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ABSTRACT

Combining high-speed video cameras and optimal
measurement techniques with digital sensors controlled by a
data acquisition system can yield a combination of
experimental tools to explore boiling process thermophysics
and heat transfer mechanisms. Imaging can provide qualitative
and quantitative information that complements data provided
by temperature, pressure, and more sensors. This paper
summarizes the results of an exploration of machine learning
strategies to optimally combine and analyze boiling process
images and digital sensor information from experiments. We
specifically sought a convolution neural network to analyze the
vaporization of deposited water droplets on superheated
surfaces that may have varying degrees of nucleate boiling
effects. Through experimentation, we found that a hybrid
parallel-series convolution/neuron neural network design
worked very effectively. The network could extract the regime
of droplet vaporization (conduction driven only, conduction
plus nucleate boiling, or explosive boiling), the liquid
morphology, and could predict the vaporization regime, the
wall superheat, and mean heat transfer rate as a function of
image input and operating system parameters. Using data
collected from the droplet deposition experiment, this network
design has been trained to predict the mean heat transfer rate
with a root mean square percent error (RMSPE) of only 3.3%
and 7.2% on a training and testing dataset respectively. The
hybrid network developed in this research appears to be a
promising strategy for analyzing experimental data for physical
systems that are best investigated experimentally with a
combined use of imaging and digital sensor instrumentation.

1. INTRODUCTION

Convolution Neural Networks (CNN) were developed in
the 1980s and forms the backbone of many computer vision
applications. These applications range from self-driving
vehicles to medical image analysis, facial recognition and more.
Recent studies of boiling heat transfer have explored ways to
leverage this powerful tool to better understand boiling

processes. The paper of Yang, et al. [1] discusses the use of
high-speed camera visualization to examine flow boiling in
microchannels. The study aims to use a CNN model to identify
the flow pattern for use as a means of an accurate heat transfer
mechanism prediction for applications. To achieve an
optimized performance, the image was pre-processed to address
issues related to unbalanced lighting and other effects that may
not be relevant to the classification of pattern flow. In another
similar study, Lee [2] explored strategies to optimize
experimental observation and measurements of pool boiling
heat transfer using computer vision techniques. The computer
vision applied in that study performs bubble detection and
segmentation to track bubble movements as they depart from
the surface. This helps in capturing key performance parameters
such as bubble density, size, and departure frequency
autonomously.

When applying a CNN model to a system, a common
approach is to examine simulated data of the system as an initial
step. An example is the recent study by Lee et al. [3], which
explored the controlled rearing of newborn chicks using deep
CNN neural networks. In this study, the authors looked at
simulated image data of chicks’ visual observations from an
agent moving within a virtual controlled-rearing chamber to
compare the learning ability of a newborn chick to that of a
CNN. Computer vision in medical imaging such as Magnetic
Resonance Imaging (MRI) studies also makes use of simulated
data to ensure the computation can understand certain features
before delving into real images. Minnema, et al. [4] employed
an approach of this type in their recent study that compared
convolutional neural network training strategies for cone-beam
CT image segmentation. This study performed image
segmentation on simulated con-beam computed tomography
(CBCT) to find the best way to examine the image scanned.
They subsequently validated their findings on experimental
data.

The work summarized here focuses on the
vaporization/boiling process associated with liquid water
droplet depositions on a superheated surface. In an earlier
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investigation, Carey, et al. [5] analyzed features and
mechanisms of droplet vaporization on superheated
nanostructured surfaces and compared them to pool boiling
under similar conditions. These investigators assessed regime
changes by examining measured surface superheat droplet size,
and surface wetting data together with high-speed videos of the
droplet vaporization process in their experiments. Their high-
speed videos provided visual evidence of the variation of the
two-phase morphology as surface superheat, droplet size and
surface wetting varied. Observed variations of the regime with
superheat were summarized in Fig. 10 of that
paper. Observations and data from this earlier study indicate
two important points related to the study summarized here.
First, the earlier study documented that for water droplet
vaporization at atmospheric pressure, the mean heat transfer
rate depends on surface superheat, surface wetting (contact
angle), initial droplet size, the morphology of the liquid, and the
presence or absence of nucleate boiling at locations on the
heating surface during experiments. This indicates that the
liquid morphology varies with operating conditions and
properties. In general, the morphology is mainly affected by
pressure and surface superheat. However, in our current study,
the system pressures are fixed for all the droplet deposition
experiments since they were conducted at atmospheric
pressure. As depicted in Fig. 1, the operating conditions and
surface parameters on the left affect heat transfer performance
directly, and/or they affect morphology. The second relevant
point from this earlier study is that it indicates that the boiling
features of wvaporization of deposited water droplets on
superheated surfaces are strongly similar to those for pool
boiling observed in quenching experiments under similar
conditions. Droplet deposition experiments therefore can be
used to explore nucleate boiling mechanisms near the onset of
nucleate boiling while providing imaging access close to the
surface, which allows more effective use of optical methods to
obtain image information about the process.

wicking velocity
contact angle (wetting)
system pressure
droplet size

mean heat transfer rate
during vaporization

Y

surface superheat

morphology

Figure 1. Study Summary

Note that the results of the earlier experiments of Carey, et
al. [5] exploring droplet vaporization on superheated surfaces
analyzes experimental results by converting information from
video frame images to digital data. The study summarized here
specifically explored an alternative approach that uses machine

learning to directly extract information from video images
using a customized Convolution Neural Network (CNN).

To explore how image information can be directly used to
assess liquid-vapor morphology or predict heat transfer
performance, we constructed a data set containing digital data
and simulated images that exhibit trends observed in the real
experimental results of the earlier study of Carey, et al. [5]. As
discussed above, the use of simulated images in this manner to
explore the feasibility of a machine learning strategy has been
commonly used in other applications, particularly for medical
imaging (see, for example, the study of Minnema, et al. [4]).
Here we used this approach as a first step towards evaluating a
CNN-based machine learning strategy for analyzing boiling
experiment results. In this preliminary work, we demonstrated
the feasibility of using a specially designed CNN with skip
connections to analyze a combination of digital data and
morphology images to predict heat transfer performance. Using
this simulated data, we also were able to optimize the design of
the custom convolution neural network model. Following this
initial work, we explored the use of this type of CNN model by
adapting it to the flow of real droplet vaporization data that we
obtained in new experiments conducted as part of this study.
The details of the simulated data and the real data machine
learning analysis studies are described in the following sections.

2. METHODS: SIMULATED DATA
2.1. Data Collection

In our simulated data study, a database was created with
138 images and their corresponding operating conditions and
parameter values. The trends in this database matched the
trends observed in the data from the earlier study by Carey, et
al. [5]. The simulated images were created using a drawing tool
called EazyDraw. The simulation exhibits specific features we
may observe in a real physical system such as a change in
morphology with respect to a change in its physical condition.
Figure 2 depicts the different morphology observed, which are
spherical cap, thin continuous line, irregular thin continuous
line, and shattered regime. As shown in Fig. 1, the CNN model
task is to capture the morphology features in the image data as
well as the physical conditions of the system to make
predictions of the mean heat transfer rate. The physical
condition of the system explored has a wall superheat
temperature that ranges from 0.87 K to 56.4 K above saturation
temperature and a relative atmospheric pressure that ranges
from 0.47 to 2.13. Both the superheat temperature and
atmospheric pressures are needed to adequately make
predictions of the mean heat transfer rate.
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Figure 2. Simulated Images Morphology Classes: (a)
Spherical Cap, (b) Thin Continuous, (c¢) Irregular Thin
Continuous, and (d) Shattered.

In the first step of this investigation, the image data and
relative atmospheric pressure were used as input data for the
CNN and the wall superheat temperature was used as output
data. To train the CNN model efficiently, the data needed to be
preprocessed. Python, with its useful open-source libraries, was
the programming language used in this paper. The input and
output data were preprocessed to ensure the model interacted
with data of similar ranges of values. The original images were
converted to grayscale since the coloration was consistent for
all images. This operation also helps to minimize the
computational cost since greyscale images are represented by
only one layer of numerical values as compared to color scale,
which is represented by 3 layers. The image input column was
converted to an image array of numerical values using the cv2
package, a package widely used for computer vision
applications in Python. The images were resized to 200x50
pixels. The value of the image input array was divided by 255
since pixels in computers are encoded in values ranging from 0
— 255. This results in an input image array with values that lie
between 0 and 1. The other input column consists of the relative
atmospheric pressure whose median value was 1 and did not
require preprocessing. On the other hand, each image had an
associated morphology class label and wall superheat
temperature. These were used as output values to train the
CNN. The morphology class labels were converted to
numerical values using one hot encoding from Keras.utils
library. The superheat values were standardized by dividing
them by the median superheat. In the case of this investigation,
the median superheat value was 19.8 K. By performing these
preprocess transformations, most of the data values were
around the vicinity of 1. The entire dataset was arranged in a
data frame using the Pandas package, widely used to
manipulate tabular data.

Since the amount of input data was very low, there was a
need to adopt a strategy to remedy this condition. Performing
data augmentation is a widely adopted strategy for this kind of
situation. The process consists of performing several small
modifications to each image in the dataset such as a horizontal
shift of the image to the right or left. This operation helps to
increase  the robustness of the CNN  model.
ImageDataGenerator from Keras was used in this study. The
parameter of the generator includes random rotation of up to 5
degrees. It also includes horizontal shift, vertical shift, shear,
and zoom of up to 10%. Random horizontal flips were allowed
to be performed on the images as well. Empty spaces due to the
image modification were filled using the nearest pixel value
strategy. The resulting data augmented images were added to

the original 138 images totaling 3588 image data. These images
with their corresponding labels were ready to be trained. The
model architecture to train this data needed to be customized in
such a way that it could simultaneously take the image and
relative atmospheric pressure data as input. Also, the model
needs to simultaneously predict the morphology class and the
wall superheat temperature.

2.2. Neural Network Development

For higher flexibility in building the desired convolution
neural network model, the Keras functional API (Application
Program Interface) was used. This API allows each layer of the
network to be initialized as a function. This allows for an easy
increase in complexity in the model development. The model
developed here had to consider that 1 of the inputs is an array
of numbers with the shape 200x50 representing the image input
while the other input is a variable representing the relative
atmospheric pressure. There are 2 outputs to be predicted by the
model. One of the outputs requires a classification approach
while the other needs a continuous variable approach such as
regression. The resulting model architecture to fit this
requirement is shown in Fig. 3. This architecture is divided into
four regions. The first region is the input region. This is where
the image and relative atmospheric pressure are captured. The
second region is the convolution region. This region processes
the image input and captures the features by passing the 3x3
convolution window with 32 filters across the image input with
a stride of 1, or one step at a time, and a same padding type,
meaning that a padding is added to the input image to ensure
that the output, after the convolution process, have the same
shape as the input image. A convolution layer attempts to
capture patterns such as the edges of an object present in the
image by passing a convolution window onto the image array
one step at a time. An example of this operation is shown in Fig.
4. To add nonlinearity to the process, a Rectified Linear Unit
(ReLU) activation function is applied to the output of the
convolution operation. A 2x2 Max pooling layer of stride 2 and
a same padding type is applied to summarize the features
captured. An example of this operation is shown in Fig. 5. A
same padding in max pooling allows padding to be added as
needed to make up for an imperfect fit for the max pooling
operation. This set of three operations is repeated once to
capture more complex features of the image. The output from
the two stacked sets of operation is flattened as it is moved to
the fully connected region of the architecture. In this region, the
flattened layer passes through a dense layer with 32 neurons. A
ReLU activation function is applied to the layer to add non-
linearity. The relative atmospheric pressure is then appended to
the resulting output through a concatenation layer. From this,
the data is passed through a dense layer with 4 neurons and a
softmax activation function to generate the morphology
classification prediction. Since we are dealing with
classification and regression, the regression part of the
architecture has been laid out similarly. The input image is
passed to a two-stacked set of convolution operations then gets
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Figure 3. Convolution Neural Network Architecture for Simulated Data

flattened and is passed to a dense layer with 32 neurons and
ReLU activation function. From this point, the operations differ
from the classification route. The classification output and the
relative atmospheric pressure inputs are appended to the result
after the dense layer and ReLU activation via a concatenation
layer. The concatenated layer output is passed to another dense
layer with 32 neurons and a ReLU activation function. The
result here is passed to a final convolution layer with one neuron
and a linear activation function to predict the wall superheat
temperature. With this structure, the model was trained on the
3588 images with their labels.
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Figure 5. Max Pooling Example

2.3. Results and Discussion

The model depicted in Fig. 3 fulfills all the requirements
necessary to train the convolution neural network to predict the
morphology class and superheat temperature. An Adam
optimizer was used in the model training. Adam stands for
adaptive moment estimator. This optimizer helps stochastic
batch processes to converge faster to an optimal solution. its
input value in this study was decreased going from 107 to 10
as needed to optimize the loss in the model prediction. In our
case, the loss strategy used for the morphology classification
was the categorical cross entropy while that for superheat
prediction was the mean absolute error. Each of these losses
was weighted equally in the optimization model. The training
batch size was set at 32. 25% of the data was used as a
validation set. The training was performed on 75% of the data.
The model converged to an average loss of 0.05 on the
validation set. The model was then tested on a new set of data
with 100 observations generated from the simulated droplet
model. Figures 6 and 7 illustrate the result obtained from the
optimized convolutional neural network tested on a new set of
unseen data. On the testing dataset in the simulated sample
images, we observed a perfect morphology classification in all
four classes of image data. Also, the wall superheat temperature
prediction performed well with a root mean square percent error
(RMSPE) of only 12% on a set of unseen data. This strong
predictive capability suggests that the approach used in this
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investigation to train the model is a promising analysis of
boiling process images. This is an indication that the model has
been able to successfully learn relevant patterns present in the
image to make accurate classifications.

Morphology Prediction on Validation Set

Spher

Predicted Label
Thin Cont

Irreg Thin

Shattered

Spher Thin Cont Irreg Thin Shattered
Actual Label

Figure 6. Morphology Classification Result on a Test
Dataset for Simulated Images
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Figure 7. Superheat Prediction on a Test Dataset for
Simulated Images with RMSPE of 12%

3. METHODS: EXPERIMENTAL DATA
3.1. Data Collection

Since the work on the simulated image yields attractive
results. It was needed to perform further investigation on
experimental data. The data was collected via a droplet
deposition experiment. A surface that exhibits a particular
contact angle 6 and wicking speed is coated on the top of a
cylindrical copper rod measuring 2.5 cm in Diameter. The
contact angles of water on the coated surfaces were measured
using a spherical cap model. On the side of the rod, about 1 mm
from the top, two holes are drilled opposite to each other for the
insertion of a thermocouple for temperature measurements.
This rod is placed on a hot plate with mineral wool insulation

of about 1 cm thick on the sides to ensure an adiabatic process.
The hot plate is adjusted to a temperature above the nucleation
temperature of water. Thermocouples are inserted in the
adequate holes of the cylindrical rod closer to the top, where the
droplet is deposited. These thermocouple temperature readings
are used to define the wall superheat temperatures. The droplet
sizes are measured using a pipette at the time of deposition. A
high-speed camera is placed above the rod to capture the droplet
boiling process. The experiment tracks the image, superheat
temperature, droplet size, and contact angle as input data. The
experiment also tracks the regime classification and heat
transfer rate as output data. A schematic of the droplet
experiment is shown in Fig. 8. The mean heat transfer rates
were calculated using Eq. (1). This equation only involves the
latent heat needed to transform the droplet into steam. The
energy used to raise the temperature of the droplet to saturation
was ignored since it is negligible when compared to the latent
heat. In this equation, ¢ is the mean heat transfer rate, p is the
density of water, V,, is the initial volume of the droplet, h;,, is
the latent heat of vaporization of water, f is the framerate of the
camera, and n is the number of frames between the droplet
getting in contact with the surface and its complete evaporation.
The framerate of the camera used in this study was 1200 frames
per second.

Pipette
Camera

Nanostructured

|
_'/ Copper

[ /:_/nsulation
\._//
yagd

Thermocouples

Hot Plate

Figure 8. Droplet Deposition Experiment
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Digital and image data were collected from this
experiment. The images were selected based on their
information richness, i.e. presence of bubbles or gradual shrink,
as captured by the camera. A sample of the image data collected
is shown in Table 1 for the different morphology considered in
this study. This table shows images for different droplet sizes at
distinct superheat temperatures. 428 image data were generated
from this experiment. This data was split into two sets. 15% of
the image data was retained as a test set to evaluate the accuracy
of the model on unseen data. The remaining 85% of the image
data were augmented using the same approach as discussed in
the simulated image data section and this set was used as a
training set. The parameter of the augmentation generator
includes random rotation of up to 5 degrees. It also includes
horizontal shift, vertical shift, shear, and zoom of up to 10%.
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Random horizontal flips were allowed to be performed on the
images as well. Empty spaces due to the image modification
were filled using the nearest pixel value strategy. The purpose
of the data augmentation is to help in generating a robust model
by deliberately adding perturbation to the image data. The data
augmentation resulted in a set of 9438 images augmented from
363 of the original images randomly chosen for model training
purposes. As discussed in the simulated section, these input
images as well as all the other values used in training the model
were preprocessed to eliminate unwanted bias toward higher
magnitude values. The images were normalized by dividing the
pixel values by 255 just like in the simulated model section.
This ensured that arrays representing images only have values
in the range of 0 to 1. The superheat temperature, droplet size,
and contact angle data are normalized by dividing by their
respective median values. The regime morphology
classification is converted to numerical value via one hot
encoding. Since the coloration of the image does not carry a
physical interpretation in this experiment, all the original
images were converted to grayscale. This conversion
significantly reduces the computational cost for training the
model since it deals with only one layer array representing the
image. The images are then rescaled to 100x100 pixels to
further reduce computational cost. At this resolution, most of
the important features of the image are still preserved. Table 2
shows the range of data values captured during the experiments.

Variable Range
Superheat Temperature 5-40 [K]
Droplet Size 5-8[uL]
Contact Angle 4.41-4.88 [°]
Mean Heat Transfer Rate 5.02 — 89.3 [W]

Table 2. Range of Values Used in the Study

3.2. Network Architecture

Three cases were examined to understand CNN’s potential
in levering image features for improved mean heat transfer rate
prediction. Since the CNN architecture for the simulated data
yielded promising results, an adaptation of the architecture was
used for each of the cases examined. The three cases are
summarized in Table 3. Case A examines the architecture on its
strength with information unrelated to the appearance of the
droplet. Case B examines the architecture with information
unrelated to the temperature of the system. Case C examines the
architecture considering both the appearance of the droplet and
the temperature of the system.

Conduction

Vigorous Nucleation

| Isolated Bubble

\

}

-
Size = 5 nLAT = 20K

Size =5 nLAT = 8K

i Y »
Size = 6 pnLAT = 20K

*hic B

Size =7 nLAT = 5K

Size =7 pnLAT = 20K

Size = 8 uLAT = 5K

Size = 8 uLAT = 20K

Size = 8 uLAT = 35K

Case A Case B Case C

Input: Input: Input:

- Superheat - Image Data - Image Data
Temperature

- Initial Droplet - Initial Droplet - Initial Droplet
Size Size Size

- Contact Angle - Contact Angle - Contact Angle

- Superheat
Temperature

Output: Output: Output:

- Mean Heat - Mean Heat - Mean Heat
Transfer Rate Transfer Rate Transfer Rate

- Superheat - Nucleation
Temperature Regime

Table 3. Model Cases Highlighting the Inputs and Outputs

Considered.

3.2.1. Case A

Case A’s architecture aims to produce a model that does
not take any information related to the appearance of the
droplet. Therefore, all paths taken by the image as well as the
morphology path must be eliminated from the previous CNN
architecture. This adaptation aims at establishing a benchmark
for the system without image input. The goal is to see whether
the wall superheat temperature, contact angle, and droplet size

Table 1. Droplet Deposition Image Data of Different
Droplet Sizes for each Regime Considered. AT is
the wall superheat T,, — Ty, -
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used as input can attain a better solution than one that considers
an input image. Figure 9 depicts the resulting architecture due
to the elimination of the image input and morphology path.

T: Superheat Temperature
S: Droplet Size
A: Contact Angle
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Figure 9. CNN Architecture for Case A

As shown above, eliminating the path taken by the image
input results in a simple fully connected neural network with 3
numerical variables as input and one variable as output data.
The 3 input data pass through a dense layer with 32 neurons that
has a ReLU activation function. From this dense layer, the data
moves to the final layer for output, which is another dense layer,
but with a 1 neuron that has a linear activation function. This
architecture has no convolution region since it does not process
image information. With this architecture, the training data set
described in section 3.1 was used to train a model. After training
the model, we obtain the result shown in Fig. 10.

The RMSPE was evaluated on both the training and testing
datasets and was found to be 13.2% and 13.6% respectively.
These results demonstrate that even without information about
the droplet appearance outstanding prediction can be achieved.
Also, Fig. 11 shows a surface plot generated to predict the mean
heat transfer rate for Case A. The contact angle for the plot was
fixed at 4.65°. This plot spans the range of values for the droplet
sizes and temperature values studied in this paper. It provides a
full picture of the predictive model behavior throughout the
droplet sizes and superheat temperature space. From the surface
plot, we can observe that the droplet size has limited effect on
the mean heat transfer rate at low superheat, but the effect
gradually increases at higher superheat values.
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Figure 10. Mean Heat Transfer Rate Prediction results for
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Figure 11. Surface plot prediction of mean heat transfer
rate for Case A.
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Mean Heat Transfer Rate Model Evaluation (training data)
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In this section, the objective is to evaluate how well a 7 o ./
model can predict the mean heat transfer rate using an N ,l’ ’
architecture similar to our preliminary study on simulated ’l" ¢
images without information about the system’s temperature. .
The resulting architecture is depicted in Fig. 12. This
architecture is configured to take a 100x100 array
representation of the image data, the droplet size variable, and
the contact angle variable as input, and it generates the wall
superheat temperature and mean heat transfer rate as output.
The image data passes through a 3x3 convolution layer with 32 , ‘
filters and a same padding. From here, a ReLU activation B e Heat Tansfer Rate W] o
function is applied to this convolution output to introduce non- (a)
linearity. A 2x2 max pooling with a stride of 2 and a same —
padding is applied to summarize the feature captured by the e 5:?;3‘;2 RMsPE=8.2% -8
convolution layer. This set of three operations is repeated one a0 ..’
more time. As the data enters the fully connected region, the
output from the convolution region is flattened. From here it
passes through a dense layer with 32 neurons and a ReLU
activation function. A skip connection is applied to concatenate
the droplet size and contact angle input to the dense layer
output. The concatenated data flows through another dense
layer with 32 neurons and a ReLU activation function. From 204 e
here, the data is connected to the 2 final dense layers with one .
neuron outputting the superheat temperature and mean heat .F’.
transfer rate. The result from training a model with this 20 w0 00 50
architecture is shown in Fig. 13 for the mean heat transfer rate. (b) True Heat Transfer Rate [W]
The RMSPE was evaluated on both the training and testing ) .
datasets and was found to be 6.70% and 8.21% respectively. Figure 13. Mean Heat Transfer Rate Prediction Results for
This result demonstrates that the model had strong predictive Case B on (a) Training Dataset and (b) Testing Dataset
capability and that the model was able to capture features in the
image data to generate predictions. From this result, it is
suggested that the model might also accurately predict the
superheat temperature. Figure 14 shows the comparison
between the superheat temperature prediction against its true
value both for the training and testing datasets.
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Figure 12. CNN Architecture for Case B.
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Figure 14. Superheat Temperature Prediction for Case B

on (a) Training and (b) Testing Dataset

T: Superheat Temperature
S: Droplet Size
A: Contact Angle

Conv2D + Relu
(3x3, 32 filters)

The model also had accurate superheat temperature
predictions for both the training and testing datasets with a
RMSPE of 6.82% and 15.5% respectively. One may inquire
whether having both droplet appearance and temperature
information as input data could generate better predictions.
This question is answered by training a model on Case C’s
architecture.

3.23 CaseC

In this section, the focus is to explore whether combining
information about the droplet appearance and the physical
condition of the system can generate the strongest results
among all cases. Figure 15 is the resulting architecture used in
Case C. The CNN architecture here is a replica of the one used
in the simulated images with few adjustments to account for
desired input and output configurations.

This architecture is almost identical to the one used on the
simulated image in Fig. 3. Case C’s architecture differs from
the architecture used on the simulated images on the input and
output layer structures. The simulated model’s architecture had
2 inputs, a 200x50 array representing the image and the relative
pressure information, while Case C’s architecture consists of 4
inputs, a 100x100 array representing the image, wall superheat
temperature, droplet size, and contact angle. In addition, the
output structure of the simulated images consists of a
morphology with four classes and wall superheat temperature
prediction while the output structure in Case C consists of a
nucleation regime with three classes and a mean heat transfer
rate. Every other part of the architectural structure for Case C
was kept the same as the one used for the model simulation. The
prediction for the model train in Case C is depicted in Fig. 16.
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Figure 16. Mean Heat Transfer Rate Prediction results for
Case C on (a) Training and (b) Testing Dataset.

The RMSPE was evaluated on both the training and testing
datasets and was found to be 3.29% and 7.17% respectively.
This result clearly shows an improved prediction accuracy as
compared to the result obtained in Case A and Case B for
predicting the mean heat transfer rate. From this result, it is
believed that the model should also produce highly accurate
morphology predictions. Figure 17 summarizes this prediction
on both the training and testing datasets. It shows that the model
predicts morphologies for all the images in the entire training
dataset with 99% accuracy. The performance on the kept testing
dataset misclassified 2 out of 65 images. This is an indication
that the model has been able to successfully learn relevant
patterns present in the image to make accurate classifications.
The model for Case C was further analyzed for any distinct
pattern in the data space using a stem plot of the predicted mean
heat transfer rate with its corresponding regime class. From the
plot shown in Figure 18, we observed trends similar to that of
the surface plot for model A. Specifically, the difference in
mean heat transfer along the droplet size axis seems to be more
significant as the superheat temperature increases.
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4. EXAMINING THE USE OF IMAGE DATA AS A
SUPERHEAT TEMPERATURE SENSOR FOR
THE CASE A MODEL
In this section of the study, a new CNN model was trained

to behave similarly to a temperature sensor. The prediction

from this model was subsequently used in model A as superheat
temperature input to make predictions of the mean heat transfer
rate. As shown in Figure 19, the architecture of the model
developed here is very similar to that of Case B explored in
section 3 above. This architecture is configured to take a
100x100 array representation of the image data as input, and it
generates a prediction of the wall superheat temperature as
output. The image data passes through a 3x3 convolution layer
with 32 filters and a same padding. From here, a ReLU
activation function is applied to this convolution output to

introduce non-linearity. A 2x2 max pooling with a stride of 2

and a same padding is applied to summarize the feature

captured by the convolution layer. This set of three operations
is repeated one more time. As the data enters the fully connected
region, the output from the convolution region is flattened.

From here it passes through a dense layer with 32 neurons and

a ReLU activation function. The data flows through an

additional dense layer with 32 neurons and a ReLU activation

function. From here, the data is connected to the final dense
layer with one neuron outputting the superheat temperature.
After training the CNN model using the same training
dataset as the ones discussed in the previous section, we were
able to get a superheat prediction with a RMSPE of 18.6% on
the same testing dataset as the ones discussed in the previous
section. Figure 20 depicts the observed fit to the testing dataset.

These predicted superheat temperatures are then used as input

temperature values to the Case A model. Figure 21 shows the

observed result of the Mean Heat Transfer Rate as compared to

the corresponding actual data value. This prediction has a

RMSPE of 16.4%. This result implies that a CNN model can be

used as a means of sensing temperature for applications such as

predicting mean heat transfer rates.
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5. COMPARING CASE RESULTS
AND CONCLUSIONS

A convolution neural network can be a powerful tool with
applications in many fields. In the field of boiling heat transfer,
this tool can be used to capture information hidden in the regime
morphology to predict the physical properties of a system
including mean heat transfer rate. Using the Python Keras
functional API, it was possible to combine convolution layers
and fully connected dense layers to produce a high-performing
model capable of predicting the mean heat transfer rate,
superheat temperature, and morphology as needed.

Four models were developed throughout this study to better
understand the potential of a trained CNN model on boiling heat
transfer processes. The model developed for the simulated
droplet images demonstrated the capability of taking array
representations of images and relative pressure values as input
to predict the morphology classes and superheat temperature
values. All the observations in the testing dataset were
accurately classified by the model and the superheat
temperature prediction had a RMSPE of 12%. Using
experimental data in three distinct cases, three models were
produced with high predictive capabilities. Case A’s model was
able to take in superheat temperature, droplet size, and contact
angle values as input to predict the mean heat transfer rate with
a RMSPE of 13.6% on the testing data. In Case B, the inputs
were the droplet image, the droplet size, and the contact angle.
These variables were used to predict the mean heat transfer rate
and superheat temperatures with a RMSPE of 8.2% and 15.5%
respectively on the testing data set. The model developed in
Case C was the best-performing model. The model takes a
droplet image, droplet volume, contact angle, and superheat
temperature as input values. These values are used to predict
the nucleation regime and the mean heat transfer rate. The
nucleation regime had only two data misclassified out of 65
while the mean heat transfer rate was predicted with a RMSPE
of 7.2%.

Our results demonstrate that the convolution neural
network design, with a skip connection, developed in this study
is a very effective convolution neural network (CNN) design
that can be trained to predict boiling heat transfer performance
with combined digital data and image information obtained in
experiments. This type of modeling approach may be useful in
a wide variety of boiling processes, particularly for system
geometries that may complicate the liquid-vapor morphology
of the system. Our results also indicate that images of the
boiling two-phase morphology during deposited droplet
vaporization on superheated surfaces contain information about
the process that correlates with the heat transfer performance.
If the image information is included in training a CNN model,
the image information overlaps with wall superheat
information. We found that we could train the model to predict
the vaporization mean heat transfer rate with good accuracy
using either the superheat or the image information. Using
surface superheat information and image information combined
improved model accuracy slightly in this case because the
information in these two inputs is strongly (but not perfectly)

correlated. The association of two-phase morphology with
superheat level for pool boiling has been established
empirically based on the trends and regimes in conventional
boiling curves. Regimes (conduction-dominated pre-onset of
nucleate boiling, fully-developed nucleate boiling, transition
boiling, etc.) are generally acknowledged to correspond to
specific ranges of surface superheat, each having a
characteristic morphology. The study summarized here has
demonstrated the correlation between surface superheat and
morphology in a more direct way based on a data-science
analysis. This approach may offer a means of developing a
predictive model for boiling heat transfer in more complicated
systems in which morphology is not simply correlated with
surface superheat, and may be a useful research tool in such
cases.
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