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Abstract

Evaluating and optimizing policies in the pres-
ence of unobserved confounders is a problem
of growing interest in o!ine reinforcement
learning. Using conventional methods for of-
fline RL in the presence of confounding can
not only lead to poor decisions and poor poli-
cies, but also have disastrous e"ects in crit-
ical applications such as healthcare and ed-
ucation. We map out the landscape of of-
fline policy evaluation for confounded MDPs,
distinguishing assumptions on confounding
based on whether they are memoryless and on
their e"ect on the data-collection policies. We
characterize settings where consistent value
estimates are provably not achievable, and
provide algorithms with guarantees to instead
estimate lower bounds on the value. When
consistent estimates are achievable, we pro-
vide algorithms for value estimation with sam-
ple complexity guarantees. We also present
new algorithms for o!ine policy improvement
and prove local convergence guarantees. Fi-
nally, we experimentally evaluate our algo-
rithms on both a gridworld environment and
a simulated healthcare setting of managing
sepsis patients. In gridworld, our model-based
method provides tighter lower bounds than
existing methods, while in the sepsis simula-
tor, we demonstrate the e"ectiveness of our
method and investigate the importance of a
clustering sub-routine.

1 Introduction
A central problem in sequential decision making is
learning from o!ine data, since collecting data in an
online fashion is often prohibitively expensive or un-
safe (Levine et al., 2020). Since real-life data is often
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a"ected by latent variables, there has been a rise of
interest in formulations of reinforcement learning prob-
lems with hidden information (Nair and Jiang, 2021;
Miao et al., 2022; Wang et al., 2020). The most general
kind of latent information is considered by partially
observable MDPs or POMDPs (Kaelbling et al., 1998;
Tennenholtz et al., 2019), where the latent information
can a"ect both rewards and transitions. However, the
reward is often designed by the user based only on
observable variables. In medical examples, the reward
could be given based on observed vitals, but unrecorded
genetic conditions and socio-economic status can a"ect
actions taken and future states. These examples moti-
vate the important case of reinforcement learning with
unobserved confounders, defined as latent information
that a"ects transitions, but not rewards1 (Kallus and
Zhou, 2020; Bruns-Smith, 2021; Bruns-Smith and Zhou,
2023).

The hardness of learning from o!ine data under con-
founding comes from the fact that partially observed
transitions can be further obscured by behavior poli-
cies that might have known the unrecorded confounder
(Kallus and Zhou, 2020). Two o!ine data distributions
might thus be identical despite coming from di"erent
confounded MDPs, if the behavior policies accommo-
dated for this di"erence (see Theorem 1).

To provide guarantees for learning from o!ine data,
the most common assumption in previous work is that
confounders are "memoryless" (Assumption 1). This
assumption essentially means that they are sampled
afresh at each step independently of past confounders,
states, or actions (Bruns-Smith and Zhou, 2023). In
many real-life applications like healthcare and epidemi-
ology (Daniel et al., 2013; Clare et al., 2018; Mansournia
et al., 2017; Platt et al., 2009), it is more appropriate to
assume that the confounders are sampled "with mem-
ory" of previous confounders, and even states and ac-
tions. A lot of work also assumes that behavior policies

1Some papers define confounders using a kind of "mem-
orylessness," and allow them to a!ect rewards (Zhang and
Bareinboim, 2016; Wang et al., 2020). We only consider
unconfounded rewards.
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With Sensitivity Constraint Without Sensitivity Constraint

Memoryless Con-
founders

Consistency not possible (Theo-
rem 1, !(ωH) error lower bound),
O(ωH2) error upper bound with
3 methods (Theorems 2, 3, 4)

!(H) error lower bound (Theo-
rem 1)

Confounders with
Memory

Methods mentioned above have
!(H) error lower bounds, even
with unconfounded εb and εe

(Theorem 6)

!(H) lower bound in general.
For global confounders, con-
sistency possible, sample com-
plexity guarantees given (Theo-
rem 7)

Table 1: Hardness of the OPE problem under di"erent assumptions on the nature of confounding present. ” is a
so-called sensitivity parameter, with ” = 1 +O(ω). Higher ω corresponds to more confounded εb.

follow a sensitivity constraint (Assumption 3) (Kallus
and Zhou, 2020; Bruns-Smith, 2021). Motivated by
these observations, we take the first step towards pro-
viding a structured view of the landscape of o!ine RL
for confounded MDPs, distinguishing settings in terms
of sensitivity assumptions and whether confounders
have memory. We also introduce and study an im-
portant sub-case of confounders with memory, called
global confounders (Assumption 2). Specifically, we
ask the following questions for each setting:

Q.1. If consistent o!ine policy estimation (OPE) is not
possible, can we prove lower bounds on the error?
What guarantees can we give for algorithms that
instead estimate bounds on the value?

Q.2. If consistent OPE is possible, then what algorithms
achieve this? What is their sample complexity?

Q.3. How can we use these insights for o!ine policy
improvement?

Paper Structure and Contributions. We detail
our contributions below. A summary of key results is
provided in Table 1.

OPE for Memoryless Confounders, Section 3: In The-
orem 1, we give the first lower bound for OPE error
that depends on a sensitivity parameter ” and hori-
zon length H. By choosing ” appropriately, we show
that value estimation can be arbitrarily bad without
a sensitivity constraint. The theorem also shows that
the lower bound on error grows with H and consistent
estimates are not possible, even under a sensitivity
constraint. We are the first to quantitatively study
the errors of FQE and CFQE. To provide algorithms
that estimate lower bounds on the value, we modify
the CFQE algorithm due to Bruns-Smith (2021) to our
more general definition of memoryless confounding. We
are the first to compute quantitative upper bounds on
its error and the error for FQE, in Theorems 2 and 3.
We further provide a new model-based algorithm that
improves over CFQE for stationary transition struc-
tures, and provide guarantees for it in Theorems 4
and 5.

OPE for Confounders with Memory, Section 4: While
FQE is a standard workhorse for OPE and also enjoys
guarantees for memoryless confounders, it is unclear
if (and how badly) FQE fails for confounders with
memory. In particular, it is non-trivial to produce
lower bound examples in this case. We are the first
to present one in Theorem 6, where we show that
FQE can have arbitrarily large error for confounders
with memory, even for unconfounded εb and εe with
bounded concentrability. This shows the hardness of
OPE for general confounders with memory. In this
light, we introduce and study the important sub-case
of global confounders, where the confounder is fixed
at the beginning of each trajectory. We leverage the
work of Kausik et al. (2022) on clustering mixtures
of MDPs to provide an algorithm for OPE under this
assumption, along with sample complexity guarantees
in Theorem 7. While past work on confounded RL has
focused only on consistency, we are the first to address
the sample complexity of OPE under confounding.

O!ine Policy Improvement, Section 5: We address
o!ine policy improvement in Section 5, presenting
policy gradient methods for memoryless confounders
under a sensitivity assumption, as well as for global
confounders. We prove local convergence for both.

Experiments, Section 6: We test and compare OPE
methods for memoryless confounders in the gridworld
environment provided by Bruns-Smith (2021). Our
experiments show that our model-based method gives
tighter lower bounds than existing methods. We also
successfully run our policy gradient method for mem-
oryless confounders in the same environment. OPE
and policy gradient methods for global confounders are
tested in the sepsis simulator from Oberst and Sontag
(2019), where we significantly outperform confounder-
oblivious implementations of both FQE and policy
gradients.

Related Work. Many specific assumptions on con-
founders have been studied in recent literature. Kallus
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and Zhou (2020); Bruns-Smith (2021); Namkoong et al.
(2020) all provide algorithms that estimate bounds on
the value under a sensitivity assumption. The first two
assume variants of memorylessness, while the third as-
sumes that the confounding occurs during only a single
timestep. Other work like Bennett et al. (2020) uses a
latent variable model for states and actions to get con-
sistent point estimates. This is similar to work in the
POMDP setting (Tennenholtz et al., 2019), and neither
approach directly applies to our settings. In general,
a treatment of confounders with memory and a big-
picture view of the OPE problem under confounding is
still missing.

On the other hand, literature on o!ine policy im-
provement in the presence of confounders has grown
more gradually. Bruns-Smith and Zhou (2023) provide
robust fitted-Q-iteration methods under a sensitivity
model and a memoryless assumption. This does not
apply to confounders with memory, like global con-
founders. Other work like Wang et al. (2020); Liao
et al. (2021); Fu et al. (2022) uses auxiliary variables
from the data to adjust for confounding bias. However,
these do not directly apply to our settings.

2 Setup and Assumptions

2.1 Background

We define an episodic confounded MDP by a tuple
(S → U ,A, H, {Ph}Hh=1, r, d0), described as follows. S
is the set of S observed states and U the set of U
unobserved confounders; A is the set of A actions; H
is the horizon of each episode; d0 is the distribution for
initial states (s1, u1) ↑ d0; r : S →A ↓ [0, 1] denotes
the reward function; and Ph(s↑, u↑ | s, u, a) denotes the
state transition probability at timestep h.

The data is collected under a behavior policy εb spec-
ified by εb,h(a | s, u), which might have used the un-
recorded confounders and been time-dependent. The
observed behavior policy is obtained by marginalizing
u over the induced distribution at timestep h, and is
called εb,h(a | s). The goal is to estimate the value func-
tion V ωe

1 of a possibly time-dependent evaluation policy
εe that does not use confounders Bruns-Smith (2021).
This is motivated by the fact that confounders can be
harder to observe and account for during deployment.

2.2 Assumptions on Sensitivity and Memory

We consider two kinds of assumptions on unobserved
confounders. The first is whether they "have memory."
We define memoryless confounders below to be sam-
pled afresh at each step Bruns-Smith and Zhou (2023).
A memoryless confounder in a healthcare application
could be an accident encountered mid-treatment, or
in an economics application could be a supply shock

a"ecting the price of oil, as Bruns-Smith (2021) high-
lights.

Assumption 1 (Memoryless Confounders). At each
timestep h, we draw a fresh confounder uh ↑ Ph(u |
s = sh), possibly dependent on the current state sh, but
independent of past confounders, states and actions.

On the other hand, confounders with memory could
depend on all past (s, a, u) tuples. We introduce an
important sub-case of this, which we call the global
confounder assumption. This is an extreme case of
confounders with memory, where the confounder is not
just dependent on, but the same as all past confounders
in the trajectory. In the example of healthcare applica-
tions, this could be an unrecorded patient demographic
characteristic or genetic condition that does not change
over the course of treatment.

Assumption 2 (Global Confounders). A global con-
founder is generated by u ↑ P (u) at the beginning
of an episode, and remains unchanged throughout the
episode.

A commonly-used assumption for the e"ect of con-
founder on εb is a sensitivity model found in Bruns-
Smith (2021); Kallus and Zhou (2020); Namkoong et al.
(2020). Note that ” = 1 below corresponds to the case
where εb is confounder-oblivious, that is, independent
of the confounder.

Assumption 3 (Confounding Sensitivity Model).
Given ” ↔ 1, for all s ↗ S, u ↗ U , h ↗ {1, 2, · · ·H}
and a ↗ A:

1

”
↘

(
εb,h(a | s, u)

1≃ εb,h(a | s, u)

)
/

(
εb,h(a | s)

1≃ εb,h(a | s)

)
↘ ”,

where εb,h(a | s) =
∑

u Ph(u | s)εb,h(a | s, u) is the
marginalized (observed) behavior policy. The above
inequality implies the bounds ϑh(s, a) ↘ ωb,h(a|s)

ωb,h(a|s,u) ↘
ϖh(s, a), where ϑh(s, a) := εb,h(a | s)+ 1

! (1≃εb,h(a | s))
and ϖh(s, a) := ”+ εb,h(a | s)(1≃ ”).

3 OPE under Memoryless
Confounders

We discuss OPE when confounders are memoryless.
We first open with a result showing that in the absence
of a sensitivity assumption like Assumption 3, we can
incur an estimation error as bad as !(H). Note that
the value functions lie in the range [0, H], so the worst
possible OPE error is H.

Theorem 1 (Lower Bound for Memoryless Con-
founders). There exists a parameter ω that determines a
pair of confounded MDPs M1 and M2 with i.i.d. (and
thus memoryless) confounders along with stationary
policies εb1 , εb2 and εe, so that data collected from Mi
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using εbi has the same distribution for i = 1, 2, but the
values under εe di"er by |V ωe

1 (M1)≃V ωe

1 (M2)| = 2ωH.
In particular, when ω = 1

2 ≃ 1
H2 , the values under εe

di"er by !(H).

It can be seen from the proof of the theorem in Ap-
pendix B that when ω = 1

2 ≃ 1
H2 , ” = !(H2). It is

then clear that a bound on the sensitivity is neces-
sary. The proof shows that for small ω in our example,
” = 1+O(ω). In this light, even with a sensitivity con-
straint of 1+O(ω), we cannot get a consistent estimate
of the value of a policy. This is because by Theorem 1,
even two observationally indistinguishable confounded
MDPs can di"er in value under a new εe by !(ωH).

Thus, even with infinite data, we can only hope for
bounds on the value, and the minimum-possible error
deteriorates with horizon H. We now analyze and
present algorithms for obtaining such bounds.

3.1 FQE and Confounded FQE

Fitted Q-Evaluation (FQE), which we recall in Ap-
pendix C, is a standard workhorse for OPE. We first
present a new result on the estimation error of FQE
under memoryless confounding, proved in Appendix D.

Theorem 2 (FQE Error). Suppose ” = 1 + ω in As-
sumption 3. Then in the limit of infinite samples, the
point estimate f̂1(s, a) of the Q-function produced by
FQE has a worst-case error of |V ωe

1 (s) ≃
∑

a εe,1(a |
s)f̂1(s, a)| = O(ωH2) for small ω.

Note that FQE gives a point estimate instead of a lower
bound on the value function. For many safety-critical
applications, it is important to have conservative lower
bounds for policy estimation. Using the proof of Theo-
rem 2, we can produce a straightforward lower bound
of

∑
a εe,1(a | s)f̂1(s, a)≃ kωH2 on the value function,

for some k depending on ω. However, this is a worst-
case, data-oblivious lower bound. We note that we
can get a sharper lower bound using confounded FQE
(CFQE), introduced by Bruns-Smith (2021) for i.i.d.
confounders. Confounded FQE gives a lower bound
on the value by sequentially searching for the worst
possible policies that are consistent with the data and
the sensitivity assumption. We adapt it to general
memoryless confounders and describe it in Appendix C.
We also provide a new theoretical guarantee for the
worst-case error of CFQE below, proved in Appendix D.

Theorem 3 (CFQE Error). Suppose ” = 1 + ω in
Assumption 3. Then the worst-case error for the lower
bound f̂1(s, a) generated by CFQE in the infinite-sample
case is |V ωe

1 (s)≃
∑

a εe,1(a | s)f̂1(s, a)| = O(ωH2) for
any range of ω.

Although it has the same worst-case error as FQE, we
note that CFQE provides an instance-dependent lower

bound that is sharper than the naive one mentioned
above. We confirm in experiments that the naive FQE
lower bound and the CFQE lower bound are in fact at
di"erent orders of magnitude.

3.2 Model-Based Method For Stationary

Transition Kernels

While CFQE searches for the worst-possible policies,
we discuss a method here that searches for the worst
possible transition dynamics that are consistent with
the data. Note that since εe is confounder-oblivious,
the induced transitions Pωe

h (s↑ | s) are determined
by the marginalized transition dynamics defined
as Ph(s↑ | s, a) :=

∑
u Ph(u | s)Ph(s↑ | s, a, u).

This is clear from the following computation:
Pωe

h (s↑ | s) =
∑

u,a εe,h(a | s)Ph(u | s)Ph(s↑ | s, a, u) =∑
a εe,h(a | s) (

∑
u Ph(u | s)Ph(s↑ | s, a, u)) =∑

a εe,h(a | s)Ph(s↑ | s, a).

We note that CFQE optimizes separately over the data
at each timestep h. In particular, if the marginalized
transition kernel were stationary, then the method
would not leverage its stationarity. Our model-based
method can leverage this, and we therefore assume the
stationarity of transition dynamics and of P (u | s) in
this section. For ease of exposition, we also assume
that εb and εe are stationary. The method can be
modified to work for potentially time-dependent εb

and εe, which we do in Appendix E.

We now describe the method. Let the empirically
observed transitions be P̂ωb(s↑ | s, a), and denote its
value in the limit of infinite data by Pωb(s↑ | s, a). We
know that the latter is stationary under our exposi-
tory simplification. Let ϑ̂(s, a) and ϖ̂(s, a) be obtained
using the estimate ε̂b(s, a) Denote by G the set of
marginalized transitions P(s↑|s, a) that fall between
ϑ̂(s, a)(P̂ωb(s↑|s, a)) and ˆϖ(s, a)(P̂ωb(s↑|s, a)) for each
s↑, a, s. Our model-based method amounts to solving
the following optimization problem:

min
V1(s0),V2,...,VH ,VH+1=0,P

V1(s0) (1)

s.t. P ↗ G,
∑

s→

P(s↑ | s, a) = 1 ⇐s, a.

Vh(s) = εe(· | s)T (Rs + PsVh+1(·)) ⇐h ↗ {1, ..., H}, s

where VH+1 = 0 and Ps ↗ RA↓S is the matrix whose
rows are P(· | s, a) for each a, Rs ↗ RA and Vh+1(·) ↗
RS . This corresponds to minimizing the value function
V1(s0) over the set G of state transition probabilities,
using H · S Bellman backup constraints to encode the
Bellman equation.

While this method is similar to the model-based method
in Bruns-Smith (2021) inspired by robust MDP litera-
ture, it is important to note that unlike Bruns-Smith
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(2021), we look at uncertainty sets for each s, a (instead
of just one for each s) and make no additional assump-
tion on model-sensitivity. In particular, model sensitiv-
ity and the uncertainty sets for the true marginalized
transition kernel are completely determined by ”. This
method possesses several theoretical guarantees, proved
in Appendix E.

Theorem 4 (Error for the Model-Based Method). Sup-
pose ” = 1 + ω in Assumption 3. Then the value es-
timation from solving (1) with infinite data, denoted
by Ṽ1, provides a lower bound no looser than CFQE
and satisfies that |V ωe

1 (s0)≃ Ṽ1(s0)| = O(ωH2) for any
range of ω.

We will find in experiments that the lower bound pro-
duced by the model-based method is in fact tighter in
some scenarios. In the finite-sample setting, we use
point estimates P̂ωb to construct G. In another version
for finite samples, one can account for estimation error
of P̂ωb by constructing a Hoe"ding confidence interval
for the state transition probabilities, and using it to
construct G instead. We discuss this in Appendix E.
Denoting the output of either version by V̂1, the theo-
rem below guarantees that V̂1 is a consistent estimate
for the infinite-sample lower bound Ṽ1. We prove it
in Appendix E, and the Hausdor"-distance-based tech-
nique developed for the proof can be used to provide
similar guarantees for FQE and CFQE.

Theorem 5 (Consistent Estimation of the Lower
Bound). The estimated lower bound from the model-
based method is strongly consistent for the lower bound
Ṽ1, where Ṽ1 is the lower bound estimate of the value
function from solving (1) with infinite data. That is,
V̂1

a.s.↓ Ṽ1.

A Computationally E!cient Method. Although
the non-convex optimization problem in (1) is solv-
able with o"-the-shelf solvers, such problems can be
di#cult to solve e#ciently. We provide a method, Al-
gorithm 5, in Appendix F for quicker computation of
lower bounds. This method approximately solves the
model-based optimization problem in (1) via projected
gradient descent, optimizing over P while maintaining
the Bellman constraints.

Non-Stationary Model-Based Method. To han-
dle non-stationary settings, we provide Algorithm 4
in Appendix F. This relaxes the Bellman backup con-
straints in (1) by sequentially solving H e#ciently
solvable quadratic programs. This is essentially the
model-based analogue to CFQE.

4 OPE under Confounders with
Memory

Sensitivity constraints do not alone contribute to the
error upper bounds in Section 3 – the memorylessness
of confounders is an important ingredient. We demon-
strate below that OPE under confounders with memory
is hard even for εb with the best-case sensitivity, ” = 1.
Recall that ” = 1 corresponds to confounder-oblivious
behavior policies. Specifically, the theorem below shows
FQE and any method that lower bounds FQE will have
!(H) worst-case error for confounders with memory,
even for unconfounded εb and εe with bounded con-
centrability and given infinite data. We prove it in
Appendix G.

Theorem 6 (Lower Bound for Confounders with Mem-
ory). There exists an MDP M having confounders with
memory, a stationary unconfounded behavior policy εb

with sensitivity ” = 1, a stationary evaluation pol-
icy εe with ωe(a|s)

ωb(a|s) ↘ 2 ⇐s, a, and a state s1, so that
V ωe

1 (s1) = !(H) while the output of FQE for εe is
O(logH), even with infinite data.

While the challenges of FQE for POMDPs in general
are qualitatively understood Uehara et al. (2022), we
show that it can be arbitrarily bad even in the much
milder setting of confounded MDPs with unconfounded
εb and εe. This suggests that making more specific
assumptions about confounders with memory is nec-
essary for designing OPE algorithms with theoretical
guarantees. One example of such an assumption is the
global confounder assumption, discussed below.

4.1 Clustering-Based OPE for Global

Confounders

The main message of this section is that the depen-
dence of confounders across timesteps can make it
possible to pin down the e"ect of confounding and
achieve consistent OPE, given enough structure to the
dependence. We bring our focus to global confounders
(Assumption 2) in the case where transition dynamics
are stationary, and so are the behavior and evaluation
policies. Notice that in the stationary setting, global
confounders exactly describe a mixture of MDPs. Let
the value of the evaluation policy εe under the dy-
namics induced by confounder u be V1(s0;u,εe). If
one can estimate this value and P (u) for each u, then
one can provide point estimates of the policy value
V ωe

1 (s0) =
∑

u P (u)V1(s0;Cu,εe).

We use Algorithm 1 as a broad meta-algorithm that
takes a clustering algorithm and an OPE algorithm as
input. We cluster the data and apply the OPE algo-
rithm separately to each cluster to obtain a consistent
final policy value estimate V̂1(s0;εe). The crucial intu-
ition behind this algorithm is the fact that the value
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estimate is a weighted average of value estimates over
each confounder.

Algorithm 1 Clustering-Based OPE
1: input: Number of clusters U , evaluation policy εe,

clustering algorithm cluster(), OPE estimator
ope().

2: run subroutine: Use cluster() to obtain clus-
ters C1, ..., CU .

3: Obtain cluster weight estimates P̂ (u) := |Cu|
Ntraj

.
4: run subroutine: Estimate V̂1(s0;Cu,εe) for each

cluster Cu using ope().
5: return: Output the final policy value estimate

V̂1(s0;εe) =
∑U

u=1 P̂ (ui)V̂1(s0;Cu,εe).

To present an end-to-end theoretical guarantee, we
instantiate the meta-algorithm using the recent work of
Kausik et al. (2022) as our clustering algorithm and the
data-splitting tabular-MIS (marginalized importance
sampling) estimator from Yin and Wang (2020) as our
OPE estimator. To satisfy the assumptions of Kausik
et al. (2022) and Yin and Wang (2020), we require 3
additional assumptions, discussed in their papers.

Assumption 4 (Mixing, from Kausik et al. (2022)).
Let the U Markov chains on S →A induced by the var-
ious behavior policies ε(a | s, u), each achieve mixing
to a stationary distribution du(s, a) with mixing time
tmix,u. Define the overall mixing time of the mixture
of MDPs to be tmix := maxu tmix,u.

Assumption 5 (Model Separation, from Kausik
et al. (2022)). There exist ϑ,# > 0 so that for each
pair u1, u2 of confounders, there exists a state ac-
tion pair (s, a) (possibly depending on u1, u2) so that
the stationary distributions under each confounder
du1(s, a), du2(s, a) ↔ ϑ and ⇒P(u1)(· | s, a) ≃ P(u2)(· |
s, a)⇒2 ↔ #.

Assumption 6 (Concentrability and Exploration,
from Yin and Wang (2020)). For dm := min{dωb

h (s) |
dωe

h (s) > 0}, dm > 0, and there exist constants ϱa and
ϱs so that for all s, a, h dωe

h
(s)

d
ω
b

h
(s)

↘ ϱs and ωe(a|s)
ωb(a|s) ↘ ϱa.

We can therefore leverage the work of Kausik et al.
(2022) to achieve exact clustering with enough data
under Assumptions 2, 4, and 5, recovering the unob-
served global confounder un in each trajectory up to
permutation2. Then, when using the estimator from
Yin and Wang (2020) under Assumption 6, we obtain
the following guarantee.

Theorem 7 (Sample Complexity for OPE under
Global Confounding). Under Assumptions 2, 4, 5,

2They recover clusters, which is su"cient as we only
need to know confounders up to renaming the labels.

6, there are constants H0, N0 depending polynomi-
ally on 1

ε ,#, 1
minu P (u) , log(1/ς), so that for n trajec-

tories of length H ↔ H0tmix log(n), we have that
|V̂1(s0;εe) ≃ V1(s0;εe)| < φ with probability at least
1≃ ς if n ↔ !(max(n1, n2, n3, n4)), where

n1 := U2SN0 log(1/ς), n2 :=
log(U/ς)

min(φ2/H2,minu P (u)2)

n3 :=
H2ϱaϱsSA log(U/ς)

φ2
, n4 :=

ϱaH

dm

The first term represents the sample complexity for ex-
act clustering (given in Kausik et al. (2022)), the second
term corresponds to estimating P (u) accurately and
the third and fourth come from the sample complexity
of the OPE estimator (given in Yin and Wang (2020)).
In Appendix H, we prove a more general version of
this theorem, where the OPE estimator makes an as-
sumption A(b) depending on a parameter vector b and
has sample complexity N2(ς, φ, b). Results analogous to
Theorem 7 can thus be produced using Corollary 1 of
Duan and Wang (2020), or other o"-policy estimators
listed in section 2 of Zhang et al. (2022) viewed in a
tabular setting. This is the first result that provides
sample complexity guarantees for consistent point esti-
mates under confounding. Theorem 12 in Appendix I
shows that requiring that H ↔ !(tmix) in Theorem 7
is unavoidable, even for small tmix = O(log(S)).

5 Policy Optimization under
Confounding

We first make an elementary observation that given
a bound on the OPE error |V̂1(ε) ≃ V1(ε)| and an
optimizer for the value estimate ε̂→ ↗ argmax V̂1(ε),
we can obtain a sub-optimality bound for ε̂→. We
show this explicitly in Appendix J, noting that this is
agnostic to the existence and the nature of confounding.

Policy Gradients on Lower Bounds under Mem-

oryless Confounding. Recall that in Section 3, we
produced lower bounds on the value function under
memoryless confounding with a sensitivity model. In
lieu of optimizing a point estimate of the policy’s value,
we can instead improve this lower bound.

Recall that Algorithm 5 in Appendix F computes a
lower bound on V1(s0) by projected gradient descent.
We can backpropagate gradients relative to the evalua-
tion policy, improving the lower bound on V1(s0), and
therefore the policy, with gradient ascent. We present
the case with stationary transition structures in the
max-min formulation below in the interest of lucidity,
noting that it immediately generalizes to non-stationary
transition structures as well.

max
ϑ↔”

min
P↔G

V1(s0;εϑ,P) (2)
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We repeat the alternating process of finding P ↗ G to
minimize V1(s0) given an evaluation policy εϑ and then
performing a gradient ascent update on εϑ. This is
illustrated fully in Algorithm 6 in Appendix J,3 where
we discuss local convergence guarantees for the method.

Policy Gradients under Global Confounding.

Recall that we hope to solve argmaxωe
V1(s0;εe), where

V1(s0;εe) =
∑

u P (u)V1(s0;u;εe), for confounder-
unaware evaluation policy εe. This is the Weighted-
Value Problem in Steimle et al. (2021), which is NP-
hard according to Proposition 2 in their paper.

We discuss a policy gradient method for this problem.
Let Z(↼) := ⇑ϑV1(s0;εϑ). By Assumption 2, Z(↼) =
⇑ϑEu[V1(s0;u,εϑ)] = ⇑ϑ

∑
u P (u)V1(s0;u,εϑ) =∑

u P (u)⇑ϑV1(s0;u,εϑ). Therefore, if we have gradi-
ent estimates Ẑi(↼) of Zi(↼) = ⇑ϑV1(s0;ui,εϑ) for each
cluster, we can obtain the final policy gradient estimate
as a weighted sum, given by Ẑ(↼) =

∑U
u=1 P̂ (ui)Ẑi(↼).

We present this as Algorithm 7 in Appendix K.

We then perform standard gradient descent for T it-
erations on the policy parameters ↼, with the update
rule given by ↼t+1 = ↼t ≃ ↽Ẑ(↼t). In analyzing this
procedure, we instantiate Ẑi using the (statistically)
E#cient O"-Policy Policy Gradient (EOPPG) estima-
tor from Kallus and Uehara (2020), which enjoys an
$(H4/n) MSE guarantee instead of the 2”(H)$(1/n)
worst-case sample complexity of REINFORCE Kallus
and Uehara (2020). We assume that the gradient of
V1 is bounded by L, which holds if V1 is L-Lipschitz.
Additionally, let assumptions for Theorem 12 in Kallus
and Uehara (2020) hold. We obtain a bound on the
norm of the policy gradient that shows convergence to
a stationary point in Theorem 8 below. It is proved in
Appendix K.

Theorem 8. Let us have large enough ϖ > 1 and T =

nϖ, for n ↔ !
(
max

(
U2SN0 log(1/ς),

log(U/ϱ)
minu P (u)2

))
.

Also let H ↔ H0tmix log n, for H0, N0 as in Theo-
rem 7. Then we have that 1

T

∑T
t=1 ||⇑ϑV1(s0;εϑt)||2 =

O(max(φMSE , φfreq), where φMSE = H4 log(nU/ϱ)
nminu P (u) , and

φfreq = L2 log(U/ϱ)
n

6 Numerical Experiments

We detail our experiments for memoryless and global
confounders below. The code for all experiments can
be found at https://github.com/hetankevin/o"-policy.

3Given libraries like cvxpylayers, we can also perform
gradient ascent on any lower bound from di!erentiable con-
vex optimization. This includes the lower bounds generated
by the relaxation of the model-based algorithm (Alg. 4) and
CFQE (Alg. 3). We state general lemmas that back our
claims.

Figure 1: OPE for Memoryless Confounders. Compari-
son of our model-based method, its non-stationary re-
laxation (Alg. 4), its projected gradient descent variant
(Alg. 5), and CFQE on state 13 in a 16-state gridworld.
Confidence intervals (CIs) are one standard deviation
wide and computed over 30 trials. H = 8.

Gridworld for Memoryless Confounders. We
examine the performance of the methods in Section 3
on the 4x4 gridworld environment used by Bruns-Smith
(2021), with i.i.d. (and thus memoryless) confounders.
We implement the model-based method and its varia-
tions using the point estimates P̂ωb instead of Hoe"ding
confidence intervals for Pωb , for a fair comparison with
CFQE. The horizon is H = 8, and ” ranges from 1 to
50. We plot the policy values against ” in Figure 1.
Across all 16 states, the model-based method’s lower
bound is always either as good as or tighter than that
of CFQE, but the gap in performance is seen most
starkly in state 13 (which we display in Figure 1). The
output of FQE is obtained at ” = 1 and is at most
≃0.7. By the remark after the proof of Theorem 2,
the naive lower bound obtained using FQE is less than
≃0.7≃ ςH2

2 = ≃0.7≃ 32ω. This is quite literally "o"-
the-chart" here, showing that using FQE for lower
bounds would be ine"ective in practice. Note that our
model-based method gives the closest lower bound after
projected gradient descent. Projected gradient descent
only approximately solves the appropriate optimiza-
tion problem, and it is thus not guaranteed to return
a true lower bound. So, our model-based method is
empirically the best method here with guarantees.

We also study policy improvement. Figure 2 displays
the training dynamics and convergence of Algorithm
6, where we perform gradient ascent on a lower bound
obtained by Algorithm 5. We visualize the learned pol-
icy, which is appropriately conservative: on a horizon
of 8, the agent will likely not reach the goal state from
the first few states and move to the top left corner
appropriately. Finally, we plot the increase in the lower
bound on policy value against progressing gradient as-

https://github.com/hetankevin/off-policy
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cent iterations, starting at εe. Note that even our lower
bounds all eventually exceed the true (ground truth)
values of εb and εe, displaying improvement.

Figure 2: Policy Improvement for Memoryless Con-
founders. Top Left: Loss curve dynamics of max-min
gradient descent. Top Right: Resulting policy ε̂→ for
” = 10 in 4x4 gridworld with actions indexed by WENS.
Brighter colors indicate higher ε̂→(a | s). Bottom: In-
crease in the lower bound on V ωε

1 as gradient ascent
iterations progress. H = 8.

Sepsis Simulator for Global Confounders. We
examine the performance of the method of Algorithm
1 on the sepsis simulator of Oberst and Sontag (2019),
especially in terms of the choice of the clustering algo-
rithm. Once we hide the diabetes status of each pa-
tient, it becomes a global confounder. The confounder-
aware behavior policy is the same behavior policy in
Oberst and Sontag (2019), and the evaluation policy is
εe :=

1
U

∑
u εb(a|s, u). In the simulator, glucose levels

are generated i.i.d, with their distribution determined
by the presence or absence of diabetes. This makes
them easy proxies for diabetes, so we hide glucose lev-
els during the clustering phase to make the clustering
problem harder.

On the top left of Figure 3, we compare the clustering
error for the method of Kausik et al. (2022) with that
of classical soft EM with random initialization. In the
top right, we plot a measure of the relative error in
OPE against trajectory length. The relative error is
computed as maxs |V̂ ωe

1 (s)↗V ωe

1 (s)|
maxs |V ωe

1 (s)| . The plot compares
the performance of Algorithm 1 instantiated with FQE

coupled with either soft EM with random initializa-
tion or the method of Kausik et al. (2022). At the
bottom, we show the convergence of Algorithm 7, in-
stantiated using the o"-policy policy gradient variant
that Kallus and Uehara (2020) attributes to Degris
et al. (2013). We compare the same possibilities for
clustering as above. We observe that in general, the
method of Kausik et al. (2022) outperforms randomly
initialized soft EM, allowing for both OPE and policy
improvement. Our experimental results highlight the
e"ectiveness of our method as well as the importance
of the clustering algorithm.

Figure 3: Top Left: Average performance of the clus-
tering method from Kausik et al. Top Right: Average
relative error of clustering-based OPE with di"erent
clustering algorithms. Bottom: Improvement in esti-
mates of policy values under gradient ascent coupled
with di"erent clustering algorithms, see Appendix A for
details. We average over 30 trials, confidence intervals
are 1 standard deviation wide. H = 60.

7 Conclusion and Future Work
We have provided a broad, structured view of the land-
scape of confounded MDPs, studying the OPE and OPI
problems under various confounding assumptions. The
paper has discussed existing methods, presented new
ones and provided theoretical and empirical grounding
for the methods. We hope that the insights here will
springboard further work on confounded MDPs. In
particular, while we address the sensitivity assumption,
a big-picture view of other assumptions like bridge func-
tions and instrumental variables is needed. For general
confounders with memory, note that while Theorem 6
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rules out FQE and related methods, other methods
must be explored. There are also specific structures on
confounders with memory, besides global confounders,
that can be formulated and studied. Finally, many
of our methods (such as the gradient-based methods
presented) can be extended to handle continuous state
spaces via function approximation. Shi et al. (2021)
provide methods under assumptions on the existence
and learnability of bridge functions, being one of the
first works to address this. However, work on confound-
ing with continuous state and action spaces is still
relatively sparse, and is an exciting setting to explore.
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A Experimental Details

Computing Infrastructure. All numerical experiments were run on a single desktop computer with an Intel
i9-13900K CPU, 128 gigabytes of RAM, and an NVIDIA RTX 3090 graphics card.

Estimating Policy Values for Global Confounders. Due to computationally expensive operations needed
to compute the exact policy value for confounders, we use estimates of the policy values instead. Namely, we get
estimates V̂1(s0, u,ε) for a policy ε, and report

∑
u P (u)V̂1(s0, u,ε). Computing the true values V1(s0, u,ε) is

computationally far more expensive. The estimates V̂1(s0, u,ε) are obtained using standard FQE applied to the
standard, unconfounded MDP determined by confounder u.

B Lower Bounds for Memoryless Confounders

We recall and prove Theorem 1.

Theorem 1 (Lower Bound for Memoryless Confounders). There exists a parameter ω that determines a pair of
confounded MDPs M1 and M2 with i.i.d. (and thus memoryless) confounders along with stationary policies εb1 ,
εb2 and εe, so that data collected from Mi using εbi has the same distribution for i = 1, 2, but the values under
εe di"er by |V ωe

1 (M1)≃ V ωe

1 (M2)| = 2ωH. In particular, when ω = 1
2 ≃ 1

H2 , the values under εe di"er by !(H).

Proof. Consider two confounded MDP environments M1 and M2.

Environments. In both environments:

• S = {1, 2}, U = {1, 2}, A = {1, 2}, horizon H.

• r(s = 1) = 1, r(s = 2) = 0.

For confounders:

• P1(u = 1) = 1
2 ≃ ω, P1(u = 2) = 1

2 + ω.

• P2(u = 1) = 1
2 + ω, P2(u = 2) = 1

2 ≃ ω.

For full state transitions:

P1(s
↑ = 1 | s, u = 1, a = 1) = z,P1(s

↑ = 1 | s, u = 2, a = 1) = 1≃ z

P1(s
↑ = 1 | s, u = 1, a = 2) = z1,P1(s

↑ = 1 | s, u = 2, a = 2) = z2

P2(s
↑ = 1 | s, u = 1, a = 1) = z,P2(s

↑ = 1 | s, u = 2, a = 1) = 1≃ z

P2(s
↑ = 1 | s, u = 1, a = 2) = z2,P2(s

↑ = 1 | s, u = 2, a = 2) = z1

Next, consider two behavior policies εb1 and εb2 :

εb1(a = 1 | s, u = 1) =
1

2
+ ω, εb1(a = 1 | s, u = 2) =

1

2
≃ ω

εb2(a = 1 | s, u = 1) =
1

2
≃ ω, εb2(a = 1 | s, u = 2) =

1

2
+ ω

And an evaluation policy εe:

εe(s) = 1, for s = {1, 2}.

Data Collection. Suppose we collect data using εb1 in M1 and using εb2 in M2. Notice that the sensitivity
” is given by

” =

( 1
2 + ω
1
2 ≃ ω

)( 1
2 + ω2

1
2 ≃ ω2

)
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Observations. Note that in the limit, i.e. infinite data, the observed transition probabilities and policies are
given by

P̂1(s
↑, a | s) =

∑

u

P1(u)εb1(a | s, u)P1(s
↑ | s, u, a),

ε1(a | s) =
∑

u

P (u)ε1(a | s, u),

P̂1(s
↑ | s, a) = P̂1(s

↑, a | s)/ε1(a | s).

One can then easily verify that for all s, a, s↑, the observed transition probabilities will be equal:

P̂1(s
↑, a | s) = P̂2(s

↑, a | s),

For example, P̂i(s↑ = 1, a = 1 | s) = x(1≃ x) for i = 1, 2.

The state transition and the observed policy induced by the two policies in their corresponding environment are
thus also equal:

ε1(a | s) = ε2(a | s),
P̂1(s

↑ | s, a) = P̂2(s
↑ | s, a).

That means, no algorithm can distinguish the two environments based on the given two datasets.

Value under the evaluation policy. Recall that at each step, we take action 1. Note that the true
marginalized state transitions will be di"erent, which are what a confounder-oblivious policy will interact with:

P1(s
↑ = 1 | s, a = 1) =

∑

u

P1(u)P1(s
↑ = 1 | s, u, a = 1) =

(
1

2
+ ω

)
(1≃ z) +

(
1

2
≃ ω

)
z

P2(s
↑ = 1 | s, a = 1) =

∑

u

P2(u)P2(s
↑ = 1 | s, u, a = 1) =

(
1

2
≃ ω

)
(1≃ z) +

(
1

2
+ ω

)
z

Note that Pωe

i (s↑ = 1 | s) = Pi(s↑ = 1 | s, a = 1). Since state transitions are independent of the initial state, this is
the same as generating a state independently at each step based on the action taken. Then under the evaluation
policy εe(a = 1 | s) = 1, the state s = 1 is generated i.i.d. at each step with probability pi = Pi(s↑ = 1 | s, a = 1)
in Mi, while s = 2 is generated with probability 1≃ pi. So, the reward of a trajectory is distributed according to
Bin(H, pi), having an expected value of V ωe

1 (Mi) = Hpi = HPi(s↑ = 1 | s, a = 1).

Necessity of a Sensitivity Assumption Let ω = 1
2 ≃ 1

H2 , z = 0. We then have the following

V ωe

1 (M1) = H((1≃ 1

H2
)2 + 1/H4) = O(H)

V ωe

1 (M2) = 2H · 1

H2
(1≃ 1

H2
) = O(

1

H
).

From this example, we see that without information about ”, no algorithm can universally give meaningful lower
bounds for the true value function. One can compute that in this example, ” = $(H2).

Lower Bound on Value Estimation Under Sensitivity Let ω be small and let z = 0. We then have the
following.

V ωe

1 (M1) = H(
1

2
≃ ω)

V ωe

1 (M2) = H(
1

2
+ ω)

Note that ” = 1 + O(ω+ ω2) = 1 + O(ω) for small ω. Since any estimator will return the same value for both
MDPs (because they are observationally indistinguishable under the behavior policy), any estimator will have a
worst-case error of at least ωH. Thus, there does not exist a consistent estimator whenever ” > 1.
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C FQE and Confounded FQE
We describe the FQE and CFQE algorithms here, adapted for memoryless systems instead of merely stationary
ones.

C.1 FQE Algorithm

Algorithm 2 FQE
1: input: evaluation policy εe.
2: initialize: f̂H+1 ⇓ 0.
3: for h = H,H ≃ 1, . . . , 1 do

3: f̂h(s, a) ⇓ E(s,a,s→)↘Dω
b
,h

[
rh(s, a) +

∑
a→ εe,(h+1)(a

↑ | s↑)f̂h+1(s↑, a↑)
]
, ⇐s, a.

4: end for

5: return:
∑

a εe,1(a | s)f̂1(s, a) for ⇐s.

C.2 Confounded FQE Algorithm

Confounded FQE (CFQE), proposed by Bruns-Smith (2021), provides an estimate for a lower bound by taking
the characteristics of the data into account. Given infinite samples, this will actually be a lower bound, unlike the
case of FQE. In particular, CFQE obtains an estimate for a lower bound by sequentially searching over the worst
behavior policy consistent with the observations.

Let ε̂b,h(a | s) and P̂h(s↑ | s, a) be empirical estimates from finite data Dωb,h. Let Pωb

h (s↑ | s, a) be the limit of
P̂h(s↑ | s, a) under infinite data. We then define the following uncertainty sets.

Definition 1 (Valid Behavior Policy Set). Under a memoryless confounder, for all s, a, s↑, define Bsa,h to be the
set of all ε(a | s, ·) that satisfy Assumption 3 and the two equations below.

∑

u↔U
Ph(u | s)εb,h(a | s, u) = εb,h(a | s)

∑

u↔U
Ph(u | s)εb,h(a | s, u)P (s↑ | s, u, a) = εb,h(a | s)Pωb

h (s↑ | s, a).

Now we define the following quantity using the posteriors Pωb

h (u | s, a), a confounded analog to inverse propensity
weights.

gh(s, a, s
↑) :=

∑

u

(
Pωb

h (u | s, a)Ph(s↑ | s, a, u)
P̂ωb

h (s↑ | s, a)

)
1

εb,h(a | s, u)

=
∑

u

(
Ph(u | s)Ph(s↑ | s, a, u)

P̂ωb

h (s↑ | s, a)

)
1

εb,h(a | s)

Theorem 1 and the discussion following that in Bruns-Smith (2021) shows that we can reflect the same uncertainty
using the set B̃sa,h of possible values of gh(s, a, ·).

B̃sa,h := {gh(s, a, ·) | ϑh(s, a) ↘ εb,h(a | s)gh(s, a, s↑) ↘ ϖh(s, a),
∑

s→

εb,h(a | s)gh(s, a, s↑)Pωb

h (s↑ | s, a) = 1} (3)

B̃sa,h presents a reparameterization of the uncertainty that allows us to get rid of the explicit presence of the
unknown variable u while optimizing over the uncertainty set. Let B̂sa,h and ˆ̃Bsa,h be the version of these sets
determined by the point estimates ε̂b and P̂(s↑ | s, a) under finite data, instead of by their true values.

However, if a very poor estimate of ε̂b and P̂ωb
(s↑ | s, a) is collected (due to low N(s, a) and/or N(s)), the

estimated lower bound will be a lower bound on the output of FQE but not on the true value. To get a lower
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Algorithm 3 Confounded FQE (adapted from Bruns-Smith (2021))
1: input: evaluation policy εe.
2: initialize: f̂H+1 ⇓ 0.
3: for h = H,H ≃ 1, . . . , 1 do

4: Compute

f̂h(s, a) :=

min
gh(s,a,·)↔ ˆ̃Bsa,h

E(s,a,s→)↘Dω
b
,h

[
ε̂b,h(a | s)gh(s, a, s↑)

(
rh(s, a) +

∑

a→

εe,h(a
↑ | s↑)f̂h+1(s

↑, a↑)

)]

5: end for

6: return:
∑

a εe(a | s)f̂1(s, a) for ⇐s.

bound on the true value with probability at least 1 ≃ ς, we modify ˆ̃Bsa,h using error bounds errω(N(s)) and
errP(N(s, a)) obtained using the Hoe"ding inequality to get the following set.

{gh(s, a, ·) | ϑh(s, a) ↘ εb,h(a | s)gh(s, a, s↑) ↘ ϖh(s, a),
∑

s→

εb,h(a | s)gh(s, a, s↑)Pωb

h (s↑ | s, a) = 1

|εb,h(s, a)≃ ε̂b,h(s, a)| ↘ errω(N(s)),

|Pωb

h (s↑ | s, a)≃ P̂h(s
↑ | s, a)| ↘ errP(N(s, a))}

Additionally, the observant reader will note that CFQE finds a di"erent optimal gh for each time step. That
is, it finds H di"erent functions g1(s, a, ·), ..., gH(s, a, ·) ↗ B̃sa. If the transition structures were stationary, this
does not leverage the stationarity. In that case, it is advisable to use our model-based method and its projected
gradient descent version, as discussed in Section 3.
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D FQE and CFQE Theoretical Results
D.1 Proof of FQE Error Bounds, Theorem 2

We recall the theorem below.

Theorem 2 (FQE Error). Suppose ” = 1 + ω in Assumption 3. Then in the limit of infinite samples, the point
estimate f̂1(s, a) of the Q-function produced by FQE has a worst-case error of |V ωe

1 (s)≃
∑

a εe,1(a | s)f̂1(s, a)| =
O(ωH2) for small ω.

Proof. In the limit of an infinite amount of data, at every step of FQE, the update evaluates f̂h(s, a) using:

f̂h(s, a) = argminfh(s,a) E(s,a,s→)↘Dh
ω
b

[lossFQE(fh(s, a), s
↑)]

= argminfh(s,a)
∑

u,s→

Pωb(s↑, u | s, a)lossFQE(fh(s, a), s
↑)

= argminfh(s,a)
∑

u,s→

Pωb

h (u | s, a)Ph(s
↑ | s, u, a)lossFQE(fh(s, a), s

↑)

= argminfh(s,a)
∑

u,s→

Ph(u | s)εb,h(a | s, u)
εb,h(a | s)

∑

s→

Ph(s
↑ | s, u, a)lossFQE(fh(s, a), s

↑)

where Pωb

h (u | s, a) is the posterior on u under εb and

lossFQE(fh(s, a), s
↑) =

(
fh(s, a)≃ r(s, a)≃

∑

a→

εe,h+1(a
↑ | s↑)f̂h+1(s

↑, a↑)

)2

f̂h(s, a) is then given by the following expression.

∑

u,s→

Ph(u | s)εb,h(a | s, u)
εb,h(a | s) Ph(s

↑ | s, u, a)
(
r(s, a) +

∑

a→

εe,h+1(a
↑ | s↑)f̂h+1(s

↑, a↑)

)

= r(s, a) +
∑

u,s→

Ph(u | s)εb,h(a | s, u)
εb,h(a | s) Ph(s

↑ | s, u, a)
∑

a→

εe,h+1(a
↑ | s↑)f̂h+1(s

↑, a↑)

True marginalized transition structure. Note that under any confounding-unaware policy εe, the induced
transition structure Pωe

h (s↑ | s) is determined by the marginalized transition dynamics Ph(s↑ | s, a) :=
∑

u Ph(u |
s)Ph(s↑ | s, a, u). This is clear from the computation below.

Pωe

h (s↑ | s) =
∑

u,a

εe,h(a | s)Ph(u | s)Ph(s
↑ | s, a, u)

=
∑

a

εe,h(a | s)
(
∑

u

Ph(u | s)Ph(s
↑ | s, a, u)

)
=

∑

a

εe,h(a | s)Ph(s
↑ | s, a)

Bounding f̂h(s, a). By Assumption 3 and the computations above, we can bound f̂h(s, a) by:

f̂h(s, a) ↘ r(s, a) +
1

ϑh(s, a)

∑

s→

Ph(s
↑ | s, a)

∑

a→

εe,h+1(a
↑ | s↑)f̂h+1(s

↑, a↑),

f̂h(s, a) ↔ r(s, a) +
1

ϖh(s, a)

∑

s→

Ph(s
↑ | s, a)

∑

a→

εe,h+1(a
↑ | s↑)f̂h+1(s

↑, a↑).

The ultimate goal is to bound V ωe

1 (s) ≃
∑

a εe,1(a | s)f̂1(s, a), which is given by
∑

a εe,1(a |
s)

(
Qωe

1 (s, a)≃ f̂1(s, a)
)
. So, we consider the error of f̂h(s, a) at every step, given by errh(s, a) := Qωe

h (s, a) ≃
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f̂h(s, a). We will use the following relation.

Qωe

h (s, a) = r(s, a) +
∑

u,s→

Ph(u | s)Ph(s
↑ | s, a, u)V ωe

h+1(s
↑)

= r(s, a) +
∑

s→

Ph(s
↑ | s, a)V ωe

h+1(s
↑) (4)

At h = H, by definition

f̂H(s, a) = r(s, a) = Qωe

H (s, a).

Thus, we get that errH(s, a) = 0 for all s, a. Let ϖmax := maxs,a,h ϖh(s, a) and let ϑmin = mins,a,h ϑh(s, a).

For step H ≃ 1,

errH↗1(s, a) ↘
∑

s→

PH↗1(s
↑ | s, a)V ωe

H (s↑)≃ 1

ϖH(s, a)

∑

s→

PH↗1(s
↑ | s, a)

∑

a→

εe,H(a↑ | s↑)f̂H(s↑, a↑)

= (1≃ 1

ϖH(s, a)
)
∑

s→

PH↗1(s
↑ | s, a)V ωe

H (s↑)

↘
(
1≃ 1

ϖmax

)∑

s→

PH↗1(s
↑ | s, a)

(
1≃ 1

ϖmax

)

By induction, we will show that for all h, the following holds.

errh(s, a) ↘ H ≃ h≃
H↗h∑

i=1

1

ϖi
max

We know this for h = H ≃ 1. For the induction step, we show this for h≃ 1 given the statement for h using the
following computation.

errh↗1 ↘
∑

s→

Ph↗1(s
↑ | s, a)V ωe

h (s↑)≃ 1

ϖh(s, a)

∑

s→

Ph↗1(s
↑ | s, a)

∑

a→

εe,h(a
↑ | s↑)f̂h(s↑, a↑)

↘
∑

s→

Ph↗1(s
↑ | s, a)V ωe

h (s↑)

+
1

ϖh(s, a)

∑

s→

Ph↗1(s
↑ | s, a)

∑

a→

εe,h(a
↑ | s↑)(errh(s, a)≃Qωe

h (s, a))

= (1≃ 1

ϖh(s, a)
)
∑

s→

Ph↗1(s
↑ | s, a)V ωe

h (s↑) +
1

ϖh(s, a)
errh(s, a)

↘
(
1≃ 1

ϖmax

)∑

s→

Ph↗1(s
↑ | s, a)(H ≃ h+ 1) + +

1

ϖh(s, a)
errh(s, a)

↘
(
1≃ 1

ϖmax

)
(H ≃ h+ 1) +

1

ϖmax

(
H ≃ h≃

H↗h∑

i=1

1

ϖi
max

)

= H ≃ h+ 1≃
H↗h+1∑

i=1

1

ϖi
max

Thus, the result holds by induction, giving us the following final bound.

Qωe

1 (s, a)≃ f̂1(s, a) ↘ H ≃ 1≃
H↗1∑

i=1

1

ϖi
max

= H ≃
1≃ 1

ϖH
max

1≃ 1
ϖmax
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Similarly, we have the lower bound below:

Qωe

1 (s, a)≃ f̂1(s, a) ↔ H ≃ 1≃
H↗1∑

i=1

1

ϑi
min

= H ≃
1≃ 1

εH

min

1≃ 1
εmin

Recall that ϑh(s, a) = εb,h(a | s) + 1
! (1≃ εb,h(a | s)) and ϖh(s, a) = ”+ εb,h(a | s)(1≃ ”). So, ϑh(s, a) ↔ 1

! and
ϖh(s, a) ↘ ” for all s, a, h. In particular, ϑmin ↔ 1

! = 1
1+ς and ϖmax ↘ ” = 1 + ω.

In particular, we have the following bound.

1 + ωH ≃ (1 + ω)H

ω
↘ V ωe

1 (s)≃
∑

a

εe,1(a | s)f̂1(s, a) ↘
1

(1+ς)H ≃ (1≃ ωH)

ω

We know that we have the following bounds for small ω: (1+ω)H ↔ 1+ωH+O(ωH2) and 1
(1+ς)H ↘ 1≃ωH+O(ωH2),

giving us the following bound for small ω.

|V ωe

1 (s)≃
∑

a

εe,1(a | s)f̂1(s, a)| ↘ O(ωH2)

Remark. For any ω, the lower bound 1+ςH↗(1+ς)H

ς ↘ ≃ ςH2

2 , and thus we need to be at least as conservative as
subtracting φH2

2 from the FQE estimate to get a lower bound, if not more. This remark will be used in Section 6.

We further remark in Section 3 that the bound in the theorem is data-oblivious, being only dependent on the
confounding sensitivity model and horizon, and note that the other two methods below (CFQE and MB) both
produce bounds at least as tight as this one.

D.2 Proof of CFQE Error Bounds, Theorem 3

We recall the theorem below.

Theorem 3 (CFQE Error). Suppose ” = 1 + ω in Assumption 3. Then the worst-case error for the lower bound
f̂1(s, a) generated by CFQE in the infinite-sample case is |V ωe

1 (s) ≃
∑

a εe,1(a | s)f̂1(s, a)| = O(ωH2) for any
range of ω.

Proof. In the limit of infinite data, the true value of gh always lies in the set B̃sa,h by the sensitivity assumption.
So, CFQE trivially gives a lower bound on the true value function in the limit of infinite data. We now give
bounds on its error below.

We define the error term at each step by errh(s, a) := maxs,a Q
ωe

h (s, a)≃ f̂h(s, a), where here f is generated by
CFQE. We claim that

errh(s, a) = (H ≃ h)≃ ϑmin

ϖmax
≃ · · ·≃ ϑH↗h

min

ϖH↗h
max

. (5)

Then, the following bound follows for any ω.

V ωe

1 (s)≃
∑

a

εe(a | s)f̂1(s, a) ↘ H ≃ 1≃ ϑmin

ϖmax
≃ · · ·≃ ϑH↗1

min

ϖH↗1
max

↘ H ≃
H↗1∑

i=0

1

(1 + ω)2i

↘ 2ωH2

This completes the proof since by induction, f̂h(s, a) ↘ Q(s, a) for all h, and so we already have the lower bound
V ωe

1 (s)≃
∑

a εe(a | s)f̂1(s, a) ↔ 0. Thus, it remains to prove 5.
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At step H of CFQE, we have

f̂H(s, a) = r(s, a).

Then as in the previous proof, the error at step H is given by errH(s, a) = 0.

At step h+ 1, suppose errh+1(s, a) = (H ≃ h≃ 1)≃ εmin

ϖmax

≃ · · ·≃ εH↑h↑1
min

ϖH↑h↑1
max

. Then for step h, we have the following

chain of inequalities for errh(s, a) = Qωe

h (s, a)≃ f̂h(s, a).
∑

s→

Ph(s
↑ | s, a)V ωe

h+1(s
↑)

≃
∑

u,s→

Pωb(s↑, u | s, a)εb,h(a | s)gh(s, a, s↑)
∑

a→

εe,h+1(a
↑ | s↑)f̂h+1(s

↑, a↑)

=
∑

s→

Ph(s
↑ | s, a)V ωe

h+1(s
↑)

≃
∑

u,s→

Pωb

h (u | s, a)Ph(s
↑ | s, u, a)εb,h(a | s)gh(s, a, s↑)

∑

a→

εe,h+1(a
↑ | s↑)f̂h+1(s

↑, a↑)

=
∑

s→

Ph(s
↑ | s, a)V ωe

h+1(s
↑)

≃
∑

u,s→

Ph(u | s)εb,h(a | s, u)
εb,h(a | s) Ph(s

↑ | s, u, a)εb,h(a | s)gh(s, a, s↑)
∑

a→

εe,h+1(a
↑ | s↑)f̂h+1(s

↑, a↑)

↘
∑

s→

Ph(s
↑ | s, a)V ωe

h+1(s
↑)

≃ ϑh(s, a)

ϖh(s, a)

∑

u,s→

Ph(u | s)Ph(s
↑ | s, u, a)

∑

a→

εe,h+1(a
↑ | s↑)(errh+1 ≃Qωe

h+1(s, a))

=

(
1≃ ϑh(s, a)

ϖh(s, a)

)∑

s→

Ph(s
↑ | s, a)V ωe

h+1(s
↑) +

ϑh(s, a)

ϖh(s, a)
errh+1

↘
(
1≃ ϑh(s, a)

ϖh(s, a)

)
(H ≃ h) +

ϑh(s, a)

ϖh(s, a)

(
H ≃ h≃ 1≃ ϑmin

ϖmax
≃ · · ·≃ ϑH↗h↗1

min

ϖH↗h↗1
max

)

↘
(
1≃ ϑmin

ϖmax

)
(H ≃ h) +

ϑmin

ϖmax

(
H ≃ h≃ 1≃ ϑmin

ϖmax
≃ · · ·≃ ϑH↗h↗1

min

ϖH↗h↗1
max

)

=H ≃ h≃ ϑmin

ϖmax
≃ · · ·≃ ϑH↗h

min

ϖH↗h
max

.

The first expression comes from using equation 4 as well as explicitly computing the argmin involved in CFQE in
the limit of infinite data, analogous to the proof of Theorem 2 above. In the first inequality, we use the facts
that ωb,h(a|s,u)

ωb,h(a|s) ↔ 1
ϖh(s,a)

and εb,h(a | s)gh(s, a, s↑) ↘ ϑh(s, a). In the equality after that, we use the definition of
errh(s, a). In the second inequality, we use equation 4.

Thus, errh(s, a) = H ≃ h≃ εmin

ϖmax

≃ · · ·≃ εH↑h

min

ϖH↑h

max

and (5) is proved.
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E Model-Based Method
E.1 General Memoryless Version

Notice that the model-based method leverages the fact that the marginalized transition dynamics are stationary.
In particular, we only need Ph(s↑ | s, a, u) and Ph(u | s) to be stationary, since this makes the marginalized
transition structure stationary. In that light, we discuss here the version of the method where εb and εe are
non-stationary.

Consider the observed transition structure at timestep h, given by P̂ωb

h , denote by ε̂b,h the observed behavior
policy and by ϑ̂h(s, a) and ϖ̂h(s, a) the versions of ϑh(s, a) and ϖh(s, a) computed using ε̂b,h. Let εe also be
non-stationary. For the model to improve over CFQE, we still need Ph(u | s) to be the same for all timesteps h,
so that the marginalized transition structure is stationary.

Define Gh := {P : ϑ̂h(s, a)P̂
ωb

h (s↑ | s, a) ↘ P(s↑ | s, a) ↘ ϖ̂h(s, a)P̂
ωb

h (s↑ | s, a), ⇐s, a, s↑}

Note that in the limit of infinite data, the true marginalized transition structure satisfies the following relation for
each h.

ϑh(s, a)P
ωb

h (s↑ | s, a) ↘ P(s↑ | s, a) ↘ ϖh(s, a)P
ωb

h (s↑ | s, a), ⇐s, a, s↑

So, in the limit of infinite data, the true marginalized structure lies in ⇔hGh. We then define this to be G := ⇔hGh

even in the finite sample case.

With this as our G, we have the same program for obtaining a model-based lower bound on the value function.

min
V1(s0),V2,...,VH ,VH+1=0,P

V1(s0) (6)

s.t. P ↗ G,
∑

s→

P(s↑ | s, a) = 1 ⇐s, a.

Vh(s) = εe,h(· | s)T (Rs + PsVh+1(·)) ⇐h ↗ {1, ..., H}, s

Remark. Note that assuming stationarity of εb allows us to use data across timesteps to estimate a universal
P̂ωb , which helps with finite samples in practice.

We present our proofs below for stationary εb and εe for clarity, noting that they can easily be modified for
general memoryless εb and εe in a similar vein as the proofs for CFQE.

E.2 Confidence Interval for State Transitions

We can use the following lemma to modify our definition of the set G to use confidence intervals instead of point
estimates. We show that both methods converge to the lower bound obtained with infinite data. However, using
Hoe"ding confidence intervals to modify G ensures that for any amount of data, the output of the model-based
method is a true lower bound on the value function. In the version that uses point estimates of εb and Pωb , we
only get estimates of a lower bound with finite data.

Let N(s) and N(s, a) be the counts of s and (s, a) in the data.

Lemma 9 (Confidence Interval for State Transitions). For #ω :=
√

1
2N↓(s) log(

2SA
ϱ1

), #P :=
√

1
2N↓(s,a) log(

2S2A
ϱ2

),
bounds ϑϱ1(s, a) := 1/” ≃ (1 ≃ 1/”)(ε̂b(a|s) + #ω) and ϖϱ1(s, a) := ” + (1 ≃ ”)(ε̂b(a|s) + #ω), and N→(s) =
≃ logmeanexp({≃N(s1), ...}), P(s↑|s, a) falls between ϑϱ1(s, a)(P̂

ωb(s↑|s, a)≃#P) and ϖϱ1(s, a)(P̂
ωb(s↑|s, a) +#P)

with probability at least 1≃ ς1 ≃ ς2.

Proof. We attempt to use the data collected by εb to construct a confidence interval for P̂(s↑ | s, a) that also
takes into account estimation error in the bounds ϑϱ1(s, a) and ϖϱ1(s, a). We consider below empirical estimation
for P(s↑ | s, a) and εb(a|s) using data collected by εb:

P̂ωb(s↑ | s, a) = N(s, a, s↑)

N(s, a)
, ε̂b(a|s) =

N(s, a)

N(s)

where N(s, a, s↑) :=
∑n

i=1 1{si=s,ai=a,s→
i
=s→}, N(s, a) :=

∑n
i=1 1{si=s,ai=a}, and N(s) :=

∑n
i=1 1{si=s}.
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Note that P(s↑ | s, a) =
∑

u P (u | s)P(s↑ | s, u, a), while Pωb(s↑ | s, a) =
∑

u Pωb(u | s, a)P(s↑ | s, u, a). In εb, u
and a are dependent.

We also have:

Pωb(s↑ | s, a) =
∑

u

Pωb(s↑, u | s, a) =
∑

u

Pωb(u | s, a)P(s↑ | s, u, a)

=
∑

u

P (u | s)εb(a | s, u)
εb(a | s) P(s↑ | s, u, a).

By Assumption 3,

1

ϖ(s, a)
P(s↑ | s, a) ↘ Pωb(s↑ | s, a) ↘ 1

ϑ(s, a)
P(s↑ | s, a) (7)

ϑ(s, a)Pωb(s↑ | s, a) ↘ P(s↑ | s, a) ↘ ϖ(s, a)Pωb(s↑ | s, a). (8)

We claim that by Hoe"ding’s inequality and the union bound, with probability at least 1≃ ς1 ≃ ς2,

|ε̂b(a | s)≃ εb(s | a)| ↘

√
1

2N→(s)
log

(
2SA

ς1

)
= #ω

∣∣∣P̂ωb(s↑ | s, a)≃ Pωb(s↑ | s, a)
∣∣∣ ↘

√
1

2N→(s, a)
log

(
2S2A

ς2

)
= #P (9)

where N→(s) = ≃ logmeanexp({≃N(s1), ...}) and N→(s, a) = ≃ logmeanexp({≃N(s1, a1), ...}).

We illustrate this by showing the result for P̂ωb(s↑ | s, a), and the other case follows analogously.

P(↖s↑, s, a s.t. |P̂ωb(s↑ | s, a)≃ Pωb(s↑ | s, a)| ↘ φ) ↘
∑

s→,s,a

P(|P̂ωb(s↑ | s, a)≃ Pωb(s↑ | s, a)| ↘ φ)

↘
∑

s→,s,a

2 exp{≃2φ2N(s, a)}

= S
∑

s,a

2 exp{≃2φ2N(s, a)}

↘ 2S2A exp{≃2φ2N→(s, a)} = ς

for some N→ that satisfies the last inequality above. Various choices for N→ exist. Perhaps the most obvious
choice is the min function, though it can be shown that ≃ logmeanexp(≃x) is optimal, as:

x→ s.t.
∑

n

eXn = nex
↓

↙∝ ex
↓
=

1

n

∑

n

eXn ↙∝ logmeanexp(X1, ..., Xn) = x→

The logmeanexp function returns a value between the maximum and the mean, and in our case, we use it to
obtain a soft approximation to the minimum that provides a less conservative bound than using the minimum of
counts over all states (or states and actions).

Combining our inequalities 9 and 8 with the definitions of ϑ(s, a) and ϖ(s, a), we have our result.

E.3 Solving (1) Gives Better Lower Bound than Confounded FQE, Proof of Theorem 4

Recall Theorem 4 below.

Theorem 4 (Error for the Model-Based Method). Suppose ” = 1+ω in Assumption 3. Then the value estimation
from solving (1) with infinite data, denoted by Ṽ1, provides a lower bound no looser than CFQE and satisfies that
|V ωe

1 (s0)≃ Ṽ1(s0)| = O(ωH2) for any range of ω.
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We consider the infinite sample setting, which means:

G = {P : ϑ(s, a) ↘ P(s↑ | s, a)
Pωb(s↑ | s, a) ↘ ϖ(s, a), for ⇐s, a, s↑}

The key to the proof is the observation that we can always get a valid gh from a valid P ↗ G by setting
gh(s, a, s↑) :=

P(s→|s,a)
Pω

b (s→|s,a)ωb(a|s) , which formalizes the intuition that the uncertainty set G for P is tighter. Since we
are in the stationary case, we drop all unnecessary h in subscripts.

Proof. We denote the solution of (1) in the infinite-sample setting by Ṽ1, . . . , ṼH , ṼH+1, P̃. We will show that Ṽ1

gives a lower bound on the true value function that is larger than the lower bound given by CFQE. That is, if the
iterates of CFQE are f̂h(s, a), then

∑
a εe(a | s)f̂1(s, a) ↘ Ṽ1(s) ↘ V ωe

1 (s). Combining this with Theorem 3 gives
us the whole theorem.

First note that in the infinite data setting, the marginalized transition kernel lies in G, so the optimization
problem minimizes V1 over values of P that include the true marginalized transition structure. Thus, we trivially
get that Ṽ1(s) ↘ V ωe

1 (s).

We now prove that Vh(s) ↔
∑

a εe(a | s)f̂h(s, a) holds for all h by induction. Note that the argument below also
works for the finite-sample case by merely replacing every quantity associated with εb (such as Pωb) by its finite
sample version.

For h = H + 1:

ṼH+1(s) = 0 ↔ 0 =
∑

a

εe(a | s)f̂H+1(s, a)

Suppose we have Ṽh+1(s) ↔
∑

a εe(a | s)f̂h+1(s, a). Then for step h:

Ṽh(s) =
∑

a

εe(a | s)
[
R(s, a) +

∑

s→

P̃(s↑ | s, a)Ṽh+1(s
↑)

]

f̂h(s, a) = min
g↔B̃sa




∑

u,s→

Pωb(s↑, u | s, a)CFQE(f̂h+1, g)





↘
∑

u,s→

Pωb(s↑, u | s, a) P̃(s↑ | s, a)
Pωb(s↑ | s, a)

[
R(s, a) +

∑

a→

εe(a
↑ | s↑)f̂h+1(s

↑, a↑)

]

=
∑

s→

P̃(s↑ | s, a)
[
R(s, a) +

∑

a→

εe(a
↑ | s↑)f̂h+1(s

↑, a↑)

]
↘ R(s, a) +

∑

s→

P̃(s↑ | s, a)Ṽh+1(s
↑).

where

CFQE(f̂h+1, g) :=

(
∑

s→

εb(a | s)g(s, a, s↑)
[
R(s, a) +

∑

a→

εe(a
↑ | s↑)f̂h+1(s

↑, a↑)

])

The first inequality in above is achieved by setting g(s, a, s↑) = P̃(s→|s,a)
Pω

b (s→|s,a)ωb(a|s) . It’s easy to check that by
this choice, g(s, a, ·) ↗ B̃sa by (8). The second inequality is by the induction hypothesis. Thus, we have
Ṽh(s) ↔

∑
a εe(a | s)f̂h(s, a).

By induction, Ṽ1(s) ↔
∑

a εe(a | s)f̂1(s, a), which means the lower bound provided by (1) is always no worse than
confounded FQE (Alg. 3).
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E.4 Worst-Case Error for the Model-Based Method, An Independent Alternative Proof

In this section, we give an alternative proof of the fact that the output of (1) satisfies |V ωe

1 (s)≃ Ṽ1| = O(ωH2) for
” = 1 + ω without comparing to CFQE. Again, recall that we consider the infinite sample setting, which means
the following.

G = {P : ϑ(s, a) ↘ P(s↑ | s, a)
Pωb(s↑ | s, a) ↘ ϖ(s, a), for ⇐s, a, s↑}

Proof. By definition, we know V ωe

H (s) = ṼH(s) for all s. We define ςh = maxs |V ωe

h (s)≃ Ṽh(s)|. Note that ςH = 0.
Next, consider |V ωe

h (s)≃ Ṽh(s)|:

ςh := max
s

|V ωe

h (s)≃ Ṽh(s)|

= max
s

|
∑

a

εe(a | s)
∑

s→

P(s↑ | s, a)Vh+1(s
↑)≃

∑

a

εe(a | s)
∑

s→

P̃(s↑ | s, a)Ṽh+1(s
↑)|

↘ max
s

|
∑

a

εe(a | s)
∑

s→

P(s↑ | s, a)Vh+1(s
↑)≃

∑

a

εe(a | s)
∑

s→

P̃(s↑ | s, a)Vh+1(s
↑)|

+max
s

|
∑

a

εe(a | s)
∑

s→

P̃(s↑ | s, a)Vh+1(s
↑)≃

∑

a

εe(a | s)
∑

s→

P̃(s↑ | s, a)Ṽh+1(s
↑)|

= max
s

|
∑

a

εe(a | s)
∑

s→

P(s↑ | s, a)Vh+1(s
↑)≃

∑

a

εe(a | s)
∑

s→

P̃(s↑ | s, a)Vh+1(s
↑)|

+ ςh+1

↘ (ϖmax ≃ ϑmin)(H ≃ h) + ςh+1,

where
ϖmax := max

s,a
”+ εb(a | s)(1≃ ”) ↘ 1 + ω

and
ϑmin := min

ωb(a|s)

ω

1 + ω
εb(a | s) + 1

1 + ω
↔ 1

1 + ω

It is easy to check ϖmax ≃ ϑmin = ω + ς
1+ς = O(ω) (ignoring higher order terms of ω). So, we get that

ςh ↘ O(ω(H ≃ h)) + ςh+1 from h = 1, . . . , H. So, we have that

ς1 ↘ O(ωH2)

E.5 Consistency of the Model-Based Method

We first prove this extremely elementary and useful geometric lemma.

Lemma 10. If a function f : X ↓ R on a Hausdor" metric space X is continuous (resp. Lipschitz), then
fmin : Comp(X) ↓ R given by fmin(K) := infx↔K f(x) is also continuous (resp. Lipschitz) in the Hausdor"
metric on the space Comp(X) of compact subsets of X. The same holds for fmax(K) := supx↔K f(x).

Proof. We prove this for ϑ-Lipschitz f and fmin, the other cases are similar. Consider compact sets K1 and K2,
so that the infima are attained at xi ↗ Ki. This means that fmin(Ki) = f(xi). Since Kj are closed, we have
points uj that attain the closest distance from xi to Kj . Combining these, we know that

d(xi,Kj) ↘ dHaus(Ki,Kj)

and
d(xi, uj) = d(xi,Kj) := infu↔Kj

d(xi, u)

Using the Lipschitzness of f ,

|f(xi)≃ f(uj)| ↘ ϑd(xi, uj) ↘ ϑdHaus(Ki,Kj)
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Also, f(uj) ↔ f(xj) by definition of xj , since uj ↗ Kj and xj minimizes f over Kj . So,

f(xi) ↔ f(uj)≃ ϑdHaus(Ki,Kj) ↔ f(xj)≃ ϑdHaus(Ki,Kj)

This holds for (i, j) = (1, 2), (2, 1), so we get that

|fmin(Ki)≃ fmin(Kj)| = |f(xi)≃ f(xj)| ↘ ϑdHaus(Ki,Kj)

We use Lemma 10 along with the fact that the objective function is Lipschitz. We will prove it for the version of
the Model-Based method incorporating Hoe"ding-based bounds (which are incorporated to give finite sample
guarantees). The proof for the version with point estimates of the relevant quantities is in fact easier and subsumed
by this by setting #ω = #P = 0. We first need the lemma below, which will we later combine with Lemma 10.

Lemma 11. Let the feasible region given by the values of Pωb
,ϑ(s, a) and ϖ(s, a) in the limit of infinite data be

F . Let the feasible region obtained using our finite sample estimates in Lemma 9 be F̂ . Then there is a constant
K depending on ” so that

dHaus(F, F̂ ) ↘ 2S2A”
(
|Pωb(s↑ | s, a)≃ P̂ωb(s↑ | s, a)|+ |εb(s | a)≃ ε̂b(s | a)|+#P +#ω

)

Notice that this also applies to the case of replacing the Hoe"ding-based intervals by the point estimates, since
that merely involves replacing #ω and/or #P by 0.

Proof. Notice that the condition ∑

s→

P(s↑ | s, a) = 1

is identical across both sets, so the di"erence is only induced by the infinite-sample G≃ and the finite sample G.
That is, for P ↗ G≃, we have the following

ϑ(s, a)Pωb(s↑|s, a) ↘ P(s↑ | s, a) ↘ ϖ(s, a)Pωb(s↑|s, a)

Let’s call the interval above Is,a. For P ↗ G, we instead have

ϑϱ1(s, a)(P̂
ωb(s↑|s, a)≃#P) ↘ P(s↑ | s, a) ↘ ϖϱ1(s, a)(P̂

ωb(s↑|s, a) +#P)

We can check that using the inequalities above, the following hold for ŵ ↗ F̂ :

• If ŵs→,s,a < ϑ(s, a)Pωb(s↑ | s, a), then

d(ŵs→,s,a, Is,a)

↘ ϑ(s, a)|Pωb(s↑ | s, a)≃ P̂ωb(s↑ | s, a)|+ ϑ(s, a)#P

+ (P̂ωb(s↑ | s, a) +#P)|ϑ(s, a)≃ ϑϱ1(S, a)|

↘ |Pωb(s↑ | s, a)≃ P̂ωb(s↑ | s, a)|+#P + 2

(
1≃ 1

”

)
(|εb(s | a)≃ ε̂b(s | a)|+#ω)

↘ |Pωb(s↑ | s, a)≃ P̂ωb(s↑ | s, a)|+K1|εb(s | a)≃ ε̂b(s | a)|+#P +K1#ω

where K1 = 2

1≃ 1

!


.

• If ŵs→,s,a > ϖ(s, a)Pωb(s↑ | s, a) then we get terms using ϖ, so that we have

d(ŵs→,s,a, Is,a) ↘ K3|Pωb(s↑ | s, a)≃ P̂ωb(s↑ | s, a)|+K2|εb(s | a)≃ ε̂b(s | a)|+K3#P +K2#ω

with K2 = 2(”≃ 1) and K3 = ”

• In the third case, ŵs→,s,a ↗ Is,a, so d(ŵs→,s,a, Is,a) = 0
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Combining these and noting that 2” ↔ K1,K2,K3, we have that

d(ŵs→,s,a, Is,a) ↘ 2”(|Pωb(s↑ | s, a)≃ P̂ωb(s↑ | s, a)|+ |εb(s | a)≃ ε̂b(s | a)|+#P +#ω)

This means that by the triangle inequality, for any matrix/vector norm on RS2A,

d(ŵ, F ) = d(ŵ,


s→,s,a

Is,a) ↘ S2Amax
s→,s,a

d(ŵs→,s,a, Is,a)

↘ 2S2A”
(
|Pωb(s↑ | s, a)≃ P̂ωb(s↑ | s, a)|+ |εb(s | a)≃ ε̂b(s | a)|+#P +#ω

)

Since ŵ ↗ F̂ is arbitrary,

dHaus(F, F̂ ) ↘ 2S2A”
(
|Pωb(s↑ | s, a)≃ P̂ωb(s↑ | s, a)|+ |εb(s | a)≃ ε̂b(s | a)|+#P +#ω

)

We finally recall and prove our consistency result below.

Theorem 5 (Consistent Estimation of the Lower Bound). The estimated lower bound from the model-based
method is strongly consistent for the lower bound Ṽ1, where Ṽ1 is the lower bound estimate of the value function
from solving (1) with infinite data. That is, V̂1

a.s.↓ Ṽ1.

Proof. To remind the reader of the precise sense in which "limit of infinite data" is used here, we mean that the
behavior policy is exploratory, so that every s, a has a non-zero probability of occurring in the trajectory. In
particular N(s), N(s, a) ↓ ′ as we observe infinitely many trajectories.

We know that our objective function is a polynomial in the entries of w = P(· | ·, ·). Since the entries of w lie
in [0, 1], the domain of our multivariate polynomial is compact and it is thus Lipschitz, since it is C1. Let its
Lipschitz constant be ϑ. Call the minimum in the infinite data case Ṽ1 and the one in the finite sample case V̂1.
Combining Lemma 11 with Lemma 10, we get that

|Ṽ1 ≃ V̂1| ↘ ϑdHaus(F, F̂ )

↘ 2ϑS2A”
(
|Pωb(s↑ | s, a)≃ P̂ωb(s↑ | s, a)|+ |εb(s | a)≃ ε̂b(s | a)|+#P +#ω

)

Note that as N(s), N(s, a) ↓ ′, |Pωb(s↑ | s, a) ≃ P̂ωb(s↑ | s, a)|, |εb(s | a) ≃ ε̂b(s | a)| ↓ 0 almost surely, and
#P,#ω ↓ 0. This implies that as N(s), N(s, a) ↓ ′, |Ṽ1 ≃ V̂1| ↓ 0 almost surely.
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F Relaxation of the Model-Based Method
F.1 Relaxation of (1)
Recall that in (1), we solved a non-convex optimization problem with H · |S|+ 1 Bellman backup constraints.
If one were to not require the P(s↑|s, a) to stay constant at every step, one could sequentially solve H · |S|+ 1
convex programs to obtain a lower bound that is looser than one obtained by (1). Gh is as defined in Appendix E.
Computationally, to compute policy values for each starting state, confounded FQE (Alg. 3) solves (H+1) · |S| · |A|
linear programs, while Alg. 4 below solves (H + 1) · |S| convex programs.

Algorithm 4 Relaxation of Model-Based Method
1: input: evaluation policy εe, starting state s0.
2: initialize: VH+1 ⇓ 0.
3: for h = H,H ≃ 1, . . . , 1 do

4:

Vh(s) := min
Ph↔Gh

∑

a

εe,h(a | s)
[
R(s, a) +

∑

s→

Ph(s
↑ | s, a)Vh+1(s

↑)

]

= min
Ph↔Gh

εe,h(· | s)T (Rs + Ps,hVh+1(·)).

5: end for

6: return V1(s0)

Notice that this is similar to confounded FQE (Alg. 3) in that it optimizes over Ph(s↑|s, a) at each step, instead of
requiring it to stay constant for all h = 1, ...H. Consider the bijection gh(s, a, s↑) ∞ Ph(s

→|s,a)
P̂
ω
b

h
(s→|s,a)ω̂b,h(a|s)

between

the uncertainty sets


h B̃sa,h and


h Gh for g1, . . . gH and P1, . . . ,PH respectively. It is easy to check using the
definitions of the sets that this is truly a bijection. We can see using this bijection and with an argument similar
to the proof of Theorem 4, that the value estimates from this relaxation and CFQE are equal at each step. By
the remark made in the proof of Theorem 4, this also holds for the finite sample versions.

F.2 Projected Gradient Descent

In a similar vein to Algorithm 4.1 in Kallus and Zhou (2020), we provide a method to e#ciently compute the
lower bound with projected gradient descent.

Given an estimate of P, the corresponding estimate of V1(s0) can be obtained by iteratively performing H + 1
Bellman backups, each of which is dependent on P itself. Each Bellman backup is obtained by translations and
matrix multiplications of P. As such, V1(s0) is di"erentiable with respect to P, and the gradient ⇑PV1(s0) can be
easily obtained with modern autograd tools.

Algorithm 5 Projected Gradient Descent for Model-Based Lower Bound
1: input: evaluation policy εe, empirical estimate of P, decaying learning rate ↽t, starting state s0.
2: initialize: VH+1 ⇓ 0.
3: for t = 1, ..., N do

4: for h = H,H ≃ 1, . . . , 1 do

5:

Vh(s) :=
∑

a

εe(a | s)
[
R(s, a) +

∑

s→

P(s↑ | s, a)Vh+1(s
↑)

]

= εe(· | s)T (Rs + PsVh+1(·)).

6: end for

7: P ⇓ ProjG(P ≃ ↽t⇑PV1(s0))
8: end for

9: return the lowest V1(s0) encountered.
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G FQE Does Not Work for Confounders with Memory
We recall Theorem 6 below.

Theorem 6 (Lower Bound for Confounders with Memory). There exists an MDP M having confounders with
memory, a stationary unconfounded behavior policy εb with sensitivity ” = 1, a stationary evaluation policy εe

with ωe(a|s)
ωb(a|s) ↘ 2 ⇐s, a, and a state s1, so that V ωe

1 (s1) = !(H) while the output of FQE for εe is O(logH), even
with infinite data.

Proof. We demonstrate that there exists a confounded MDP with non-memoryless confounders and a behavior
policy εe where even under the limit of infinite data, if the estimate obtained using FQE is f̂1(s, a) and the true
value function is V ωe

1 (s), then V ωe

1 (s)≃
∑

a εe(a | s)f̂1(s, a) = O(H).

Environment:

• Consider S = {s1, s2}, A = {a1, a2}, U = {u0, ua1}, horizon H.

• Rewards: r(s = s1, a1) = 1, otherwise 0 reward.

• Starting state: Let the starting state be s1.

Confounder distribution: The confounder’s distribution starts at ua1 and is induced by confounder transitions
with memory. Specifically, consider the following confounder transitions.

• If u = ua1 and the current action is a1, stay in ua1 .

• In all other cases, transition to u0.

State transitions: P(s1 | s, a1, ua1) = 1 for any s, and for all other s, a, u, we have that P(s1 | s, a, u) = 1/H
and P(s2 | s, a, u) = 1≃ 1/H

Behavior policy: Let εb(a | s, u) = 1
2 for any s, a, u.

Evaluation policy: Let εe(a1 | s) = 1.

Policy values: Notice that in the evaluation policy, we are always in ua1 and always take action a1, so we are
always in state s1. Thus the reward at each step is 1 and V ωe

1 (s1) = H.

FQE Output: First note that to iterate through FQE for εe, we need only compute f̂h(s, a1) for all s, h. Notice
that under the behaviour policy, at timestep h, Pωb,h(ua1) = 1

2h↑1 and Pωb,h(u0) = 1 ≃ 1
2h↑1 . We start with

f̂H+1(s, a) := 0 and the update rule is given by

f̂h(s, a) = E(s,a,s→)↔Dω
b
,h
[r(s, a) +

∑

a→

εe(a
↑ | s↑)f̂h+1(s

↑, a↑)]

= E(s,a,s→)↔Dω
b
,h
[r(s, a) + f̂h+1(s

↑, a1)]

= r(s, a) +
∑

s→,u

Pωb,h(s
↑, u | s, a)f̂h+1(s

↑, a1)

= r(s, a) +
∑

s→,u

P(s↑ | s, a, u)Pωb,h(u | s, a)f̂h+1(s
↑, a1)

Note that for u = u0, ua1

Pωb,h(u | s, a) = Pωb,h(s, a | u)Pωb,h(u)

Pωb,h(s, a | u0)Pωb,h(u0) + Pωb,h(s, a | ua1)Pωb,h(ua1)

For s = s2, P(s2, a | ua1) = 0, so P(ua1 | s2, a) = 0. On the other hand, for s1, a1, we have the following.

Pωb,h(ua1 | s1, a1) =
1

2h↑1

1
2H


1≃ 1

2h↑1


+ 1

2h↑1

↘ min

(
1,

2H

2h↗1

)
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Thus, Pωb,h(u0 | s1, a1) ↔ 1≃ 2H
2h↑1

Thus, for s1, a1, the update rule is given by

f̂h(s1, a1) = 1 +
1

H
Pωb,h(u0 | s1, a1)f̂h+1(s1, a1) +

(
1≃ 1

H

)
Pωb,h(u0 | s1, a1)f̂h+1(s2, a1)

+ Pωb,h(ua1 | s1, a1)f̂h+1(s1, a1)

↘ 1 +

(
1

H
+min

(
1,

2H

2h↗1

))
f̂h+1(s1, a1) +

(
1≃ 1

H

)
f̂h+1(s2, a1)

For s2, it is given by

f̂h(s2, a1) = 1 +
1

H
Pωb,h(u0 | s1, a1)f̂h+1(s1, a1) +

(
1≃ 1

H

)
Pωb,h(u0 | s1, a1)f̂h+1(s2, a1)

+ Pωb,h(ua1 | s1, a1)f̂h+1(s1, a1)

=
1

H
f̂h+1(s1, a1) +

(
1≃ 1

H

)
f̂h+1(s2, a1)

We can use these to perform a straightforward but tedious calculation and inductively verify that for h ↔
2 log(H) + 6, f̂h(s1, a1) ↘ 1 + 2H↗2h

H and f̂h(s2, a1) ↘ 2H↗2h
H . Induction starts at h = H and works backwards.

For h ↘ 2 log(H) + 6, we use the simple upper bounds on the FQE recursion.

f̂h(s1, a1) ↘ 1 + max(f̂h+1(s1, a1), f̂h+1(s2, a1))

f̂h(s2, a1) ↘ max(f̂h+1(s1, a1), f̂h+1(s2, a1))

In particular,
max(f̂h(s1, a1), f̂h(s2, a1)) ↘ 1 + max(f̂h+1(s1, a1), f̂h+1(s2, a1))

This gives us the following relation.

f̂1(s1, a1) ↘ max(f̂1(s1, a1), f̂1(s2, a1)) ↘ (2 logH + 6) + 1 +
2(H ≃ (2 logH + 6))

H
↘ 2 logH + 9

In particular, FQE gives an underestimate of the value and its estimation error is

V ωe

1 (s1)≃
∑

a

εe(a | s)f̂1(s1, a) = O(H)



Kausik, Lu, Tan, Makar, Wang, Tewari

H Proof of Consistency for Clustering OPE, Theorem 7
We first rephrase the end-to-end clustering guarantee from Kausik et al. (2022) in our context.

Theorem. Under Assumptions 2, 4, and 5, there are constants H0, N0 depending polynomially on
1
ε ,#, 1

minu P (u) , log(1/ς), so that for n ↔ U2SN0 log(1/ς) trajectories of length H ↔ H0tmix log(n), we recover all
clusters of trajectories exactly with probability at least 1≃ ς.

We now recall Theorem 7.

Theorem 7 (Sample Complexity for OPE under Global Confounding). Under Assumptions 2, 4, 5, 6, there are
constants H0, N0 depending polynomially on 1

ε ,#, 1
minu P (u) , log(1/ς), so that for n trajectories of length H ↔

H0tmix log(n), we have that |V̂1(s0;εe)≃V1(s0;εe)| < φ with probability at least 1≃ς if n ↔ !(max(n1, n2, n3, n4)),
where

n1 := U2SN0 log(1/ς), n2 :=
log(U/ς)

min(φ2/H2,minu P (u)2)

n3 :=
H2ϱaϱsSA log(U/ς)

φ2
, n4 :=

ϱaH

dm

As discussed in Section 4, we prove a more general version of this, in the form of the theorem below. Assume that
we instantiate Algorithm 1 with an OPE estimator that requires an assumption A(b) parameterized by a vector b
and has sample complexity N2(ς, φ, b).

Theorem. Under Assumptions 2, 4, 5, and A(b), there are constants H0, N0 depending polynomially on
1
ε ,#, 1

minu P (u) , log(1/ς), so that for n trajectories of length H ↔ H0tmix log(n), we have that |V̂1(s0;εe) ≃
V1(s0;εe)| < φ with probability at least 1≃ ς if

n ↔ !

(
max

(
U2SN0 log(1/ς),

log(U/ς)

min(φ2/H2,minu P (u)2)
, N2(ς/U, φ, b)

))
.

Proof. Note that V1(s0;εe) = Eu[V1(s0;u,εe)] =
∑

u P (u)V1(s0;u,εe). Using the clustering guarantee from
Kausik et al. (2022) (rephrased above), we know that for the same H0 and N0 as in the clustering guarantee, given
n ↔ N(ς) = U2SN0 log(1/ς) trajectories of length H ↔ H0tmix log(n), we recover clusters C1, ..., CU consisting of
trajectories with the same confounders with probability at least 1≃ ς. Recall that H0 is not explicitly dependent
on S,A and tmix, but could depend on the model.

We only identify the confounder labels in each trajectory up to permutation upon obtaining exact clustering, but
for any permutation ⇀ ↗ SU ,

∑K
u=1 P (u)V1(s0;Cu,εe) =

∑U
u=1 P (⇀(u))V1(s0;C↼(u),εe). That is, the result of

the sum is independent of the order of its terms P (u)V̂1(s0;Cu,εe). So, we assume WLOG that we recover the
true cluster labels.

Upon obtaining the confounder labels un in each trajectory, we can estimate P (u) with P̂ (u) := 1
Ntraj

∑
n (un = u)

via label proportions. By a simple application of Hoe"ding’s inequality, there is another function N1(ς,ϑ) so that
for n ↔ N1(ς/U,ϑ), the weights satisfy |P̂ (u)≃ P (u)| ↘ ϑ for all u with probability at least 1≃ ς.

We use |ab≃ cd| ↘ |b||a ≃ c|+ |c||b≃ d| to conclude that for n ↔ N1(ς/U, φ/2H), we have the following bound
with probability at least 1≃ ς.

|V1(s0;εe)≃ V̂1(s0;εe)| ↘
φ

2H
max
u

V̂1(s0;Cu,εe) + max
u

(P (u)|#(u)|) ↘ φ

2
+ max

u
|#(u)| (10)

where #(u) := V1(s0;Cu,εe)≃ V̂1(s0;Cu,εe).

So, whenever we have exact clustering, there is a function N2(ς, φ, b) so that |#(u)| < φ for all u outside
of a set of probability ς whenever

∑
n 1(un = u) ↔ N2(ς/U, φ, b). By Hoe"ding’s inequality from above,∑

n 1(un = u) ↔ n(P (u)≃ ϑ) ↔ nP (u)/2 for ϑ ↘ minu P (u)/2.

So, for n ↔ max
(
N


ϱ
3


, N1

(
ϱ
3U ,min

(
φ

2H , minu P (u)
2

))
, 2
minu P (u)N2


ϱ
3U , φ

2 , b
)

, we get that |V1(s0;εe) ≃
V̂1(s0;εe)| ↘ φ
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Note that N(ς/3) = U2SN0 log(3/ς) and N1

(
ϱ
3U ,min

(
φ

2H , minu P (u)
2

))
= 2 log(3U/ϱ)

min(φ2,minu P (u)2) . This gives us our
final bound.
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I The Necessity of the Horizon Being O(tmix)

We showed in Section ?? that under Assumptions 2, 4, 5 and 6, Algorithm 1 provides a point estimate of
the policy’s value with provable sample complexity guarantees. The only additional requirement was that
H ↔ H0tmix log n. We claim that the tmix dependence is not an artifact of the clustering method used. In fact,
the theorem below shows that if H ↘ Õ(tmix), clustering and value estimation can be arbitrarily bad even when
tmix is small. It essentially produces an example with logarithmically small tmix where the confounders cannot
be identified for H ↘ Õ(tmix). We prove it in Appendix I. We state Theorem 12 below.

Theorem 12 (Necessity of H ↔ !(tmix)). There exist globally confounded MDPs M1 and M2 and a behavior
policy εb with induced mixing time tmix = O(logS) so that for H ↘ Õ(tmix), trajectories from confounders in
both MDPs have the same distribution. Furthermore, there exists a stationary evaluation policy εe and a starting
state s so that |V ωe

1 (s,M1)≃ V ωe

1 (s,M2)| = !(H).

Proof. We construct two MDPs which satisfy all our assumptions, but have the same distribution over a horizon
less than tmix and thus cannot be distinguished. We will also note that given the reward structure, under a
di"erent starting distribution, the MDPs will have value functions di"ering by O(H).

The intuition is that the state space is an n-dimensional Boolean hypercube with an extra rewarding state sr,
thought of as a "twin" to (1, 1, . . . 1). If one identifies sr to (1, 1, . . . 1), then a = 1 pushes states to have more
ones while a = 2 pushes states to have more zeros, and the actions taken with probability 1/2 combine to produce
a lazy random walk on the Boolean hypercube. Depending on which MDP one is in, sr and (1, 1, . . . 1) have
proportional transition dynamics, with di"erent levels of "tra#c." Controlling this "tra#c" allows us to control
the rewards of a di"erent evaluation policy in the MDPs, because we choose all states besides sr to have 0 reward.

Environments:

• Consider S = {0, 1}n ∈ {sr}, A = {1, 2}, U = {1, 2}, horizon H.

• Rewards: r(s = sr, a) = 1 for any action a, otherwise 0 reward.

• Starting state: Let the starting state be (0, 0 . . . 0).

• Confounders: P(u = 1) = P(u = 2) = 1
2 .

Transitions: We describe the transition structure below. Pick a parameter pi,j ↗ [0, 1] for MDP Mi and
confounder u = j, whose role will be clear below. For both MDPs M1 and M2 and both confounders u = 1, 2,
consider the following transition structure.

• Under a = 1: Consider s ∋= sr, and let it have k > 1 zeros. Pick one of the zeros with probability 1
n each

and change it to a 1, doing nothing and staying in s with probability n↗k
n . If s has exactly 1 zero, then for

MDP Mi and confounder u = j, let s transition to sr with probability pi,j

n , to (1, 1, . . . 1) with probability
1↗pi,j

n and stay at s with probability 1≃ 1
n . Fix p2,1 = p2,2 = 1

2 . If s = sr, then in Mi and confounder uj ,
move to (1, 1, . . . 1) with probability 1≃ pi,j , staying with probability pi,j . If s = (1, 1, . . . 1), then in Mi and
confounder uj , move from to sr with probability pi,j , staying with probability 1≃ pi,j .

• Under a = 2: Consider s ∋= sr, and let it have k > 0 zeros. Pick one of the ones with probability 1
n each

and change it to a zero, doing nothing and staying in s with probability k
n . If s = sr, (1, 1, . . . 1), then let it

transition to a state with a single zero with probability 1
n .

Behavior policies: In both MDPs, choose the same policy ε(a | s) = 1
2 for all a, s. One can check that the

occupancies of sr and (1, 1, . . . 1) are only non-zero together and always have the ratio pi,j/(1≃ pi,j) in MDP
Mi and confounder u = j. This will thus also hold in the stationary distribution. Note that while in general,
identifying states in a Markov chain does not create a Markov chain, this is true if two states always have the
same ratio of occupancies. Additionally, since the occupancy ratios are fixed, for any MDP and confounder in our
system, the TV distance between the distribution of the system and at any time t from the stationary distribution
is the same if we identified sr and (1, 1, . . . 1). Thus, this system has the same mixing time as it would if we
identified sr and (1, 1, . . . 1).

Notice that the transition structure of the induced Markov chains in both MDPs after identifying sr and (1, 1, . . . 1)
is identical, and in fact it is the same as picking a bit in a state uniformly at random and flipping it with probability
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1/2, doing nothing otherwise. This is in fact the same as the lazy random walk on the Boolean hypercube in
Levin and Peres (2017). We thus know from Levin and Peres (2017) that both induced Markov chains have the
same mixing time tmix = O(n log n). Let k be a constant so that tmix ↘ kn log n.

Observational indistinguishability: Consider H ↘ tmix

4k log(tmix)
↘ n

4 . Since the MDPs have identical transition
structures for s ∋= sr with s having 2 or more zeros, and no state can have fewer than 2 zeros after less than n

4 bit
flips starting from the starting state (0, 0 . . . 0), trajectories generated under either MDP and either confounder
have the same probability.

In particular, the confounders are observationally indistinguishable in either MDP and cannot be clustered even
with infinite observations, even though transitions di"er in n+2 of the states with # > max(|1≃2pi,j |, |pi,1≃pi,2|) >
0. Moreover, the MDPs themselves are observationally indistinguishable as well.

Evaluation policy: One can produce many examples of an evaluation policy εe so that there is a state s with
V ωe

1,i (s) very di"erent across the two MDPs. Here we present a trivial one. Consider εe(a = 1 | s, u) = 1 for all
s, u.

Policy values: Let us say that we intend to find V ωe

1,i ((1, 1, . . . 1)). Notice that in the first step in confounder
u = j and MDP Mi, the distribution of states will be P(sr) = pi,j and P((1, 1, . . . 1)) = 1≃ pi,j and stays that
way for all future steps. This means that V ωe

1,i ((1, 1, . . . 1)) =
(∑2

j=1
pi,j

2

)
(H ≃ 1) in MDP Mi.

The di"erence in values is given by |V ωe

1,1((1, 1, . . . 1))≃ V ωe

1,2((1, 1, . . . 1))| = (H ≃ 1)(p1,1 + p1,2 ≃ p2,1 ≃ p2,2). We
arbitrarily instantiate our parameters to be say p1,1 = 1≃ 1

100 , p1,2 = 1≃ 2
100 , p2,1 = ≃ 1

100 , p2,2 = 2
100 , to get that

|V ωe

1,1((1, 1, . . . 1))≃ V ωe

1,2((1, 1, . . . 1))| =
94

100
(H ≃ 1) = !(H)
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J Policy Optimization under General and Memoryless Confounders
J.1 Bounds on Sub-optimality given Optimization Oracles

Here, we elaborate on the comment at the beginning of Section 5, where we claim that given error bounds on
our value estimate V̂1 and an optimizer for V̂1, we can get suboptimality bounds for the output of the optimizer.
Notice the slight change in notation below.

Lemma 13. Fix an arbitrary starting distribution d0. If for any policy ε, |V̂1(ε) ≃ V1(ε)| ↘ φ, then for
ε̂→ = argmaxω V̂1(ε) and ε→ = argmaxω V1(ε), we have that 0 ↘ V1(ε→)≃ V1(ε̂→) ↘ 2φ.

Proof. Consider the following chain of inequalities.

V1(ε
→)≃ V1(ε̂

→)

= V1(ε
→)≃ V̂1(ε

→) + V̂1(ε
→)≃ V̂1(ε̂

→) + V̂1(ε̂
→)≃ V1(ε̂

→)

↘ φ+ 0 + φ

Here, the first part of the last inequality holds by our assumption applied to ε = ε→, while the second part holds
by the definition of ε̂→ as the optimal policy for V̂1. The third part holds by applying our assumption to ε = ε→.

Finally, by the definition of ε→ as the optimal policy for V1, V1(ε→)≃ V1(ε̂→) ↔ 0. Combining these, we have our
results.

J.2 Gradient Ascent on the Lower Bound

Algorithm 6 Gradient Ascent on Di"erentiable Lower Bounds for Policy Improvement under Confounding
1: input: decaying learning rate ↽t, εϑ.
2: for t = 1, ..., N do

3: run subroutine: obtain di"erentiable lower bound V1(s0;εϑ) on εϑ via Alg. 5, Alg. 4, or Alg. 3
4: update: ↼ ⇓ ↼ + ↽t ·⇑ϑV1(s0;εϑ)
5: end for

6: return εϑ

This enjoys the following elementary local convergence guarantees.

Lemma 14. If ⇑ϑV1(s0;εϑ,P) and ⇑PV1(s0;εϑ,P) are Lipschitz, every local max-min is a gradient ascent/descent
stable point.

Lemma 15. If V1(s0;εϑ,P) is twice di"erentiable with a Lipschitz continuous gradient, its saddle points are
a strict-saddle, and one waits for the inner minimization to converge in each iteration, in the limit of infinite
trajectories the procedure converges to a local maxima of V1(s0;εϑ,P).

The first result follows from Section 2 in Daskalakis and Panageas (2018), given the knowledge that V1(s0;εϑ,P),
being constructed from translations and matrix multiplications, is smooth, and therefore so are its gradients. The
second result follows from Lee et al. (2016).
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K Policy Optimization under Global Confounders

Algorithm 7 Clustering-Based Policy Gradient
1: input: Number of clusters U , clustering algorithm cluster(), o!ine policy gradient estimator gradient(),

learning rate ↽, initial policy parameters ↼0.
2: run subroutine: Perform clustering on trajectories with clustering algorithm cluster(), obtain clusters

C1, ..., CK .
3: Obtain cluster weight estimates P̂ (u) := |Cu|

Ntraj

.
4: for t = 1, ..., T : do

5: run subroutine: Use o!ine policy gradient estimator gradient() to estimate Zi(↼t) = ⇑ϑV1(s0;ui,εϑt)
for each cluster Ci, obtaining Ẑi(↼t).

6: Obtain gradient estimate of Z(↼t) = ⇑ϑV1(s0;εϑt) with Ẑ(↼t) =
∑U

u=1 P̂ (ui)Ẑi(↼t).
7: Update ↼t+1 := ↼t ≃ ↽Ẑ(↼t).
8: end for

9: return: Output the final policy εϑT+1 .

We now recall Theorem 8 below. We remind the reader that like Theorem 7, the theorem below holds when
H ↔ H0tmix log n.

Theorem 8. Let us have large enough ϖ > 1 and T = nϖ, for n ↔ !
(
max

(
U2SN0 log(1/ς),

log(U/ϱ)
minu P (u)2

))
.

Also let H ↔ H0tmix log n, for H0, N0 as in Theorem 7. Then we have that 1
T

∑T
t=1 ||⇑ϑV1(s0;εϑt)||2 =

O(max(φMSE , φfreq), where φMSE = H4 log(nU/ϱ)
nminu P (u) , and φfreq = L2 log(U/ϱ)

n

To prove this, we first provide a high-probability guarantee for the overall gradient estimate across all clusters
analogous to that of Theorem 7 for OPE. This is proved in Section K.1.

Theorem 16. When Assumptions 2, 4, 5 and 6 are satisfied, there are constants H0, N0 depending polynomially
on 1

ε ,#, 1
minu P (u) , log(1/ς), so that for n trajectories of length H ↔ H0tmix log(n), if we use the EOPPG o!ine

policy gradient estimator from Kallus and Uehara (2020),

n ↔ max

(
U2SN0 log(3/ς),

8 log(6U/ς)

min{φ2/L2,minu P (u)2} ,
C

minu P (u)

H4 log(nU/ς)

φ2

)

then ||Z(↼)≃ Ẑ(↼)|| ↘ φ with probability 1≃ ς for some constant C.

The following result for the convergence of unconstrained gradient descent is e"ectively Theorem 11 in Kallus and
Uehara (2020), combined with the bound in Theorem 16. We repeat the proof in Section K.2 for completeness.

Theorem 17. Assume V1(s0;u,εϑ) and V1(s0;εϑ) are di"erentiable and M -smooth in ↼ for all u ↗ U , and the
learning rate ↽ < 1

4M . Then, if the number of trajectories n satisfies the condition in Theorem 16, the iterates ↼t
from Algorithm 7 o"er

1

T

T∑

t=1

||⇑ϑZ(↼t)||2 =
1

T

T∑

t=1

||⇑ϑV1(s0;εϑt)||2 ↘ 4

↽T
(V1(s0;εϑ↓)≃ V1(s0;εϑ1)) + 3φ2

The result of Theorem 8 then follows immediately from the two results above. The only additional observation
needed is that since V1 is Lipschitz, it is bounded in a compact domain and so the first term in Theorem 17 is
O(1/nϖ) ↘ O(1/n).

Another Formulation of Policy Optimization Notice that the nature of the global confounder assumption
permits another kind of policy optimization. One can optimize U di"erent policies, one for each value of the
confounder, with standard o"-policy improvement methods. To deploy them, one will have to identify the
confounder online, which is a nontrivial problem in itself. One avenue is to first deploy each of the U behavior
policy components in any order for O(tmix) time each, and then attempt to identify the confounder using the
classification algorithm in Kausik et al. (2022). If the classification algorithm successfully classifies trajectories
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generated in this way, we can achieve the optimal reward thereafter by deploying the optimal policy for the
confounder in question.

K.1 Proof of Theorem 16

Proof. Note that ⇑ϑV1(s0;εϑ) = Eu[⇑ϑV1(s0;u,εϑ)] =
∑

u P (u)⇑ϑV1(s0;u,εϑ).

Using the clustering guarantee from Kausik et al. (2022) rephrased in Section H, we know that there are numbers
N0 and H0 so that given n ↔ U2SN0 log(1/ς) trajectories of length H ↔ H0tmix log(n), we recover clusters
C1, ..., CU consisting of trajectories with the same confounders with probability at least 1≃ ς. Recall that N0

and H0 are not explicitly dependent on S,A and tmix, but could depend on the model.

Write Z(↼) = ⇑ϑV1(s0;εϑ), Zi(↼) = ⇑ϑV1(s0;ui,εϑ) and Ẑi(↼) for the estimate of Zi(↼) and Ẑ(↼) =∑U
i=1 P̂ (ui)Ẑi(↼) for the estimate of Z(↼). We only identify the confounder labels in each trajectory up to

permutation upon obtaining exact clustering, but as above we assume WLOG that we recover the true cluster
labels.

Estimate P (u) with P̂ (u) := 1
Ntraj

∑
n (un = u) via label proportions. By a simple application of Hoe"ding’s

inequality and the union bound, for n ↔ 2 log(2U/ϱ)
ε2 , the weights satisfy |P̂ (u) ≃ P (u)| ↘ ϑ with probability at

least 1≃ ς.

We can then bound

||Z(↼)≃ Ẑ(↼)|| =



U∑

i=1

(
P (ui)Zi(↼)≃ P̂ (ui)Ẑi(↼)

) (11)

=
U∑

i=1

P (ui)Zi(↼)≃ P̂ (ui)Ẑi(↼)
 (12)

↘
U∑

i=1

||Zi(↼)||(P (ui)≃ P̂ (ui)) + P̂ (ui)||Zi(↼)≃ Ẑi(↼)|| (13)

=
U∑

i=1

||Zi(↼)||(P (ui)≃ P̂ (ui)) +
U∑

i=1

P̂ (ui)||Zi(↼)≃ Ẑi(↼)|| (14)

↘ ϑ
U∑

i=1

||Zi(↼)||+
U∑

i=1

P̂ (ui)||Zi(↼)≃ Ẑi(↼)|| (15)

↘ ϑ
U∑

i=1

||Zi(↼)||+
U∑

i=1

2P (ui)||Zi(↼)≃ Ẑi(↼)|| (16)

where the second inequality holds with high probability and the last inequality holds for su#ciently small ϑ. If all
||Zi(↼)≃ Ẑi(↼)|| ↘ φ/4 for some φ > 0, then we would have ||Z(↼)≃ Ẑ(↼)|| ↘

∑U
i=1 2P (ui)||Zi(↼)≃ Ẑi(↼)|| ↘ φ/2.

It remains to bound the error of each Ẑi. Notice that the result of Theorem 7 in Kallus and Uehara (2020) is
independent of the gradient update rule or the value of ↼ and only depends on the number of samples used to
estimate ẐEOPPG. So, it also holds for Ẑi with ni samples. Additionally, note that the proof of Theorem 12 in
Kallus and Uehara (2020) only uses the supremum of the error over all possible values of ↼ and does not use any
facts about the gradient update, it follows verbatim for Ẑi with ni samples. In particular, with probability at
least 1≃ ς/U ,

⇒Zi(↼)≃ Ẑi(↼)⇒2 ↘ O

(
H4 log(TU/ς)

ni

)

and so for T = nϖ , we need ni ↔ !
(

H4 log(nU/ϱ)
φ2

)
trajectories for ||Zi(↼) ≃ Ẑi(↼)|| ↘ φ to hold for all ui with

probability 1≃ ς. To convert this into a bound for n, we use Hoe"ding’s inequality from above in a similar way
to the previous proof to find ni =

∑
n 1(un = u) ↔ n(P (u)≃ ϑ) ↔ nP (u)/2 for ϑ ↘ minu P (u)/2. We therefore

need n ↔ !
(

1
minu P (u)

H4 log(nU/ϱ)
φ2

)
for the error of each Zi to be bounded by φ with probability 1≃ ς.



O!ine Policy Evaluation and Optimization under Confounding

We then bound ϑ
∑U

i=1 ||Zi(↼)|| ↘ φ/2. Let L be a uniform bound over ↼ ↗ $ on the magnitude of the gradients
Z(↼) (in the continuous case, this corresponds to a Lipschitz-type assumption on the value functions). It then
su#ces to require ϑ ↘ φ

2L .

Splitting the failure probability into ς/3, requiring ϑ ↘ minu P (u)/2, φ/2L, and bounding the error of each Zi by
φ/4, we get ||Z(↼)≃ Ẑ(↼)|| ↘ φ with probability 1≃ ς when

n ↔ !

(
max

(
U2SN0 log(1/ς),

log(U/ς)

min{φ2/L2,minu P (u)2} ,
1

minu P (u)

H4 log(nU/ς)

φ2

))
(17)

K.2 Proof of Theorem 17

Proof. The result is largely analogous to Theorem 11 from Kallus and Uehara (2020), and in fact, we can
transform our problem into theirs and follow their proof.

Assume V1(s0;u,εϑ) and V1(s0;εϑ) are di"erentiable and M -smooth in ↼ for all u ↗ U . Let f(↼) = ≃V1(s0;εϑ),
and fi(↼) = ≃V1(s0;ui,εϑ) for each ui. For simplicity, fix the learning rate for all time steps to be some ↽ < 1

4M .
By M -smoothness,

f(↼t+1) ↘ f(↼t) + △⇑f(↼t, ↼t+1 ≃ ↼t▽+
M

2
||↼t+1 ≃ ↼t||2.

Define Bit = Ẑi(↼)≃ Zi(↼) for confounder ui, Bt = Ẑ(↼)≃ Z(↼), wi = P̂ (ui). Observe that

↼t+1 = ↼t ≃ ↽⇑f(↼t)≃ ↽Bt = ↼t ≃ ↽
∑

i

⇑wif(↼t)≃ ↽
∑

i

wiBit.

Then, similarly to the proof in Kallus and Uehara (2020),

f(↼t)≃ f(↼t+1) ↔ ≃△⇑f(↼t), ↼t+1 ≃ ↼t▽ ≃
M

2
||↼t+1 ≃ ↼t||2 (18)

= ↽△⇑f(↼t),⇑f(↼t)≃Bt▽ ≃
↽2M

2
||⇑f(↼t)≃Bt||2 (19)

= ↽||⇑f(↼t)||2 + ↽△⇑f(↼t), Bt▽ ≃
↽2M

2
||⇑f(↼t)≃Bt||2 (20)

↔ ↽||⇑f(↼t)||2 ≃ ↽|△⇑f(↼t), Bt▽|≃
↽2M

2
||⇑f(↼t)≃Bt||2 (21)

↔ ↽||⇑f(↼t)||2 ≃ 0.5↽(||⇑f(↼t)||2 + ||Bt||2)≃ ↽2M ||⇑f(↼t)≃Bt||2 (22)
↔ 0.25↽||⇑f(↼t)||2 ≃ 0.5↽||Bt||2 ≃ 0.25↽||Bt||2 (23)

where the second-last inequality uses the parallelogram law and the last inequality uses the fact that ↽ < 1
4M . We

then obtain

f(↼t)≃ f(↼t+1) + 0.75↽||Bt||2 ↔ 0.25↽||⇑f(↼t)||2.

Similarly, by a telescoping sum,

(f(↼1)≃ f(↼→))/T +
0.75↽

T

∑

t

||Bt||2 ↔ 0.25↽

T

∑

t

||⇑f(↼t)||2,

(V1(s0;εϑ↓)≃ V1(s0;εϑ1))/T +
0.75↽

T

∑

t

||Bt||2 ↔ 0.25↽

T

∑

t

||⇑f(↼t)||2,

↽

T

∑

t

||⇑f(↼t)||2 ↘ 4

T
(V1(s0;εϑ↓)≃ V1(s0;εϑ1)) +

3↽

T

∑

t

||Bt||2,
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1

T

∑

t

||⇑f(↼t)||2 ↘ 4

↽T
(V1(s0;εϑ↓)≃ V1(s0;εϑ1)) +

3

T

∑

t

||Bt||2,

1

T

∑

t

||⇑f(↼t)||2 ↘ 4

↽T
(V1(s0;εϑ↓)≃ V1(s0;εϑ1)) + 3max

t
||Bt||2,

and finally by applying Theorem 16 for an n that fulfills its conditions for some error threshold φ, we obtain

1

T

∑

t

||Z(↼t)||2 =
1

T

∑

t

||⇑f(↼t)||2 ↘ 4

↽T
(V1(s0;εϑ↓)≃ V1(s0;εϑ1)) + 3φ2.
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