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Abstract

Multilabel ranking is a central task in machine learning. However, the most
fundamental question of learnability in a multilabel ranking setting with relevance-
score feedback remains unanswered. In this work, we characterize the learnability
of multilabel ranking problems in both batch and online settings for a large family
of ranking losses. Along the way, we give two equivalence classes of ranking losses
based on learnability that capture most losses used in practice.

1 Introduction

Multilabel ranking is a supervised learning problem where a learner is presented with an instance
x → X and is required to output a ranking of K different labels in decreasing order of relevance to
x. This is in contrast with multilabel classification where given an instance x → X , the learner is
tasked with predicting a subset of the K labels without any explicit ordering. Multilabel ranking
is a canonical learning problem with a wide range of applications to text categorization, genetics,
medical imaging, social networks, and visual object recognition [Joachims, 2005, Schapire and
Singer, 2000, McCallum, 1999, Clare and King, 2001, Baltruschat et al., 2019, Wang and Sukthankar,
2013, Bucak et al., 2009, Yang et al., 2016]. Recent years have seen a surge in the development of
multilabel ranking methods with strong practical and theoretical guarantees [Schapire and Singer,
2000, Dembczynski et al., 2012, Gong et al., 2013, Bucak et al., 2009, Jung and Tewari, 2018, Gao
and Zhou, 2011, Koyejo et al., 2015, Zhang and Zhou, 2013, Korba et al., 2018]. A related line
of work has studied consistency for the convex surrogates of natural ranking losses [Duchi et al.,
2010, Buffoni et al., 2011, Gao and Zhou, 2011, Ravikumar et al., 2011, Calauzenes et al., 2012,
Dembczynski et al., 2012]. Despite this vast literature on multilabel ranking, the fundamental question
of when a multilabel ranking problem is learnable remains unanswered.

Understanding when a hypothesis class is learnable is a fundamental question in Statistical Learn-
ing Theory. For binary classification, the finiteness of the Vapnik–Chervonenkis (VC) dimension
is both sufficient and necessary for Probably Approximately Correct (PAC) learning [Vapnik and
Chervonenkis, 1974, Valiant, 1984]. Likewise, the finiteness of the Daniely-Shwartz (DS) dimension
characterizes multiclass PAC learnability Daniely and Shalev-Shwartz [2014], Brukhim et al. [2022].
In the online setting, the Littlestone dimension [Littlestone, 1987] characterizes the online learnability
of a binary hypothesis class and the multiclass Littlestone dimension [Daniely et al., 2011] charac-
terizes online multiclass learnability. Unlike classification, a distinguishing property of multilabel
ranking is the mismatch between the predictions the learner makes and the feedback it receives. In
particular, a learner is required to produce a permutation that ranks the relevance of the labels but only
receives a relevance-score vector as feedback. This feedback model is standard in multilabel ranking
since obtaining full permutation feedback is generally costly [Liu et al., 2009]. As a result, unlike the
0-1 loss in classification, there is no canonical loss function in ranking. Together, these two issues
create barriers for existing techniques used to prove learnability, such as the agnostic-to-realizable
reductions from Hopkins et al. [2022] and Raman et al. [2023], to readily extend to ranking.
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In this paper, we characterize the batch and online learnability of a ranking hypothesis class H ↑ S
X

K
under relevance-score feedback, where SK is the set of all permutations over [K] = {1, ...,K}. In
doing so, we make the following contributions.

• We show that a ranking hypothesis class H embeds K2 different binary hypothesis classes
H

j
i for i, j → [K], where hypotheses in H

j
i answer whether the label i should be ranked in

the top j. Our main result relates the learnability of H to the learnability of Hj
i ’s.

• We define two families of ranking loss functions that capture most if not all ranking losses
used in practice. We show that these families are actually equivalence classes - the same
characterization of batch and online learnability holds for every loss in that family.

• By relating the learnability of H to the learnability of binary hypothesis classes Hj
i , we show

that existing combinatorial dimensions, like the VC and Littlestone dimension, continue to
characterize learnability in the multilabel ranking setting. This allows us to prove that linear
ranking hypothesis classes are learnable in the batch setting.

A unifying theme throughout the paper is our ability to constructively convert a learning algorithm A

for H into a learning algorithm A
j
i for Hj

i for each i, j → [K] and vice versa. To do so, our proof
techniques involve adapting the agnostic-to-realizable reduction for batch and online classification,
proposed by Hopkins et al. [2022] and Raman et al. [2023] respectively, to ranking.

2 Preliminaries and Notation

Let X denote the instance space, SK the set of permutations over labels [K] := {1, ...,K}, and
Y = {0, 1, ..., B}

K the target space for some K,B → . We highlight that the set of labels [K] is
fixed beforehand and does not depend on the instance x → X . This is to be contrasted with subset
ranking, the set of labels can change depending on the instance x → X .

We refer to an element y → Y as a relevance-score vector that indicates the relevance of each of the
K labels, where B indicates the highest relevance and 0 indicates the lowest relevance. Throughout
the paper, we treat a permutation ω → SK as a vector in {1, ...,K}

K that induces a ranking of the
K labels in decreasing order of relevance. Accordingly, for an index i → [K], we let ωi → [K]
denote the rank of label i. Likewise, given an index i → [K], we let yi denote the relevance of label
i. In addition, it will be useful to define a mapping from SK to {0, 1}K . In particular, we define
BinRel(·, ·) : SK ↓ [K] ↔ {0, 1}K as an operator that given a permutation (ranking) ω → SK and
threshold p → [K], outputs a bit string b → {0, 1}K s.t. bi = {ωi ↗ p}.

Ranking Equivalences. Our construction of ranking loss families in Section 3 requires different
notions of equivalence between permutations (rankings) in SK . To that end, we say that ω = ω̂

if and only if for all i → [K], ωi = ω̂i. On the other hand, we say ω
p
= ω̂ if and only if

{i : ωi ↗ p} = {i : ω̂i ↗ p}. That is, two rankings are p-equivalent if the set of labels they rank in

the top-p are equal. Finally, we say ω
[p]
= ω̂ if and only if for all j → [p], {i : ωi ↗ j} = {i : ω̂i ↗ j}.

That is, two rankings are [p]-equivalent if not only the set but also the order of labels they rank in the
top-p are equal.

Ranking Hypothesis. A ranking hypothesis h → H ↑ S
X

K maps instances in X to a ranking
(permutation) in SK . Given an instance x → X , one can think of h(x) as h’s ranking of the K

different labels in decreasing order of relevance. For any ranking hypothesis h, we let hi : X ↔ [K]
denote its restriction to the i’th coordinate output. Accordingly, for an instance x → X , hi(x)
gives the rank that h assigns to label i. Given a ranking hypothesis class H ↑ S

X

K and any
i, j → [K], we define its binary threshold-restricted hypothesis class H

j
i = {h

j
i : h → H} where

h
j
i (x) = {hi(x) ↗ j}. We can think of hypotheses in H

j
i as providing binary responses to queries

of the form: “for instance x, should label i ranked in the top j?" These threshold-restricted classes
are central to our characterization of learnability in both the batch and online learning settings.

Batch Learnability. In the batch setting, we are interested in characterizing the learnability of a
ranking hypothesis class H under a model similar to the classical PAC model [Valiant, 1984].
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Definition 1 (Agnostic Ranking PAC Learnability). A ranking hypothesis class H ↑ S
X

K is agnostic

PAC learnable w.r.t. loss ε : SK ↓ Y ↔ R→0, if there exists a function m : (0, 1)2 ↓ N ↔ N and a

learning algorithm A : (X ↓ Y)ω ↔ S
X

K with the following property: for every ϑ, ϖ → (0, 1) and for

every distribution D on X ↓ Y , running algorithm A on n ↘ m(ϑ, ϖ,K) iid samples from D outputs

a predictor g = A(S) such that with probability at least 1≃ ϖ over S ⇐ D
n

,

ED[ε(g(x), y)] ↗ inf
h↑H

ED[ε(h(x), y)] + ϑ.

If D is restricted to the class of distributions such that infh↑H ED[ε(h(x), y)] = 0, then we say we
are in the realizable setting. Note that unlike in classification, realizability in the multilabel ranking
setting is loss dependent.

Online Learnability. In the online setting, an adversary plays a sequential game with the learner
over T rounds. In each round t → [T ], an adversary selects a labeled instance (xt, yt) → X ↓ Y and
reveals xt to the learner. The learner makes a (potentially randomized) prediction ω̂t → SK . Finally,
the adversary reveals the true relevance-score vector yt, and the learner suffers the loss ε(ω̂t, yt),
where ε is some pre-specified ranking loss function. Given a ranking hypothesis class H ↑ S

X

K ,
the goal of the learner is to output predictions ω̂t such that its cumulative loss is close to the best
possible cumulative loss over hypotheses in H. A hypothesis class is online learnable if there exists
an algorithm such that for any sequence of labeled examples (x1, y1), ..., (xT , yT ), the difference in
cumulative loss between its predictions and the predictions of the best possible function in H is small.
Definition 2 (Agnostic Online Ranking Learnability). A ranking hypothesis class H ↑ S

X

K is

agnostic online learnable w.r.t. loss ε, if there exists an (potentially randomized) algorithm A such

that for any adaptively chosen sequence of labeled examples (xt, yt) → X ↓Y , the algorithm outputs

A(xt) → SK at every iteration t → [T ] such that its expected regret,

R(T,K) := E
[

T∑

t=1

ε(A(xt), yt)≃ inf
h↑H

T∑

t=1

ε(h(xt), yt)

]
,

is a non-decreasing, sub-linear function of T . Here, the expectation is taken with respect to the

randomness of the algorithm A.

If it is further guaranteed that there exists a hypothesis hω
→ H such that

∑T
t=1 ε(h

ω(xt), yt) = 0,
then we say we are in the realizable setting. Again, realizability is loss dependent.

3 Ranking Loss Families

In statistical learning theory, we often characterize learnability with respect to a loss function. Unlike
the 0-1 loss in classification, there is no canonical loss function in multilabel ranking. Accordingly, we
define two general families of ranking loss functions in this section and later characterize learnability
with respect to all losses in these families. In Appendix A, we show that many of the ranking metrics
used in practice (e.g. Pairwise Rank Loss, Discounted Cumulative Gain, Reciprocal Rank, Average
Precision, Precision@p, etc.) fall into one of these two families.

On a high level, we can classify ranking losses into two main groups: (A) those losses that care about
both the order and magnitude of the relevance scores within the top-p ranked labels and (B) those
losses that only care about the magnitude of the relevance scores within the top-p ranked labels. Our
goal will be to define a loss family for both groups A and B. To do so, we start by identifying a
canonical ranking loss that lies in each group. For group A, the normalized sum loss@p,

ε
@p
sum(ω, y) =

K∑

i=1

min(ωi, p+ 1)yi ≃ Z
p
y

captures both the order and magnitude of the relevance scores only for the top-p ranked labels.
Here, Zp

y is an appropriately chosen normalization factor that only depends on p and y such that
minε↑SK ε

@p
sum(ω, y) = 0. For Group B, the normalized precision loss@p,

ε
@p
prec(ω, y) = Z

p
y ≃

K∑

i=1

{ωi ↗ p}y
i
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cares only about the magnitude of relevance scores in the top-p ranked labels. Again, Zp
y is an

appropriately chosen normalization constant that only depends on p and y such that the mini-
mum loss is 0. The form of ε@p

prec differs from ε
@p
sum because

∑K
i=1 {ωi ↗ p}y

i is a gain whereas∑K
i=1 min(ωi, p+ 1)yi is a loss.

Next, we build loss families around ε
@p
sum and ε

@p
prec. For ε@p

sum, consider the family:

L(ε@p
sum) = {ε →

SK↓Y : ε = 0 if and only if ε@p
sum = 0}⇒{ε → SK↓Y : ω

[p]
= ω̂ =⇑ ε(ω, y) = ε(ω̂, y)}.

By definition, L(ε@p
sum) contains those ranking losses that are (1) zero-matched with ε

@p
sum and (2)

remain unchanged for any two predicted rankings (permutations) that are [p]-equivalent. The second
constraint is needed to ensure that losses in L(ε@p

sum) only depend on the order and set of labels that ω
ranks in the top-p. Likewise, we can construct a similar loss family around ε

@p
prec as follows:

L(ε@p
prec) = {ε →

SK↓Y : ε = 0 if and only if ε@p
prec = 0}⇒{ε → SK↓Y : ω

p
= ω̂ =⇑ ε(ω, y) = ε(ω̂, y)}.

The set L(ε@p
prec) contains those ranking losses that are (1) zero-matched with ε

@p
prec and (2) remain

unchanged for any two predicted rankings (permutations) that are p-equivalent. The second constraint
is needed to ensure that losses in L(ε@p

prec) only depend on the set of labels that ω ranks in the top-p. A
major contribution of this paper is showing that both L(ε@p

sum) and L(ε@p
prec) are actually equivalence

classes - the same characterization of learnability holds for every loss in that family.

4 Batch Multilabel Ranking

In this section, we characterize the agnostic PAC learnability of hypothesis classes H ↑ S
X

K with
respect to both L(ε@p

sum) and L(ε@p
prec). Our main results, stated below as two theorems, relate the

learnability of H to the learnability of the threshold-restricted classes Hj
i .

Theorem 4.1. A hypothesis class H ↑ S
X

K is agnostic PAC learnable w.r.t ε → L(ε@p
sum

) if and only if
for all i → [K] and j → [p], Hj

i is agnostic PAC learnable w.r.t the 0-1 loss.

Theorem 4.2. A hypothesis class H ↑ S
X

K is agnostic PAC learnable w.r.t ε → L(ε@p
prec

) if and only if
for all i → [K], Hp

i is agnostic PAC learnable w.r.t the 0-1 loss.

Since VC dimension characterizes the learnability of binary hypothesis classes under the 0-1 loss,
an important corollary of Theorems 4.1 and 4.2 is that finiteness of VC(Hj

i )’s, for the appropriate
i, j → [K]↓ [p], is necessary and sufficient for agnostic ranking PAC learnability. Later on, we use
this fact to prove that linear ranking hypothesis classes are agnostic ranking PAC learnable.

We start with the proof of Theorem 4.1, which follows in three steps. First, we show that if for all
(i, j) → [K] ↓ [p], Hj

i is agnostic PAC learnable w.r.t 0-1 loss, then Empirical Risk Minimization
(ERM) is an agnostic PAC learner for H w.r.t ε@p

sum. Next, we show that if H is agnostic PAC learnable
w.r.t ε@p

sum, then H is agnostic PAC learnable w.r.t any loss ε → L(ε@p
sum). Our proof of the latter uses the

realizable to agnostic conversion from Hopkins et al. [2022]. Finally, we prove the necessity direction
- if H is agnostic PAC learnable w.r.t an arbitrary ε → L(ε@p

sum), then for all (i, j) → [K]↓ [p], Hj
i is

agnostic PAC learnable w.r.t 0-1 loss. The proof of necessity direction also uses the realizable to
agnostic conversion from Hopkins et al. [2022]. The proof of Theorem 4.2 follows exactly the same
way as Theorem 4.1 with some minor changes. Thus, we only focus on the proof of Theorem 4.1 in
this section and defer all discussion of Theorem 4.2 to Appendix C.3.

We begin with Lemma 4.3, which asserts that if Hj
i is agnostic PAC learnable for all (i, j) → [K]↓ [p],

then ERM is an agnostic PAC learner for H w.r.t ε@p
sum.

Lemma 4.3. If for all i → [K] and j → [p], Hj
i is agnostic PAC learnable w.r.t the 0-1 loss, then

ERM is an agnostic PAC learner for H ↑ S
X

K w.r.t ε
@p
sum

.

The proof of Lemma 4.3 exploits the nice structure of ε
@p
sum by upperbounding the empirical

Rademacher complexity of the loss class ε
@p
sum ⇓ H = {(x, y) ⇔↔ ε

@p
sum(h(x), y) : h → H)} and
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showing that it vanishes as the sample size n becomes large. Then, standard uniform convergence
arguments outlined in Proposition C.1 imply that ERM is an agnostic PAC learner for H w.r.t ε@p

sum.
The full proof is in Appendix C.

Since arbitrary losses in L(ε@p
sum) may not have nice analytical forms, Lemma 4.4 relates the learnabil-

ity of an arbitrary loss ε → L(ε@p
sum) to the learnability of ε@p

sum.

Lemma 4.4. If H ↑ S
X

K is agnostic PAC learnable w.r.t ε
@p
sum

, then H is agnostic PAC learnable w.r.t

any ε → L(ε@p
sum

).

Proof. (of Lemma 4.4) Fix ε → L(ε@p
sum). Let a = minε,y{ε(ω, y) | ε(ω, y) ↖= 0} and b =

maxε,y ε(ω, y). We need to show that if H is agnostic PAC learnable w.r.t ε@p
sum, then H is agnostic

PAC learnable w.r.t ε. We will do so in two steps. First, we will show that if A is an agnostic
PAC learner for ε@p

sum, then A is also a realizable PAC learner for ε. Next, we will show how to
convert a realizable PAC learner for ε into an agnostic PAC learner for ε in a black-box fashion. The
composition of these two pieces yields an agnostic PAC learner for H w.r.t ε.

Realizable PAC learnability of H w.r.t ε. If H is agnostic PAC learnable w.r.t ε@p
sum, then there

exists a learning algorithm A with sample complexity m(ϑ, ϖ,K) s.t. for any distribution D over
X ↓ Y , with probability 1≃ ϖ over a sample S ⇐ D

n of size n ↘ m(ϑ, ϖ,K), the output predictor
g = A(S) achieves D

[
ε
@p
sum(g(x), y))

]
↗ infh↑H D

[
ε
@p
sum(h(x), y))

]
+ϑ. In the realizable setting,

we are further guaranteed that there exists a hypothesis hω
→ H s.t. D [ε(hω(x), y))] = 0. Since

ε → L(ε@p
sum), this also implies that D

[
ε
@p
sum(hω(x), y))

]
= 0. Therefore, under realizability and the

fact that ε ↗ b ε
@p
sum, we have D [ε(g(x), y))] ↗ bϑ. This completes the first part of the proof as we

have shown that A is also a realizable PAC learner for H w.r.t ε with sample complexity m( ϑb , ϖ,K).

Realizable-to-agnostic conversion. Now, we show how to convert the realizable PAC learner A for
ε into an agnostic PAC learner for ε in a black-box fashion. For this step, we will extend the agnostic-
to-realizable reduction proposed by Hopkins et al. [2022] to the ranking setting by accommodating
the mismatch between the range space of H and the label space Y . In particular, we will show that
Algorithm 1 below converts a realizable PAC learner for ε into an agnostic PAC learner for ε. Note
that although input A is a realizable learner, the distribution D may not be realizable.

Algorithm 1 Agnostic PAC learner for H w.r.t. ε
Input: Realizable PAC learner A for H, unlabeled and labeled samples SU ⇐ D

n
X

and SL ⇐ D
m

1 For each h → H|SU
, construct a dataset

S
h
U = {(x1, ỹ1), ..., (xn, ỹn)} s.t. ỹi ⇐ Unif{BinRel(h(xi), 1), ...,BinRel(h(xi), p)}

2 Run A over all datasets to get C(SU ) :=
{
A
(
S
h
U

)
| h → H|SU

}

3 Return ĝ → C(SU ) with the lowest empirical error over SL w.r.t. ε.

Let hω = argminh↑H D [ε(h(x), y)] denote the optimal predictor in H w.r.t D. Consider the sample
S
hω

U and let g = A(Shω

U ). We can think of g as the output of A run over an i.i.d sample S drawn from
D

ω, a joint distribution over X↓Y defined procedurally by first sampling x ⇐ DX , then independently
sampling j ⇐ Unif([p]), and finally outputting the labeled sample (x,BinRel(hω(x), j)). Note that
D

ω is indeed a realizable distribution (realized by h
ω) w.r.t both ε and ε

@p
sum. Recall that mA(

ϑ
b , ϖ,K)

is the sample complexity of A. Since A is a realizable learner for H w.r.t ε, we have that for
n ↘ mA(

aϑ
2b2p , ϖ/2,K), with probability at least 1≃ ϖ

2 , Dω [ε(g(x), y)] ↗ aϑ
2bp .

Next, by Lemma E.1, we have ε(g(x), y) ↗ ε(hω(x), y)+ bp
a j↔Unif([p]) [ε(g(x),BinRel(hω(x), j))]

pointwise. Taking expectations on both sides of the inequality gives

D [ε(g(x), y)] ↗ D [ε(hω(x), y)] +
bp

a
x↔D

[
j↔Unif([p]) [ε(g(x),BinRel(hω(x), j))]

]

↗ D [ε(hω(x), y)] +
ϑ

2
.
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The last inequality follows from the definition of D
ω, namely Dω [ε(g(x), y)] =

x↔DX j↔Unif([p]) [ε(g(x),BinRel(hω(x), j))]. This shows that C(SU ) contains a hypothesis g

that generalizes well with respect to D. Now we want to show that the predictor ĝ returned in
step 4 also has good generalization. Crucially, observe that C(SU ) is a finite hypothesis class with
cardinality at most 2nK . By standard Chernoff and union bounds, with probability at least 1≃ ϖ/2,
the empirical risk of every hypothesis in C(SU ) on a sample of size ↘

8
ϑ2 log

4|C(SU )|
ϖ is at most ϑ/4

away from its true error. So, if m = |SL| ↘
8
ϑ2 log

4|C(SU )|
ϖ , then with probability at least 1≃ ϖ/2,

1

|SL|

∑

(x,y)↑SL

ε(g(x), y) ↗ ED [ε(g(x), y)] +
ϑ

4
↗ D [ε(hω(x), y)] +

3ϑ

4
.

Since ĝ is the ERM on SL over C(S), its empirical risk can be at most D [ε(hω(x), y)] + 3ϑ
4 . Given

that the population risk of ĝ can be at most ϑ/4 away from its empirical risk, we have that

ED[ε(ĝ(x), y)] ↗ D [ε(hω(x), y)] + ϑ.

Applying union bounds, the entire process succeeds with probability 1≃ ϖ. We can upper bound the
sample complexity of Algorithm 1, denoted n(ϑ, ϖ,K), as

n(ϑ, ϖ,K) ↗ mA

(
aϑ

2b2p
, ϖ/2,K

)
+O

(
1

ϑ2
log

|C(SU )|

ϖ

)

↗ mA

(
aϑ

2b2p
, ϖ/2,K

)
+O

(
KmA(

aϑ
2b2p , ϖ/2,K) + log 1

ϖ

ϑ2


,

where we use |C(SU )| ↗ 2
KmA( aε

2b2p
,ϖ/2,K). This shows that Algorithm 1 is an agnostic PAC learner

for H w.r.t ε.

Finally, Lemma 4.5 gives the necessity direction of Theorem 4.1.

Lemma 4.5. If a hypothesis class H ↑ S
X

K is agnostic PAC learnable w.r.t ε → L(ε@p
sum

), then H
j
i is

agnostic PAC learnable w.r.t the 0-1 loss for all (i, j) → [K]↓ [p].

Like the sufficiency proofs, the proof of Lemma 4.5 is constructive. Given an agnostic PAC learner
for H w.r.t ε, we construct an agnostic PAC learner for Hj

i w.r.t 0-1 loss using a slight modification of
Algorithm 1. We defer the full proof to Appendix C since the analysis is similar to that of Algorithm
1. Together, Lemmas 4.3, 4.4 and 4.5 imply Theorem 4.1.

We conclude this section by giving a concrete application of our characterization. Consider the class
of ranking-hypotheses H = {x ⇔↔ argsort(Wx) : W →

K↓d
} that compute rankings by sorting

scores, in descending order, obtained from a linear function of the input features. Lemma 4.6, whose
proof is in Appendix B, computes the VC dimension of Hj

i for an arbitrary i, j → [K].

Lemma 4.6. Let H = {x ⇔↔ argsort(Wx) : W →
K↓d

} be a linear ranking hypothesis class.

Then for all i, j → [K], VC(Hj
i ) = Õ(Kd), where Õ hides logarithmic factors of d and K.

Combining Lemma 4.6 with Theorems 4.1 and 4.2 shows that linear ranking hypothesis classes are
agnostic ranking PAC learnable w.r.t to all losses in L(ε@p

sum)↙L(ε@p
prec). More generally, in Appendix B

we give a dimension-based sufficient condition under which generic score-based ranking hypothesis
classes are agnostic ranking PAC learnable.

5 Online Multilabel Ranking

We now move to the online setting and characterize the online learnability of hypothesis classes
H ↑ S

X

K with respect to both L(ε@p
sum) and L(ε@p

prec). As in the batch setting, our characterization
relates the learnability of H to the learnability of the threshold-restricted classes Hj

i .

Theorem 5.1. A hypothesis class H ↑ S
X

K is agnostic online learnable w.r.t ε → L(ε@p
sum

) if and only
if for all i → [K] and j → [p], Hj

i is agnostic online learnable w.r.t the 0-1 loss.
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Theorem 5.2. A hypothesis class H ↑ S
X

K is agnostic online learnable w.r.t ε → L(ε@p
prec

) if and only
if for all i → [K], Hp

i is agnostic online learnable w.r.t the 0-1 loss.

Since the Littlestone dimension characterizes the online learnability of binary hypothesis classes
under the 0-1 loss, an important corollary of Theorems 5.1 and 5.2 is is that finiteness of Ldim(Hj

i ),
for the appropriate i, j → [K]↓ [p], is necessary and sufficient for agnostic online ranking learnability.

We now begin the proof of Theorem 5.1. Since the proof of Theorem 5.2 follows a similar trajectory,
we defer all discussion of Theorem 5.2 to Appendix D.2. Unlike Theorem 4.1 in the batch setting,
we prove the sufficiency and necessity directions of Theorem 5.1 directly. We chose this direct
path because, unlike the batch setting, sequential Rademacher analysis does not yield a constructive
algorithm [Rakhlin et al., 2015]. On the other hand, our proofs are constructive and use the celebrated
Randomized Exponential Weights Algorithm (REWA) [Cesa-Bianchi and Lugosi, 2006]. Moreover,
a key ingredient of our proof is the realizable to agnostic conversion from Raman et al. [2023].

Proof. (of sufficiency in Theorem 5.1) Fix ε → L(ε@p
sum). Let a = minε,y{ε(ω, y) | ε(ω, y) ↖= 0}

and M = maxε,y ε(ω, y). Given online learners for Hj
i for the 0-1 loss, our goal is to construct an

online learner Q for H w.r.t ε that enjoys sub-linear regret in T . Our strategy will be to construct a set
of experts E using the online learners for Hj

i ’s and run REWA using E and an appropriately scaled
version of ε. Our proof borrows ideas from the realizable-to-agnostic online conversion from Raman
et al. [2023] and so we use the same notation whenever possible.

Let (x1, y1), ..., (xT , yT ) → (X ↓ Y)T denote the stream of points to be observed by the online
learner. We will assume an oblivious adversary and thus the stream is fixed before the game starts.
A standard reduction (Chapter 4 in Cesa-Bianchi and Lugosi [2006]) allows us to convert oblivious
regret bounds to adaptive regret bounds. Since H

j
i ↑ {0, 1}X is online learnable w.r.t. 0-1 loss, we

are guaranteed the existence of online learners Aj
i for Hj

i .

Constructing Experts. For any bitstring b → {0, 1}T , let ϱ : {t → [T ] : bt = 1} ↔ SK denote
a function mapping time points where bt = 1 to rankings (permutations). Let !b = S

{t↑[T ]:bt=1}
K

denote all such functions ϱ. For every h → H, there exists a ϱh
b → !b such that for all t → {t : bt = 1},

ϱ
h
b (t) = h(xt). Let |b| = |{t → [T ] : bt = 1}|. For every b → {0, 1}T and ϱ → !b, we will define

an Expert Eb,ϱ. Expert Eb,ϱ, formally presented in Algorithm 2, uses A
j
i ’s to make predictions

in each round. However, Eb,ϱ only updates the A
j
i ’s on those rounds where bt = 1, using ϱ to

compute a labeled instance. For every b → {0, 1}T , let Eb =


ϱ↑!b
{Eb,ϱ} denote the set of all

Experts parameterized by functions ϱ → !b. If b is the bitstring with all zeros, then Eb will be empty.
Therefore, we will actually define Eb = {E0} ↙


ϱ↑!b

{Eb,ϱ}, where E0 is the expert that never
updates Aj

i ’s and only uses them for predictions in all t → [T ]. Note that 1 ↗ |Eb| ↗ (K!)|b| ↗ K
K|b|.

Algorithm 2 Expert (b,ϱ)

Input: Independent copy of realizable learners Aj
i of Hj

i for each (i, j) → [K]↓ [p]
1 for t = 1, ..., T do
2 Receive example xt

3 Define a binary vote matrix Vt → {0, 1}K↓p such that Vt[i, j] = A
j
i (xt)

4 Predict ω̂t → argminε↑SK
∝ω, Vt1p′

5 if bt = 1 then
6 Let ω = ϱ(t) and for all (i, j) → [K]↓ [p], update A

j
i by passing (xt,ω

j
i )

7 end

Algorithm 3 Agnostic Online Learner Q for H w.r.t. ε
Input: Parameter 0 < ς < 1

1 Let B → {0, 1}T s.t. Bt
iid
⇐ Bernoulli(T

ϑ

T )
2 Construct the set of experts EB = {E0} ↙


ϱ↑!B

{EB,ϱ} according to Algorithm 2
3 Run REWA P using EB and the loss function ς

M over the stream (x1, y1), ..., (xT , yT )

7



Using these experts, Algorithm 3 presents our agnostic online learner Q for H w.r.t ε → L(ε@p
sum). We

now show that Q enjoys sub-linear regret. We highlight that there are three sources of randomness in
online learner Q, namely the randomness of sampling B, the internal randomness of Aj

i ’s, and the
internal randomness of P . One may think of internal randomness as arising from the sampling step
involved in the randomized predictions. Let A be the random variable associated with joint internal
randomness of Aj

i for all (i, j) → [K]↓ [p]. Similarly, denote P to be the random variable associated
with the internal randomness of P . We begin by using the guarantee of REWA.

REWA Guarantee. Using Theorem 21.11 in Shalev-Shwartz and Ben-David [2014] and the fact that
B,A and P are mutually independent, REWA guarantees almost surely that

T∑

t=1

[ε(P(xt), yt)|B,A] ↗ inf
E↑EB

T∑

t=1

ε(E(xt), yt) +M


2T ln(|EB |).

Taking an outer expectation gives
[

T∑

t=1

ε(P(xt), yt)

]
↗

[
inf

E↑EB

T∑

t=1

ε(E(xt), yt)

]
+

[
M


2T ln(|EB |)

]
.

Noting that Q(xt) = P(xt), we obtain
[

T∑

t=1

ε(Q(xt), yt)

]
↗

[
inf

E↑EB

T∑

t=1

ε(E(xt), yt)

]
+

[
M


2T ln(|EB |)

]

↗

[
T∑

t=1

ε(EB,ϱhω
B
(xt), yt)

]
+M

[
2T ln(|EB |)

]
.

In the last step, we used the fact that for all b → {0, 1}T and h → H, Eb,ϱh
b

→ Eb. Here,
h
ω = infh↑H

∑T
t=1 ε(h(xt), yt) is the optimal function in hindsight. First, note that ln(|EB |) ↗

K|B| ln(K). Using Jensen’s inequality gives
[

2T ln(|EB |)
]
↗

∞

2T 1+φK lnK. Thus,
[

T∑

t=1

ε(Q(xt), yt)

]
↗

[
T∑

t=1

ε(EB,ϱhω
B
(xt), yt)

]

  
(I)

+M

∞

2T 1+φK lnK. (1)

Upperbounding (I). It now suffices to upperbound
[∑T

t=1 ε(EB,ϱhω
B
(xt), yt)

]
. Recall that Lemma

E.1 gives pointwise

ε(EB,ϱhω
B
(xt), yt) ↗ ε(hω(xt), yt) +

pM

a
Ej↔Unif([p])[ε(EB,ϱhω

B
(xt),BinRel(hω(xt), j))] (2)

where M = maxε,y ε(ω, y) and a = minε,y{ε(ω, y) | ε(ω, y) ↖= 0}. Note that, by definition of the
constant M , we further get

ε(EB,ϱhω
B
(xt),BinRel(hω(xt), j)) ↗ M {ε(EB,ϱhω

B
(xt),BinRel(hω(xt), j)) > 0}

= M {ε
@p
sum(EB,ϱhω

B
(xt),BinRel(hω(xt), j)) > 0},

where the equality follows from the fact that ε → L(ε@p
sum).

In order to upperbound the indicator above, we need to introduce some more notations. Given
the realizable online learner Am

i for (i,m) → [K] ↓ [p], an instance x → X , and an ordered finite
sequence of labeled examples L → (X ↓ {0, 1})↗, let Am

i (x|L) be the random variable denoting the
prediction of Am

i on the instance x after running and updating on L. For any b → {0, 1}T , h → H,
and t → [T ], let Lh

b<t
(i,m) = {(xs, h

m
i (xs)) : s < t and bs = 1} denote the subsequence of the

sequence of labeled instances {(xs, h
m
i (xs))}

t↘1
s=1 where bs = 1. Then, for any j → [p], we have

{ε
@p
sum(EB,ϱhω

B
(xt),BinRel(hω(xt), j)) > 0} ↗

K∑

i=1

p∑

m=1

{A
m
i (xt | L

hω

B<t
(i,m)) ↖= h

ω,m
i (xt)}.
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To prove the inequality above, consider the case when
∑K

i=1

∑p
m=1 {A

m
i (xt | L

hω

B<t
(i,m)) ↖=

h
ω,m
i (xt)} = 0 because the inequality is trivial otherwise. Then, we must have A

m
i (xt |

L
hω

B<t
(i,m)) = h

ω,m
i (xt) for all (i,m) → [K] ↓ [p]. Let Vt → {0, 1}K↓p be a binary vote ma-

trix that EB,ϱhω
B

constructs in round t. Then, we have Vt[i,m] = A
m
i (xt | L

hω

B<t
(i,m)) = h

ω,m
i (xt)

for all (i,m) → [K]↓ [p]. Since h
ω(xt) is a permutation, the vote vector Vt1p must contain p labels

with distinct number of non-zero votes, namely p, p≃ 1, p≃ 2, . . . , 2, 1 votes. Similarly, there must
be K ≃ p labels with exactly 0 votes. Thus, every ω̂t → argminε↑SK

∝ω, Vt1p′ must rank label
that obtained p votes as 1, label with p≃ 1 votes as 2, and so forth. In other words, we must have
ω̂t

[p]
= h

ω(xt), and thus ε@p
sum(ω̂t,BinRel(hω(xt), j)) = 0 for any j → [p] by definition of ε@p

sum. Our
claim now follows because EB,ϱhω

B
(xt) → argminε↑SK

∝ω, Vt1p′. Using these two inequalities in
equation (2), we obtain

ε(EB,ϱhω
B
(xt), yt) ↗ ε(hω(xt), yt) +

pM
2

a

K∑

i=1

p∑

m=1

{A
m
i (xt | L

hω

B<t
(i,m)) ↖= h

ω,m
i (xt)},

which further implies that

E
[

T∑

t=1

ε(EB,ϱhω
B
(xt), yt)

]
↗

T∑

t=1

ε(hω(xt), yt)+
pM

2

a

K∑

i=1

p∑

m=1

E
[

T∑

t=1

{A
m
i (xt | L

hω

B<t
(i,m)) ↖= h

ω,m
i (xt)}

]

  
(II)

.

The first term above is the cumulative loss of the best-fixed hypothesis in hindsight.

Upperbounding (II). It now suffices to show that E
[∑T

t=1 {A
m
i (xt | L

hω

B<t
(i,m)) ↖= h

ω,m
i (xt)}

]

is sub-linear for every (i,m) → [K]↓ [p]. Note that we can write

E
[

T∑

t=1

{A
m
i (xt | L

hω

B<t
(i,m)) ↖= h

ω,m
i (xt)}

]
=

T∑

t=1

E
[

{A
m
i (xt | L

hω

B<t
(i,m)) ↖= h

ω,m
i (xt)}

] E [ {Bt = 1}]

E [ {Bt = 1}]

=
T

T φ

T∑

t=1

E
[

{A
m
i (xt | L

hω

B<t
(i,m)) ↖= h

ω,m
i (xt)} {Bt = 1}

]
,

where the last equality follows because E [ {Bt = 1}] = Tϑ

T and the prediction of A
m
i (xt |

L
hω

B<t
(i,m)) on round t only depends on bitstring (B1, . . . , Bt↘1), but is independent of Bt. Next,

we can use the regret guarantee of algorithm A
m
i on the rounds it was updated. That is,

T∑

t=1

E
[
A

m
i (xt | L

hω

B<t
(i,m)) {Bt = 1}

]
= E

[
∑

t:Bt=1

A
m
i (xt | L

hω

B<t
(i,m)) ↖= h

ω,m
i (xt)}

]

= E
[
E
[

∑

t:Bt=1

A
m
i (xt | L

hω

B<t
(i,m)) ↖= h

ω,m
i (xt)}

] B
]
↗ E [Rm

i (|B|)] ,

where R
m
i (|B|) is the regret of Am

i , a sub-linear function of |B|. In the last step, we use the fact that
A

m
i is a realizable algorithm for Hm

i and the feedback that the algorithm received was (xt, h
ω,m
i (xt))

in the rounds whenever Bt = 1. Next, Lemma 5.17 from Ceccherini-Silberstein et al. [2017]
guarantees that there exists a concave sub-linear function R̃

m
i (|B|) that upperbounds Rm

i (|B|). Thus,
by Jensen’s inequality, B [Rm

i (|B|)] ↗ B

[
R̃

m
i (|B|)

]
↗ R̃

m
i ( B [|B|]) ↗ R̃

m
i (T φ), a sub-linear

function of T φ .

Combining (I) and (II) together, we obtain
[

T∑

t=1

ε(Q(xt), yt)

]
↗ inf

h↑H

T∑

t=1

ε(h(xt), yt) +
pM

2

a

K∑

i=1

p∑

m=1

T

T φ
R̃

m
i (T φ) +M

∞

2T 1+φK lnK.

Since R̃
m
i (T φ) is a sublinear function of T φ , we have that T

Tϑ R̃
m
i (T φ) is a sublinear function of T .

As the sum of sublinear functions is sublinear, the second term above must be a sublinear function of
T . The regret is sub-linear for any choice of ς → (0, 1). This completes our proof as we have shown
that the algorithm Q achieves sub-linear regret in T .
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The proof of the necessity direction of Theorem 5.1 also involves constructing experts and running
the REWA algorithm. Since the argument is similar, we defer details to Appendix D.1.

6 Discussion

In this paper, we characterize the learnability of a multilabel ranking hypothesis class in both the
batch and online setting for a wide range of practical ranking losses. In all cases, we show that a
ranking hypothesis class is learnable if and only if a sufficient number of its binary-valued threshold
restrictions are learnable. Our paper studies two families of ranking loss functions and leaves it open
to characterize the learnability of other natural ranking loss functions. One loss function not captured
by our families is recall@p.

While we do establish quantitative bounds on the sample complexity and regret, our bounds are not
optimal. It may be difficult to improve the sample complexity and regret bound at the highest level
of generality for all losses in the families considered here. However, for natural losses such as sum
loss, it is an interesting future direction to derive the optimal sample complexity and regret bounds in
both the realizable and agnostic settings. In addition, our bounds depend on the number of labels
K. Recently, K-free bounds have been achieved for multiclass classification problems in both batch
and online settings [Brukhim et al., 2022, Hanneke et al., 2023]. An interesting future direction is to
study whether K-free bounds are possible for multilabel ranking.

Finally, the focus of this paper is on characterizing learnability, and thus our algorithms are not
computationally efficient. A natural future direction is to construct computationally efficient algo-
rithms for multilabel ranking. Along this direction, since ERM is the most common algorithm used
in practice, it is an important future direction to tightly quantify the sample complexity of ERM in
the batch setting. Moreover, in learning theory, combinatorial dimensions play an important role in
providing a tight quantitative characterization of learnability. Thus, it is an interesting future direction
to identify combinatorial dimensions that characterize multilabel ranking learnability for specific loss
functions.
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A Categorizing Popular Ranking Losses

Table 1: Categorizing Popular Ranking Losses.

Loss Loss Family

Sum Loss@p L(ε@p
sum)

Precision Loss@p L(ε@p
prec)

Average Precision L(ε@K
sum )

Area Under the Curve L(ε@K
sum )

Reciprocal Rank L(ε@1
prec)

Pairwise Rank Loss L(ε@K
sum )

Discounted Cumulative Loss L(ε@K
sum )

Discounted Cumulative Loss@p L(ε@p
sum)

In this section, we show that our loss families L(ε@p
sum) and L(ε@p

prec) are general and capture many of
the popular ranking loss functions used in practice. We summarize the results in Table 1.

Recall that

L(ε@p
sum) = {ε →

SK↓Y : ε = 0 if and only if ε@p
sum = 0}⇒{ε → SK↓Y : ω

[p]
= ω̂ =⇑ ε(ω, y) = ε(ω̂, y)},

where

ε
@p
sum(ω, y) =

K∑

i=1

min(ωi, p+ 1)yi ≃ Z
p
y .

Note that the normalization constant is defined as Zp
y := minε↑SK

∑K
i=1 min(ωi, p+ 1)yi and thus

only depends on y. Furthermore,

L(ε@p
prec) = {ε →

SK↓Y : ε = 0 if and only if ε@p
prec = 0}⇒{ε → SK↓Y : ω

p
= ω̂ =⇑ ε(ω, y) = ε(ω̂, y)}.

where

ε
@p
prec(ω, y) = Z

p
y ≃

K∑

i=1

{ωi ↗ p}y
i
.

As before, the normalization constant Zp
y := maxε↑SK

∑K
i=1 {ωi ↗ p}y

i only depends on y.

In ranking literature, many evaluation metrics are often stated in terms of gain functions. However,
these can be easily converted into loss functions by subtracting the gain from the maximum possible
value of the gain. When relevance scores are restricted to be binary (i.e. Y = {0, 1}K ), the Average
Precision (AP) metric is a gain function defined as

AP(ω, y) =
1

∈y∈1

∑

i↑{εm:ym=1}

∑K
j=1 {ωj ↗ i}y

j

i
.

Since the maximum value AP can take is 1, we can define its loss function variant as:

εAP(ω, y) = 1≃ AP(ω, y).

Note that εAP(ω, y) = 0 if and only if ω ranks all labels where yi = 1 in the top ∈y∈1. Therefore,
εAP(ω, y) → L(ε@K

sum ).

Another useful metric for binary relevance feedback is the Area Under the Curve (AUC) loss
function:

εAUC(ω, y) =
1

∈y∈1 (K ≃ ∈y∈1)

K∑

i=1

K∑

j=1

{ωi < ωj} {y
i
< y

j
}.
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The AUC computes the fraction of “bad pairs" of labels (i.e those pairs of labels where i was more
relevant than j, but i was ranked lower than j). Again, note that εAUC(ω, y) = 0 if and only if ω ranks
all labels where y

i = 1 in the top ∈y∈1. Therefore, εAP(ω, y) → L(ε@K
sum ).

Lastly, the Reciprocal Rank (RR) metric is another important gain function for binary relevance
score feedback,

RR(ω, y) =
1

mini:yi=1 ωi
.

Its loss equivalent can be written as:

εRR(ω, y) = 1≃ RR(ω, y).

Since εRR(ω, y) only cares about the relevance of the top-ranked label, we have that εRR(ω, y) →

L(ε@1
prec).

Moving onto non-binary relevance scores, we start with the Pairwise Rank Loss (PL):

εPL(ω, y) =
K∑

i=1

K∑

j=1

{ωi < ωj} {y
i
< y

j
}.

The Pairwise Ranking loss is the analog of AUC for non-binary relevance scores and thus εPL(ω, y) →
L(ε@K

sum ).

Finally, we have the Discounted Cumulative Gain (DCG) metric, defined as:

DCG(ω, y) =
K∑

i=1

2y
i

≃ 1

log2(1 + ωi)
.

For an appropriately chosen normalizing constant Zy , we can define its associated loss:

εDCG(ω, y) = Zy ≃ DCG(ω, y).

Like ε@K
sum , εDCG(ω, y) is 0 if and only if ω ranks the K labels in increasing order of relevance, breaking

ties arbitrarily. Thus, εDCG(ω, y) → L(ε@K
sum ). If one only cares about the top-p ranked results, then

the DCG@p loss function evaluates only the top-p ranked labels:

ε
@p
DCG(ω, y) = Z

p
y ≃

K∑

i=1

2y
i

≃ 1

log2(1 + ωi)
{ωi ↗ p} = Z

p
y ≃ DCG@p(ω, y).

Analogously, we have that ε@p
DCG(ω, y) → L(ε@p

sum).

B Agnostic PAC Learnability of Score-based Rankers

In this section, we apply our results in the main paper to give sufficient conditions for the agnostic
PAC learnability of score-based ranking hypothesis classes. A score-based ranking hypothesis
h : X ↔ SK first maps an input x → X to a vector in K representing the “score" for each label.
Then, it outputs a ranking (permutation) over the labels in [K] by sorting the real-valued vector in
decreasing order of score.

More formally, let F ↑ ( K)X denote a set of functions mapping elements from the input space
X to score-vectors in K . For each f → F , define the score-based ranking hypothesis hf (x) =
argsort(f(x)) which first computes the score-vector f(x) →

K , and then outputs a ranking by
sorting f(x) in decreasing order, breaking ties by giving the smaller label the higher rank. That
is, if f1(x) = f2(x), then label 1 will be ranked higher than label 2. Given F , define its induced
score-based ranking hypothesis class as H = {hf : f → F}. Since our characterization of ranking
learnability relates the learnability of H to the learnability of the binary threshold-restricted classes
H

j
i = {h

j
i : h → H}, it suffices to consider an arbitrary threshold-restricted class Hj

i and bound its
VC dimension. Before we do so, we need some more notation regarding F .

For each k → [K], define the scalar-valued function class Fk = {fk | (f1, . . . , fK) → F} by
restricting each function in F to its kth coordinate output. Here, each Fk ↑

X and we can write
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F = (F1, . . . ,FK). For a function f → F , we will use fk(x) to denote the k
th coordinate output of

f(x). For every (i, j) → [K]↓ [K], define the function class Fi ≃ Fj = {fi ≃ fj : f → F} where
we let fi ≃ fj : X ↔ denote a function such that (fi ≃ fj)(x) = fi(x) ≃ fj(x). Subsequently,
for any (i, j) → [K] ↓ [K], define the binary hypothesis classes Gi,j = { {(fi ≃ fj)(x) < 0} :
fi ≃ fj → Fi ≃ Fj} and G̃i,j = { {(fi ≃ fj)(x) ↗ 0} : fi ≃ fj → Fi ≃ Fj}. Finally, let
Cj : {0, 1}K ↔ {0, 1} be the K-wise composition s.t. Cj(b) = {

∑K
i=1 bi ↗ j} and define

Cj(G1, ...,GK) = {Cj(g1, ..., gK) : (g1, ..., gK) → G1 ↓ ... ↓ GK}. In other words, Cj(G1, ...,GK)
is the binary hypothesis class constructed by taking all combinations of binary classifiers from
G1, ...,GK , summing them up, and thresholding the sum at j. We are now ready to bound the VC
dimension of an arbitrary threshold-restricted class Hj

i .

Consider an arbitrary threshold-restricted class H
j
i and hypothesis h → H. By definition, hj

i →

H
j
i . Let f → F denote the function associated with h. Given an instance x → X , recall that

h
j
i (x) = {hi(x) ↗ j} where hi(x) is the rank that h gives to the label i for instance x. Since

h(x) = argsort(f(x)), we have

hi(x) = argsort(f(x))[i]

=
i∑

m=1

{fi(x) ↗ fm(x)}+
K∑

m=i+1

{fi(x) < fm(x)}

=
i∑

m=1

{(fi ≃ fm)(x) ↗ 0}+
K∑

m=i+1

{(fi ≃ fm)(x) < 0}

Thus, we can write:

h
j
i (x) =

(
i∑

m=1

{(fi ≃ fm)(x) ↗ 0}+
K∑

m=i+1

{(fi ≃ fm)(x) < 0}


↗ j


.

Note that hj
i → Cj(G̃i,1, ..., G̃i,i,Gi,i+1, ...,Gi,K) by construction. Since h, and therefore h

j
i , was

arbitrary, it further follows that Hj
i ↑ Cj(G̃i,1, ..., G̃i,i,Gi,i+1, ...,Gi,K). Therefore,

VC(Hj
i ) ↗ VC(Cj(G̃i,1, ..., G̃i,i,Gi,i+1, ...,Gi,K)).

Since Cj(G̃i,1, ..., G̃i,i,Gi,i+1, ...,Gi,K) is some K-wise composition of binary
classes G̃i,1, ..., G̃i,i,Gi,i+1, ...,Gi,K , standard VC composition guarantees that
VC(Cj(G̃i,1, ..., G̃i,i,Gi,i+1, ...,Gi,K)) = Õ(VC(G̃i,1) + ... + VC(G̃i,i) + VC(Gi,i+1) + ... +
VC(Gi,K)), where we hide log factors of K and the VC dimensions [Dudley, 1978, Alon et al.,
2020]. Putting things together, we have that

VC(Hj
i ) ↗ Õ(VC(G̃i,1) + ...+ VC(G̃i,i) + VC(Gi,i+1) + ...+ VC(Gi,K)).

An identical analysis can also be used to give sufficient conditions for the online learnability of
score-based rankers in terms of the Littlestone dimensions of Hi

j .

Now, we consider the special class of linear score-based ranker and prove Lemma 4.6.

Proof. (of Lemma 4.6) Let X = d and F = {fW : W →
K↓d

} s.t. fW (x) = Wx. Consider
the class of linear score-based rankers H = {hfW : fW → F} where hfW (x) = argsort(fW (x)) =
argsort(Wx) breaking ties in the same way mentioned above. Note for all i → [K], Fi = {fw : w →

d
} where fw(x) = w

T
x. Furthermore, Fi≃Fj = Fi = Fj . Therefore, for any (i, j) → [K]↓ [K],

Gi,j = { {(fi ≃ fj)(x) < 0} : fi ≃ fj → Fi ≃ Fj} = { {fw(x) < 0} : w →
d
}

and
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G̃i,j = { {(fi ≃ fj)(x) ↗ 0} : fi ≃ fj → Fi ≃ Fj} = { {fw(x) ↗ 0} : w →
d
}

are the set of half-space classifiers passing through the origin with dimension d. Since for all
(i, j) → [K]↓ [K], VC(G̃i,j) = VC(Gi,j) = d, we get that VC(Hj

i ) ↗ Õ(Kd).

C Proofs for Batch Multilabel Ranking

Since many of the ranking losses we consider map to values in , the empirical Rademacher
complexity will be a useful tool for proving learnability in the batch setting.

Definition 3 (Empirical Rademacher Complexity of Loss Class). Let ε(·, ·) be a loss function,

S = {(x1, y1), ..., (xn, yn)} → (X ↓ Y)↗ be a set of examples, and ε ⇓H = {(x, y) ⇔↔ ε(h(x), y) :
h → H} be a loss class. The empirical Rademacher complexity of ε ⇓H is defined as

R̂n(ε ⇓H) = ↼

[
sup
h↑H

(
1

n

n∑

i=1

φiε(h(xi), yi)

]

where φ1, ...,φn are independent Rademacher random variables.

In particular, a standard result relates the empirical Rademacher complexity to the generalization
error of hypotheses in H with respect to a real-valued bounded loss function ε(h(x), y) [Bartlett and
Mendelson, 2002].

Proposition C.1 (Rademacher-based Uniform Convergence). Let D be a distribution over X ↓ Y

and ε(·, ·) ↗ c be a bounded loss function. With probability at least 1≃ ϖ over the sample S ⇐ D
n

,

for all h → H simultaneously,

 D[ε(h(x), y)]≃ ˆ
S [ε(h(x), y)]

 ↗ 2R̂n(F) +O



c


ln( 1ϖ )

n





where ˆ
S [ε(h(x), y)] =

1
|S|

∑
(x,y)↑S ε(h(x), y) is the empirical average of the loss over S.

When the empirical Rademacher complexity of the loss class ε⇓H = {(x, y) ⇔↔ ε(h(x), y) : h → H}

is o(1), we state that H enjoys the uniform convergence property w.r.t ε. If H enjoys the uniform
convergence property w.r.t. a loss ε, a standard result shows that H is learnable according to Definition
1 via Empirical Risk Minimization (ERM) (Theorem 26.5 in Shalev-Shwartz and Ben-David [2014]).

C.1 Proof of Lemma 4.3

Proof. Let H ↑ S
X

K be an arbitrary ranking hypothesis class. We need to show that if Hj
i is agnostic

PAC learnable w.r.t to 0-1 loss for all (i, j) → [K]↓ [p], then ERM is an agnostic PAC learnable w.r.t
ε
@p
sum. By Proposition C.1, it suffices to show that the empirical Rademacher complexity of the loss

class ε@p
sum ⇓H vanishes as n increases. This will imply that ε@p

sum enjoys the uniform convergence
property, and therefore ERM is an agnostic PAC learner for H w.r.t ε@p

sum. By definition, we have that

16



R̂n(ε
@p
sum ⇓H) = ↼↔{±1}n

[
sup
h↑H

1

n

n∑

i=1

φiε
@p
sum(h(xi), yi))

]

= ↼↔{±1}n

[
sup
h↑H

1

n

n∑

i=1

(
K∑

m=1

φi min(hm(xi), p+ 1)ymi ≃ φiZ
p
yi

]

= ↼↔{±1}n

[
sup
h↑H

1

n

n∑

i=1

K∑

m=1

φi min(hm(xi), p+ 1)ymi

]

↗

K∑

m=1

↼↔{±1}n

[
sup
h↑H

1

n

n∑

i=1

φi min(hm(xi), p+ 1)ymi

]

↗ B

K∑

m=1

↼↔{±1}n

[
sup
h↑H

1

n

n∑

i=1

φi min(hm(xi), p+ 1)

]

where the second inequality follows from the fact that ymi ↗ B and Talagrand’s Contraction Lemma
Ledoux and Talagrand [1991].

Next note that min(hm(xi), p+ 1) = (p+ 1)≃
∑p

j=1 {hm(xi) ↗ j} = (p+ 1)≃
∑p

j=1 h
j
m(xi).

Substituting and getting rid of constant factors, we have that

R̂n(ε
@p
sum ⇓H) ↗ B

K∑

m=1

↼↔{±1}n



 sup
hm↑Hm

1

n

n∑

i=1

φi

p∑

j=1

h
j
m(xi)





↗ B

K∑

m=1

p∑

j=1

↼↔{±1}n

[
sup

hm↑Hm

1

n

n∑

i=1

φih
j
m(xi)

]

= B

K∑

m=1

p∑

j=1

R̂n(H
j
m).

Since for H
j
m is agnostic PAC learnable w.r.t 0-1 loss, by Theorem 6.5 in Shalev-Shwartz and

Ben-David [2014], limn≃⇐ R̂n(Hj
m) = 0. Since p,K and B are finite,

lim
n≃⇐

R̂n(ε
@p
sum ⇓H) = lim

n≃⇐

B

K∑

m=1

p∑

j=1

R̂n(H
j
m) = 0

.

By Proposition C.1, this implies that ε@p
sum enjoys the uniform convergence property, and therefore

ERM using ε
@p
sum is an agnostic PAC learner for H.

C.2 Proof of Lemma 4.5

Proof. Fix ε → L(ε@p
sum) and (i, j) → [K] ↓ [p]. Let a = minε,y{ε(ω, y) | ε(ω, y) ↖= 0}. Let H be

an arbitrary ranking hypothesis class and A be an agnostic PAC learner for H w.r.t ε. Our goal will
be to use A to construct an agnostic PAC learner for Hj

i .

Let D be distribution over X ↓ {0, 1} and h
ω,j
i = argminhj

i↑H
j
i

D

[
{h

j
i (x) ↖= y}

]
be the optimal

hypothesis. Let hω
→ H be any valid completion of hω,j

i . Our goal will be to show that Algorithm 4
is an agnostic PAC learner for Hj

i w.r.t 0-1 loss.

Consider the sample S
hω

U and let g = A(Shω

U ). We can think of g as the output of A run over
an i.i.d sample S drawn from D

ω, a joint distribution over X ↓ Y defined procedurally by first
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Algorithm 4 Agnostic PAC learner for Hj
i w.r.t. 0-1 loss

Input: Agnostic PAC learner A for H w.r.t ε, unlabeled samples SU ⇐ D
n
X

, and labeled samples
SL ⇐ D

m

1 For each h → H|SU
, construct a dataset

S
h
U = {(x1, ỹ1), ..., (xn, ỹn)} s.t. ỹi = BinRel(h(xi), j)

2 Run A over all datasets to get C(SU ) :=
{
A
(
S
h
U

)
| h → H|SU

}

3 Define C
j
i (SU ) = {g

j
i |g → C(SU )}

4 Return ĝ
j
i → C

j
i (SU ) with the lowest empirical error over SL w.r.t. 0-1 loss.

sampling x ⇐ DX and then outputting the labeled sample (x,BinRel(hω(x), j)). Note that Dω is a
realizable distribution (realized by h

ω) w.r.t ε@p
sum and therefore also ε. Let mA(ϑ, ϖ,K) be the sample

complexity of A. Since A is an agnostic PAC learner for H w.r.t ε, we have that for sample size
n ↘ mA(

aϑ
2 , ϖ/2,K), with probability at least 1≃ ϖ

2 ,

Dω [ε(g(x), y)] ↗ inf
h↑H

Dω [ε(h(x), y)] +
aϑ

2
=

aϑ

2
.

Furthermore, by definition of Dω, Dω [ε(g(x), y)] = x↔DX [ε(g(x),BinRel(hω(x), j))]. There-
fore, x↔DX [ε(g(x),BinRel(hω(x), j))] ↗ aϑ

2 . Next, using Lemma E.3, we have pointwise that

{g
j
i (x) ↖= h

ω,j
i (x)} ↗ {ε

@p
sum(g(x),BinRel(hω(x), j)) > 0}

= {ε(g(x),BinRel(hω(x), j)) > 0}

↗
1

a
ε(g(x),BinRel(hω(x), j)).

Taking expectations on both sides gives,

D

[
{g

j
i (x) ↖= h

ω,j
i (x)}

]
↗

1

a
D [ε(g(x),BinRel(hω(x), j))] ↗

ϑ

2
,

where in the last inequality we use the fact that x↔DX [ε(g(x),BinRel(hω(x), j))] ↗ aϑ
2 . Finally,

using the triangle inequality, we have that

D

[
{g

j
i (x) ↖= y}

]
↗ D

[
{h

ω,j
i (x) ↖= y}

]
+ D

[
{g

j
i (x) ↖= h

ω,j
i (x}

]

↗ D

[
{h

ω,j
i (x) ↖= y}

]
+

ϑ

2

= argmin
hj
i↑H

j
i

D

[
{h

j
i (x) ↖= y}

]
+

ϑ

2
.

Since g
j
i → C

j
i (SU ), we have shown that Cj

i (SU ) contains a hypothesis that generalizes well w.r.t
D. Now we want to show that the predictor ĝji returned in step 4 also generalizes well. Crucially,
observe that Cj

i (SU ) is a finite hypothesis class with cardinality at most Kjn. Therefore, by standard
Chernoff and union bounds, with probability at least 1≃ ϖ/2, the empirical risk of every hypothesis
in C

j
i (SU ) on a sample of size ↘

8
ϑ2 log

4|Cj
i (SU )|
ϖ is at most ϑ/4 away from its true error. So, if

m = |SL| ↘
8
ϑ2 log

4|Cj
i (SU )|
ϖ , then with probability at least 1≃ ϖ/2, we have

1

|SL|

∑

(x,y)↑SL

{g
j
i (x) ↖= y} ↗ ED

[
{g

j
i (x) ↖= y}

]
+

ϑ

4
↗

3ϑ

4
.
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Since ĝ
j
i is the ERM on SL over C

j
i (SU ), its empirical risk can be at most 3ϑ

4 . Given that the
population risk of ĝji can be at most ϑ/4 away from its empirical risk, we have that

ED[ {ĝ
j
i (x) ↖= y}] ↗ argmin

hj
i↑H

j
i

D

[
{h

j
i (x) ↖= y}

]
+ ϑ.

Applying union bounds, the entire process succeeds with probability 1 ≃ ϖ. We can compute the
upper bound on the sample complexity of Algorithm 4, denoted n(ϑ, ϖ,K), as

n(ϑ, ϖ,K) ↗ mA(
aϑ

2
, ϖ/2,K) +O

(
1

ϑ2
log

|C(SU )|

ϖ

)

↗ mA(
aϑ

2
, ϖ/2,K) +O

(
KmA(

aϑ
2 , ϖ/2,K) + log 1

ϖ

ϑ2

)
,

where we use |C(SU )| ↗ 2KmA( aε
2 ,ϖ/2,K). This shows that Algorithm 4 is an agnostic PAC learner

for Hj
i w.r.t 0-1 loss. Since our choice of loss ε → L(ε@p

sum) and indices (i, j) were arbitrary, agnostic
PAC learnability of H w.r.t ε implies agnostic PAC learnability of H

j
i w.r.t the 0-1 loss for all

(i, j) → [K]↓ [p].

C.3 Characterizing Batch Learnability of L(ε@p
prec)

In this section, we prove Theorem 4.2 which characterizes the agnostic PAC learnability of an
arbitrary hypothesis class H ↑ S

X

K w.r.t losses in L(ε@p
prec). Our proof will again be in three parts.

First, we will show that if for all i → [K], Hp
i is agnostic PAC learnable w.r.t the 0-1 loss, then ERM

is an agnostic PAC learnable w.r.t ε@p
prec. Next, we show that if H is agnostic PAC learnable w.r.t ε@p

prec,
then H is agnostic PAC learnable w.r.t any loss ε → L(ε@p

prec). Finally, we prove the necessity direction
- if H is agnostic PAC learnable w.r.t an arbitrary ε → L(ε@p

prec), then for all i → [K], Hp
i is agnostic

PAC learnable w.r.t the 0-1 loss.

We begin with Lemma C.2 which asserts that if for all i → [K], Hp
i is agnostic PAC learnable, then

ERM is an agnostic PAC learner for H w.r.t ε@p
prec.

Lemma C.2. If for all i → [K], Hp
i is agnostic PAC learnable w.r.t the 0-1 loss, then ERM is an

agnostic PAC learner for H ↑ S
X

K w.r.t ε
@p
prec

The proof of Lemma C.2 is similar to the proof of Lemma 4.3 and involves bounding the empirical
Rademacher complexity of the loss class ε

@p
prec ⇓ H. This will imply that ε@p

prec enjoys the uniform
convergence property, and therefore ERM is an agnostic PAC learner for H w.r.t ε@p

prec. The key insight
is that we can write ε@p

prec(h(x), y) = Z
p
y ≃

∑K
i=1 {hi(x) ↗ p}y

i = Z
p
y ≃

∑K
i=1 h

p
i (x)y

i. Since Zp
y

does not depend on h(x) and y
i
↗ B, we can upperbound the empirical Rademacher complexity in

terms of the empirical Rademacher complexities of Hp
i using Talagrand’s contraction.

Proof. Let H ↑ S
X

K be an arbitrary ranking hypothesis class. Similar to the proof of Lemma 4.3, it
suffices to show that the empirical Rademacher complexity of the loss class ε@p

prec ⇓H vanishes. By
Proposition C.1, this will imply that ε@p

prec enjoys the uniform convergence property, and therefore
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ERM is an agnostic PAC learner for H w.r.t ε@p
prec. By definition, we have that

R̂n(ε
@p
prec ⇓H) = ↼↔{±1}n

[
sup
h↑H

1

n

n∑

i=1

φiε
@p
prec(h(xi), yi))

]

= ↼↔{±1}n

[
sup
h↑H

1

n

n∑

i=1

(
φiZ

p
yi
≃

K∑

m=1

φi {hm(xi) ↗ p}y
m
i

]

= ↼↔{±1}n

[
sup
h↑H

1

n

n∑

i=1

K∑

m=1

φih
p
m(xi)y

m
i

]

↗

K∑

m=1

↼↔{±1}n

[
sup
h↑H

1

n

n∑

i=1

φih
p
m(xi)y

m
i

]

↗ B

K∑

m=1

↼↔{±1}n

[
sup
h↑H

1

n

n∑

i=1

φih
p
m(xi)

]

= B

K∑

m=1

R̂n(H
p
m),

where the second inequality follows from Talagrand’s Contraction Lemma and the fact that ymi ↗ B

for all i,m. Since for all m → [K], Hp
m is agnostic PAC learnable w.r.t 0-1 loss, by Theorem 6.7 in

Shalev-Shwartz and Ben-David [2014], limn≃⇐ R̂n(Hp
m) = 0. Since K and B are finite,

lim
n≃⇐

R̂n(ε
@p
prec ⇓H) = lim

n≃⇐

B

K∑

m=1

R̂n(H
p
m) = 0

.

By Proposition C.1, this implies that ε@p
prec enjoys the uniform convergence property, and therefore

ERM using ε
@p
prec is an agnostic PAC learner for H.

Next, Lemma C.3 extends the learnability of ε@p
prec to the learnability of any loss ε → L(ε@p

prec). In
particular, Lemma C.3 asserts that if H is agnostic PAC learnable w.r.t ε@p

prec then H is also agnostic
PAC learnable w.r.t any ε → L(ε@p

prec).

Lemma C.3. If a hypothesis class H ↑ S
X

K is agnostic PAC learnable w.r.t ε
@p
prec

, then H is agnostic

PAC learnable w.r.t any ε → L(ε@p
prec

).

The proof of Lemma C.3 follows the same the exact same strategy used in proving Lemma 4.4. More
specifically, given an agnostic PAC learner A for H w.r.t. ε

@p
prec, we first create a realizable PAC

learner for H w.r.t ε → L(ε@p
prec). Then, we use a similar realizable-to-agnostic conversion technique

as in the proof of Lemma 4.4 to convert the realizable PAC learner into an agnostic PAC learner for
H w.r.t ε.

Proof. Fix ε → L(ε@p
prec). Let a = minε,y{ε(ω, y) | ε(ω, y) ↖= 0} and b = maxε,y ε(ω, y). We need

to show that if H is agnostic PAC learnable w.r.t ε@p
prec, then H is agnostic PAC learnable w.r.t ε. We

will do so in two steps. First, we will show that if A is an agnostic PAC learner for H w.r.t. ε@p
prec, then

A is also a realizable PAC learner for H w.r.t ε. Next, we will show how to convert the realizable
PAC learner w.r.t ε into an agnostic PAC learner w.r.t ε in a black-box fashion. The composition of
these two pieces yields an agnostic PAC learner for H w.r.t ε.

If H is agnostic PAC learnable w.r.t ε@p
prec, then there exists a learning algorithm A with sample

complexity m(ϑ, ϖ,K) s.t. for any distribution D over X ↓ Y , with probability 1≃ ϖ over a sample
S ⇐ D

n of size n ↘ m(ϑ, ϖ,K), the output g = A(S) achieves
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D

[
ε
@p
prec(g(x), y))

]
↗ inf

h↑H
D

[
ε
@p
prec(h(x), y))

]
+ ϑ.

If D is realizable w.r.t ε, then we are guaranteed that there exists a hypothesis h
ω

→ H s.t.

D [ε(hω(x), y)] = 0. Since ε → L(ε@p
prec), this also means that D

[
ε
@p
prec(hω(x), y)

]
= 0. Fur-

thermore, since ε → L(ε@p
prec), ε ↗ bε

@p
prec. Together, this means we have D [ε(g(x), y)] ↗ bϑ showing

have that A is also a realizable PAC learner for H w.r.t ε with sample complexity m( ϑb , ϖ,K). This
completes the first part of the proof.

Now, we show how to convert the realizable PAC learner A for ε into an agnostic PAC learner for ε
in a black-box fashion. For this step, we will use a similar algorithm as in the proof of Lemma 4.4.
That is, we will show that Algorithm 5 below is an agnostic PAC learner for H w.r.t ε.

Algorithm 5 Agnostic PAC learner for H w.r.t. ε
Input: Realizable PAC learner A for H w.r.t ε, unlabeled samples SU ⇐ D

n
X

, and labeled samples
SL ⇐ D

m

1 For each h → H|SU
, construct a dataset

S
h
U = {(x1, ỹ1), ..., (xn, ỹn)} s.t. ỹi = BinRel(h(xi), p)

2 Run A over all datasets to get C(SU ) :=
{
A
(
S
h
U

)
| h → H|SU

}

3 Return ĝ → C(SU ) with the lowest empirical error over SL w.r.t. ε.

Let D be any (not necessarily realizable) distribution over X ↓ Y . Let h
ω =

argminh↑H D [ε(h(x), y))] denote the optimal predictor in H w.r.t D. Consider the sample S
hω

U

and let g = A(Shω

U ). We can think of g as the output of A run over an i.i.d sample S drawn from D
ω,

a joint distribution over X ↓ Y defined procedurally by first sampling x ⇐ DX , and then outputting
the labeled sample (x,BinRel(hω(x), p)). Note that Dω is indeed a realizable distribution (realized
by h

ω) w.r.t both ε and ε
@p
prec. Recall that mA(

ϑ
b , ϖ,K) is the sample complexity of A. Since A is

a realizable learner for H w.r.t ε, we have that for n ↘ mA(
aϑ
2b2 , ϖ/2,K), with probability at least

1≃ ϖ
2 ,

Dω [ε(g(x), y)] ↗
aϑ

2b
.

By definition of Dω, it further follows that Dω [ε(g(x), y)] = x↔DX [ε(g(x),BinRel(hω(x), p))].
Therefore,

x↔DX [ε(g(x),BinRel(hω(x), p))] ↗
aϑ

2b
.

Next, by Lemma E.2, we have pointwise that:

ε(g(x), y) ↗ ε(hω(x), y) +
b

a
ε(g(x),BinRel(hω(x), p)).

Taking expectations on both sides of the inequality gives:

D [ε(g(x), y)] ↗ D [ε(hω(x), y)] + D


b

a
ε(g(x),BinRel(hω(x), p))

]

= D [ε(hω(x), y)] +
b

a
x↔DX [ε(g(x),BinRel(hω(x), p))]

↗ D [ε(hω(x), y)] +
ϑ

2
.
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Therefore, we have shown that C(SU ) contains a hypothesis g that generalizes well with respect to
D. The remaining proof follows exactly as in the proof of Lemma 4.4. We include them here for the
sake of completeness.

Now we want to show that the predictor ĝ returned in step 4 also has good generalization. Crucially,
observe that C(SU ) is a finite hypothesis class with cardinality at most Kpn. Therefore, by standard
Chernoff and union bounds, with probability at least 1≃ ϖ/2, the empirical risk of every hypothesis
in C(SU ) on a sample of size ↘

8
ϑ2 log

4|C(SU )|
ϖ is at most ϑ/4 away from its true error. So, if

m = |SL| ↘
8
ϑ2 log

4|C(SU )|
ϖ , then with probability at least 1≃ ϖ/2, we have

1

|SL|

∑

(x,y)↑SL

ε(g(x), y) ↗ ED [ε(g(x), y)] +
ϑ

4
↗ D [ε(hω(x), y)] +

3ϑ

4
.

Since ĝ is the ERM on SL over C(S), its empirical risk can be at most D [ε(hω(x), y)] + 3ϑ
4 . Given

that the population risk of ĝ can be at most ϑ/4 away from its empirical risk, we have that

ED[ε(ĝ(x), y)] ↗ D [ε(hω(x), y)] + ϑ.

Applying union bounds, the entire process succeeds with probability 1≃ ϖ. We can upper bound the
sample complexity of Algorithm 1, denoted n(ϑ, ϖ,K), as

n(ϑ, ϖ,K) ↗ mA(
aϑ

2b2
, ϖ/2,K) +O

(
1

ϑ2
log

|C(SU )|

ϖ

)

↗ mA(
aϑ

2b2
, ϖ/2,K) +O

(
pmA(

aϑ
2b2 , ϖ/2,K) log(K) + log 1

ϖ

ϑ2

)
,

where we use |C(SU )| ↗ K
pmA( aε

2b2
,ϖ/2,K). This shows that Algorithm 1, given as input an realizable

PAC learner for H w.r.t ε, is an agnostic PAC learner for H w.r.t ε. Using the realizable learner we
constructed before this step as the input completes this proof as we have constructively converted an
agnostic PAC learner for ε@p

prec into an agnostic PAC learner for ε.

Lemma C.2 and C.3 together complete the proof of sufficiency in Theorem 4.2. Finally, Lemma C.4
below shows that the agnostic PAC learnability of Hp

i for all i → [K] is necessary for the agnostic
PAC learnability of H w.r.t any ε → L(ε@p

prec). Like before, the proof of Lemma C.4 is constructive
and follows exactly the same strategy as Lemma 4.5. That is, given as input a learner for ε, we will
convert it into an agnostic learner for Hp

i . In fact, the conversion is exactly the same as in the proof of
Lemma 4.5 and just requires running Algorithm 4 with an input learner for ε → L(ε@p

prec) and setting
j = p.
Lemma C.4. If a function class H ↑ S

X

K is agnostic PAC learnable w.r.t ε → L(ε@p
prec

), then H
p
i is

agnostic PAC learnable w.r.t the 0-1 loss for all i → [K].

Proof. Fix ε → L(ε@p
prec) and i → [K]. Let a = minε,y{ε(ω, y) | ε(ω, y) ↖= 0}. Let H be an arbitrary

ranking hypothesis class and A be an agnostic PAC learner for H w.r.t ε. Our goal will to be to use A
to construct an agnostic PAC learner for Hp

i .

Let D be any distribution over X ↓ {0, 1}, hω,p
i = argminh↑H

p
i

D [ {h(x) ↖= y}] the optimal
hypothesis, and h

ω
→ H be any valid completion of hω,p

i . We will now show that Algorithm 4 from
the proof of Lemma 4.5 is an agnostic PAC learner for Hp

i if we set j = p and give it as input an
agnostic PAC learner A for H w.r.t. ε → L(ε@p

prec).

Consider the sample S
hω

U and let g = A(Shω

U ). We can think of g as the output of A run over an i.i.d
sample S drawn from D

ω, a joint distribution over X ↓ Y defined procedurally by first sampling
x ⇐ DX and then outputting the labeled sample (x,BinRel(hω(x), p)). Note that Dω is a realizable
distribution (realized by h

ω) w.r.t ε@p
prec and therefore also ε. Let mA(ϑ, ϖ,K) be the sample complexity

of A.

Since A is an agnostic PAC learner for H w.r.t ε, we have that for sample size n ↘ mA(
aϑ
2 , ϖ/2,K),

with probability at least 1≃ ϖ
2 ,
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Dω [ε(g(x), y)] ↗ inf
h↑H

Dω [ε(h(x), y)] +
aϑ

2
=

aϑ

2
.

Furthermore, by definition of Dω, Dω [ε(g(x), y)] = x↔DX [ε(g(x),BinRel(hω(x), p))]. There-
fore, x↔DX [ε(g(x),BinRel(hω(x), p))] ↗ aϑ

2 . Next, using Lemma E.4, we have pointwise that

{g
p
i (x) ↖= h

ω,p
i (x)} ↗ {ε

@p
prec(g(x),BinRel(hω(x), p)) > 0}

= {ε(g(x),BinRel(hω(x), p)) > 0}

↗
1

a
ε(g(x),BinRel(hω(x), p)).

Taking expectations on both sides gives,

D

[
{g

p
i (x) ↖= h

ω,p
i (x)}

]
↗

1

a
D [ε(g(x),BinRel(hω(x), p))] ↗

ϑ

2
,

where in the last inequality we use the fact that x↔DX [ε(g(x),BinRel(hω(x), p))] ↗ aϑ
2 . Finally,

using the triangle inequality, we have that

D [ {g
p
i (x) ↖= y}] ↗ D

[
{h

ω,p
i (x) ↖= y}

]
+ D

[
{g

p
i (x) ↖= h

ω,p
i (x}

]

↗ D

[
{h

ω,p
i (x) ↖= y}

]
+

ϑ

2

= argmin
hp
i ↑H

p
i

D [ {h
p
i (x) ↖= y}] +

ϑ

2
.

Since g
p
i → C

p
i (SU ), we have shown that Cp

i (SU ) contains a hypothesis that generalizes well w.r.t
D. Now we want to show that the predictor ĝpi returned in step 4 also generalizes well. Crucially,
observe that Cp

i (SU ) is a finite hypothesis class with cardinality at most Kpn. Therefore, by standard
Chernoff and union bounds, with probability at least 1≃ ϖ/2, the empirical risk of every hypothesis
in C

p
i (SU ) on a sample of size ↘

8
ϑ2 log

4|Cj
i (SU )|
ϖ is at most ϑ/4 away from its true error. So, if

m = |SL| ↘
8
ϑ2 log

4|Cj
i (SU )|
ϖ , then with probability at least 1≃ ϖ/2, we have

1

|SL|

∑

(x,y)↑SL

{g
p
i (x) ↖= y} ↗ ED [ {g

p
i (x) ↖= y}] +

ϑ

4
↗

3ϑ

4
.

Since ĝ
p
i is the ERM on SL over Cp

i (SU ), its empirical risk can be at most 3ϑ
4 . Given that the

population risk of ĝpi can be at most ϑ/4 away from its empirical risk, we have that

ED[ {ĝ
p
i (x) ↖= y}] ↗ argmin

hp
i ↑H

p
i

D [ {h
p
i (x) ↖= y}] + ϑ.

Applying union bounds, the entire process succeeds with probability 1 ≃ ϖ. We can compute the
upper bound on the sample complexity of Algorithm 4, denoted n(ϑ, ϖ,K), as

n(ϑ, ϖ,K) ↗ mA(
aϑ

2
, ϖ/2,K) +O

(
1

ϑ2
log

|C(SU )|

ϖ

)

↗ mA(
aϑ

2
, ϖ/2,K) +O

(
p mA(

aϑ
2 , ϖ/2,K) log(K) + log 1

ϖ

ϑ2

)
,

where we use |C(SU )| ↗ K
pmA( aε

2 ,ϖ/2,K). This shows that Algorithm 4 is an agnostic PAC learner
for Hp

i w.r.t 0-1 loss. Since our choice of loss ε → L(ε@p
prec) and index i were arbitrary, agnostic PAC

learnability of H w.r.t ε implies agnostic PAC learnability of Hp
i w.r.t the 0-1 loss for all i → [K].

Combining Lemma C.2, C.3 and C.4 gives Theorem 4.2.
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D Proofs for Online Multilabel Ranking

D.1 Proof of necessity in Theorem 5.1

Proof. Fix ε → L(ε@p
sum) and (i, j) → [K]↓ [p]. Given an online learner A for H w.r.t ε, our goal is to

construct an agnostic online learner Aj
i for Hj

i . To that end, let (x1, y1), ..., (xT , yT ) → (X↓{0, 1})T

denote a stream of labeled instances. Define h
ω,j
i = argminhj

i↑H
j
i

∑T
t=1 {h

j
i (xt) ↖= yt} to be the

optimal function in H
j
i and h

ω be an arbitrary completion of hω,j
i . As in the sufficiency proof, our

construction of the online learner for Hj
i will run REWA over a set of experts we construct below.

For any bitstring b → {0, 1}T , let ϱ : {t → [T ] : bt = 1} ↔ SK denote a function mapping time
points where bt = 1 to permutations. Let !b = S

{t↑[T ]:bt=1}
K denote all such functions ϱ. For

every h → H, there exists a ϱ
h
b → !b such that for all t → {t : bt = 1}, ϱh

b (t) = h(xt). Let
|b| = |{t → [T ] : bt = 1}|. For every b → {0, 1}T and ϱ → !b, define an Expert Eb,ϱ. Expert Eb,ϱ,
formally presented in Algorithm 6, uses A to make predictions in each round. For every b → {0, 1}T ,
let Eb =


ϱ↑!b

{Eb,ϱ} denote the set of all Experts parameterized by functions ϱ → !b. As before,
we will actually define Eb = {E0} ↙


ϱ↑!b

{Eb,ϱ}, where E0 is the expert that never updates A and
only uses it to make predictions in each round. Note that 1 ↗ |Eb| ↗ (K!)|b| ↗ K

K|b|.

Algorithm 6 Expert (b,ϱ)
Input: Independent copy of online learner A for H

1 for t = 1, ..., T do
2 Receive example xt

3 Predict {ω̂i ↗ j} where ω̂ = A(xt)
4 if bt = 1 then
5 Update A by passing (xt,BinRel(ϱ(t), j))
6 end

We are now ready to give the agnostic online learner for H
j
i , henceforth denoted by Q. Our

online learner Q is very similar to Algorithm 3. First, it will sample a B → {0, 1}T s.t. Bt ⇐

Bernoulli(T φ
/T ). Then, it will construct a set of experts EB using Algorithm 6. Finally, it will run

REWA, denoted by P , on the 0-1 loss over the stream (x1, y1), ..., (xT , yT ). As before, let A and
P be the random variables denoting internal randomness of the algorithm A and P . Using REWA
guarantees and following exactly the same calculation as in the sufficiency proof, we arrive at

[
T∑

t=1

{Q(xt) ↖= yt}

]
↗

[
T∑

t=1

{EB,ϱhω
B
(xt) ↖= yt}

]
+

∞

2T 1+φK lnK.

The inequality above is the adaptation of Equation (1) for this proof. Recall that hω,j
i is the optimal

function in hindsight for the stream and h
ω is a completion of hω,j

i . Since {EB,ϱhω
B
(xt) ↖= yt} ↗

{h
ω,j
i (xt) ↖= yt} + {EB,ϱhω

B
(xt) ↖= h

ω,j
i (xt)}, the inequality above reduces to

[
T∑

t=1

{Q(xt) ↖= yt}

]
↗

T∑

t=1

{h
ω,j
i (xt) ↖= yt}+

[
T∑

t=1

{EB,ϱhω
B
(xt) ↖= h

ω,j
i (xt)}

]
+
∞

2T 1+φK lnK.

It now suffices to show that
[∑T

t=1 {EB,ϱhω
B
(xt) ↖= h

ω,j
i (xt)}

]
is sub-linear function of T .

Given an online learner A for H, an instance x → X , and an ordered finite sequence of labeled
examples L → (X ↓ Y)↗, let A(x|L) be the random variable denoting the prediction of A on
the instance x after running and updating on L. For any b → {0, 1}T , h → H, and t → [T ], let
L
h
b<t

= {(xi,BinRel(h(xs), j)) : s < t and bs = 1} denote the subsequence of the sequence of
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labeled instances {(xs,BinRel(h(xs), j))}
t↘1
s=1 where bs = 1. Thus, using Lemma E.3, we have

{EB,ϱhω
B
(xt) ↖= h

ω,j
i (xt)} ↗ {ε

@p
sum(A(xt | L

hω

B<t
),BinRel(hω(xt), j)) > 0}

= {ε(A(xt | L
hω

B<t
),BinRel(hω(xt), j)) > 0}

↗
1

a
ε(A(xt | L

hω

B<t
),BinRel(hω(xt), j),BinRel(hω(xt), j)),

where equality follows from the fact that ε → L(ε@p
sum). Here, a is the lower bound whenever it is

non-zero. Taking expectations of both sides and summing over t → [T ] gives

[
T∑

t=1

{EB,ϱhω
B
(xt) ↖= h

ω,j
i (xt)}

]
↗

1

a

[
T∑

t=1

ε(A(xt | L
hω

B<t
),BinRel(hω(xt), j))

]
.

To upperbound the right-hand side, we will again use the fact that the prediction A(xt | L
hω

B<t
) only

depends on (B1, . . . , Bt↘1), but is independent of Bt. The details of this calculation are omitted
because they are identical to that of the sufficiency proof. Using independence of A(xt | L

hω

B<t
) and

Bt, we obtain
[

T∑

t=1

ε(A(xt | L
hω

B<t
),BinRel(hω(xt), j))

]
=

T

T φ

[
∑

t:Bt=1

ε(A(xt | L
hω

B<t
),BinRel(hω(xt), j))

]

=
T

T φ

[ [
∑

t:Bt=1

ε(A(xt | L
hω

B<t
),BinRel(hω(xt), j))

B
]]

↗
T

T φ
E [R(|B|,K)] ,

where R(|B|,K) is the regret of the algorithm A, a sub-linear function of |B|. In the last step,
we use the fact that A is a (realizable) online learner for H w.r.t. ε and the feedback that the
algorithm received was (xt,BinRel(hω(xt), j)) in the rounds whenever Bt = 1. Again, Lemma
5.17 from Ceccherini-Silberstein et al. [2017] guarantees an existence of a concave sublinear up-
perbound R̃(|B|,K) of R(|B|,K). Then, applying Jensen’s inequality yields [R(|B|,K)] ↗[

R̃(|B|,K)
]
↗ R̃(T φ

,K), a concave sub-linear function of T φ . Combining everything, we get

[
T∑

t=1

{Q(xt) ↖= yt}

]
↗

T∑

t=1

{h
ω,j
i (xt) ↖= yt}+

T

aT φ
R̃(T φ

,K) +
∞

2T 1+φK lnK

= argmin
hj
i↑H

j
i

T∑

t=1

{h
j
i (xt) ↖= yt}+

T

aT φ
R̃(T φ

,K) +
∞

2T 1+φK lnK

For any choice of ς → (0, 1), the regret above is a sub-linear function of T . Therefore, we have
shown that Q is an agnostic learner for Hj

i w.r.t. 0-1 loss.

D.2 Proof of Theorem 5.2

Proof. (of sufficiency in Theorem 5.2) Fix ε → L(ε@p
prec) and let M = maxε,y ε(ω, y). This proof is

virtually identical to the proof of sufficiency in Theorem 4.1. However, we provide the full details
here for completion. Our proof is also based on reduction. That is, given realizable learners Ap

i of
H

p
i ’s for i → [K] w.r.t. 0-1 loss, we will construct an agnostic learner Q for H w.r.t. ε. We will

construct a set of experts E that uses Ap
i to make predictions and run the REWA algorithm using

these experts.

Let (x1, y1), ..., (xT , yT ) → (X↓Y)T denote the stream of points to be observed by the online learner.
As before, we will assume an oblivious adversary. Define hω = argminh↑H

∑T
t=1 ε(h(xt), yt) to be

the optimal hypothesis in hindsight.

25



For any bitstring b → {0, 1}T , let ϱ : {t → [T ] : bt = 1} ↔ SK denote a function mapping time
points where bt = 1 to permutations. Let !b = S

{t↑[T ]:bt=1}
K denote all such functions ϱ. For

every h → H, there exists a ϱ
h
b → !b such that for all t → {t : bt = 1}, ϱh

b (t) = h(xt). Let
|b| = |{t → [T ] : bt = 1}|. For every b → {0, 1}T and ϱ → !b, we will define an Expert Eb,ϱ. Expert
Eb,ϱ, formally presented in Algorithm 3, uses Ap

i ’s to make predictions in each round. However,
Eb,ϱ only updates the Ap

i ’s on those rounds where bt = 1, using ϱ to compute a labeled instance. For
every b → {0, 1}T , let Eb =


ϱ↑!b

{Eb,ϱ} denote the set of all Experts parameterized by functions
ϱ → !b. If b is the bitstring with all zeros, then Eb will be empty. Therefore, we will actually define
Eb = {E0} ↙


ϱ↑!b

{Eb,ϱ}, where E0 is the expert that never updates Aj
i ’s and only uses them for

predictions in all t → [T ]. Note that 1 ↗ |Eb| ↗ (K!)|b| ↗ K
K|b|. Using these experts, Algorithm 3

is our agnostic online learner Q for H w.r.t ε → L(ε@p
prec).

Algorithm 7 Expert (b,ϱ)
Input: Independent copy of realizable learners Ap

i of Hp
i for i → [K]

1 for t = 1, ..., T do
2 Receive example xt

3 Define a binary vote vector vt → {0, 1}K such that vt[i] = A
p
i (xt)

4 Predict ω̂t → argminε↑SK
∝ω, vt′

5 if bt = 1 then
6 Let ω = ϱ(t) and for each i → [K], update A

p
i by passing (xt,ω

p
i )

7 end

Using REWA guarantees and following exactly the same calculation as in the proof of Theorem 5.1
we immediately arrive at

[
T∑

t=1

ε(Q(xt), yt)

]
↗

[
T∑

t=1

ε(EB,ϱhω
B
(xt), yt)

]
+M

∞

2T 1+φK lnK,

the analog of Equation (1) for this setting. Using Lemma E.2, we have

ε(EB,ϱhω
B
(xt), yt) ↗ ε(hω(xt), yt) +

M

a
ε(EB,ϱhω

B
(xt),BinRel(hω(xt), p))

pointwise, where a = minε,y{ε(ω, y) | ε(ω, y) ↖= 0}. By definition of M , we further get

ε(EB,ϱhω
B
(xt),BinRel(hω(xt), p)) ↗ M {ε(EB,ϱhω

B
(xt),BinRel(hω(xt), p)) > 0}

= M {ε
@p
prec(EB,ϱhω

B
(xt),BinRel(hω(xt), p)) > 0},

where the equality follows from the fact that ε → L(ε@p
prec).

In order to upperbound the indicator above, we need some more notations. Given the realizable
online learner Ap

i for i → [K] ↓ [p], an instance x → X , and an ordered finite sequence of labeled
examples L → (X ↓ {0, 1})↗, let Ap

i (x|L) be the random variable denoting the prediction of Ap
i

on the instance x after running and updating on L. For any b → {0, 1}T , h → H, and t → [T ], let
L
h
b<t

(i, p) = {(xs, h
p
i (xs)) : s < t and bs = 1} denote the subsequence of the sequence of labeled

instances {(xs, h
p
i (xs))}

t↘1
s=1 where bs = 1. Then, we have

{ε
@p
prec(EB,ϱhω

B
(xt),BinRel(hω(xt), p)) > 0} ↗

K∑

i=1

{A
p
i (xt | L

hω

B<t
(i, p)) ↖= h

ω,p
i (xt)}.

To prove this claimed inequality, consider the case when
∑K

i=1 {A
p
i (xt | L

hω

B<t
(i, p)) ↖=

h
ω,p
i (xt)} = 0 because the inequality is trivial otherwise. Then, we must have Ap

i (xt | L
hω

B<t
(i, p)) =

h
ω,p
i (xt) for all i → [K]. Let vt → {0, 1}K such that vt[i] = A

p
i (xt | L

hω

B<t
(i, p)) be a binary

vote vector that the expert EB,ϱhω
B

constructs in round t. Since h
ω(xt) is a permutation, the vote

vector vt must contain exactly p labels with 1 vote and K ≃ p labels with 0 votes. Thus, every
ω̂t → argminε↑SK

∝ω, vt′ must rank labels with 1 vote in top p and labels with 0 votes outside top p.
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In other words, we must have ω̂t
p
= h

ω(xt), and thus ε@p
prec(ω̂t,BinRel(hω(xt), p)) = 0 by definition

of ε@p
prec. Our claim follows because EB,ϱhω

B
(xt) → argminε↑SK

∝ω, vt′.

Combining everything, we obtain

ε(EB,ϱhω
B
(xt), yt) ↗ ε(hω(xt), yt) +

M
2

a

K∑

i=1

{A
p
i (xt | L

hω

B<t
(i, p)) ↖= h

ω,p
i (xt)}.

Taking expectations on both sides and summing over all t → [T ] yields

E
[

T∑

t=1

ε(EB,ϱhω
B
(xt), yt)

]
↗

T∑

t=1

ε(hω(xt), yt)+
M

2

a

K∑

i=1

E
[

T∑

t=1

{A
p
i (xt | L

hω

B<t
(i, p)) ↖= h

ω,p
i (xt)}

]
.

So, it now suffices to show that E
[∑T

t=1 {A
p
i (xt | L

hω

B<t
(i, p)) ↖= h

ω,p
i (xt)}

]
is a sub-linear func-

tion of T . Again, using the independence of Bt and the algorithm’s prediction in round t, we can
write

E
[

T∑

t=1

{A
p
i (xt | L

hω

B<t
(i, p)) ↖= h

ω,p
i (xt)}

]
=

T∑

t=1

E
[

{A
p
i (xt | L

hω

B<t
(i, p)) ↖= h

ω,p
i (xt)}

] P [Bt = 1]

P [Bt = 1]

=
T

T φ

T∑

t=1

E
[

{A
p
i (xt | L

hω

B<t
(i, p)) ↖= h

ω,p
i (xt)}

]
E [ {Bt = 1}]

=
T

T φ

T∑

t=1

E
[

{A
p
i (xt | L

hω

B<t
(i, p)) ↖= h

ω,p
i (xt)} {Bt = 1}

]
.

Next, we can use the regret guarantee of the algorithm A
p
i on the rounds it was updated. That is,

T∑

t=1

E
[

{A
p
i (xt | L

hω

B<t
(i, p)) ↖= h

ω,p
i (xt)} {Bt = 1}

]
= E

[
∑

t:Bt=1

{A
p
i (xt | L

hω

B<t
(i, p)) ↖= h

ω,p
i (xt)}

]

= E
[
E
[

∑

t:Bt=1

{A
p
i (xt | L

hω

B<t
(i, p)) ↖= h

ω,p
i (xt)}

B
]]

↗ EB [Rp
i (|B|)] ,

where R
p
i (|B|) is the regret of Ap

i , a sub-linear function of |B|. In the last step, we use the fact that
A

p
i is a realizable algorithm for Hp

i and the feedback that the algorithm received was (xt, h
ω,p
i (xt))

in the rounds whenever Bt = 1. By Lemma 5.17 from Ceccherini-Silberstein et al. [2017], there
exists a concave sub-linear function R̃

p
i (|B|) that upperbounds R

p
i (|B|). By Jensen’s inequality,

B [Rp
i (|B|)] ↗ R̃

p
i (T

φ), a sub-linear function of T φ .

Putting everything together, we obtain
[

T∑

t=1

ε(Q(xt), yt)

]
↗

T∑

t=1

ε(hω(xt), yt) +
M

2

a

K∑

i=1

T

T φ
R̃

p
i (T

φ) +M

∞

2T 1+φK lnK

= inf
h↑H

T∑

t=1

ε(h(xt), yt) +
pM

2

a

K∑

i=1

T

T φ
R̃

p
i (T

φ) +M

∞

2T 1+φK lnK.

Since R̃
p
i (T

φ) is a sublinear function of T φ , we have that T
Tϑ R̃

p
i (T

φ) is a sublinear function of T .
As the sum of sublinear functions is sublinear, the second term above must be a sublinear function of
T . Thus, the regret is sub-linear for any choice of ς → (0, 1). This completes our proof as we have
shown that the algorithm Q achieves sub-linear regret in T .

We will now show that the online learnability of H w.r.t ε implies that Hp
i for each i → [K] is online

learnable w.r.t 0-1 loss.
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Proof. (of necessity in Theorem 5.2)

Fix ε → L(ε@p
prec) and let M = maxε,y ε(ω, y). Given an online learner A for H w.r.t ε, our goal is to

construct an agnostic online learner Ap
i for Hp

i for a fixed i → [K]. One can construct agnostic online
learners for Hp

i for all i → [K] by symmetry. Our construction uses the REWA and is similar to the
sufficiency proof above.

Let us define function ϱ’s, the collection of functions !b for every b in the same way we did before.
For every b → {0, 1}T and ϱ → !b, define an Expert Eb,ϱ. Expert Eb,ϱ is the expert presented in
Algorithm 6 after setting j = p and uses A to make predictions in each round. For every b → {0, 1}T ,
let Eb =


ϱ↑!b

{Eb,ϱ} denote the set of all Experts parameterized by functions ϱ → !b. As before,
we will actually define Eb = {E0} ↙


ϱ↑!b

{Eb,ϱ}, where E0 is the expert that never updates A and
only uses it to make predictions in each round. Note that 1 ↗ |Eb| ↗ (K!)|b| ↗ K

K|b|.

The online learner for Hp
i , henceforth denoted by Q, is similar to Algorithm 3. First, it samples a

B → {0, 1}T s.t. Bt ⇐ Bernoulli(T φ
/T ), constructs a set of experts EB using Algorithm 6 and runs

REWA, denoted by P , on the 0-1 loss over the stream (x1, y1), ..., (xT , yT ) → (X ↓ {0, 1})T . Let
h
ω,p
i = argminhp

i ↑H
p
i

∑T
t=1 {h

p
i (xt) ↖= yt} be the optimal function in hindsight and h

ω be any
arbitrary completion of hω,p

i .

Using REWA guarantees and following exactly the same calculation as in the sufficiency proof, we
arrive at

[
T∑

t=1

{Q(xt) ↖= yt}

]
↗

[
T∑

t=1

{EB,ϱhω
B
(xt) ↖= yt}

]
+

∞

2T 1+φK lnK.

The inequality above is the adaptation of Equation (1) for this proof. Since {EB,ϱhω
B
(xt) ↖= yt} ↗

{h
ω,p
i (xt) ↖= yt} + {EB,ϱhω

B
(xt) ↖= h

ω,p
i (xt)}, the inequality above reduces to

[
T∑

t=1

{Q(xt) ↖= yt}

]
↗

T∑

t=1

{h
ω,p
i (xt) ↖= yt}+

[
T∑

t=1

{EB,ϱhω
B
(xt) ↖= h

ω,p
i (xt)}

]
+
∞

2T 1+φK lnK.

It now suffices to show that
[∑T

t=1 {EB,ϱhω
B
(xt) ↖= h

ω,p
i (xt)}

]
is sub-linear in T .

Given an online learner A for H, an instance x → X , and an ordered finite sequence of labeled
examples L → (X ↓ Y)↗, let A(x|L) be the random variable denoting the prediction of A on
the instance x after running and updating on L. For any b → {0, 1}T , h → H, and t → [T ], let
L
h
b<t

= {(xi,BinRel(h(xs), p)) : s < t and bs = 1} denote the subsequence of the sequence of
labeled instances {(xs,BinRel(h(xs), p))}

t↘1
s=1 where bs = 1. Using Lemma E.4, we have

{EB,ϱhω
B
(xt) ↖= h

ω,p
i (xt)} ↗ {ε

@p
prec(A(xt | L

hω

B<t
),BinRel(hω(xt), p)) > 0}

= {ε(A(xt | L
hω

B<t
),BinRel(hω(xt), p)) > 0}

↗
1

a
ε(A(xt | L

hω

B<t
),BinRel(hω(xt), p)),

where the equality follows from the definition of the loss class. Here, a is the lower bound on ε

whenever it is non-zero. Thus, we obtain

[
T∑

t=1

{EB,ϱhω
B
(xt) ↖= h

ω,p
i (xt)}

]
↗

1

a

[
T∑

t=1

ε(A(xt | L
hω

B<t
),BinRel(hω(xt), p))

]
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Now, we will again use the fact that the prediction A(xt | L
hω

B<t
) only depends on (B1, . . . , Bt↘1),

but is independent of Bt. Using this independence, we obtain
[

T∑

t=1

ε(A(xt | L
hω

B<t
),BinRel(hω(xt), p))

]
=

T

T φ

[
∑

t:Bt=1

ε(A(xt | L
hω

B<t
),BinRel(hω(xt), p))

]

=
T

T φ

[ [
∑

t:Bt=1

ε(A(xt | L
hω

B<t
),BinRel(hω(xt), p))

B
]]

↗
T

T φ
E [R(|B|,K)] ,

where R(|B|,K) is the regret of the algorithm A and is a sub-linear function of |B|. In the last step,
we use the fact that A is a (realizable) online learner for H w.r.t. ε and the feedback that the algorithm
received was (xt,BinRel(hω(xt), p)) in the rounds whenever Bt = 1. Again, using Lemma 5.17 from
Ceccherini-Silberstein et al. [2017] and Jensen’s inequality yields B [R(|B|,K)] ↗ R̃(T φ

,K), a
concave, sub-linear function of T φ . Combining everything, we get
[

T∑

t=1

{Q(xt) ↖= h
ω,p
i (xt)}

]
↗

T∑

t=1

{h
ω,p
i (xt) ↖= yt}+

T

aT φ
R̃(T φ

,K) +
∞

2T 1+φK lnK

↗ inf
hp
i ↑H

p
i

T∑

t=1

{h
p
i (xt) ↖= yt}+

T

aT φ
R̃(T φ

,K) +
∞

2T 1+φK lnK

For any choice of ς → (0, 1), the regret above is a sub-linear function of T . Therefore, we have
shown that Q is an agnostic learner for Hp

i w.r.t. 0-1 loss. This completes our proof.

E Technical Lemmas

Throughout this section, for any ranking (permutation) ω → SK , we let ωj
i = {ωi ↗ j} for all

(i, j) → [K].

Lemma E.1. For any y → Y , (ω, ω̂) → Sk, and ε → L(ε@p
sum

)

ε(ω, y) ↗ ε(ω̂, y) + c p j↔Unif([p]) [ε(ω,BinRel(ω̂, j))] .

where c = maxϖ̃,y ς(ε̃,y)
minϖ̃,y{ς(ε̃,y) | ς(ε̃,y) ⇒=0} .

Proof. Assume that ε(ω, y) > ε(ω̂, y) ↘ 0 (as otherwise the inequality trivially holds). Then, since

ε → L(ε@p
sum), it must be the case that ω̂

[p]

↖= ω. That is, ω̂ and ω assign different ranks to the labels in
the top p. Therefore, there exists i → [p] s.t. ε@p

sum(ω,BinRel(ω̂, i)) > 0. Since ε → L(ε@p
sum), for this

same i → [p], ε(ω,BinRel(ω̂, i)) > 0. Therefore, we have

c p j↔Unif([p]) [ε(ω,BinRel(ω̂, j))] ↘ cε(ω,BinRel(ω̂, i))

=
maxε̃,y ε(ω̃, y)

minε̃,y{ε(ω̃, y) | ε(ω̃, y) ↖= 0}
ε(ω,BinRel(ω̂, i))

↘ max
ε̃,y

ε(ω̃, y)

↘ ε(ω, y).

Combining the upperbounds in both cases gives the desired inequality.

Lemma E.2. For any y → Y , (ω, ω̂) → Sk, and ε → L(ε@p
prec

)

ε(ω, y) ↗ ε(ω̂, y) + c ε(ω,BinRel(ω̂, p)).

where c = maxϖ̃,y ς(ε̃,y)
minϖ̃,y{ς(ε̃,y) | ς(ε̃,y) ⇒=0} .
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Proof. Assume that ε(ω, y) > ε(ω̂, y) ↘ 0 (as otherwise the inequality trivially holds). Then, since

ε → L(ε@p
prec), it must be the case that ω̂

p

↖= ω. That is, ω̂ and ω assign different labels in the top p.
Therefore, ε@p

prec(ω,BinRel(ω̂, p)) > 0. Since ε → L(ε@p
prec), ε(ω,BinRel(ω̂, p)) > 0. Therefore, we

have

c ε(ω,BinRel(ω̂, p)) =
maxε̃,y ε(ω̃, y)

minε̃,y{ε(ω̃, y) | ε(ω̃, y) ↖= 0}
ε(ω,BinRel(ω̂, p))

↘ max
ε̃,y

ε(ω̃, y)

↘ ε(ω, y).

Combining the upperbounds in both cases gives the desired inequality.

Lemma E.3. Let ω, ω̂ → Sk. Then, for all (i, j) → [K]↓ [p], ε@p
sum

(ω,BinRel(ω̂, j)) ↘ {ω
j
i ↖= ω̂

j
i }.

Proof. Fix label iω → [K] and threshold j
ω
→ [p]. Our goal is to show that ε@p

sum(ω,BinRel(ω̂, jω)) ↘
{ω

jω

iω ↖= ω̂
jω

iω }. Recall that BinRel(ω̂, jω)[iω] = {ω̂iω ↗ j
ω
} by definition. Since

ε
@p
sum(ω̂,BinRel(ω̂, jω)) = 0, we have that

ε
@p
sum(ω,BinRel(ω̂, jω)) = ε

@p
sum(ω,BinRel(ω̂, jω))≃ ε

@p
sum(ω̂,BinRel(ω̂, jω))

=
K∑

i=1

min(ωi, p+ 1)BinRel(ω̂, jω)[i]≃
K∑

i=1

min(ω̂i, p+ 1)BinRel(ω̂, jω)[i]

=
K∑

i=1

min(ωi, p+ 1) {ω̂i ↗ j
ω
}≃

K∑

i=1

min(ω̂i, p+ 1) {ω̂i ↗ j
ω
}

=
K∑

i=1

min(ωi, p+ 1) {ω̂i ↗ j
ω
}≃

K∑

i=1

ω̂i {ω̂i ↗ j
ω
}

Let I ↑ [K] s.t. for all i → I, ω̂jω

i = {ω̂i ↗ j
ω
} = 1. Then, we have that

ε
@p
sum(ω,BinRel(ω̂, jω)) =

∑

i↑I

min(ωi, p+ 1)≃
∑

i↑I

ω̂i

=
∑

i↑I

min(ωi, p+ 1)≃
jω∑

i=1

i

Suppose that {ω
jω

iω ↖= ω̂
jω

iω } = 1. It suffices to show that ε@p
sum(ω,BinRel(ω̂, jω)) ↘ 1. There are

two cases to consider. Suppose i
ω
→ I. Then, it must be the case that {ωiω ↗ j

ω
} = ω

jω

iω = 0,
implying that ωiω ↘ j

ω + 1. It then follows that in the best case
∑

i↑I
min(ωi, p+ 1) ↘

∑jω↘1
i=1 i+

(jω + 1) >
∑jω

i=1 i showcasing that indeed ε
@p
sum(ω,BinRel(ω̂, j)) ↘ 1. Now, suppose i

ω
/→ I. Then,

{ω̂iω ↗ j
ω
} = 0, which means that {ωiω ↗ j

ω
} = 1. Accordingly, while ω̂ did not rank label iω in

the top j
ω, ω did rank label iω in the top j

ω. Since |I| = j
ω, there must exist an label î → I which ω

does not rank in the top j
ω. That is, there exists î → I s.t. ωî ↘ j

ω+1. Using the same logic, in the best
case

∑
i↑I

min(ωi, p+ 1) ↘
∑j↘1

i=1 i+ (jω + 1) showcasing that again ε
@p
sum(ω,BinRel(ω̂, jω)) ↘ 1.

Thus, we have shown that when {ω
jω

iω ↖= ω̂
jω

iω } = 1, ε@p
sum(ω,BinRel(ω̂, jω)) ↘ 1. Since i

ω and j
ω

were arbitrary, this must be true for any (i, j) → [K]↓ [p], completing the proof.

Lemma E.4. Let ω, ω̂ → Sk. Then, for all i → [K], ε@p
prec

(ω,BinRel(ω̂, p)) ↘ {ω
p
i ↖= ω̂

p
i }.
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Proof. Fix label iω → [K]. Our goal is to show that ε@p
prec(ω,BinRel(ω̂, p)) ↘ {ω

p
iω ↖= ω̂

p
iω}. Recall

that BinRel(ω̂, p)[iω] = {ω̂iω ↗ p} by definition. Since ε
@p
prec(ω̂,BinRel(ω̂, p)) = 0, we have that

ε
@p
prec(ω,BinRel(ω̂, p)) = ε

@p
prec(ω,BinRel(ω̂, p))≃ ε

@p
prec(ω̂,BinRel(ω̂, p))

=
K∑

i=1

{ω̂i ↗ p}BinRel(ω̂, p)[i]≃
K∑

i=1

{ωi ↗ p}BinRel(ω̂, p)[i]

= p≃

K∑

i=1

{ωi ↗ p} {ω̂i ↗ p}

Let I ↑ [K] s.t. for all i → I, ω̂p
i = {ω̂i ↗ p} = 1. Then, we have that

ε
@p
prec(ω,BinRel(ω̂, p)) = p≃

∑

i↑I

{ωi ↗ p}.

Suppose that {ω
p
iω ↖= ω̂

p
iω} = 1. It suffices to show that ε@p

prec(ω,BinRel(ω̂, p)) ↘ 1. There are
two cases to consider. Suppose i

ω
→ I. Then, it must be the case that {ωiω ↗ p} = ω

p
iω = 0,

implying that ωiω ↘ p + 1. It then follows that in the best case
∑

i↑I
{ωi ↗ p} ↗ p ≃ 1 < p

showcasing that indeed ε
@p
sum(ω,BinRel(ω̂, p)) ↘ 1. Now, suppose i

ω
/→ I. Then, {ω̂iω ↗ p} = 0,

which means that {ωiω ↗ p} = 1. Accordingly, while ω̂ did not rank label iω in the top p, ω did

rank label iω in the top p. Since |I| = p, there must exist an label î → I which ω does not rank
in the top p. That is, there exists î → I s.t. ωî ↘ p + 1. Using the same logic, in the best case∑

i↑I
{ωi ↗ p} ↗ p ≃ 1 < p showcasing that again ε

@p
prec(ω,BinRel(ω̂, p)) ↘ 1. Thus, we have

shown that when {ω
p
iω ↖= ω̂

p
iω} = 1, ε@p

prec(ω,BinRel(ω̂, p)) ↘ 1. Since i
ω was arbitrary, this must be

true for any i → [K], completing the proof.
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