mul-
involves solving a hard CO problem (the MU-MIMO tiple In Multiple Out (MU-MIMO) setup. Mul-
decoding problem [22, 23]) to infer the most likely set ~ tiple users transmit their data, %, to a receiver
of transmitted symbols, given the set of signals received. With multiple antennas, where the signal y is
Solving exactly for the most likely transmitted symbols measured. ‘Transmission occurs over several
> paths, characterized by the channel matrix H.

i.e., the M.L. (Maximum Likelihood) solution, is too

computationally expensive to be practical; hence, heuristic methods that use much less computation,
such as LMMSE (“linear minimum mean-square error”’), are universally used even though they do
not recover transmitted symbols as accurately as M.L..

users

antennas

From a hardware perspective, it is highly desirable for MU-MIMO decoders to be physically small
and inexpensive so that they are practical for size- and cost-sensitive products, such as cellular
basestations. For example, in modern cellular network installations, space constraints dictate that
units must fit in a fraction of a standard rackmount unit, even in configurations where they are
implemented remotely. These considerations, which place strong constraints on MU-MIMO decoding
technologies, favour OIM over other Ising machine schemes.

2 Results

We evaluate OIM (in simulation) on an extensive set of 550,000 MU-MIMO decoding problems
(for a 16 x 64 QPSK setup) and compare our results against M.L. and LMMSE. Because of their
suitability for CMOS IC fabrication, we use ring oscillators [24-26] for OIM’s spins. We find that
OIM achieves symbol error rates (SER) that are very close to optimal results from M.L.; both are
more than an order of magnitude better than those from LMMSE at high SNR values (i.e., for the
more challenging problems). These results indicate the promise of OIM for solving real, practical
problems and provide motivation for integrated circuit (IC) realizations of OIM specialized for
MU-MIMO decoding, which may benefit 6G and future standards. Towards this end, we also evaluate
ring-oscillator OIM with the coupling coefficients J;; quantized to varying numbers of discrete levels,
since quantized coupling is typically necessary for chip implementation. We find that using 256
levels (8 bits of quantization) results in essentially no performance degradation, while 64 levels (6
bits) leads to acceptable performance, especially when the SNR (Signal-to-Noise Ratio) of received
MU-MIMO signals is low. Our results, and conclusions about the promise of OIM for MU-MIMO
decoding, differ considerably from those reported in [27], wherein poor BER performance observed
for OIM (as well as CIM) motivates the authors to devise a Regularized Ising (RI) formulation that is
reported to improve BER performance, but still not to the extent of approaching our results.

2.1 Performance of OIM on practical MU-MIMO decoding problems

We evaluate OIM on 11 sets of test problems. Each set corresponds to a specific SNR (signal-to-noise
ratio) at the receiving antennas; the 11 sets of problems have SNR (in dB, i.e., 10log;,(actual SNR))
varying from —1 to 9. Problem sets with lower SNRs generally have more symbol errors; those with
higher SNRs have fewer. For each SNR value, the test problem set consists of 1000 different channel
matrices H, for each of which 50 pairs of transmitted symbol vectors X and received signal vectors y
are available. Thus, there are 50,000 decoding problems for each SNR value, or a total of 550,000
problems in all.

The channel matrices H for the problems, generated following [28, Section IV-A], capture correlations
between users in a fading environment more realistically than the commonly-used independent,
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identically distributed (i.i.d.) Rayleigh fading model in the literature — in essence, [28] takes into
account the fact that users closer to one another tend to have more-correlated channels than further-
away users. The data symbol vector X for each problem was generated randomly, each being a
QPSK (Quadrature Phase Shift Keying, [29]) symbol chosen independently with a probability of 0.25.
Synthetically-generated additive white Gaussian noise (AWGN) w was added to form the received
signal, as y = HX+w.

The MU-MIMO modulation scheme from which the problems are derived is QPSK with 16 users
transmitting independently. Each QPSK symbol, which can take 4 values, is encoded as 2 binary
symbols/spins; thus, ¥ consists of 16 pairs of binary spins stacked one over the other. 64 receiving
antennas, each capable of producing a complex number in the QPSK constellation, are used. The
problem thus becomes identical to a BPSK one (converted to all-real matrices/vectors) with N; = 32
and N, = 128 (using terminology from Sec. 4.3, below). More precisely, the transmitted symbol
vector X for each problem consists of N; = 32 binary symbols, while each received signal vector
¥ consists of N, = 128 real numbers; i.e., X € {:i:l}32, yeRIZ H e RI28%32 [ ¢ RI28%33 gpd
J & —ATH € R?**33, QPSK encoding needs to be taken into account in the calculation of symbol
error rates (SER), i.e., any change to a symbol (a single or double bit error) should be counted as a
single “symbol error”.

SER from M.L., LMMSE and OIM vs problem-set SNR

—o—ML ]
LMMSE| 1
OIM

SER over problem set (50000 problems)
=)

SNR of problem set

Fig. 3: Decoding performance of OIM vs. other methods. The symbol error rate (SER) is shown as a function of
signal-to-noise ratio (SNR) for M.L., LMMSE and OIM decoders (data given in Table 1). OIM decoding closely
matches the performance of the M.L. decoder over the whole range of signal to noise ratios and surpasses the
LMMSE decoder at high SNR by more than an order of magnitude.

Figure 3 and Table 1 shows the average SER (over all problems in each SNR set) from ML, LMMSE,
and OIM. For OIM, SER numbers were obtained by numerical simulation of the generalized Kuramoto
equations [16, 17], using a C++ implementation of the code in [15].

Examining the data reveals several interesting features:

1. For high SNR values, the absolute number of errors over all 50000 test cases is very low. For
example, at SNR=9, the optimal result from Maximum Likelihood features only two bit errors (out
of 32 x 50000 = 1,600,000 possibilities). At lower SNR values, there are many more bit errors,
e.g., at SNR=—1, there are 160,240 bit errors. It is helpful to keep these absolute numbers of bit
errors in mind when assessing performance; high-SNR cases are much more challenging than
low-SNR ones.

2. The performance of LMMSE varies from about 16% worse than M.L. at the lowest SNR of —1, to

almost 20x worse for the SNR=9 set.
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3. In contrast, SER numbers from OIM using ring oscillators are very close to M.L. for all SNR
sets, i.e., not more than 4% over M.L., which is significantly better than LMMSE for every SNR
set. At higher SNRs (the more challenging cases with few bit errors) in particular, OIM does
particularly well, e.g., matching M.L. exactly at SNR=9; indeed, each of 11 runs of the SNR=9 set
of 50,000 problems yielded exactly the same SER of 2.5 x 107 Interestingly, for SNR=8 and 7,
OIM features fewer bit errors than M.L.; though surprising, this is possible since OIM features a
judicious amount of noise/randomness in its operation [17].

2.2 Effect of coupling quantization on OIM performance

As noted in the Introduction, hardware implementations of OIM offer considerable promise on
account of miniaturizability/small size, low cost, efc., compared to other prevailing Ising machine
schemes. For integrated circuit implementation, it is usually necessary to quantize continuous-valued
couplings (J;;); in hardware, these couplings are implemented using a set of B resistors, where B is the
number of bits used to choose a resistance/coupling value from one of L = 28 quantized possibilities.
While values as high as B ~ 12 can be realized in practice, lowering B makes IC design and fabrication
significantly easier. Below, we examine the effect of changing B on the SER performance of OIM.

Figure 4 shows the absolute values of the 33 x 33 coupling matrices for one of the 50,000 problems
from the SNR 9 set. As can be seen, the entries in the last row and column (which stem from the
“external magnetic field” terms HY), are about a factor of 4 larger than the other values in the matrix.
Similar patterns are seen in the coupling matrices of all the problems. This suggests that from an
accuracy standpoint, it is advantageous to use one set of quantized values for the last row and column,
and another set for the remainder of the matrix — this is easy to implement in IC hardware. We adopt
this quantization scheme, i.e., with the same B but different sets of resistance values for the two sets.

A.U.

30

Fig. 4: Absolute value of an example coupling matrix used in the decoding (for SNR 9; all the other SNR sets
are virtually identical in pattern). The terms in the last row and column are realized as coupling to the last
oscillator and are typically much larger than the remaining ones. This justifies using a different quantization
scale for the last row and column.

Figure 5 (data in Tables 2 and 3) shows ring-oscillator-based OIM’s performance with quantized
couplings; B, the number of bits used for quantization, is varied from 9 down to 4. It can be seen
that SER performance degradation (over Maximum Likelihood with no quantization) is essentially
negligible for 9 and 8 bits of quantization. Using 6 bits of quantization still yields significant
improvements over LMMSE across all the problems, while B = 5 remains competitive against
LMMSE. These results, indicating that implementing OIM in IC hardware is practical, can help guide
design tradeoffs.

3 Discussion

The results presented above show the suitability of oscillator Ising machines for real-world decoding
tasks in telecommunications. For the problem sizes investigated, we achieve decoding performance
identical or close to the optimal Maximum Likelihood decoder. Our results differ considerably from
those of Singh et. al. [27, Appendix D]. Their implementation of OIM is reportedly unable to achieve
bit error rates (BER) less than about 2 x 1072 at any value of SNR. Singh e. al. also report similar
behaviour from the Coherent Ising Machine, motivating them to devise regularization schemes (aided
by cheaply-computed approximate solutions) to improve the performance of CIM and OIM. Even
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Effect of quantizing OIM couplings on SER

0o oo o
o

SER over problem set (50000 problems)
=)
20222

OIM (dbl. prec.)
r LMMSE
L |—O—M.L.

10-6 | | | | R
-2 0 2 4 6 8 10

SNR of problem set

Fig. 5: Symbol error rate as a function of signal-to-noise ratio for different quantizations of the OIM coupling
weights, compared to OIM with coupling weights in double precision, LMMSE and M.L. (data in Tables 2
and 3). OIM with 9-bit through 6-bit quantizations yields SERs from near-optimal to acceptable. Decoding
performance deteriorates quickly below 6 bits of quantization.

with regularization, they report a BER at SNR 9 for OIM that is more than an order of magnitude
larger than from the Sphere Decoder, an implementation of M.L. [27, Fig. 15, Appendix D]. In
contrast, our results (Figure 3 and Table 1), which achieve SERs in the range ~ [10*6, 10*1] ona
large set of realistic benchmark problems spanning a range of SNR values actually encountered in
practice, are within 4% of M.L.’s across all SNR values.

Modern communication systems operate at high data rates, requiring a decoding problem to be solved
in, e.g., 1us (this is an aggressive decoding time target, applicable, e.g., to 6G with enhanced data
rate requirements). From Figure 8 below, it is apparent that OIM solves the decoding problem in well
under 10 cycles of oscillation. CMOS ring oscillators with frequencies in excess of 1GHz are easily
fabricated in well-established, widely used, industrial technologies today — e.g., more than 15 years
ago, oscillation frequencies of 3.5GHz were achieved in 65nm CMOS technology [30].

The above considerations suggest that decoding performance very similar to M.L. can easily be
achieved by OIM in under 10ns, using today’s hardware technologies and circuits — this is 100 x
faster than 1us, itself an aggressive target by current standards. Note that the complexity of M.L.
varies for different data samples even within the same MU-MIMO configuration, making practical
implementation difficult if fixed decoding delay, within reasonable limits of computation, is required.
OIM’s 10ns decoding times would be a significant improvement, and a powerful enabler for future
standards such as 6G, which stipulates much greater data rates than current 5G specifications. For
example, while current 5G standards support 12 transmission layers (total number of transmit antennas
for all simultaneously transmitting users), 6G is expected to expand this by a factor of ~5, e.g., to 64
transmission layers. Our results indicate that OIM will easily be able to handle such expansion. Our
work thus provides concrete motivation for building and demonstrating CMOS IC implementations
of OIMs specialized to solve the MU-MIMO decoding problem. If such hardware designs achieve
results similar to this work, we believe it will be the first demonstration of an Ising machine solving
an important real-world problem competitively.
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4 Methods
4.1 The Ising Hamiltonian

The Ising Hamiltonian is obtained by multiplying the weight of each branch by the values of the two
spins it connects to and summing over all branches, i.e.,

1 n
C(sla"'7sn)é_§ Z]ijsiSﬁ (D
ij=1
where s; € {—1, +1},i=1,---,n, are the n spins, with the weights J;; obeying J;; = J;; and J;; = 0.
Note that an alternative version of the Ising Hamiltonian uses so-called “external magnetic field”
terms comprised of a linear combination of the spins, i.e.,

- ] n n
C(Sh'",sn)é_ i ZJ,'jS,'Sj-‘rZB[S,’ . (2)
i,j=1 i=1
By adding one more spin, s, = 1 and defining
Jn+1,i :Ji,n+1 éBia i=1,---,n, with Jn+1,n+1 £ 0, 3)
it is easily shown that (2) is equivalent to (1), i.e.,
C(S],"',Sn)EC(Sl,"',Sn7Sn+1:1). (4)

Thus the form (1), which we use here, is general enough to capture external magnetic field terms.
4.2 Oscillator Ising Machines

As mentioned in the Introduction and illustrated in Figure 1, an OIM (Oscillator Ising Machine)
is a networked (i.e., coupled) group of oscillators. If properly designed, such a system can serve
as an effective Ising machine due to collective behaviour enabled by injection locking, a nonlinear
synchronization phenomenon generically exhibited by oscillators. In fact, Oscillator Ising Machines
embody the power of synchronization as an enabler for “complex, self-organizing systems, where
vast numbers of components interact simultaneously”, as prophesied by Steven Strogatz [31, 32]
almost 20 years ago. Below, we outline the key ideas behind making networked oscillators solve
Ising problems.

An oscillator (more precisely, a self-sustaining, FHIL off FHIL on
asymptotlcglly orblFally stable nonlinear gsch— wp=1.02w, 0p=1.020,
lator [33]) is anything that generates periodic
signals “on its own”. Examples abound in en-
gineering and nature, from grandfather clocks
to flashing fireflies to LC and ring oscillators in
electronics. For example, the waveform on the
bottgm left of'FlgulTe 6 depl.cts the 01.1tput of an sol |20l |20l |ao| |20
undisturbed sinusoidal oscillator, with natural I

angular frequency @y; though in many practi-

cal oscillators, the periodic waveform generated

is not sinusoidal but is often, e.g., square- or

sawtooth-like in shape. Under the right circum-

stances, if an oscillator is disturbed by an exter-

nal input with a frequency w; close to @y, as

illustrated by the waveform at the top left of Fig- Fig. 6: Tllustration of fundamental-harmonic injection
ure 6, it will spontaneously change its natural  locking (FHIL). The interaction of a self-sustaining non-
frequency to exactly match that of the external ~ linear oscillator (with free-running frequency wo = @)
. . with a driving signal of slightly higher frequency (wp =
mp‘?t' When this hapPens’ moreover, the exter- 1.02ay), leads to a shift in frequency of the oscillator
nal input and the oscillator’s output waveform (¢, = @) and locking of the oscillators’ phases.
become synchronized (“phase locked”) to each

other, as illustrated at the right of Figure 6. This phenomenon, which has a long and rich history dating
back to at least 1672 [34], is known today as injection locking, or more precisely, as fundamental-
harmonic injection locking (FHIL). It can be shown [35] that if FHIL occurs, the phase difference
between the injection and the oscillation waveforms will be a single fixed number, i.e., there cannot
be two or more different phases at which the waveforms lock stably. Moreover, if the difference
between the frequency of the external input and the oscillator’s natural frequency is small, the level
of external injection required to induce locking is typically also small, e.g., often much smaller than

Wo=Wq wWo=1.02w,

\ | [
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the natural oscillation it influences [36].

FHIL is only one possible type of injection locking; in-
teresting synchronization behaviours also manifest when ' '

the injected signal’s frequency is near an integral multiple

of the oscillator’s natural frequency @g. For example, / / /
if the injection frequency is close to twice the natural / / /
frequency, i.e., @] ~ 2@y, frequency- and phase-locking

can also occur; this is called 2-SHIL (2"¢ sub-harmonic \ \
injection locking). In 2-SHIL, the oscillator changes its \
natural frequency to precisely half of m;; the resulting

waveform is also phase locked to the injection signal, as
illustrated in Figure 7. A key difference between FHIL
and 2-SHIL is that in the latter, there are two possible
values of relative phase between the injection and oscil-
lation waveforms at which (stable) lock can occur [35];
moreover, these two phase locks are always separated
by 180°. In OIM, the two 180°-separated phase locks in
2-SHIL correspond to Ising spins +1 and —1. FHIL and
2-SHIL are both crucial for making networked oscillator
systems function as Ising machines.

For a system of coupled oscillators, such as the one shown Fig. 7: llustration of 2“d-subh;1rmonic injec-
in Figure 1, the external injection to each oscillator isa  tion locking (2-SHIL). Without the SUNC
sum of the perturbations from each neighbour to which  signal, interacting self-sustaining oscillators
it is coupled. In an electronic context, with couplings ~ Settle in a fixed phase relationship according
implemented by resistors, the sum of currents entering to their coupling. When a 2-SHIL signal of
. > ” . . sufficient amplitude is introduced, the phases
the oscillator through the coupling resistors serves as its  jock at either 7 or 0.
external injection. If the frequencies of the oscillators are close enough to each other, FHIL will
make all lock to a common frequency [37]. For OIM, however, an additional common external signal,
of fixed frequency set to about twice that of the average natural frequency of the oscillators, is also
injected into each oscillator. This injection, termed SYNC, is used to induce 2-SHIL, i.e., phase
lock at one of two binary values separated by 180°. If the amplitude of SYNC is low (or 0), then
FHIL between the oscillator dominates; if it is high, then 2-SHIL, ie, phase binarization, dominates.
Making the two types of injection lock “compete”, by increasing and decreasing the amplitude of
SYNC periodically, is an important facet of OIM’s operation.

A useful mathematical model for the coupled oscillator system with SYNC injection is the generalized
Kuramoto equation [38],

1 d¢;
% dq; = Kz, (2¢i(1) +ZJUZC i (t) (Pj(t))’ ®)

shown for the simplified case where all oscillators have the same natural (angular) frequency, @wy. N
is the number of oscillators in the system; ¢;(¢) is the phase of the i oscillator; z.(+) is a 27-periodic
function that captures the FHIL dynamics of the system, with its shape determined by the nature of
the oscillators, the shape of oscillation waveforms, efc.; z;(+), is, similarly, a function that captures
2-SHIL dynamics; with K represents the amplitude of the SYNC signal; and J;; is the coupling
between the i and jth oscillator, the same as in (1). If Kj, the amplitude of SYNC, is kept constant
with time, it can be shown that the phases in (5) always evolve to naturally minimize the Lyapunov
function

L(¢1,---,9n) = Z Z MJJ&Q(@*W) , (6)
i=1k=1

where I(-) and I..(-) are integrals of f;(-) and f.(-), respectively [38]. Such minima, reached naturally
for any fixed value of K, are local minima. The importance of varying K; periodically between
low and high values lies in that it enables the system to progress to lower and lower local minima.
Crucially, it can be shown that when Kj is high, the Lyapunov function approximates the Ising
Hamiltonian. Thus, the coupled oscillator system, with periodic variation of Ky, evolves to find good
solutions of the Ising problem.
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4.3 Casting the MU-MIMO decoding problem in Ising form

A succinct development of the relation between the MU-MIMO and Ising problems follows (a more
detailed exposition can be found in [23]). Given a BPSK MU-MIMO system with N, transmitters
(users) and N, receivers, define a vector of transmitted symbols to be
. T
x:[xlv"'vaf] 3 (7)
where x; € {#1} are N, simultaneously transmitted symbols. Define H € R¥*M to be the channel
transmission matrix, and y € RM to be the vector of received signals. In an ideal situation, the
received signal would be y = HX. However, in reality, the received signal deviates from this ideal due
to corruption by noise, i.e.,
y=HX+w, ®)
where w represents additive white Gaussian noise (AWGN).
An optimal solution of the MU-MIMO decoding problem, i.e., the Maximum Likelihood (M.L.)
solution, is a transmitted symbol vector X* that minimizes the error from the ideally-received signal,
ie.
X = argmin ||5 — H¥|*. )
Fe{x1}M
To frame the MU-MIMO decoding problem in Ising form, we first augment the number of transmitted
symbols by one to define the spin vector

T
R X1 , 0, XN, 1 )_C'
go |~ = [F, (10)
51 SN; SNy +1 1
where we use the terminology s; = x;, i = 1, -+, N, to emphasize that the transmitted symbols serve

as spins for the Ising version of the problem. Note that the last spin of §, sy, 1, is fixed at 1. Using
this, define the Ising Hamiltonian to be

1 LN 1N
G (s5) 2 -5 Y Jijses;. (11)
k=1 j=1
Next, define the matrices
ﬁ: [H,)_;] ERNtX(Nt+1>, J:*I:\ITI:\IGR(N’JFI)X(NHFI). (12)

With the above definitions, it is easily shown that the Ising Hamiltonian C;(5), as given by (11), equals
the error being minimized by M.L. in (9), i.e.,
Ci(3) = || HZ =], (13)

where Ji; in (11) is the (k, j)‘h element of J in (12). (13) implies that solving the Ising problem, i.e.,
finding

5= argmin C;(5), subjectto sy =1, (14)

se{E£1}Ni+l

is equivalent to finding the Maximum Likehood solution (9) of the MU-MIMO decoding problem
[22]. Because the Hamiltonian remains unchanged when all spins are flipped, any solution with
sn,+1 = —1 is easily converted to one with sy,1 = 1, simply by flipping all the spins.

4.4 Simulating OIM

The results in Sec. 2 were obtained by simulating (5). The functions z.(-) and z;(-) were based on
circuit simulations of a ring oscillator circuit. The numerical simulation algorithm in [15], recoded in
C++ for efficiency and usability, was used for the simulations. The SYNC signal’s amplitude was
varied from low to high once over the length of the simulations (about 5 oscillation cycles). Each SNR
set (50000 problems) was run in parallel on a 40-processor Linux system with Intel Xeon E5-2670
CPUs running at 2.5GHz; each problem required about 3s of wall time (single threaded) to complete.

Figure 8 shows a sample phase evolution plot for one of the problems with SNR=—1, started with
random initial phases. The time ¢ is in units of -, i.e., one cycle of oscillation corresponds to 27 such
time units, with each simulation run corresponding to about 5 cycles of oscillation. Synchronization
of groups of oscillators due to FHIL can be seen in the regions ¢ < 10 and ¢ > 25 or so, when the
amplitude of SYNC is low. For ¢ roughly in the range [12,22], phase binarization due to SHIL can
be clearly seen, with phases clustering into two groups separated by 7. Note that phases should be
interpreted modulo 27, e.g., a phase of —7 is the same as 7, and a phase of 0 is the same as 27. The
final Ising solution is obtained simply by thresholding the phases at the end of the simulation to the
nearest 27 shift of 0 (spin = —1) or & (spin = +1), followed by flipping all the spins if the last spin is
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Fig. 8: Phase evolution of all 33 oscillators for an example problem from the SNR=—1 set. Time is measured in
units of 1/ay, i.e., one cycle of oscillation corresponds to r = 27r. Once SYNC is ramped up, the oscillators
settle to “binarized” solutions over just a few oscillations.
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A Data (Tables)

. LMMSE OIM (ring osc)
SNR | SER:M.L. SER | %>ML. SER | %>ML,
-1 1.0015E-01 1.1605E-01 15.88% 1.0392E-01 3.76%
0 6.4646E-02 | 8.2568E-02 27.72% 6.6638E-02 3.08%
1 3.7364E-02 | 5.5036E-02 47.30% 3.8319E-02 2.56%
2 1.9318E-02 | 3.4112E-02 76.58% 1.9800E-02 2.50%
3 8.6775E-03 | 1.9469E-02 124.36% 8.8700E-03 2.22%
4 3.5025E-03 | 9.7750E-03 179.09% 3.5713E-03 1.96%
5 1.1775E-03 | 4.3238E-03 267.20% 1.2038E-03 2.23%
6 3.3375E-04 | 1.8463E-03 453.20% 3.3500E-04 0.37%
7 6.8750E-05 | 6.3500E-04 823.64% 6.6250E-05 -3.64%
8 1.5000E-05 | 1.9750E-04 | 1216.67% | 1.2500E-05 -16.67%
9 2.5000E-06 | 5.0000E-05 | 1900.00% | 2.5000E-06 0.00%

Table 1: Comparison of Symbol Error Rates between Maximum Likelihood (M.L.) decoding, Linear Minimum
Mean Squared Error (LMMSE) decoding, and OIM using CMOS ring oscillators. Double precision accuracy is
used to represent the OIM coupling weights. The “%>M.L.” columns indicate how much greater SERs are over
Maximum Likelihood decoding.

SNR 9 bits 8 bits 7 bits
SER [ %>M.L. SER [ %>M.L. SER [ %>M.L.
-1 1.0413E-01 3.97% 1.0406E-01 391% 1.0432E-01 4.16%
0 6.6559E-02 2.96% 6.6634E-02 3.07% 6.7040E-02 3.70%
1 3.8499E-02 3.04% 3.8456E-02 2.92% 3.8799E-02 3.84%
2 1.9768E-02 2.33% 1.9964E-02 3.34% 2.0014E-02 3.60%
3 8.8513E-03 2.00% 8.8738E-03 2.26% 9.0188E-03 3.93%
4 3.5888E-03 2.46% 3.5525E-03 1.43% 3.7063E-03 5.82%
5 1.2000E-03 1.91% 1.2063E-03 2.44% 1.2438E-03 5.63%
6 3.3250E-04 -0.37% 3.3625E-04 0.75% 3.6750E-04 10.11%
7 7.1250E-05 3.64% 7.1250E-05 3.64% 8.6250E-05 25.45%
8 1.1250E-05 | -25.00% 1.3750E-05 -8.33% 1.7500E-05 16.67%
9 1.2500E-06 | -50.00% 1.2500E-06 | -50.00% | 3.7500E-06 50.00%

Table 2: SER results from ring oscillator OIM using 9, 8 and 7 bits to represent coupling weights
columns indicate how much greater quantized-coupling-OIM SERs are over Maximum Likelihood decoding.

. The “%>M.L.”



SNR 6 bits 5 bits 4 bits

SER [ %0 >M.L. SER [ %>M.L. SER [ %0>M.L.
1.0531E-01 5.16% 1.1017E-01 10.01% 1.2946E-01 29.26%
6.8118E-02 5.37% 7.2540E-02 12.21% 9.1473E-02 41.50%
3.9763E-02 6.42% 4.3665E-02 16.86% 6.1594E-02 106.56%
2.0663E-02 6.96% 2.3853E-02 23.47% 3.9904E-02 106.56%
9.4813E-03 9.26% 1.1715E-02 35.00% 2.4290E-02 179.92%
3.8800E-03 10.78% 5.4975E-03 56.96% 1.5149E-02 332.51%
1.4188E-03 20.49% 2.1250E-03 80.47% 8.9675E-03 661.57%
4.6125E-04 38.20% 8.9750E-04 168.91% 5.6838E-03 1603.00%
9.6250E-05 40.00% 3.2750E-04 376.36% 4.0525E-03 5794.55%
1.8750E-05 25.00% 9.6250E-05 541.67% 2.5825E-03 | 17116.67%
5.0000E-06 | 100.00% | 4.3750E-05 | 1650.00% | 1.8575E-03 | 74200.00%

'
—_

O| 0 QA || KW —| D

Table 3: SER results from ring oscillator OIM using 6, 5 and 4 bits to represent coupling weights. The “%>M.L.”
columns indicate how much greater quantized-coupling-OIM SERSs are over Maximum Likelihood decoding.



