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Abstract

We consider the problem of learning linear operators under squared loss between two infinite-
dimensional Hilbert spaces in the online setting. We show that the class of linear operators with
uniformly bounded p-Schatten norm is online learnable for any p € [1,00). On the other hand,
we prove an impossibility result by showing that the class of uniformly bounded linear operators
with respect to the operator norm is not online learnable. Moreover, we show a separation between
sequential uniform convergence and online learnability by identifying a class of bounded linear
operators that is online learnable but uniform convergence does not hold. Finally, we prove that the
impossibility result and the separation between uniform convergence and learnability also hold in
the batch setting.
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1. Introduction

Learning operators between infinite-dimensional spaces is of fundamental importance in many sci-
entific and engineering applications. For instance, the classical inverse problem is often modeled
as learning an inverse mapping from a function space of observed data to the function space of un-
derlying latent parameters, both of which are infinite-dimensional spaces (Kirsch, 2011; Tarantola,
2005). Such inverse problems have found widespread applicability in domains ranging from im-
age processing, X-ray tomography, seismic inversion, and so forth (Neto and da Silva Neto, 2012;
Uhlmann, 2003). In addition, the solution to a partial differential equation is an operator from a
space of functions specifying boundary conditions to the space of solution functions (Kovachki
et al., 2021; Li et al., 2020). Moreover, many of the traditional learning settings such as multi-
task learning, matrix completion, and collaborative filtering can be modeled as learning operators
between infinite-dimensional spaces (Abernethy et al., 2009). Finally, many modern supervised
learning applications involve working with datasets, where both the features and labels lie in high-
dimensional spaces (Deng et al., 2009; Santhanam et al., 2017). Thus, it is desirable to construct
learning algorithms whose guarantees do not scale with the ambient dimensions of the problem.
Most of the existing work in operator learning assumes some stochastic model for the data,
which can be unrealistic in many applications. For instance, the majority of applications of opera-
tor learning are in the scientific domain where the data often comes from experiments (Lin et al.,
2021). Since experiments are costly, the data usually arrives sequentially and with a strong tem-
poral dependence that may not be adequately captured by a stochastic model. Additionally, given
the high-dimensional nature of the data, one typically uses pre-processing techniques like PCA to
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project the data onto a low-dimensional space (Bhattacharya et al., 2021; Lanthaler, 2023). Even
if the original data has some stochastic nature, the preprocessing step introduces non-trivial depen-
dencies in the observations that may be difficult to model. Accordingly, it is desirable to construct
learning algorithms that can handle arbitrary dependencies in the data. In fact, for continuous prob-
lems such as scalar-valued regression, one can often obtain guarantees similar to that of i.i.d. setting
without making any assumptions on the data (Rakhlin and Sridharan, 2014).

In this paper, we study linear operator learning between two Hilbert spaces V and W in the
adversarial online setting, where one makes no assumptions on the data generating process (Cesa-
Bianchi and Lugosi, 2006). In this model, a potentially adversarial nature plays a sequential game
with the learner over 7" rounds. In each round ¢ € [T, nature selects a pair of vectors (x4, y:) €
Y x W and reveals z; to the learner. The learner then makes a prediction ¢, € V. Finally, the
adversary reveals the target y;, and the learner suffers the loss ||g; — ytH}Q,V. A linear operator class
F C WYV is online learnable if there exists an online learning algorithm such that for any sequence
of labeled examples, the difference in cumulative loss between its predictions and the predictions
of the best-fixed operator in F is small. In this work, we study the online learnability of linear
operators and make the following contributions:

(1) We show that the class of linear operators with uniformly bounded p-Schatten norm is online

maux{%,lfl

learnable with regret O (7' P}). We also provide a lower bound of Q(Tl_%), which

matches the upperbound for p > 2.

(2) We prove that the class of linear operators with uniformly bounded operator norm is not online
learnable. Furthermore, we show that this impossibility result also holds in the batch setting.

(3) Recently, there is a growing interest in understanding when uniform convergence and learn-
ability are not equivalent (Montasser et al., 2019; Hanneke et al., 2023). Along this direction,
we give a subset of bounded linear operators for which online learnability and uniform con-
vergence are not equivalent.

To make contribution (1), we upperbound the sequential Rademacher complexity of the loss
class to show that sequential uniform convergence holds for the p-Schatten class for p € [1, o). For
our hardness result stated in contribution (2), we construct a class with uniformly bounded operator
norm that is not online learnable. Our construction in contribution (3) is inspired by and generalizes
the example of Natarajan (1989, Page 22), which shows a gap between uniform convergence and
PAC learnability for multiclass classification. The argument showing that uniform convergence does
not hold is a simple adaptation of the existing proof (Natarajan, 1989). However, since our loss is
real-valued, showing that the class is learnable requires some novel algorithmic ideas, which can be
of independent interest.

1.1. Related Works

Regression between two infinite-dimensional function spaces is a classical statistical problem often
studied in functional data analysis (FDA) (Wang et al., 2016; Ferraty, 2006). In FDA, one typically
considers V and W to be L?[0, 1], the space of square-integrable functions, and the hypothesis class
is usually a class of kernel integral operators. We discuss the implication of our results to learning
kernel integral operators in Section 3.1. Recently, de Hoop et al. (2023); Nelsen and Stuart (2021);
Mollenhauer et al. (2022) study learning more general classes of linear operators. However, all of
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these works are in the i.i.d. setting and assume a data-generating process. Additionally, there is
a line of work that uses deep neural networks to learn neural operators between function spaces
(Kovachki et al., 2021; Li et al., 2020). Unfortunately, there are no known learning guarantees
for these neural operators. Closer to the spirit of our work is that of Tabaghi et al. (2019), who
consider the agnostic PAC learnability of p-Schatten operators. They show that p-Schatten classes
are agnostic PAC learnable. In this work, we complement their results by showing that p-Schatten
classes are also online learnable. Going beyond the i.i.d. setting, there is a line of work that focuses
on learning specific classes of operators from time series data (Brunton et al., 2016; Klus et al.,
2020).

2. Preliminaries

2.1. Hilbert Space Basics

Let V and W be real, separable, and infinite-dimensional Hilbert spaces. Recall that a Hilbert space
is separable if it admits a countable orthonormal basis. Throughout the paper, we let {e,, }>° ; and
{1n}o° denote a set of orthonormal basis for V and W respectively. Then, any element v € V
and w € W can be written as v = Y > | fpep and w = Yo7 | a1y, for sequences {3y, nen and
{an }o2, that are /5 summable.

Consider wy,wy € W such that wy = Y 7, ap 1ty and > o2 | an21y,. Then, the inner
product between w and wy is defined as (w1, w2)yy, 1= > 0| O 10,2, and it induces the norm
Jwillyy == v/ (w1, wi)y, = /> 52; a2 ;. One can equivalently define (-, -),, and ||-||,, to be the
inner-product and the induced norm in the Hilbert space ). When the context is clear, we drop the
subscript and simply write (-, -) and ||-|.

A linear operator f : V — W is a mapping that preserves the linear structure of the input. That
is, f(c1v1 + cav2) = c1f(v1) + caf (v2) for any ¢1,co € R and vi,v9 € V. Let L(V, W) denote
the set of all linear operators from V to WW. A linear operator f : V — W is bounded if there exists
a constant ¢ > 0 such that || f(v)[| < c|lv| for all v € V. The quantity || f||,, := inf{c > 0 :
lf ()| < cllv]|,Yv € V} is called the operator norm of f. The operator norm induces the set of
bounded linear operators, B(V, W) = {f € L(V,W) | ||f|l,, < oo}, which is a Banach space
with |-, as the norm.

For an operator f € L(V, W), let f* : VW — V denote the adjoint of f. We can use f and f*
to define a self-adjoint, non-negative operator f*f : ¥V — V. Moreover, the absolute value operator
is defined as | f| := (f*f )%, which is the unique non-negative operator such that |f| o |f| = f*f.
Given any operator g : V — V), the trace of g is defined as tr(g) = > >, (g(en), ), where
{en}22, is any orthonormal basis of V. The notion of trace and absolute value allows us to define
the p-Schatten norm of f,

1

11, = (ex(1£17)) "
forall p € [1, 00). Accordingly, we can define the p-Schatten class as
Sp(V, W) ={f € L(V,W) | [ is compact and |||, < co}.

A linear operator f : V — W is compact if the closure of the set { f(v) | v € V,||v|| < 1} is
compact. For a compact linear operator f : V — W, there exists a sequence of orthonormal basis

{dntpzy € Vand {pn}p2; C W such that f = Zﬁozl 5n(f) Yn ® ¢, where s,(f) | 0 and
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n @ ¢y, denote the tensor product between (,, and ¢,,. This is the singular value decomposition of
f and the sequence {s,(f)}°2; are the singular values of f. For p € [1, 00), the p-Schatten norm
of a compact operator is equal to the £, norm of the sequence {s,(f)}n>1,

1£1l, = (Z Sn(f)p>
n=1

On the other hand, for a compact operator f, the ¢, norm of its singular values is equal to its
operator norm, || f{|,, = [ flloc = SupP,>1 |sn(f)|. Accordingly, for compact operators, the operator
norm is referred to as co-Schatten norm, which induces the class

Sec(V, W) ={f € LIV,W) | fiscompactand |||, < oco}.

Therefore, Soo (V, W) C B(V,W). For a comprehensive treatment of the theory of Hilbert spaces
and linear operators, we refer the reader to Conway (1990) and Weidmann (2012).

P

2.2. Online Learning

Let X C V denote the instance space, ) C W denote the target space, and F C L(V, V) denote
the hypothesis class. In online linear operator learning, a potentially adversarial nature plays a
sequential game with the learner over 7" rounds. In each round ¢ € [T, the nature selects a labeled
instance (x4, ;) € X x ) and reveals z; to the learner. The learner then uses all past examples
{(2;,y:)}._] and the newly revealed instance 2, to make a prediction ; € ). Finally, the adversary
reveals the target ¢, and the learner suffers the loss ||: — v ||12/v Given F, the goal of the learner is
to make predictions such that its regret, defined as a difference between the cumulative loss of the
learner and the best possible cumulative loss over operators in J, is small.

Definition 1 (Online Linear Operator Learnability) A linear operator class F C L(V, W) is
online learnable if there exists an algorithm A such that its expected regret is

T T
RA(T, F) == sup E | I A@) —ull” - }gjffz £ (o) = well®
t=1 t=1

(1,91)5-(xT5YT)

is a non-decreasing, sublinear function of T

Unlike when V is finite-dimensional, the class 7 = £(V, W) is not online learnable when V
is infinite-dimensional (see Section 4). Accordingly, we are interested in understanding for which
subsets F C L(V, W) is online learning possible. Beyond online learnability, we are also interested
in understanding when a probabilistic property called the sequential uniform convergence holds for
the loss class {(z,y) — ||f(z) —y||* : f e F}.

Definition 2 (Sequential Uniform Convergence) Let {(X;,Y;)}_, be an arbitrary sequence of
random variables defined over an appropriate probability space on X x Y, and C = {Ct}f:_ol
be an arbitrary filtration such that (X, Y;) is Ci-measurable. Given a linear operator class F C
L(V, W), we say that sequential uniform convergence holds for a loss class {(z,y) — || f(z) —y|* :

fertif
]:0.

limsup sup E
T—o0 P

>~ (IF(X0) = Yill* = ElllF(X0) = ¥ill* | €l

t=1

1
sup | —
fer|T
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Here, the supremum is taken over all joint distributions P of {(Xy, Y1)} .

A general complexity measure called the sequential Rademacher complexity characterizes se-
quential uniform convergence (Rakhlin et al., 2015a,b).

Definition 3 (Sequential Rademacher Complexity) Let 0 = {o;}1, be a sequence of inde-
pendent Rademacher random variables and (v,y) = {(z¢,y:)}l_, be a sequence of functions
(e,y¢) + {1,171 — X x ). Then, the sequential Rademacher complexity of the loss class
{(v,w) = ||f(v) —w|?* : f & F} is defined as

T

Radr(F) = sup E [sup S o1 ||f (z1(0<0)) — pelo<t) 1P| .
vy | feF 1=

where oy = (01,...,04-1).

If there exists a B > 0 such that supy,, ,, [|.f(v) — w||?* < B, then Theorem 1 of Rakhlin et al.
(2015b) implies that the sequential uniform convergence holds for the loss class { (v, w) — || f(v) — w]* :
f € F} if and only if Radr(F) = o(T"). Given this equivalence, in this work, we only rely on the
sequential Rademacher complexity of F to study its sequential uniform convergence property.

3. p-Schatten Operators are Online Learnable

In this section, we show that every uniformly bounded subset of S,(),V) is online learnable.
Despite not making any distributional assumptions, the rates in Theorem 4 match the lowerbounds
in the batch settig established in Section 4.1. This complements the results by Rakhlin and Sridharan
(2014), who show that the rates for scalar-valued regression with squared loss are similar for online
and PAC learning.

Theorem 4 (Uniformly Bounded Subsets of S,(), V) are Online Learnable) Fix ¢ > 0. Let
X ={v € V| ||v|]| <1} denote the instance space, Y = {w € W | |[w|| < ¢} denote the target
space, and F, = {f € Sp,(V,W) | [|f|, < c} be the hypothesis class for p € [1,00]. Then,

141
inf Ra(T, Fp) < 2Radr(Fp) < o2 {317}

Theorem 4 implies the regret O(v/T) for p € [1,2] and the regret O(Tl_%) for p > 2. When
p = o0, the regret bound implied by Theorem 4 is vacuous. Indeed, in Section 4, we prove that any
uniformly bounded subset of So(V, W) is not online learnable.

Our proof of Theorem 4 relies on Lemma 5 which shows that the g-Schatten norm of Rademacher
sums of rank-1 operators concentrates for every ¢ > 1. The proof of Lemma 5 is in Appendix A.

Lemma 5 (Rademacher Sums of Rank-1 Operators) Let 0 = {0;}_, be a sequence of inde-
pendent Rademacher random variables and { (v, w;)}1_, be any sequence of functions (vy, w;) :
(L1t = {veV v <alx{weW :|w| < ce}. Then, for any ¢ > 1, we have

T

Z ot vi(0<t) ® wi(o<t)

t=1

E <cjco Tmax{%%}

q
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Lemma 5 extends Lemma 1 in (Tabaghi et al., 2019) to the non-i.i.d. setting. In particular, the
rank-1 operator indexed by ¢ can depend on the Rademacher subsequence o, whereas they only
consider the case when the rank-1 operators are independent of the Rademacher sequence. In ad-
dition, Tabaghi et al. (2019) use a non-trivial result from convex analysis, namely the fact that
A +— tr(h(F)) is a convex functional on the set {F' € T | spectra(F') C [«, (]} for any convex
function h and the class of finite-rank self-adjoint operators 7. Our proof of Lemma 5, on the other
hand, only uses standard inequalities.

Equipped with Lemma 5, our proof of Theorem 4 follows by upper bounding the sequen-
tial Rademacher complexity of the loss class. Although this proof of online learnability is non-
constructive, we can use Proposition 1 from (Rakhlin et al., 2012) to design an explicit online
learner that achieves the matching regret given access to an oracle that computes the sequential
Rademacher complexity of the class. Moreover, online mirror descent (OMD) with the || f||? regu-
larizer also achieves the rates established in Theorem 4. In particular, OMD with the strongly convex
regularizer || f||3 guarantees regret O(v/T) for p = 2. The O(v/T) regret bound for F, immedi-
ately implies an O(v/T) regret bound for all 7, C F in p € [1,2] by monotonicity. For p > 2,
the Clarkson-McCarthy inequality (Bhatia and Holbrook, 1988) implies that || f Hg is p-uniformly

1
convex and thus OMD with this regularizer obtains the regret of O(Tlfﬁ) (Sridharan and Tewari,
2010; Srebro et al., 2011). That said, Theorem 4 establishes a stronger guarantee— not only are these
classes online learnable but they also enjoy sequential uniform convergence.

3.1. Examples of p-Schatten class

In this section, we provide examples of operator classes with uniformly bounded p-Schatten norm.

Uniformly bounded operators w.r.t. [-[|,, when either V or WV is finite-dimensional. If either
the input space V or the output space VWV is finite-dimensional, then the class of bounded linear
operators B(V, W) is p-Schatten class for every p € [1,00]. This is immediate because for every
f € B(V, W), either the operator f*f : V — Vor ff*: W — W is a bounded operator that maps
between two finite-dimensional spaces. Let | f[|,, < ¢ and min{dim(V),dim(W)} = d < oc.
Since f* f and f f* have the same singular values and one of them has rank at most d, both of them
must have rank at most d. Let s > s3... > sq > 0 denote all singular values of f*f. Then,

1
- 1
11, = (Zd sp> " < edr < oo, where we use the fact that s; < ¢ for all i. Since || f||, < cV/d,

i=15i
Theorem 4 implies that 7 = {f € B(V,W) | [|f|l,, < c} is online learnable with regret at most

6c2dVT.

Kernel Integral Operators. Let V denote a Hilbert space of functions defined on some domain §2.
Then, a kernel K : Q x Q — R defines an integral operator fx : V — W such that fx (v(r)) =
Jo K (r,s)v(s)du(s), for some measure space (€2, ). Now define a class of integral operators,

F{as [ [P ) < 2.

induced by all the kernels whose L? norm is bounded by c. It is well known that || f||, < ¢ for every
f € F (see (Conway, 1990, Page 267) and (Weidmann, 2012, Theorem 6.11)) . Thus, Theorem 4
implies that F is online learnable with regret 6¢/7T.
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4. Lower Bounds and Hardness Results

In this section, we establish lower bounds for learning uniformly bounded subsets of .S, (V, ) for
p € [1,00].

Theorem 6 (Lower Bounds for Uniformly Bounded Subsets of S,(V,W)) Fixc > 0. Let X =
{v e V| |v| < 1} denote the instance space, Y = {w € W | ||w|| < c} denote the target space,
and Fy, = {f € Sp,(V,W) | [Ifl,, < c} be the hypothesis class for p € [1,oc]. Then, we have

ir}tf RA(T, Fp) > ¢ 27175,

Theorem 6 shows a linear lowerbound of ¢? T for p = oo, thus implying that the class Fo, is
not online learnable. For p € [2,00), the lowerbound in Theorem 6 matches the upperbound in
Theorem 4 up to a factor of 6. However, in the range p € [1, 2), our upperbound saturates at the rate
/T, while the lower bound gets progressively worse as p decreases. It remains an open problem to
find the optimal regret of learning F,, for p € [1,2).

Proof (of Theorem 6) Fix an algorithm A, and consider a labeled stream {(e;, c o41b¢) }1_, where
o ~ Unif({—1,1}). Then, the expected loss of A is

T
E ZI!A(et)—CUt¢t\I2] > > (EllAler) — o))
t=1

M=

t=1

(E
1 A
1

(5 llevn ~ (v ||> Zcﬂwu

The first inequality above is due to Jensen’s, whereas the second inequality is the triangle inequality.
To establish the upper bound on the optimal cumulative loss amongst operators in JF,, consider

the operator f,,, := Zle 71/ Y ®eq. As the singular values of f,, are {c oy T~1/P}T_ | we have

1/p T 5 1/p
co c
[ fopll, = (Z}Tl/tp’ > ( IT) =c forpe[l,0).
t=

Similarly, || fo,c0l ., = HZtT:l coPy @ etH = maxy> [coy| = c. Thatis, f,, € F, forallp > 1.
Thus, we obtain that >

T T
E [figg S er) - catwtw] <E [Z | fop(er) = catth?] =E
Pi=1 t=1

1 1 2
L AGe) — vl + 5 1A + cwnD

I
M=

t

M=

t=1

CO¢
Tl/p

>

t=1

1 2
2
c (1 — Tl/p)

1 1
2 _ _ 1—
c (1—T1/p> AT —AT

—a Wt — CUtl/JtH ]
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Therefore, we have shown that the regret of A is

T T
_1
E | Il Ale) — col” - Anf S Nf(er) —conprl® | =T,
t=1

— Pi=1

Our proof uses a random adversary, and the expectation above is taken with respect to both the
randomness of the algorithm and the stream. However, one can use the probabilistic method to
argue that for every algorithm, there exists a fixed stream forcing the claimed lowerbound. This
completes our proof. |

4.1. Lower Bounds in the Batch Setting

In the batch setting, the learner is provided with n € Ni.i.d. samples S = {(z;, y;) }}~ from a joint
distribution D on X’ x ) that is unknown to the learner. Using the sample S, the learner then finds
a predictor fn € Y using some learning rule. We will abuse notation and use fn to denote both
the learning rule and the predictor returned by it. Given a linear operator class 7 C L(V, W), the
goal of the learner is to find an estimator fn with a small worst-case expected excess risk

fo) o]~ e B i@ - o]

En(F, fn) :=su E E
(7 n) P [(%y)ﬂ? [ feF (zy)~D

D Sa~D7

The minimax excess risk for learning the function class 7 is then defined as £, (F) = inf ; £(F, ),
where the infimum is over all possible learning rules. We adopt the minimax perspective to define
agnostic batch learnability.

Definition 7 (Batch Learnability) A linear operator class F C L(V, W) is batch learnable if and
only if limsup,,_,. E,(F) = 0.

Our results in Section 3 immediately provide an upperbound on &, (F) because &, (F) is upper
bounded by the batch Rademacher complexity of F, which is further upper bounded by its sequen-
tial analog. Similar upperbounds on batch Rademacher complexity of F were also provided by
Tabaghi et al. (2019). In this section, we complement these results by providing lower bounds on
En(F).

Theorem 8 (Batch Lower Bounds for Uniformly Bounded Subsets of S,,(V,W)) Fixc > 0. Let
X ={v € V| ||v|]| <1} denote the instance space, Y = {w € W | |[w|| < ¢} denote the target
space, and F, = {f € Sp,(V,W) | [Ifll, < c} be the hypothesis class for p € [1,00]. Then, we

have
2

En(F) > % max {niplj,nfg} .

Theorem 8 shows a non-vanishing lowerbound of ‘13—; for p = oo, immediately implying that the
class Foo is not batch learnable. For p € [2,00), Tabaghi et al. (2019) provides an upperbound of
1

O(n_%), whereas our lowerbound is Q(n~ »-1). Additionally, for p € [1,2), there is also a gap

2
between our lowerbound of Q(n™ ») and Tabaghi et al. (2019)’s upperbound of O(n_%). Thus, it
remains to find the optimal rates for learning J,, for every p € [1, 00).
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S. Online Learnability without Sequential Uniform Convergence

In learning theory, the uniform law of large numbers is intimately related to the learnability of a hy-
pothesis class. For instance, a binary hypothesis class is PAC learnable if and only if the hypothesis
class satisfies the i.i.d. uniform law of large numbers (Shalev-Shwartz and Ben-David, 2014). An
online equivalent of this result states that a binary hypothesis class is online learnable if and only if
the hypothesis class satisfies the sequential uniform law of large numbers (Rakhlin et al., 2015b).
However, in a recent work, Hanneke et al. (2023) show that uniform convergence and learnability
are not equivalent for online multiclass classification. A key factor in Hanneke et al. (2023)’s proof
is the unboundedness of the size of the label space. This unboundedness is critical as the equiva-
lence between uniform convergence and learnability continues to hold for multiclass classification
with a finite number of labels (Daniely et al., 2011). Nevertheless, the number of labels alone cannot
imply a separation. This is true because a real-valued function class (say G C [—1, 1]* where the
size of label space is uncountably infinite) is online learnable with respect to absolute/squared-loss
if and only if the uniform convergence holds (Rakhlin et al., 2015a). In this section, we show an
analogous separation between uniform convergence and learnability for online linear operator learn-
ing. As the unbounded label space was to Hanneke et al. (2023), the infinite-dimensional nature of
the target space is critical to our construction exhibiting this separation. Mathematically, a unifying
property of Hanneke et al. (2023)’s and our construction is the fact that the target space ) is not
totally bounded with respect to the pseudometric defined by the loss function.

The following result establishes a separation between uniform convergence and online learn-
ability for bounded linear operators. In particular, we show that there exists a class of bounded
linear operators F such that the sequential uniform law of large numbers does not hold, but F is
online learnable.

Theorem 9 (Sequential Uniform Convergence # Online Learnability) LerX = {v € V| > > |¢,| <
1 where v = 07 | cpen} be the instance space and Y = {v € V| ||v|| < 1} be the target space.
Then, there exists a function class F C S1(V, V) such that the following holds:

(i) Radp(F) > &
(i) inf g RA(T, F) <2+ 8y/Tlog (27).
Proof For a natural number k£ € N, define an operator fj, : V — V as

fo:= biln] ex @en =€, @Y biln]en (1)
n=1

n=1

where by, is the binary representation of the natural number k and by [n] is its n'* bit. Define F =

{fx | ke N}U{fo} where fo =0.
We begin by showing that 7 C S;(V, V). For any «, 5 € R and v, v9 € V, we have

felaw + Bu2) =D beln] {en, v + Bua) ex = aufi(v1) + B (v2).
n=1

Thus, fi is a linear operator. Note that fj, is defined in terms of singular value decomposition, and
has only one non-zero singular value along the direction of e;. Therefore,

felly =D beln] < logy(k) + 1,
n=1
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where we use the fact that there can be at most log, (k) 4 1 non-zero bits in the binary representation
of k. This further implies that | f[[, < [|f&[l; < logy(k) +1 < oo forall p € [1,00]. Note that
each fi maps a unit ball in V to a subset of {acey, : |a| < logy(k) + 1}, which is a compact set for
every k € N. Thus, for every k € N, f, is a compact operator and fi, € S1(V, V). We trivially have
fo € S1(V,V).

Proof of (i). Let o = {at}thl be a sequence of i.i.d. Rademacher random variables. Consider a
sequence of functions (z,y) = {4, yt}tT:1 such that z(0<;) = e; and y(0<;) = 0 for all ¢ € [T].
Note that our sequence {e;}._; C X Then, the sequential Rademacher complexity of the loss class
is

T A
Radp(F) = sup E supZat 1f(ze(o<t)) — yt(0'<t)||2] > E 21152015 ||fk(et)|2]
=1

r T
=E [sup Z ot by [t]
_kEN =1

r T
>E | 1{o; =1}

Lt=1

T
5"

Here, we use the fact that fy,(e;) = bi[t] ex and P[0y = 1] = 1. As for the inequality supcyy Zle oy b [t] >
S°L, 1{os = 1}, note that for any sequence {o}7_,, there exists a k € N (possibly of the order

~ 2T such that by.[t] = 1 whenever o; = 1 and by[t] = 0 whenever oy = —1.
Proof of (ii). We now construct an online learner for 7. Let (z1,41) ..., (xr,yr) € X X Y
denote the data stream. Since y; is an element of unit ball of V, we can write y; = > >~ | cp(t)ep

such that }°>° | ¢2(¢) < 1. Foreach ¢ € [T, define aset of indices Sy = {n € N : ¢, (t)]| >
Since

1
ST

[e.e]
1 Sy
2wl =Y dmz Y dnz Y =,
4T AT
n=1 neS nesS
we have |S;| < 4T. Let sort(S;) denote the ordered list of size 47" that contains elements of .S;
in descending order. If S; does not contain 47" indices, append 0’s to the end of sort(.S;). We let
sort(S;)[j] denote the ;' element of the ordered list sort(S;).
For each i € [T and j € [4T), define an expert E/ such that

B! (z) = {0’ b= Z : where k = sort(S;)[j].
fk (mt), t>1

An online learner A for F runs multiplicative weights algorithm using the set of experts £ = {Ef |
i€ [T],j € [AT]}. Tt is easy to see that || fx(x)|| < 1 for all z € X. Thus, for any g, y+ € Y, we
have || — y||> < 4. Thus, for an appropriately chosen learning rate, the multiplicative weights
algorithm guarantees (see Theorem 21.11 in Shalev-Shwartz and Ben-David (2014)) that the regret
of A satisfies

E

T T
> |l A) - yt||2] < inf D () = well* + 44/2T In(I€)).
t=1 t=1

10
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Note that |£] < 4T, which implies 41/2T In(|€]) < 81/T In(2T'). We now show that

T T
. 2 . 2
ggg; |B(ar) =il < }Ielg:tzl £ (o) = well” + 2.
Together, these two inequalities imply that the expected regret of A is < 2+ 8,/7 In(27"). The rest
of the proof is dedicated to proving the latter inequality.

Let fy+ € argmingr ST () — well®. Let t* € [T be the first time point such that
k* € Si» and suppose it exists. Let 7* € [47'] be such that k* = sort(S¢+)[r*]. By definition of the
experts, we have

B () = fre () fort > t*,

thus implying that 3, . || Ef (2¢) — ytHQ = Yo | fes(¢) — we]|”. Therefore, it suffices to

show that

> | ) - wHZ < S e () — wll? + 2.

t<t* <t
As E{: (z¢) = 0 for all t < t*, proving the inequality above is equivalent to showing

STyl < 3 e () — wall? + 2.

t<t* t<t*

Since ||y ||? < 1, we trivially have ||y || < ||fur (2+) — yer||* + 1. Thus, by expanding the
squared norm, the problem reduces to showing

> (20 (@) ) = i @)?) < 1.

t<t*

We prove the inequality above by establishing
2 fie (w2), ) — i ()| < 2 forall ¢ <1
Letay =Y 00 an(t)en. Wehave fix(z¢) = D07 bex[n] (x4, €n) epr = (Do bpr[n]an(t)) ep.
Defining ag+(t) = (3,2 ber[n]an (1)), we can write
fir(zy) = aps(t)er=  and || frr (z0) || = |ag= (t)]-

So, it suffices to show that 2 ags(t) ¢« () — |ags(t)|*> < 7 forall ¢ < t*. To prove this inequality,
we consider the following two cases:

() Suppose |ags(t)| > 2|cg«(t)|. Then, 2 ag«(t) cpx (t) — |ag(1)|* < |ag=(t)|* — |ax=(t)]* = 0.

2
(I1) Suppose |az+(t)| < 2|cx+(t)|. Then, 2 aps () cpr () — |aps (8)[? < 4|cp= ()2 < 4 (ﬁ) =
1 because k* ¢ Sy for all t < t*.
In either case, 2 aj+ () cgs () — |ags (1) < £+ forall t < t*.
Finally, suppose that such a t* does not exist. Then, our analysis for the case ¢ < ¢* above
shows that the expert EL that predicts EX(z;) = 0 for all t < T satisfies ZtT:l | BT (z) — ytHQ <

S e () — well” + 2. -

11
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5.1. Batch Learnability without Uniform Convergence

Although we state Theorem 9 in the online setting, an analogous result also holds in the batch
setting. To establish the batch analog of Theorem 9, consider fj, defined in (1) and define a class
F =A{fx | £ € N} U{fo} where fo = 0. This is the same class considered in the proof of
Theorem 9. Recall that in our proof of Theorem 9 (i), we choose a sequence of labeled examples
{e+, 0}I_, that is independent of the sequence of Rademacher random variables {o;}]_;. Thus, our
proof shows that the i.i.d. version of the Rademacher complexity of F, where the labeled samples
are independent of Rademacher variables, is also lower bounded by % This implies that the class F
does not satisfy the uniform law of large numbers in the i.i.d. setting. However, using the standard
online-to-batch conversion techniques, we can convert our online learner for F to a batch learner
for F (Cesa-Bianchi et al., 2004). This shows a separation between uniform convergence and batch
learnability of bounded linear operators.

6. Discussion and Open Questions

In this work, we study the online learnability of bounded linear operators between two infinite-
dimensional Hilbert spaces. In Theorems 4 and 6, we showed that
max %J—l}

P
)

2ppl—1 . 2
T v §1gf RA(T, Fp) < 6c°T

for every p € [1,00], where F, := {f € S,(V, W) : [|f[|, < c}. Note that the upperbound and
lowerbound match p > 2. However, for p € [1,2), the upperbound saturates at VT , While the
lower bound gets progressively worse as p decreases. Given this gap, we leave it open to resolve the
following question.

What is inf 4 R4 (T, Fp) forp € [1,2)?

We conjecture that lowerbound is loose for p € [1,2), and one can obtain faster rates using some
adaptation of the seminal Vovk-Azoury-Warmuth forecaster (Vovk, 2001; Azoury and Warmuth,
2001).

Section 5 shows a separation between sequential uniform convergence and online learnability
for bounded linear operators. The separation is exhibited by a class that lies in S1(V, W), but is not
uniformly bounded. In this work, we established that there is no separation between online learn-
ability and sequential uniform convergence for any subset of S,(),)V) with uniformly bounded
p-Schatten norm for p € [1,00). However, it is unknown whether this is also true for S (V, W).
This raises the following natural question.

Is RadT(f) = O(T) if and only if ian R.A(Ta ]:) = O(T) for every
F A €ScWW) [ [[fllo < c}?

Finally, in this work, we showed that a uniform bound on the p-Schatten norm for any p € [1, c0)
is sufficient for online learnability. However, the example in Theorem 9 shows that a uniform upper
bound on the norm is not necessary for online learnability. Thus, it is an interesting future direction
to fully characterize the landscape of learnability for bounded linear operators. In addition, it is also
of interest to extend these results to nonlinear operators.

12
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Appendix A. Upperbound Proofs for Online Setting
Our proof of Theorem 4 also relies on the following technical Lemma.
Lemma 10 Letv €V, w e W, and f € L(V,W). Then, we have (f(v),w) = tr(f o (v ® w)).

Proof (of Lemma 10) Let {1, }2° ; be an orthonormal basis of W and w = 2211 apthy, for an £y
summable sequence {a, }nen. Then, by definition of the trace operator, we have

fo U®w Z U ®w wn n Z <f(v)7zan¢n> = <f(v),w>,
n=1

n=1 n=1

which completes our proof. |
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A.l. Proof of Lemma 5

Let F = Z?:l Ot ’Ut(0'<t) ® wt(0<t)- Since

T
rank (F Z rank (o vt (0<t) @ wi(o<t)) < T,

F can have at most 7" non-zero singular values. Let {s;}/_, be the singular values of the operator
F, possibly with multiplicities. Then, for ¢ € [1,2), we have

1l =

>

t=1

(80 ()"

1
q

T 3
(zs) 1 ey, Th,

t=1

where the inequality is due to Holder. As for ¢ > 2, we trivially have || ||, < [[F||,. In either case,
we obtain

|F)l, < max {Ta"2,1} |[F,.

Hence, to prove Lemma 5, it suffices to show that

1
E[F|o] £ c1eT2.

Recall that by definition of the 2-Schatten norm, we have || F||, = y/tr (F*F'). Using linearity of
trace and Jensen’s inequality gives E [\ /tr (F*F)}

E[F*F]

=E

t=1

_t7T
A

Lt=1
A

Lt=1

r/ T
(Z orwi(o<t) @ vi(o<t)

)

Z orv(o<t) ® wt(‘7<t)>]

t=1

D lvilo<) |? wilo<) @ wi(o<)

> loilo<o)lP we(o<r) @ wio<)

< /tr (E[F*F]). Then,

Z or o (vi(o<t), vr(0<r)) wi(o<t) ® 'LUT(0'<7«)]

+E Z (0 <Ut(0<t)7 Ur(o-<r)> wt(0<t) ® wr(0<r)
t#r

To see why the second term above is 0, consider the case ¢ < r. We have

E (o0, (vi(o<t), vr(0<r)) wi(o<t) @ wr(o<r)] = E[E [010, (vi(0<t), vr(0<r)) wi(o<t) @ wr(0<r) | o</]]
=K [Ut <Ut(a<t)a UT(U<T)> wt(0<t) & wr(0<r) E [UT ’ U<r]]
=0.
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The last equality follows because o, is independent of o, and thus E [0, | 0<,] = E[o,,] = 0. The
case where ¢ > r is symmetric. Putting everything together, we have

T
tr (E[F*F]) = tr (IE [Z ve(o <o) ||? wiloy) ® wt(a<t)]>

t=1

E

T
D llvelo<) P tr (wioer) @ wt(fkt))]

t=1

N

=E

> oo [[wi(o<e) |
t=1

i3 = (c102)* T,

M=

-
I

1

which implies that E[ || F||,] < /tr (E[F*F]) < /(c12)*T = cjc2 Tz. This completes our
proof.

A.2. Proof of Theorem 4

Define the normalized loss class {(u,v) — ﬁ |f(u) —v||* : f € F,} such that every function
in this class maps to [0, 1]. Applying (Rakhlin et al., 2015b, Theorem 2) to this normalized loss
class, we obtain that the expected regret of A is < 8c? Radr(F),), where F), = {ﬁ flfeF}
is the normalized operator class. Since Radr(F,) = ﬁ Radr(F,), the expected regret of A is
< 2Radp(F,). This completes the proof of the first inequality. We now focus on proving the
second inequality here. By definition, we have

T
Radp(Fp) = sup E [SUP ZUt 1f(zt(o<t)) — yt(0<t)H2]

T,y feFp 121

T T
< sup (E sup ;w If(ze(o<e))|?| +2E sup ;—at <f(wt(a<t))7yt(a<t)>]
T
FE| S0 ryt<a<t>>|12]>
= T T
= SIUE (E ;éljlt)p ;Ut ||f(33t(0<t))\|2 +2E ;éljlt)p ;@: <f($t(0<t)),yt(0<t)>]> .

To handle the second term above, recall that Lemma 10 implies (f(x¢(0<¢)), ye(0<t)) = tr(f o
(z¢(0<t) @ y1(0<¢))). Using the linearity of the trace operator, we obtain

T

Z ot 2(0<t) ® ye(o<t)

t=1

Y

T T
> o (f(zilo<r)) yilo<r)) = tr (f oY o1xy(0<) @ yt(0<t)> < Ifll,

t=1 t=1

q
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where ¢ := 1 — % is the Holder conjugate of p (Reed and Simon, 1975, Page 41). This implies the
bound

T

E | sup Zat (f(xe(0<t)) ye(o<t))

T
Z orzi(o<t) ® yi(o<t)
J SN ——

t=1

<E |sup |f,
fE€FD q

T
<cE Z orx(0<t) @ yr(o<t)

t=1

q

where the last inequality follows from the definition of F,.
To handle the first term in the bound of Rad7(F,,) above, note that

1 (ze(o<a))I* = (f(xelo<)s f@(o<))) = (ff (ze(o<h) milow)) = te(f* folzi(ow)Dai(0r)),

where the final equality follows from Lemma 10. Using linearity of trace, and the generalized
Holder’s inequality for Schatten norms (Reed and Simon, 1975, Page 41), we obtain

T

Z ot 21(0<t) @ Ti(0<t)

t=1

T
E | sup Zat I1f (e(o<e)|”

f€Fp v

<E|sup £/l
fer,

q

T
Z o 1¢(0<t) ® 2(0<t)
=1

SCZE

q

where the last inequality uses the fact that || f* f||, < || f Hi Combining everything, we obtain

T T
11
RadT(Fp) < 02E ZO’t xt(0<t) ®$t(0'<t) +2c E ZO’t xt(0<t) ®yt(0'<t> < 302 Tmax{2,q}7
t=1 q t=1 q
where the final inequality follows from using Lemma 5 twice. Recalling that % =1- % completes

our proof of second inequality.

Appendix B. Proof of Theorem 8

B.1. Proof of lowerbound of % n_P%l.

Proof Fix n,m € N. Let D be an arbitrary joint distribution on X x ), and U denote the uniform
distribution on {ey, ..., emn}. Foreach o € {—1,1}™", define h, = > "} c0o; 1); ® e;. Note that
he ¢ Fp for large n. The minimax expected excess risk of F is

E.(F)=infsup E E ‘
(%) fn Dp S~Dn Lwﬁy)ND{

foe) = | = ot B [r@ - ui?)]

fe]:P (ajvy)N

feFpa~U

st B (BB @ @] -t B (1@ @] |

where the first inequality follows upon replacing supremum over D, o with U and expectation over
o respectively. Let S, € X" denote the instances from labeled samples S € (X x ))™. We first
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lower bound the expected risk of the learner, and then upper bound the expected risk of the optimal
function in F,. Exchanging the order of the first two expectations, the lower bound of the expected
risk of the learner is

igfswg%”L[a~{£%ynn[wE%f[ f”cx)__h”(x)uz]]]

1 mn
=1

fule:) = ho(es)

=inf E [ E

I

fules) — conp;

1
)]

In order to get the second to the last inequality, we reinterpret sampling x uniformly from {e1, ..., emn}
as sampling index 4 uniformly from {1,...,mn} and drawing e;. The final inequality follows upon
exchanging the sum and expectation and applying Jensen’s. Note that, whenever i ¢ N, we have

|-=e] J14]

Foled) + e

>if  E [E [12’
fn N~UNif({1,,...;mn})™ | o~{£1} mn N

1
>inf  E [Z(IE[
frn N~Unif({1,,...,;mn})™ | MmN N o~{£1}

fn(ei) — coib;

Falei) — conp;

)17

Fules) — cogb;

.
o~ E1}mn
o[
> et + el

267

fales) — e

|

where we use the fact f,, is independent of o; for all i ¢ N and triangle inequality. Thus, combining
everything, our lower bound is

1 62 mn 1 n
> inf E — 2= — Pi¢gN)=c2{(1—-—) .
B 1?” N~Unif({1,,...,mn})" [mn %C ] mn ; (¢ N)=c < mn)

For the last equality, we use the fact that the probability of ¢ not appearing in the set N obtained by

n random uniform draw from {1, 2, ..., mn} with replacement is ( 1-— #)n

Next, we upperbound optimal expected risk amongst functions in F,. Consider

fop= ZW% ® ej.
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Clearly,

fopll, < cforallp € [1,00] and thus f,.; € F. Therefore, we can write

inf E [I/@) = ho@)I?] < E [Ifop(@) = ho(@)]

feFpa~U

1 mn
= ; 1 op(es) —holed)]?

1 <& co; 2
- Y A caly.
=— Z ()7 Yy — coiip;
i=1

1 &, 1 2
e ZC 1—- —
mn - (mn)t/p

Thus, putting everything together, the minimax expected excess risk is

-2 () ()
202<1271n)202<1(mn1)1/1’) (forn > 2)

> 2 ( 1 — 1> .
- (mn)% 2m

1 1 1
Next, pick m = [2n?-1|. Then, we have that 2n»-1 < m < 3nr-1. So, the expression above is
further lower bounded by

) 1 1 of 1 1 ?
¢ T 1 | =c 1 T 1 )= -
(3np71 n)p 292np—1 3nr-1 4nr-1 12nr-1

This completes our proof. n

B.2. Proof of lowerbound of % n_%.

Our proof here follows similar arguments as the proof in B.1. However, the lowerbound in this
section is derived in the realizable setting.

Proof Fix n,m € N. Let D be an arbitrary joint distribution on X’ x ), and let U denote the uniform
distribution on {ey, ..., emn}. Foreach o € {—1,1}™", define f,, = > /"] W o ® e;.

Note that f, , € F, forall p > 1. The minimax expected excess risk of F is

eur) =it & | & i@ -of |- pe & (1@ -]

f’n D SNDn _(I,y)ND feJ:P (x7y)~
[ N 2
>inf E E E |||f.(z) - £, — inf E — fop(@)|?
- 1]%1 o1} | Sm(UX for )" LNU U Julz) =1 7p(x)H ] feFy iU [”f(gg) Jow(@)] }”

>inf E E [ E U
fn o~{£1}mn | S~v(UX fo,p)™ |2~U

o)~ gasta)] ]
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where the first inequality follows upon replacing supremum over D, ¢ with U and expectation over

o. The second inequality follows because inf ;e 7, o7 [Hf(:c) — fg,p(x)HQ] <E;wv [Hfa,p(m) — fmp(x)”ﬂ =
Oas fop € Fp.

Let Sy denote the instances from labeled samples S. We first lower bound the expected risk of
the learner f,,. Following the same calculation as in the first part of the proof, the lower bound of
the expected risk of the learner is

2
o)~ gt

inf E [ E [ U
Fo SanU [omf1}mn (ol
ez fop ez)

=inf E
f Sp~U™

JN{ﬂ}mn [mn

” co;

fn(ei)_ ( )1/p1/fz

|

>inf  E | [ E [12
fn N~UNif({1,,...,;mn})™ | o~{£1} mn N

1 s co; 2
> inf E !§ ( E H fnlei) — —; D ]
- 7 : n ~ mn 1
fr N~Unif({1,,...,mn})m | mn v \° {+1} (mn)t/p
To get the second to the last inequality, we reinterpret sampling z uniformly from {e1, ..., emn,} as
sampling index ¢ uniformly from {1,...,mn} and drawing e;. The final inequality follows upon

exchanging the sum and expectation and applying Jensen’s. Note that, whenever i ¢ N, we have

fule ~ cous] =2 || futen - =5z | 141
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where we use the fact fn is independent of o; as i ¢ N and triangle inequality. Thus, combining
everything, our lower bound is

in — - S
T f, N~Unif({1,,..,mn})" | mn oy (mn)2/p (mn)2/p mn

For the last equality, we use the fact that the probability of 7 not appearing in the set N obtained by
n random uniform draw from {1, 2, ..., mn} with replacement is (1 — —) Plcklng m = 2 and

using the fact that (1 — —) >1-1 / 2 = 1/2, we obtain the lowerbound of < n 7.
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