
© 2024 by ASME 1 

Proceedings of the ASME 2024  
Heat Transfer Summer Conference 

HT2024 
July 15 – 17, 2024, Anaheim, CA 

 
SHTC2024-131218 

 
A Convolution Neural Network Design for Combined Image and Sensor Data Analysis to Determine 

Droplet Vaporization Regime and Heat Transfer Performance 
 
 

Ursan Tchouteng Njike, Anisa Silva and Van P. Carey 
 

Mechanical Engineering Department 
University of California, Berkeley, CA, USA 

 
ABSTRACT 

Combining high-speed video cameras and optimal 
measurement techniques with digital sensors controlled by a 
data acquisition system can yield a combination of 
experimental tools to explore boiling process thermophysics 
and heat transfer mechanisms. Imaging can provide qualitative 
and quantitative information that complements data provided 
by temperature, pressure, and more sensors. This paper 
summarizes the results of an exploration of machine learning 
strategies to optimally combine and analyze boiling process 
images and digital sensor information from experiments. We 
specifically sought a convolution neural network to analyze the 
vaporization of deposited water droplets on superheated 
surfaces that may have varying degrees of nucleate boiling 
effects. Through experimentation, we found that a hybrid 
parallel-series convolution/neuron neural network design 
worked very effectively. The network could extract the regime 
of droplet vaporization (conduction driven only, conduction 
plus nucleate boiling, or explosive boiling), the liquid 
morphology, and could predict the vaporization regime, the 
wall superheat, and mean heat transfer rate as a function of 
image input and operating system parameters. Using data 
collected from the droplet deposition experiment, this network 
design has been trained to predict the mean heat transfer rate 
with a root mean square percent error (RMSPE) of only 3.3% 
and 7.2% on a training and testing dataset respectively. The 
hybrid network developed in this research appears to be a 
promising strategy for analyzing experimental data for physical 
systems that are best investigated experimentally with a 
combined use of imaging and digital sensor instrumentation. 
 
1. INTRODUCTION 

Convolution Neural Networks (CNN) were developed in 
the 1980s and forms the backbone of many computer vision 
applications. These applications range from self-driving 
vehicles to medical image analysis, facial recognition and more. 
Recent studies of boiling heat transfer have explored ways to 
leverage this powerful tool to better understand boiling 

processes. The paper of Yang, et al. [1] discusses the use of 
high-speed camera visualization to examine flow boiling in 
microchannels. The study aims to use a CNN model to identify 
the flow pattern for use as a means of an accurate heat transfer 
mechanism prediction for applications.  To achieve an 
optimized performance, the image was pre-processed to address 
issues related to unbalanced lighting and other effects that may 
not be relevant to the classification of pattern flow. In another 
similar study, Lee [2] explored strategies to optimize 
experimental observation and measurements of pool boiling 
heat transfer using computer vision techniques. The computer 
vision applied in that study performs bubble detection and 
segmentation to track bubble movements as they depart from 
the surface. This helps in capturing key performance parameters 
such as bubble density, size, and departure frequency 
autonomously.  

When applying a CNN model to a system, a common 
approach is to examine simulated data of the system as an initial 
step. An example is the recent study by Lee et al. [3], which 
explored the controlled rearing of newborn chicks using deep 
CNN neural networks.  In this study, the authors looked at 
simulated image data of chicks’ visual observations from an 
agent moving within a virtual controlled-rearing chamber to 
compare the learning ability of a newborn chick to that of a 
CNN.  Computer vision in medical imaging such as Magnetic 
Resonance Imaging (MRI) studies also makes use of simulated 
data to ensure the computation can understand certain features 
before delving into real images. Minnema, et al. [4] employed 
an approach of this type in their recent study that compared 
convolutional neural network training strategies for cone-beam 
CT image segmentation. This study performed image 
segmentation on simulated con-beam computed tomography 
(CBCT) to find the best way to examine the image scanned. 
They subsequently validated their findings on experimental 
data. 

The work summarized here focuses on the 
vaporization/boiling process associated with liquid water 
droplet depositions on a superheated surface. In an earlier 
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investigation, Carey, et al. [5] analyzed features and 
mechanisms of droplet vaporization on superheated 
nanostructured surfaces and compared them to pool boiling 
under similar conditions.  These investigators assessed regime 
changes by examining measured surface superheat droplet size, 
and surface wetting data together with high-speed videos of the 
droplet vaporization process in their experiments.  Their high-
speed videos provided visual evidence of the variation of the 
two-phase morphology as surface superheat, droplet size and 
surface wetting varied.   Observed variations of the regime with 
superheat were summarized in Fig. 10 of that 
paper. Observations and data from this earlier study indicate 
two important points related to the study summarized here.  
First, the earlier study documented that for water droplet 
vaporization at atmospheric pressure, the mean heat transfer 
rate depends on surface superheat, surface wetting (contact 
angle), initial droplet size, the morphology of the liquid, and the 
presence or absence of nucleate boiling at locations on the 
heating surface during experiments.  This indicates that the 
liquid morphology varies with operating conditions and 
properties. In general, the morphology is mainly affected by 
pressure and surface superheat. However, in our current study, 
the system pressures are fixed for all the droplet deposition 
experiments since they were conducted at atmospheric 
pressure. As depicted in Fig. 1, the operating conditions and 
surface parameters on the left affect heat transfer performance 
directly, and/or they affect morphology. The second relevant 
point from this earlier study is that it indicates that the boiling 
features of vaporization of deposited water droplets on 
superheated surfaces are strongly similar to those for pool 
boiling observed in quenching experiments under similar 
conditions.  Droplet deposition experiments therefore can be 
used to explore nucleate boiling mechanisms near the onset of 
nucleate boiling while providing imaging access close to the 
surface, which allows more effective use of optical methods to 
obtain image information about the process. 
 

 

Note that the results of the earlier experiments of Carey, et 
al. [5] exploring droplet vaporization on superheated surfaces 
analyzes experimental results by converting information from 
video frame images to digital data.  The study summarized here 
specifically explored an alternative approach that uses machine 

learning to directly extract information from video images 
using a customized Convolution Neural Network (CNN).   

To explore how image information can be directly used to 
assess liquid-vapor morphology or predict heat transfer 
performance, we constructed a data set containing digital data 
and simulated images that exhibit trends observed in the real 
experimental results of the earlier study of Carey, et al. [5].  As 
discussed above, the use of simulated images in this manner to 
explore the feasibility of a machine learning strategy has been 
commonly used in other applications, particularly for medical 
imaging (see, for example, the study of Minnema, et al.  [4]).  
Here we used this approach as a first step towards evaluating a 
CNN-based machine learning strategy for analyzing boiling 
experiment results.  In this preliminary work, we demonstrated 
the feasibility of using a specially designed CNN with skip 
connections to analyze a combination of digital data and 
morphology images to predict heat transfer performance.  Using 
this simulated data, we also were able to optimize the design of 
the custom convolution neural network model.  Following this 
initial work, we explored the use of this type of CNN model by 
adapting it to the flow of real droplet vaporization data that we 
obtained in new experiments conducted as part of this study.  
The details of the simulated data and the real data machine 
learning analysis studies are described in the following sections.  
 
2. METHODS: SIMULATED DATA 
2.1. Data Collection 

In our simulated data study, a database was created with 
138 images and their corresponding operating conditions and 
parameter values.  The trends in this database matched the 
trends observed in the data from the earlier study by Carey, et 
al. [5]. The simulated images were created using a drawing tool 
called EazyDraw. The simulation exhibits specific features we 
may observe in a real physical system such as a change in 
morphology with respect to a change in its physical condition. 
Figure 2 depicts the different morphology observed, which are 
spherical cap, thin continuous line, irregular thin continuous 
line, and shattered regime. As shown in Fig. 1, the CNN model 
task is to capture the morphology features in the image data as 
well as the physical conditions of the system to make 
predictions of the mean heat transfer rate. The physical 
condition of the system explored has a wall superheat 
temperature that ranges from 0.87 K to 56.4 K above saturation 
temperature and a relative atmospheric pressure that ranges 
from 0.47 to 2.13. Both the superheat temperature and 
atmospheric pressures are needed to adequately make 
predictions of the mean heat transfer rate. 

 
 
 

 

Figure 1. Study Summary 
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In the first step of this investigation, the image data and 
relative atmospheric pressure were used as input data for the 
CNN and the wall superheat temperature was used as output 
data. To train the CNN model efficiently, the data needed to be 
preprocessed. Python, with its useful open-source libraries, was 
the programming language used in this paper. The input and 
output data were preprocessed to ensure the model interacted 
with data of similar ranges of values. The original images were 
converted to grayscale since the coloration was consistent for 
all images. This operation also helps to minimize the 
computational cost since greyscale images are represented by 
only one layer of numerical values as compared to color scale, 
which is represented by 3 layers. The image input column was 
converted to an image array of numerical values using the cv2 
package, a package widely used for computer vision 
applications in Python. The images were resized to 200x50 
pixels. The value of the image input array was divided by 255 
since pixels in computers are encoded in values ranging from 0 
– 255. This results in an input image array with values that lie 
between 0 and 1. The other input column consists of the relative 
atmospheric pressure whose median value was 1 and did not 
require preprocessing. On the other hand, each image had an 
associated morphology class label and wall superheat 
temperature. These were used as output values to train the 
CNN. The morphology class labels were converted to 
numerical values using one_hot_encoding from Keras.utils 
library. The superheat values were standardized by dividing 
them by the median superheat. In the case of this investigation, 
the median superheat value was 19.8 K. By performing these 
preprocess transformations, most of the data values were 
around the vicinity of 1. The entire dataset was arranged in a 
data frame using the Pandas package, widely used to 
manipulate tabular data. 

Since the amount of input data was very low, there was a 
need to adopt a strategy to remedy this condition. Performing 
data augmentation is a widely adopted strategy for this kind of 
situation. The process consists of performing several small 
modifications to each image in the dataset such as a horizontal 
shift of the image to the right or left. This operation helps to 
increase the robustness of the CNN model. 
ImageDataGenerator from Keras was used in this study. The 
parameter of the generator includes random rotation of up to 5 
degrees. It also includes horizontal shift, vertical shift, shear, 
and zoom of up to 10%. Random horizontal flips were allowed 
to be performed on the images as well. Empty spaces due to the 
image modification were filled using the nearest pixel value 
strategy. The resulting data augmented images were added to 

the original 138 images totaling 3588 image data. These images 
with their corresponding labels were ready to be trained. The 
model architecture to train this data needed to be customized in 
such a way that it could simultaneously take the image and 
relative atmospheric pressure data as input. Also, the model 
needs to simultaneously predict the morphology class and the 
wall superheat temperature. 
 
2.2. Neural Network Development 

For higher flexibility in building the desired convolution 
neural network model, the Keras functional API (Application 
Program Interface) was used. This API allows each layer of the 
network to be initialized as a function. This allows for an easy 
increase in complexity in the model development. The model 
developed here had to consider that 1 of the inputs is an array 
of numbers with the shape 200x50 representing the image input 
while the other input is a variable representing the relative 
atmospheric pressure. There are 2 outputs to be predicted by the 
model. One of the outputs requires a classification approach 
while the other needs a continuous variable approach such as 
regression. The resulting model architecture to fit this 
requirement is shown in Fig. 3. This architecture is divided into 
four regions. The first region is the input region. This is where 
the image and relative atmospheric pressure are captured. The 
second region is the convolution region. This region processes 
the image input and captures the features by passing the 3x3 
convolution window with 32 filters across the image input with 
a stride of 1, or one step at a time, and a same padding type, 
meaning that a padding is added to the input image to ensure 
that the output, after the convolution process, have the same 
shape as the input image. A convolution layer attempts to 
capture patterns such as the edges of an object present in the 
image by passing a convolution window onto the image array 
one step at a time. An example of this operation is shown in Fig. 
4. To add nonlinearity to the process, a Rectified Linear Unit 
(ReLU) activation function is applied to the output of the 
convolution operation. A 2x2 Max pooling layer of stride 2 and 
a same padding type is applied to summarize the features 
captured. An example of this operation is shown in Fig. 5. A 
same padding in max pooling allows padding to be added as 
needed to make up for an imperfect fit for the max pooling 
operation. This set of three operations is repeated once to 
capture more complex features of the image. The output from 
the two stacked sets of operation is flattened as it is moved to 
the fully connected region of the architecture. In this region, the 
flattened layer passes through a dense layer with 32 neurons. A 
ReLU activation function is applied to the layer to add non-
linearity. The relative atmospheric pressure is then appended to 
the resulting output through a concatenation layer. From this, 
the data is passed through a dense layer with 4 neurons and a 
softmax activation function to generate the morphology 
classification prediction. Since we are dealing with 
classification and regression, the regression part of the 
architecture has been laid out similarly. The input image is 
passed to a two-stacked set of convolution operations then gets 

  

  

(a) 

(c) (d) 

(b) 

Figure 2. Simulated Images Morphology Classes: (a) 
Spherical Cap, (b) Thin Continuous, (c) Irregular Thin 
Continuous, and (d) Shattered. 



© 2024 by ASME 4 

flattened and is passed to a dense layer with 32 neurons and 
ReLU activation function. From this point, the operations differ 
from the classification route. The classification output and the 
relative atmospheric pressure inputs are appended to the result 
after the dense layer and ReLU activation via a concatenation 
layer. The concatenated layer output is passed to another dense 
layer with 32 neurons and a ReLU activation function. The 
result here is passed to a final convolution layer with one neuron 
and a linear activation function to predict the wall superheat 
temperature. With this structure, the model was trained on the 
3588 images with their labels. 

 
 
2.3. Results and Discussion 

The model depicted in Fig. 3 fulfills all the requirements 
necessary to train the convolution neural network to predict the 
morphology class and superheat temperature. An Adam 
optimizer was used in the model training. Adam stands for 
adaptive moment estimator. This optimizer helps stochastic 
batch processes to converge faster to an optimal solution.  its 
input value in this study was decreased going from 10-3 to 10-6 
as needed to optimize the loss in the model prediction. In our 
case, the loss strategy used for the morphology classification 
was the categorical cross entropy while that for superheat 
prediction was the mean absolute error. Each of these losses 
was weighted equally in the optimization model. The training 
batch size was set at 32. 25% of the data was used as a 
validation set. The training was performed on 75% of the data. 
The model converged to an average loss of 0.05 on the 
validation set. The model was then tested on a new set of data 
with 100 observations generated from the simulated droplet 
model. Figures 6 and 7 illustrate the result obtained from the 
optimized convolutional neural network tested on a new set of 
unseen data. On the testing dataset in the simulated sample 
images, we observed a perfect morphology classification in all 
four classes of image data. Also, the wall superheat temperature 
prediction performed well with a root mean square percent error 
(RMSPE) of only 12% on a set of unseen data. This strong 
predictive capability suggests that the approach used in this 

Figure 3. Convolution Neural Network Architecture for Simulated Data 

Figure 4. Convolution Operation Example 

Figure 5. Max Pooling Example 
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investigation to train the model is a promising analysis of 
boiling process images. This is an indication that the model has 
been able to successfully learn relevant patterns present in the 
image to make accurate classifications. 

 

 

 

  

 
3. METHODS: EXPERIMENTAL DATA 
3.1. Data Collection 

Since the work on the simulated image yields attractive 
results. It was needed to perform further investigation on 
experimental data. The data was collected via a droplet 
deposition experiment. A surface that exhibits a particular 
contact angle ! and wicking speed is coated on the top of a 
cylindrical copper rod measuring 2.5 cm in Diameter. The 
contact angles of water on the coated surfaces were measured 
using a spherical cap model. On the side of the rod, about 1 mm 
from the top, two holes are drilled opposite to each other for the 
insertion of a thermocouple for temperature measurements. 
This rod is placed on a hot plate with mineral wool insulation 

of about 1 cm thick on the sides to ensure an adiabatic process. 
The hot plate is adjusted to a temperature above the nucleation 
temperature of water. Thermocouples are inserted in the 
adequate holes of the cylindrical rod closer to the top, where the 
droplet is deposited. These thermocouple temperature readings 
are used to define the wall superheat temperatures. The droplet 
sizes are measured using a pipette at the time of deposition. A 
high-speed camera is placed above the rod to capture the droplet 
boiling process. The experiment tracks the image, superheat 
temperature, droplet size, and contact angle as input data. The 
experiment also tracks the regime classification and heat 
transfer rate as output data.  A schematic of the droplet 
experiment is shown in Fig. 8. The mean heat transfer rates 
were calculated using Eq. (1). This equation only involves the 
latent heat needed to transform the droplet into steam. The 
energy used to raise the temperature of the droplet to saturation 
was ignored since it is negligible when compared to the latent 
heat. In this equation, "̇$ is the mean heat transfer rate, % is the 
density of water, &! is the initial volume of the droplet,	ℎ"# is 
the latent heat of vaporization of water, ) is the framerate of the 
camera, and n is the number of frames between the droplet 
getting in contact with the surface and its complete evaporation. 
The framerate of the camera used in this study was 1200 frames 
per second. 
 

 

!̇# = !$0	ℎ"#"
#             (1) 

Digital and image data were collected from this 
experiment. The images were selected based on their 
information richness, i.e. presence of bubbles or gradual shrink, 
as captured by the camera. A sample of the image data collected 
is shown in Table 1 for the different morphology considered in 
this study. This table shows images for different droplet sizes at 
distinct superheat temperatures. 428 image data were generated 
from this experiment. This data was split into two sets. 15% of 
the image data was retained as a test set to evaluate the accuracy 
of the model on unseen data. The remaining 85% of the image 
data were augmented using the same approach as discussed in 
the simulated image data section and this set was used as a 
training set. The parameter of the augmentation generator 
includes random rotation of up to 5 degrees. It also includes 
horizontal shift, vertical shift, shear, and zoom of up to 10%. 

Figure 6. Morphology Classification Result on a Test 
Dataset for Simulated Images 

Figure 7. Superheat Prediction on a Test Dataset for 
Simulated Images with RMSPE of 12% 

Figure 8. Droplet Deposition Experiment 

Camera 
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Random horizontal flips were allowed to be performed on the 
images as well. Empty spaces due to the image modification 
were filled using the nearest pixel value strategy. The purpose 
of the data augmentation is to help in generating a robust model 
by deliberately adding perturbation to the image data. The data 
augmentation resulted in a set of 9438 images augmented from 
363 of the original images randomly chosen for model training 
purposes. As discussed in the simulated section, these input 
images as well as all the other values used in training the model 
were preprocessed to eliminate unwanted bias toward higher 
magnitude values. The images were normalized by dividing the 
pixel values by 255 just like in the simulated model section. 
This ensured that arrays representing images only have values 
in the range of 0 to 1. The superheat temperature, droplet size, 
and contact angle data are normalized by dividing by their 
respective median values. The regime morphology 
classification is converted to numerical value via one hot 
encoding. Since the coloration of the image does not carry a 
physical interpretation in this experiment, all the original 
images were converted to grayscale. This conversion 
significantly reduces the computational cost for training the 
model since it deals with only one layer array representing the 
image. The images are then rescaled to 100x100 pixels to 
further reduce computational cost. At this resolution, most of 
the important features of the image are still preserved. Table 2 
shows the range of data values captured during the experiments. 
 

 
 

3.2. Network Architecture 
Three cases were examined to understand CNN’s potential 

in levering image features for improved mean heat transfer rate 
prediction. Since the CNN architecture for the simulated data 
yielded promising results, an adaptation of the architecture was 
used for each of the cases examined. The three cases are 
summarized in Table 3. Case A examines the architecture on its 
strength with information unrelated to the appearance of the 
droplet. Case B examines the architecture with information 
unrelated to the temperature of the system. Case C examines the 
architecture considering both the appearance of the droplet and 
the temperature of the system.  
 

Case A Case B Case C 
Input: 
- Superheat 

Temperature 
 

- Initial Droplet 
Size 

 
- Contact Angle 

Input: 
- Image Data 

 
 

- Initial Droplet 
Size 

 
- Contact Angle 

Input: 
- Image Data 

 
 

- Initial Droplet 
Size 
 

- Contact Angle 
 

- Superheat 
Temperature 

Output:  
- Mean Heat 

Transfer Rate 

Output:  
- Mean Heat 

Transfer Rate 
 

- Superheat 
Temperature 

 

Output:  
- Mean Heat 

Transfer Rate 
 

- Nucleation 
Regime 

 

 
3.2.1. Case A 

Case A’s architecture aims to produce a model that does 
not take any information related to the appearance of the 
droplet. Therefore, all paths taken by the image as well as the 
morphology path must be eliminated from the previous CNN 
architecture. This adaptation aims at establishing a benchmark 
for the system without image input. The goal is to see whether 
the wall superheat temperature, contact angle, and droplet size 

Conduction Isolated Bubble Vigorous Nucleation 

   

   

   

   

Variable Range 
Superheat Temperature 5 – 40 [K] 
Droplet Size 5 – 8 [µL] 
Contact Angle 4.41 - 4.88 [°] 
Mean Heat Transfer Rate 5.02 – 89.3 [W] 

Table 1. Droplet Deposition Image Data of Different 
Droplet Sizes for each Regime Considered.  *+	is 
the wall superheat  +' − +()*. 

Table 3. Model Cases Highlighting the Inputs and Outputs 
Considered. 

Table 2. Range of Values Used in the Study  

Size = 5 µL DT = 5K 

Size = 6 µL DT = 5K 

Size = 7 µL DT = 5K 

Size = 8 µL DT = 5K 

Size = 5 µL DT = 20K Size = 5 µL DT = 8K 

Size = 6 µL DT = 20K 

Size = 7 µL DT = 20K 

Size = 8 µL DT = 20K 

Size = 6 µL DT = 35K 

Size = 7 µL DT = 35K 

Size = 8 µL DT = 35K 



© 2024 by ASME 7 

used as input can attain a better solution than one that considers 
an input image. Figure 9 depicts the resulting architecture due 
to the elimination of the image input and morphology path. 

 
 

 
 

 
As shown above, eliminating the path taken by the image 

input results in a simple fully connected neural network with 3 
numerical variables as input and one variable as output data. 
The 3 input data pass through a dense layer with 32 neurons that 
has a ReLU activation function. From this dense layer, the data 
moves to the final layer for output, which is another dense layer, 
but with a 1 neuron that has a linear activation function. This 
architecture has no convolution region since it does not process 
image information. With this architecture, the training data set 
described in section 3.1 was used to train a model. After training 
the model, we obtain the result shown in Fig. 10.  

The RMSPE was evaluated on both the training and testing 
datasets and was found to be 13.2% and 13.6% respectively. 
These results demonstrate that even without information about 
the droplet appearance outstanding prediction can be achieved. 
Also, Fig. 11 shows a surface plot generated to predict the mean 
heat transfer rate for Case A. The contact angle for the plot was 
fixed at 4.65°. This plot spans the range of values for the droplet 
sizes and temperature values studied in this paper. It provides a 
full picture of the predictive model behavior throughout the 
droplet sizes and superheat temperature space. From the surface 
plot, we can observe that the droplet size has limited effect on 
the mean heat transfer rate at low superheat, but the effect 
gradually increases at higher superheat values.  

 

(a)  

(b)  

 

Figure 10. Mean Heat Transfer Rate Prediction results for 
Case A on (a) Training Dataset and (b) Testing Dataset 

Figure 11. Surface plot prediction of mean heat transfer 
rate for Case A. 

Figure 9. CNN Architecture for Case A 
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3.2.2 Case B 

In this section, the objective is to evaluate how well a 
model can predict the mean heat transfer rate using an 
architecture similar to our preliminary study on simulated 
images without information about the system’s temperature. 
The resulting architecture is depicted in Fig. 12. This 
architecture is configured to take a 100x100 array 
representation of the image data, the droplet size variable, and 
the contact angle variable as input, and it generates the wall 
superheat temperature and mean heat transfer rate as output. 
The image data passes through a 3x3 convolution layer with 32 
filters and a same padding. From here, a ReLU activation 
function is applied to this convolution output to introduce non-
linearity. A 2x2 max pooling with a stride of 2 and a same 
padding is applied to summarize the feature captured by the 
convolution layer. This set of three operations is repeated one 
more time. As the data enters the fully connected region, the 
output from the convolution region is flattened. From here it 
passes through a dense layer with 32 neurons and a ReLU 
activation function. A skip connection is applied to concatenate 
the droplet size and contact angle input to the dense layer 
output. The concatenated data flows through another dense 
layer with 32 neurons and a ReLU activation function. From 
here, the data is connected to the 2 final dense layers with one 
neuron outputting the superheat temperature and mean heat 
transfer rate. The result from training a model with this 
architecture is shown in Fig. 13 for the mean heat transfer rate. 
The RMSPE was evaluated on both the training and testing 
datasets and was found to be 6.70% and 8.21% respectively.  
This result demonstrates that the model had strong predictive 
capability and that the model was able to capture features in the 
image data to generate predictions. From this result, it is 
suggested that the model might also accurately predict the 
superheat temperature. Figure 14 shows the comparison 
between the superheat temperature prediction against its true 
value both for the training and testing datasets.  
 

(a)  

(b)  

  
 
 

Figure 12. CNN Architecture for Case B. 

Figure 13. Mean Heat Transfer Rate Prediction Results for 
Case B on (a) Training Dataset and (b) Testing Dataset 
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(a)  

(b)  

The model also had accurate superheat temperature 
predictions for both the training and testing datasets with a 
RMSPE of 6.82% and 15.5% respectively. One may inquire 
whether having both droplet appearance and temperature 
information as input data could generate better predictions.  
This question is answered by training a model on Case C’s 
architecture. 

 
3.2.3 Case C 

In this section, the focus is to explore whether combining 
information about the droplet appearance and the physical 
condition of the system can generate the strongest results 
among all cases. Figure 15 is the resulting architecture used in 
Case C. The CNN architecture here is a replica of the one used 
in the simulated images with few adjustments to account for 
desired input and output configurations.  

This architecture is almost identical to the one used on the 
simulated image in Fig. 3. Case C’s architecture differs from 
the architecture used on the simulated images on the input and 
output layer structures. The simulated model’s architecture had 
2 inputs, a 200x50 array representing the image and the relative 
pressure information, while Case C’s architecture consists of 4 
inputs, a 100x100 array representing the image, wall superheat 
temperature, droplet size, and contact angle. In addition, the 
output structure of the simulated images consists of a 
morphology with four classes and wall superheat temperature 
prediction while the output structure in Case C consists of a 
nucleation regime with three classes and a mean heat transfer 
rate. Every other part of the architectural structure for Case C 
was kept the same as the one used for the model simulation. The 
prediction for the model train in Case C is depicted in Fig. 16. 

Figure 15. CNN Architecture for Case C. 

Figure 14. Superheat Temperature Prediction for Case B 
on (a) Training and (b) Testing Dataset 
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(a)  

(b)                                                           

 
The RMSPE was evaluated on both the training and testing 

datasets and was found to be 3.29% and 7.17% respectively.  
This result clearly shows an improved prediction accuracy as 
compared to the result obtained in Case A and Case B for 
predicting the mean heat transfer rate. From this result, it is 
believed that the model should also produce highly accurate 
morphology predictions. Figure 17 summarizes this prediction 
on both the training and testing datasets. It shows that the model 
predicts morphologies for all the images in the entire training 
dataset with 99% accuracy. The performance on the kept testing 
dataset misclassified 2 out of 65 images. This is an indication 
that the model has been able to successfully learn relevant 
patterns present in the image to make accurate classifications. 
The model for Case C was further analyzed for any distinct 
pattern in the data space using a stem plot of the predicted mean 
heat transfer rate with its corresponding regime class. From the 
plot shown in Figure 18, we observed trends similar to that of 
the surface plot for model A. Specifically, the difference in 
mean heat transfer along the droplet size axis seems to be more 
significant as the superheat temperature increases.  

(a)  

(b)  

  

Figure 17. Nucleation Regime prediction for Case C for 
(a) training dataset and (b) testing dataset 

Figure 16. Mean Heat Transfer Rate Prediction results for 
Case C on (a) Training and (b) Testing Dataset. 

Figure 18. Predicted Mean Heat Transfer Rate using Case 
C Model over Input Conditions in the Entire Dataset. 
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4. EXAMINING THE USE OF IMAGE DATA AS A 

SUPERHEAT TEMPERATURE SENSOR FOR 
THE CASE A MODEL 
In this section of the study, a new CNN model was trained 

to behave similarly to a temperature sensor. The prediction 
from this model was subsequently used in model A as superheat 
temperature input to make predictions of the mean heat transfer 
rate. As shown in Figure 19, the architecture of the model 
developed here is very similar to that of Case B explored in 
section 3 above. This architecture is configured to take a 
100x100 array representation of the image data as input, and it 
generates a prediction of the wall superheat temperature as 
output. The image data passes through a 3x3 convolution layer 
with 32 filters and a same padding. From here, a ReLU 
activation function is applied to this convolution output to 
introduce non-linearity. A 2x2 max pooling with a stride of 2 
and a same padding is applied to summarize the feature 
captured by the convolution layer. This set of three operations 
is repeated one more time. As the data enters the fully connected 
region, the output from the convolution region is flattened. 
From here it passes through a dense layer with 32 neurons and 
a ReLU activation function. The data flows through an 
additional dense layer with 32 neurons and a ReLU activation 
function. From here, the data is connected to the final dense 
layer with one neuron outputting the superheat temperature. 

After training the CNN model using the same training 
dataset as the ones discussed in the previous section, we were 
able to get a superheat prediction with a RMSPE of 18.6% on 
the same testing dataset as the ones discussed in the previous 
section. Figure 20 depicts the observed fit to the testing dataset. 
These predicted superheat temperatures are then used as input 
temperature values to the Case A model. Figure 21 shows the 
observed result of the Mean Heat Transfer Rate as compared to 
the corresponding actual data value. This prediction has a 
RMSPE of 16.4%. This result implies that a CNN model can be 
used as a means of sensing temperature for applications such as 
predicting mean heat transfer rates. 
 
 

Figure 19. CNN Architecture for Predicting Superheat Temperature. 

Figure 20. Superheat Temperature Prediction for CNN 
model as a temperature sensor 

Figure 21. Mean Heat Transfer Rate using Temperature 
Predicted from a CNN as input to Model A 
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5. COMPARING CASE RESULTS  
AND CONCLUSIONS 
A convolution neural network can be a powerful tool with 

applications in many fields. In the field of boiling heat transfer, 
this tool can be used to capture information hidden in the regime 
morphology to predict the physical properties of a system 
including mean heat transfer rate. Using the Python Keras 
functional API, it was possible to combine convolution layers 
and fully connected dense layers to produce a high-performing 
model capable of predicting the mean heat transfer rate, 
superheat temperature, and morphology as needed. 

Four models were developed throughout this study to better 
understand the potential of a trained CNN model on boiling heat 
transfer processes.  The model developed for the simulated 
droplet images demonstrated the capability of taking array 
representations of images and relative pressure values as input 
to predict the morphology classes and superheat temperature 
values. All the observations in the testing dataset were 
accurately classified by the model and the superheat 
temperature prediction had a RMSPE of 12%. Using 
experimental data in three distinct cases, three models were 
produced with high predictive capabilities. Case A’s model was 
able to take in superheat temperature, droplet size, and contact 
angle values as input to predict the mean heat transfer rate with 
a RMSPE of 13.6% on the testing data. In Case B, the inputs 
were the droplet image, the droplet size, and the contact angle. 
These variables were used to predict the mean heat transfer rate 
and superheat temperatures with a RMSPE of 8.2% and 15.5% 
respectively on the testing data set. The model developed in 
Case C was the best-performing model. The model takes a 
droplet image, droplet volume, contact angle, and superheat 
temperature as input values. These values are used to predict 
the nucleation regime and the mean heat transfer rate.  The 
nucleation regime had only two data misclassified out of 65 
while the mean heat transfer rate was predicted with a RMSPE 
of 7.2%.  

Our results demonstrate that the convolution neural 
network design, with a skip connection, developed in this study 
is a very effective convolution neural network (CNN) design 
that can be trained to predict boiling heat transfer performance 
with combined digital data and image information obtained in 
experiments.  This type of modeling approach may be useful in 
a wide variety of boiling processes, particularly for system 
geometries that may complicate the liquid-vapor morphology 
of the system. Our results also indicate that images of the 
boiling two-phase morphology during deposited droplet 
vaporization on superheated surfaces contain information about 
the process that correlates with the heat transfer performance.  
If the image information is included in training a CNN model, 
the image information overlaps with wall superheat 
information.  We found that we could train the model to predict 
the vaporization mean heat transfer rate with good accuracy 
using either the superheat or the image information. Using 
surface superheat information and image information combined 
improved model accuracy slightly in this case because the 
information in these two inputs is strongly (but not perfectly) 

correlated.  The association of two-phase morphology with 
superheat level for pool boiling has been established 
empirically based on the trends and regimes in conventional 
boiling curves.  Regimes (conduction-dominated pre-onset of 
nucleate boiling, fully-developed nucleate boiling, transition 
boiling, etc.)  are generally acknowledged to correspond to 
specific ranges of surface superheat, each having a 
characteristic morphology.  The study summarized here has 
demonstrated the correlation between surface superheat and 
morphology in a more direct way based on a data-science 
analysis.  This approach may offer a means of developing a 
predictive model for boiling heat transfer in more complicated 
systems in which morphology is not simply correlated with 
surface superheat, and may be a useful research tool in such 
cases. 
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