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Abstract

O!ine constrained reinforcement learning
(RL) aims to learn a policy that maximizes
the expected cumulative reward subject to
constraints on expected cumulative cost using
an existing dataset. In this paper, we pro-
pose Primal-Dual-Critic Algorithm (PDCA),
a novel algorithm for o!ine constrained RL
with general function approximation. PDCA
runs a primal-dual algorithm on the La-
grangian function estimated by critics. The
primal player employs a no-regret policy opti-
mization oracle to maximize the Lagrangian
estimate and the dual player acts greedily to
minimize the Lagrangian estimate. We show
that PDCA finds a near saddle point of the La-
grangian, which is nearly optimal for the con-
strained RL problem. Unlike previous work
that requires concentrability and a strong Bell-
man completeness assumption, PDCA only
requires concentrability and realizability as-
sumptions for sample-e"cient learning.

1 INTRODUCTION

O!ine constrained reinforcement learning (RL) aims
to learn a decision making policy that performs well
while satisfying safety constraints given a dataset of
trajectories collected from historical experiments. It
enjoys the benefits of o!ine RL (Levine et al. 2020): not
requiring interaction with the environment enables real-
world applications where collecting interaction data is
expensive (Kumar et al. 2021; Levine et al. 2018) or
dangerous (Tang et al. 2021). It also enjoys the benefits
of constrained RL (Altman 1999): being able to specify
constraints to the behavior of the agent enables real-
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world applications with safety concerns (Wang et al.
2020; Gu et al. 2017).

O!ine constrained RL with function approximation
(e.g., neural networks) is of particular interest because
function approximation can encode inductive biases
to allow sample-e"cient learning in large state spaces.
As is the case for o!ine unconstrained RL (Ozdaglar
et al. 2023; Xie et al. 2021a), o!ine constrained RL
with function approximation requires two classes of
assumptions for sample-e"cient learning.

The first class of assumptions, called representational
assumptions, requires the learner to have access to a
su"ciently rich value function class that models action
value functions of policies. The mildest representa-
tional assumption is the realizability assumption that
requires the action value functions of candidate policies
to be captured by the function class. A stronger rep-
resentational assumption is the Bellman completeness
assumption that requires the function class to be closed
under the Bellman operator.

The second class of assumptions, called data coverage
assumptions, requires the o!ine dataset to be rich
enough to cover the state-action distributions induced
by target policies. The assumptions address a major
challenge in o!ine RL called distribution shift, which
refers to the mismatch of the state-action distributions
induced by candidate policies and the distribution in
the o!ine dataset. The most commonly used data
coverage assumption is concentrability (Munos 2003;
Munos 2005), which limits the norm of the ratio of
state-action distribution induced by candidate policies
to that induced by the behavior policy that generated
the o!ine dataset.

Previous works on o!ine RL with function approx-
imation require either a strong assumption on data
coverage (Xie et al. 2021b) (stronger than concentra-
bility) or a strong representational assumption (Munos
et al. 2008; Antos et al. 2008; Xie et al. 2021a; Cheng
et al. 2022) (stronger than realizability). Chen et al.
(2019) conjectured that concentrability and realizability
of value functions are not su"cient for sample-e"cient
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o!ine RL. Foster et al. (2022) confirmed this by provid-
ing an information-theoretic lower bound which shows
that concentrability and value function realizability are
not su"cient for sample e"cient o!ine RL.

Recently, a line of research on o!ine unconstrained RL
emerged that only requires concentrability and realiz-
ability assumptions (Xie et al. 2020; Zhan et al. 2022;
Zhu et al. 2023). In particular, they do not require
Bellman completeness assumption, which is a strong
representational assumption (Zhan et al. 2022; Zanette
et al. 2022). They do not contradict the impossibility
result by Foster et al. (2022) because they make an
additional realizability assumption on the marginalized
importance weights (MIW; ratio of state-action distribu-
tion induced by policy to data distribution). Motivated
by their work, we propose a sample-e"cient algorithm
for o!ine constrained RL with function approximation
that requires concentrability, value function realizabil-
ity and MIW realizability assumptions. We make the
following contributions.

• We show a sample complexity bound that scales with
a concentrability measure, 1/ω2 and a dimensionality
measure of function classes, for finding a nearly opti-
mal policy with suboptimality ω that approximately
satisfies the cost constraints under the assumptions
of value function realizability, concentrability, and
MIW realizability of an optimal policy. We do not
require Bellman completeness, a strong representa-
tional assumption, required by previous work.

• Our algorithm takes as an input a target cost thresh-
old. By using a target cost threshold stricter than
the desired threshold, the algorithm can produce a
nearly optimal policy that exactly satisfies the de-
sired constraints with the same sample complexity.

• We study the case where the function class for MIW
is misspecified and does not realize the MIW of an
optimal policy. In this case, our algorithm can still
find a policy at least as good as any policy of which
MIW is realized by the function class but the sample
complexity bound is suboptimal and scales with 1/ω4.

• Benchmark experiments show the empirical perfor-
mance of our algorithm generally matches or out-
performs the state-of-the-art algorithms COptiDICE
and CPQ that produce Markovian policies.

1.1 Related Work

O!ine RL without Completeness Assumption
There is a recent line of works on o!ine unconstrained
RL that removes the Bellman completeness assump-
tion by assuming MIW realizability. Xie et al. (2020)
propose a Q-value based algorithm called MABO that

learns the optimal Q-value function by solving a mini-
max optimization problem. They require all-policy re-
alizability of value functions, all-policy concentrability
and all-policy marginalized importance weight realiz-
ability. Zhan et al. (2022) propose a linear program-
ming based algorithm called PRO-RL that regularizes
the objective function to discourage distribution shift.
They only require single-policy realizability of both
value function and marginalized importance weight,
and only require single-policy concentrability. However,
their sample complexity is suboptimal (→ 1/ω6). Zhu
et al. (2023) propose an actor-critic based algorithm
called A-Crab. They require all-policy value function
realizability, single-policy concentrability and single-
policy marginalized importance weight realizability.

O!ine Constrained RL The only work on provably
sample e"cient o!ine constrained RL with function
approximation, to the best of our knowledge, is by Le
et al. (2019) who propose a provably sample-e"cient
primal-dual algorithm that uses the fitted-Q iteration
algorithm as a subroutine for updating the primal vari-
able and a no-regret online algorithm for updating the
dual variable. Their analysis requires all-policy concen-
trability and Bellman completeness assumptions. Our
work improves over Le et al. (2019) by weakening the
Bellman completeness assumption.

Practical Algorithms for O!ine Constrained
RL There are recent works on practical algorithms
for o!ine constrained RL without provable guarantees.
Lee et al. (2022) propose an algorithm called COp-
tiDICE, which is motivated by the linear programming
approach for solving RL. Liu et al. (2023b) propose
CDT, an adaptation of the decision transformer frame-
work for o!ine RL (Chen et al. 2021a) to the o!ine
constrained RL setting. Xu et al. (2022) propose CPQ,
a Q-learning based algorithm that penalizes out of dis-
tribution actions. Liu et al. (2023a) provide datasets
and benchmarks of aforementioned algorithms.

We compare our theoretical guarantees with previous
works in Table 1. The first three rows are works on
o!ine unconstrained RL with function approximation
that do not assume Bellman completeness. The re-
maining rows are works on o!ine constrained RL with
function approximation. The column N shows how the
sample complexity bound scales with the error toler-
ance ω. Qω is the value function for the policy ε; wω

is the marginalized importance weight of the policy
ε; sp is the span function; εε is the optimal policy.
T

ω is the Bellman operator and ↑ε, T ωf ↓ F means
Bellman completeness. The notations used in the table
are formally defined in the next section.

Compared to the work by Le et al. (2019), we relax
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Table 1: Comparison of algorithms for o!ine (constrained) RL with function approximation

Algorithm Supports
constraints

Assumptions
NRepresentation Data coverage MIW

MABO (Xie et al. 2020) No ↑ε, Qω
↓ F ↑ε, ↔wω

↔2,µ ↗ Cϑ2 ↑ε, wω
↓ sp(W) 1/ω2

PRO-RL (Zhan et al. 2022) No Qωω

↓ F ↔wωω

↔→ ↗ Cε
→ wωω

↓ W 1/ω6

A-Crab (Zhu et al. 2023) No ↑ε, Qω
↓ F ↔wωω

↔2,µ ↗ Cε
ϑ2

wωω

↓ W 1/ω2

MBCL (Le et al. 2019) Yes ↑ε, f ; T ωf ↓ F ↑ε, ↔wω
↔→ ↗ C→ 1/ω2

PDCA (Ours) Yes ↑ε, Qω
↓ F ↑ε, ↔wω

↔2,µ ↗ Cϑ2 wωω

↓ W 1/ω2

the Bellman completeness assumption at the expense
of introducing a MIW realizability of an optimal pol-
icy. The MIW realizability is a mild assumption since
function class W only needs to include the MIW of an
optimal policy. Moreover, we show in Theorem 2 that
even when W does not realize the MIW of an optimal
policy, our algorithm can find a policy at least as good
as any policy whose MIW is realizable by W. This
result allows robustness against misspecification of W .

2 PRELIMINARIES & NOTATIONS

Notation We denote by !(X ) the probability sim-
plex over a finite set X . We denote by R+ the set
of nonnegative real numbers. We write !I = {x ↓

RI
+ :

∑I
i=1 xi ↗ 1}. We denote by Unif(X ) the uni-

form distribution over X . We write [N ] = {1, . . . , N}

for a natural number N . We write 1 = (1, . . . , 1) and
0 = (0, . . . , 0). We write (·)+ = max{0, ·}.

2.1 Constrained Markov Decision Process

We formulate o!ine constrained RL using an infinite-
horizon discounted constrained Markov decision pro-
cess (CMDP)(Altman 1999) defined by a tuple M =(
S,A, P,R, {Ci}

I
i=1, ϑ, s0

)
, where S is the state space,

A is the action space, P : S ↘A ≃ !(S) is the transi-
tion probability kernel, R : S↘A ≃ [0, 1] is the reward
function, Ci : S ↘A ≃ [0, 1], i = 1, . . . , I are the cost
functions, ϑ ↓ (0, 1) is the discount factor, and s0 ↓ S

is the initial state. We assume R and Ci, i = 1, . . . , I
are known to the learner while P is unknown.

A stationary policy ε : S ≃ !(A) maps each state to a
probability distribution over the action space. Each pol-
icy ε, together with the transition probability kernel P ,
induces a discounted occupancy measure dω : S ↘A ≃

[0, 1] defined as dω(s, a) := (1 ⇐ ϑ)
∑→

t=0 ϑ
tPω(st =

s, at = a) where Pω is the probability measure on the
trajectory (s0, a0, s1, a1, . . . ) induced by the interac-
tion of ε and P . The value of a policy ε for a function
U : S ↘A ≃ [0, 1] is the expected discounted cumula-
tive values when executing ε. It is denoted by JU (ε) :=
Eω [

∑→
t=0 ϑ

tU(st, at)] where Eω is the expectation over

the randomness of the trajectory (s0, a0, s1, a1, . . . ) in-
duced by ε and P . Note that JU (ε) ↓ [0, 1

1↑ϖ ] and
(1⇐ϑ)JU (ε) = Eω[U(s, a)] where we use the shorthand
Eω[·] for E(s,a)↓dε [·]. The Q-value function of a pol-
icy ε for a function U : S ↘ A ≃ [0, 1] is denoted by
Qω

U (s, a) := Eω [
∑→

t=0 ϑ
tU(st, at) | s0 = s, a0 = a].

2.2 Function Approximation

We assume access to a policy class ” ⇒ (ε : S ≃

!(A)) consisting of candidate policies. We assume
access to a function class F ⇒ (S ↘A ≃ [0, 1

1↑ϖ ]) that
models the Q-value functions for the reward R and the
costs C1, . . . , CI . We make the following realizability
assumption on F .
Assumption A (Value function realizability). For
any policy ε ↓ ”, we have Qω

R ↓ F and Qω
Ci

↓ F for
all i = 1, . . . , I.

Unlike Le et al. (2019), we do not assume Bellman
completeness that requires T

ω
U f ↓ F for all ε ↓ ” and

f ↓ F where T
ω
U is the Bellman operator defined by

(T ω
U f)(s, a) = U(s, a)+ϑEs→↓P (·|s,a)[f(s

↔,ε)]. As Zhan
et al. (2022) and Zanette (2022) discuss, it is a strong
assumption hard to meet and has an unnatural non-
monotone property: adding a function to the function
class may make the function class violate Bellman
completeness.

2.3 O!ine Constrained RL

O!ine constrained RL aims to find a policy ε : S ≃

!(A) among a given policy class ” that maximizes
JR(ε) while satisfying the constraints JCi(ε) ↗ ϖi for
all i = 1, . . . , I, where the thresholds ϖi ↓ [0, 1

1↑ϖ ] are
given. O!ine constrained RL can be written as an
optimization problem P(ω ) defined as follows.
Definition 1 (Optimization problem). Given cost
thresholds ω = (ϖ1, . . . , ϖI), we denote by P(ω ) the
following optimization problem.

max
ω↗Conv(!)

JR(ε)

subject to JCi(ε) ↗ ϖi, i = 1, . . . I.
(OPT)
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As done in Le et al. (2019), instead of optimizing
over the policy class ”, we optimize over its convex
hull denoted by Conv(”). The convex hull Conv(”)
contains all policy mixtures of the form

∑m
j=1 ϱjεj

where ε1, . . . ,εm ↓ ”, ϱj ⇑ 0 for j = 1, . . . ,m and∑m
j=1 ϱj = 1. A policy mixture

∑m
j=1 ϱjεj is executed

by sampling a single policy from ε1, . . . ,εm according
to the distribution (ϱ1, . . . ,ϱm), and then executing
the sampled policy for the entire trajectory. Viewing
the problem in the occupancy measure space, (OPT)
can be seen as

max
ϱ↗Conv(V)

⇓ς, R⇔

subject to ⇓ς, Ci⇔ ↗ ϖi, i = 1, . . . , I
(1)

where V = {dω : ε ↓ ”} is the set of occupancy
measures of policies in ” and dω, R, Ci, i = 1, . . . I are
viewed as a vector in R|S||A|. Since we define a mixture
of policies in the trajectory level, the set of occupancy
measures of policies in Conv(”) is just the convex hull
of V. Since the above is an optimization problem in
the space of R|S||A|, strong duality holds if we assume
the following Slater’s condition.
Assumption B (Slater’s condition). There exist a
constant φ > 0 and a policy ε ↓ ” such that JCi(ε) ↗
ϖi ⇐

ς
1↑ϖ for all i = 1, . . . , I. Assume φ is known.

Slater’s condition is a mild assumption commonly made
for constrained RL (Le et al. 2019; Chen et al. 2021b;
Bai et al. 2022; Ding et al. 2020) for ensuring strong
duality of the optimization problem. It is mild because
given the knowledge of the feasibility of the problem, we
can guarantee that Slater’s condition is met by slightly
loosening the cost threshold.

2.4 O!ine Dataset

In o!ine constrained RL, we assume access to an of-
fline dataset D = {(sj , aj , s↔j)}

n
j=1 where (sj , aj) are

generated i.i.d. from a data distribution dµ induced by
a behavior policy µ and s↔j → P (· | sj , aj). Such an i.i.d.
assumption on the o!ine dataset is commonly made in
the o!ine RL literature (Xie et al. 2021a; Zhan et al.
2022; Chen et al. 2022; Zhu et al. 2023) to facilitate
analysis of concentration bounds. We assume the pol-
icy class ” contains µ. We assume that the threshold
ω is chosen such that the optimization problem P(ω )
is feasible. However, we do not require the behavior
policy µ to be feasible for P(ω ). To limit the distri-
bution shift of policies from the data distribution, we
make the following concentrability assumption, where
we use the notation ↔ · ↔2,µ =

√
Eµ[(·)2].

Assumption C (Concentrability). For all ε ↓ ”, we
have ↔dω/dµ↔2,µ ↗ Cϑ2 .

The concentrability assumption limits distribution shift

of candidate policies from the data distribution. Specif-
ically, the occupancy measure induced by a policy in ”
is covered by the data distribution dµ. This assumption
is weaker than the assumption made by Le et al. (2019),
who assume that the ↼→ norm of the distribution shift
of following any nonstationary policy that uses a policy
in ” every time step is bounded.

2.5 Marginalized Importance Weight

The notion of marginalized importance weight (MIW)
is used extensively in the o!ine RL literature (Xie et al.
2020; Chen et al. 2022; Zhan et al. 2022; Zhu et al.
2023; Lee et al. 2022; Lee et al. 2021) to correct for
the distribution mismatch between a policy ε and the
behavior policy µ. It is defined as follows.
Definition 2 (Marginalized importance weight). For a
policy ε, we define the marginalized importance weight
wω : S ↘A ≃ R+ as wω(s, a) := dε(s,a)

dµ(s,a) .

Immediately from the definition of MIW, we get the
identity Eω[(·)] = Eµ[wω(s, a)(·)], which we frequently
use in the analysis. We assume access to a function
class W consisting of functions w : S ↘A ≃ R+ that
represents MIW with respect to the o!ine data dis-
tribution dµ. We assume the following boundedness
assumption on W.
Assumption D (Boundedness of W). Assume
↔w↔→ ↗ C→ and ↔w↔2,µ ↗ Cϑ2 for all w ↓ W.

Denote by εε an optimal policy of the optimization
problem (OPT). We assume that the MIW of εε is
realized by W.
Assumption E (Realizability of MIW). Assume that
wωω

↓ W for an optimal policy εε.

The single-policy realizability of MIW that requires
MIW of an optimal policy to be realizable by W is a
weaker assumption than the all-policy realizability of
MIW assumption required by Xie et al. (2020). Com-
pared to the set of assumptions made by Le et al.
(2019), we replace the strong Bellman completeness
assumption with a single-policy realizability of MIW.

3 ALGORITHM & MAIN RESULTS

In this section, we present our algorithm called Primal-
Dual-Critic Algorithm (PDCA) and then present our
main results on the the sample complexity bound.

3.1 Primal-Dual Algorithm Structure

The Lagrangian of the optimization problem P(ω ) (Def-
inition 1) is L(ε,ε) = JR(ε)+ε ·(ω⇐JC(ε)) where we
use the notation JC(ε) = (JC1(ε), . . . , JCI (ε)). Our
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algorithm, like MBCL algorithm for o!ine constrained
RL proposed by Le et al. (2019), adopts the primal-dual
algorithm structure that updates ε and ε alternatively.
The primal-dual algorithm structure can be seen as a
sequential game of length K between the ε-player who
tries to maximize L(·,ε) and the ↽-player who tries to
minimize L(ε, ·). Both players try to minimize their
regrets against respective best actions in hindsight.

The key di#erence of our algorithm from MBCL is
that in each round k, the ε-player plays before the
↽-player, while in MBCL, the order is reversed. Since
↽-player sees what ε-player plays before playing, the ↽-
player can act greedily to minimize the regret. On the
other hand, the ε-player has to use a no-regret policy
optimization oracle, defined below, with a sublinear
regret against adversarially chosen sequence of ↽’s.
Definition 3 (No-regret policy optimization oracle).
An algorithm is called a no-regret policy optimization
oracle if for any sequence of functions h1, . . . , hK : S ↘

A ≃ [⇐1, 1], the sequence of policies ε1, . . . ,εK ↓ ”
produced by the algorithm satisfies

1

K

K∑

k=1

Eω[hk(s,ε)⇐ hk(s,εk)] = ωopt(K)

with high probability for any ε ↓ Conv(”) where
ωopt(K) ≃ 0 as K ≃ ↖.

A well-known instance of the oracle is the natural policy
gradient algorithm (Kakade 2001) based on the updates
εk+1(a|s) ↙ εk(a|s) exp(⇀hk(s, a)).

3.2 Critics for Lagrangian

We want to estimate the Lagrangian function L(ε,ε) =
JR(ε) + ε · (ω ⇐ JC(ε)) for all ε ↓ ” and ε ↓ B!I .
We use critics for JR(ε) and JC(ε) that are inspired
by the reward critic proposed by Zhu et al. (2023) for
their actor-critic algorithm for o!ine unconstrained
RL. Our critic for JU (ε) aims to solve

min
f↗F

2Eµ(ε, f ;U)±Aµ(ε, f)

where the sign of Aµ is appropriately chosen and

Eµ(ε, f ;U) := max
w↗W

|Eµ[w(s, a)(f ⇐ T
ω
U f)(s, a)]|

Aµ(ε, f) := Eµ[f(s,ε)⇐ f(s, a)].

Here, T
ω
U : RS↘A

≃ RS↘A is the Bellman operator
with (T ω

U f)(s, a) = U(s, a) + ϑEs→↓P (· | s,a)[f(s
↔,ε)]

and f(s,ε) =
∑

a↗A ε(a|s)f(s, a). Minimizing the first
term Eµ in the objective function of the critics en-
courages Bellman-consistency. The second term, with
appropriate sign, facilitates the regret bound analysis
for the ε-player. Since the data distribution of the

behavior policy dµ is unknown, we solve an empirical
version minf↗F 2ED(ε, f ;U) +AD(ε, f) where

ED(ε, f ;U) :=

max
w↗W

|ED[w(s, a)(f(s, a)⇐ U(s, a)⇐ ϑf(s↔,ε))]|

AD(ε, f) := ED[f(s,ε)⇐ f(s, a)].

Here, ED[F (s, a, s↔)] = 1
|D|

∑
(s,a,s→)↗D F (s, a, s↔). The

critics for the reward value JR(ε) and the cost value
JCi(ε) are chosen to be

Reward critic: min
f↗F

2ED(ε, f ;R) +AD(ε, f) (2)

Cost critic: min
g↗F

2ED(ε, g;Ci)⇐AD(ε, g). (3)

Note that we use the same reward critic as the one
used in Zhu et al. (2023), but we negate the term AD
for the cost critic.

3.3 Cost Critic for ↽-Player

While the ε-player optimizes for the Lagrangian esti-
mated by critics (2) and (3) in the previous section,
the ↽-player optimizes for ε · (ω ⇐ JC(εk)) estimated
by an o!ine policy evaluation (OPE) oracle.
Definition 4 (OPE oracle). Let ε be a policy and
U a utility function. Let F be a function class that
contains the value function Qω

U . Suppose the dataset
D = {(sj , aj , s↔j)}

n
j=1 is generated with a behavior policy

µ is a behavior policy with su!cient coverage such that
↔dω/dµ↔2,µ ↗ Cϑ2 . An algorithm that produces an
estimate h ↓ R for JU (ε) such that

|h⇐ JU (ε)| ↗ O

(
Cϑ2

1⇐ ϑ

√
log(|F|/⇁)

n

)

with probability at least 1⇐ ⇁ is called an OPE oracle.

An example of such an oracle is provided by Zanette
(2022) whose algorithm produces an estimate with error
decreasing at the required rate scaled by a constant
factor called the incompleteness factor inherent to F

that measures misalignment between F and T
ω
F .

Remark 1. We use a separate OPE cost critic for
estimating the objective function of the ↽-player instead
of reusing the cost critic (3) used for estimating the
Lagrangian for the ε-player. This is because the regrets
for the two players take di"erent forms. As we show
in Section 4.1, the regret of ε-player is the sum of
JR+ωk·C(εε)⇐JR+ωk·C(εk) while the regret of ↽-player
is the sum of (εk ⇐ εε) · (ω ⇐ JC(εk)). Since the
regret minimizing decision for ↽-player depends on the
sign of ϖ ⇐ JCi(εk), we estimate JCi(εk) by calling an
OPE oracle. This is why we require concentrability of
all policies in ”. We leave relaxing to a single-policy
concentrability assumption as future work.
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Algorithm 1: Primal-Dual-Critic Algorithm
Input: Dataset D = {(sj , aj , s↔j)}

n
j=1, number of

iterations K, cost thresholds ω , bound B, ,
no-regret policy optimization oracle PO,
o!ine policy evaluation oracle OPE.

Init: ε1: uniform policy.
1 for k = 1, . . . ,K do
2 fk ∝ argminf↗F 2ED(εk, f ;R) +AD(εk, f).
3 gik ∝ argming↗F 2ED(εk, g;Ci)⇐AD(εk, g) for

all i = 1, . . . , I.
4 hi

k ∝ OPE(εk, Ci) for all i = 1, . . . , I.
5 εk ∝ argminω↗B!I ε · (ω ⇐ hk).
6 εk+1 ∝ PO(εk, fk + εk · (ω ⇐ gk)).

Return: ε̄ = Unif(ε1, . . . ,εK)

3.4 Proposed Algorithm

We propose an algorithm called Primal-Dual-Critic Al-
gorithm (PDCA) (Algorithm 1) that uses critics for the
Lagrangian function and no-regret policy optimization
oracle for the ε-player and a greedy ↽-player. The
algorithm takes cost thresholds ω as an input and runs
a primal-dual algorithm on the estimate of Lagrangian
L(ε,ε) = JR(ε) + ε · (ω ⇐ JC(ε)). The algorithm
iterates for K steps. In each step k, the algorithm
calculates the reward critic fk and the cost critics
gk = (g1k, · · · , g

I
k) using the o!ine dataset D. Then,

the ε-player invokes a no-regret policy optimization
oracle on the estimate fk +εk · (ω ⇐ gk). The OPE or-
acle is used to estimate JC(εk) by hk(s0,εk), and the
↽-player chooses εk that minimizes ε · (ω ⇐hk). After
running the iterations, the algorithm returns the policy
ε̄ = Unif(ε1, . . . ,εK), which is a uniform mixture of
the policies ε1, . . . ,εK . The uniform mixture policy
initially samples a policy uniformly at random from
{ε1, . . . ,εK}, and then follows the sampled policy for
the entire trajectory.

3.5 Main Results

Our main theoretical result is a sample complexity
bound of our algorithm called Primal-Dual-Critic Algo-
rithm (PDCA) (Algorithm 1) for finding a policy that
satisfies the constraints approximately and is ω-optimal
with respect to the optimal policy εε for P(ω ).
Theorem 1. Under assumptions A,B,C,D and E, the
policy ε̄ returned by the PDCA algorithm (Algorithm 1)
with the cost threshold ω , bound B = 1+ 1

ς and K large
enough, satisfies JCi(ε̄) ↗ ϖi+O(ω) for all i = 1, . . . , I,
and JR(ε̄) ⇑ JR(εε) ⇐ O(ω) with probability at least
1⇐ ⇁ where εε is optimal for P(ω ) as long as

n ⇑ #

(
(Cϑ2)

2 log(I|F||”||W|/⇁)

(1⇐ ϑ)4φ2ω2

)
.

The sample complexity bound provided by Le et al.
(2019) is O(C↑(dimF+log(I/φ))

(1↑ϖ)10↼2 ) where dimF is a com-
plexity measure of the function class they use for model-
ing the Lagrangian function, which is analogous to the
log cardinality term log |F| in our finite function class
setting. Compared to their bound, our bound saves a
factor of 1

(1↑ϖ)6 and depends on concentrability coe"-
cient Cϑ2 instead of C→. As Zhu et al. (2023) discuss,
(Cϑ2)

2
↗ C→ and C→ can be arbitrarily larger than

(Cϑ2)
2. Also, our algorithm requires weaker assump-

tions. While Le et al. (2019) require ↼→ concentrability
for all sequences of policies, we require ↼2 concentra-
bility for fixed policies. While Le et al. (2019) require
Bellman completeness for the value function class, we
only require realizability. The only additional assump-
tion we need is the single-policy realizability of the
marginalized importance weight.

With di#erent choices of inputs to the PDCA algorithm,
we get the following results. See Appendix E for the
formal statements and proofs.

Arbitrary Comparator Policy Without the
Slater’s condition and the MIW realizability assump-
tions, running PDCA with the cost threshold ω and the
bound B = 1

(1↑ϖ)↼ gives a policy ε̄ that is nearly feasible
and satisfies near-optimality (JR(ε̄) ⇑ JR(εc)⇐O(ω))
against any comparator policy εc ↓ Conv(”) of which
MIW is realizable by W. However, the sample com-
plexity bound is of O(1/ω4).
Theorem 2. Under assumptions A,C and D, the policy
ε̄ returned by PDCA (Algorithm 1) with the cost thresh-
old ω and bound B = 1

(1↑ϖ)↼ satisfies JCi(ε̄) ↗ ϖi+O(ω)

for all i = 1, . . . , I, and JR(ε) ⇑ JR(εc) ⇐ O(ω) with
probability at least 1 ⇐ ⇁ where εc ↓ Conv(”) is any
policy of which MIW is realizable by W as long as

n ⇑ #

(
(Cϑ2)

2 log(I|F||”||W|/⇁)

(1⇐ ϑ)6ω4

)
.

See Appendix E.2 for a proof.

Exact Feasibility With the same sample complexity
as in Theorem 1, running PDCA with a tightened cost
threshold ω ⇐ ⇀1 where ⇀ = O(ω) and the bound B =
O( 1

ς ) gives a policy ε̄ that is exactly feasible (JC(ε̄) ↗

ω ) and nearly optimal (JR(ε̄) ⇑ JR(εε)⇐O(ω)). Exact
feasibility can be shown with the following additional
MIW realizability assumption.
Assumption F. Suppose the Slater’s condition holds
(Assumption B). For some constant α ↓ [ ς

c(1↑ϖ) ,
ς

1↑ϖ ]

where c ⇑ 1, we have wωω
ϑ ↓ W where εε

↽ denotes an
optimal policy of the optimization problem P(ω ⇐ α1).

With the above assumption, we get the following result.
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Theorem 3. Let ω ↓ (0, 1
2 ] be given. Under assump-

tions A,B,C,D,E and F, the policy ε̄ returned by the
PDCA algorithm (Algorithm 1) with the cost thresh-
old ω ⇐ ⇀1, where ⇀ = φω, and bound B = 5

ς sat-
isfies JCi(ε̄) ↗ ϖi for all i = 1, . . . , I, and JR(ε) ⇑

JR(εε)⇐O(ω) with probability at least 1⇐ ⇁, where εε

is an optimal policy for P(ω ) as long as

n ⇑ #

(
(Cϑ2)

2 log(I|F||”||W|/⇁)

(1⇐ ϑ)4φ2ω2

)
.

See Appendix E.3 for a proof.

4 ANALYSIS

In this section, we provide a proof sketch for Theo-
rem 1. We show in Section 4.1 that PDCA finds a
near saddle point of the Lagrangian. We show in Sec-
tion 4.2 that the near saddle point approximately solves
the optimization problem (OPT). We use the notation
a ↭ b to indicate a ↗ b+ ζ(n,K) and a ′ b to indicate
a = b+ ζ(n,K) where ζ(n,K) ≃ 0 as n,K ≃ ↖.

4.1 PDCA Finds a Near Saddle Point

We show that PDCA run with thresholds ω and bound
B finds a near saddle point of the Lagrangian L(ε,ε) =
JR(ε)+ε·(ω⇐JC(ε)): the policy ε̄ returned by PDCA
and ε̄ = 1

K

∑K
k=1 εk for su"ciently large K satisfy

L(ε, ε̄) ↗ L(ε̄,ε) +O(ωstat)

for all ε ↓ Conv(”) with wω
↓ W and ε ↓ B!I

where ωstat = O(1/
∞
n) is a statistical error term for

estimating Eµ and Aµ. See Appendix B for the full
analysis of ωstat. To show that (ε̄, ε̄) is a near saddle
point, we decompose L(ε, ε̄)⇐ L(ε̄,ε) into regrets of
the ε-player and the ↽-player, and bound each regret
separately as follows. See Appendix C for full proof.

Regret Bound for ε-Player Regret of ε-player
1
K

∑K
k=1 L(ε,εk) ⇐

1
K

∑K
k=1 L(εk,εk) simplifies to

1
K

∑K
k=1(JR(ε) ⇐ JR(εk)) +

1
K

∑K
k=1 εk · (JC(εk) ⇐

JC(ε)). Decomposing JR(ε)⇐ JR(εk) by performance
di#erence lemma (Lemma 12 in Cheng et al. (2022))
and using the properties of the critics give

(1⇐ ϑ)(JR(ε)⇐ JR(εk)) ↭ Eω[fk(s,ε)⇐ fk(s,εk)]

which shows the performance di#erence with respect
to the reward function R can be upper bounded by the
di#erence of the reward critic. Similarly, we have

(1⇐ ϑ)(JCi(εk)⇐ JCi(ε)) ↭ Eω[g
i
k(s,εk)⇐ gik(s,ε)],

for all i = 1, . . . , I, and it follows that
1
K

∑K
k=1 L(ε,εk)⇐

1
K

∑K
k=1 L(εk,εk)

↭ 1
K

∑K
k=1 Eω[zk(s,ε)⇐ zk(s,εk)] ↗

1
K ωopt(K)

where zk = fk + εk · (ω ⇐ gk) is the input to policy
optimization oracle (Definition 3) used by ε-player; the
last inequality is by the property of the oracle.

Regret Bound for ↽-Player The regret of the ↽-
player 1

K

∑K
k=1 L(εk,εk) ⇐ L(ε̄,ε) can be simplified

to 1
K

∑K
k=1(εk ⇐ε) · (ω ⇐ JC(εk)). Recall that PDCA

calls OPE oracle to estimate JCi(εk) ′ hi
k. Since the

↽-player greedily chooses εk ↓ B!I that minimizes
ε · (ω ⇐ hk), we have for all ε ↓ B!I that

1
K

∑K
k=1(εk ⇐ ε) · (ω ⇐ JC(εk))

′
1
K

∑K
k=1(εk ⇐ ε) · (ω ⇐ hk) ↗ 0.

4.2 A Near Saddle Point Nearly solves OPT

We can show that if the Slater’s condition (Assump-
tion B) holds, then a near saddle point (ε̄, ε̄) of L(·, ·)
that satisfies L(ε, ε̄) ↗ L(ε̄,ε) for all ε ↓ Conv(”)
with wω

↓ W and ε ↓ B!I , then

JR(ε̄) ⇑ JR(ε
ε)⇐ ▷

JCi(ε̄) ↗ ϖi +
⇀

B↑1/ς , i = 1, . . . , I

where εε
↓ Conv(”) is the optimal policy for P(ω ). See

Appendix D for the proof of the above result. Combin-
ing the results in Section 4.1 and Section 4.2, Theorem 1
follows. See Appendix E for the full proof.

5 EXPERIMENTS

To demonstrate the empirical performance of our algo-
rithm, we compare with MBCL (Le et al. 2019), the
only previous work with provable guarantees, and the
following practical algorithms for o!ine constrained
RL: COptiDICE (Lee et al. 2022), CDT (Liu et al.
2023b), CQP (Xu et al. 2022). For comparing with
MBCL, we use tabular setting since MBCL can only
run with discrete action set. For computational e"-
ciency in solving the min-max optimization problems
in Line 2,3 of Algorithm 1, we take W = [0, C→]S↘A

where the bound C→ is treated as a hyperparameter.
Such W reduces ED(ε, f ;U) to

C→ max{ED[(f(s, a)⇐ U(s, a)⇐ ϑf(s↔,ε))+],

ED[(U(s, a) + ϑf(s↔,ε)⇐ f(s, a))+]}.

Following experimental settings of previous works, we
use a single cost signal (I = 1) for all experiments. For
experimental details, see Appendix G.

5.1 Tabular Experiments

Following Lee et al. (2022), we randomly generate tab-
ular CMDP with 10 states and 5 actions and prepare
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Figure 1: Tabular CMDP experiment

an o!ine dataset using a data distribution induced by
a mixture of uniform policy and the optimal policy. We
compare the performance of PDCA to MBCL and COp-
tiDICE on datasets of varying sizes. For each dataset
size, we repeat the experiments 10 times and report
the average of the reward value and the cost value. Fig-
ure 1 shows the result. The shaded region indicates the
standard error. Overall, PDCA outperforms MBCL
and is comparable to COptiDICE.

5.2 Real-World RL Benchmark Experiments

We follow the experimental setup in Lee et al. (2022)
and run the algorithms on 4 environments provided
in the Real-World RL (RWRL) suite (Dulac-Arnold
et al. 2020). For the benchmark experiments, we use
a practical version of PDCA shown in Algorithm 2.
We parameterize the function class F with neural net-
works. The reward critic uses a neural network f⇁
parameterized by ◁ and each cost critic for the cost Ci

uses a neural network gi⇁i parameterized by ◁i. For solv-
ing the optimization problems, the reward critic uses
stochastic gradient descent algorithm with a learning
rate ⇀fast on the loss 2ED(f⇁,ε) +AD(f⇁,ε). Similarly,
the cost critic uses stochastic gradient descent algo-
rithm with the same learning rate ⇀fast on the loss
2ED(f⇁,ε)⇐AD(f⇁,ε). Following the practical version
of no-regret policy optimization oracle implemented
by Cheng et al. (2022), we use a policy network to
parameterize ”. The ε-player uses a neural network
εψ parameterized by 0 and use a stochastic gradient
descent algorithm on the loss ⇐AD(f⇁+ε·(ω⇐gε),εψ).
For the OPE oracle, we use a neural network hi

ϑi pa-
rameterized by 1i and use a stochastic gradient descent
algorithm on the loss ED(hi

ϑi ,ε) with learning rate ⇀fast.
The ↽-player acts greedily and chooses ε ↓ B!I that
minimizes ε · (ω ⇐ hϑ(s0,εψ)). See Appendix G.2 for
hyperparameter tuning details.

Environments We run experiments on four environ-
ments provided in the Real-World RL (RWRL) Bench-
mark suite (Dulac-Arnold et al. 2020) used by Lee et al.
(2022): Cartpole, Walker, Quadruped, and Humanoid.
Following Lee et al. (2022), for each environment, we
choose the most challenging safety condition among

Algorithm 2: Practical Version of PDCA
Input: Dataset D = {(sj , aj , s↔j)}

n
j=1

Init: Network f⇁ for reward critic; gi⇁i ,
i = 1, . . . , I for cost critics; hi

ϑi , i = 1, . . . , I
for OPE. Policy network εψ.

1 for k = 1, 2, . . . ,K do
2 Sample a minibatch Dmini from dataset D.

// Update critics
3 ↼reward(◁) = 2EDmini(f⇁,εψ) +ADmini(f⇁,εψ).
4 ↼cost(◁i) = 2EDmini(g

i
⇁i ,εψ)⇐ADmini(g

i
⇁i ,εψ)

for i = 1, . . . , I.
5 ↼ope(◁i) = EDmini(g

i
⇁i ,εψ) for i = 1, . . . I.

6 ◁ ∝ Adam(εψ,∈↼reward(◁), ⇀fast).
7 ◁i ∝ Adam(εψ,∈↼cost(◁i), ⇀fast), i = 1, . . . , I.
8 1i

∝ Adam(εψ,∈↼ope(1i), ⇀fast), i = 1, . . . , I.
// Update ε.

9 ↼actor(0) = ⇐ADmini(f⇁ +
∑I

i=1 ↽i(ϖi ⇐ gi⇁i),εψ).
10 0 ∝ Adam(↼actor, ⇀slow).

// Update ↽.
11 zi ∝ ϖi ⇐ hi

⇁i(s0,εψ), for i = 1, . . . , I
12 ↽i ∝ B if zi < 0 otherwise ↽i ∝ 0, i = 1, . . . , I.

the multiple safety conditions provided by RWRL suite.
We give the cost of 1 if the safety condition is violated
at each time step. The thresholds on the expected
discounted cumulative costs are 0.05 for Cartpole and
Walker, and 0.01 for Quadruped and Humanoid. We
follow the same safety coe"cient parameters (di"culty
levels provided by RWRL suite) used by Lee et al.
(2022): for Cartpole and Walker we use 0.3, and for
Quadruped and Humanoid we use 0.5.

O!ine Dataset Generation Since RWRL suite
does not provide an o!ine dataset we generate one for
each environment by a policy trained by an online RL
algorithm using a reward function penalized by cost
function, R ⇐ ↽C, where we vary ↽. Specifically, for
each environment, we choose three di#erent ↽ values
and for each ↽, we run the soft actor-critic algorithm
(SAC) (Haarnoja et al. 2018) with the reward func-
tion R⇐ ↽C. The SAC algorithm is run for 1,000,000
steps. For each policy trained with di#erent ↽ values,
we generate 1,000 trajectories. During trajectory gener-
ation, actions are perturbed with Gaussian noise with
mean=0 and std=0.15. The three sets of trajectories,
one for each ↽, are mixed to form an o!ine dataset
consisting of 3,000 trajectories. For the ↽ values, we use
0.3, 0.8, 1 for Cartpole, 1, 1.8, 2 for Walker, 0, 0.1, 0.5
for Quadruped, 0, 0.4, 0.5 for Humanoid.

Evaluation At every 1000 iterations, we run the
policy online and report the average discounted cu-
mulative reward and cost and their standard errors
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Figure 2: RWRL Benchmark Experiments

of 5 trajectories. Figure 2 shows comparison of the
performance of our algorithm and COptiDICE on 4
RWRL environments. The black dotted horizontal line
indicates the cost threshold. The blue and red lines
indicate the cumulative cost and reward for PDCA and
COptiDICE respectively. Overall, the performance of
PDCA is comparable to that of COptiDICE.

5.3 Safety Gym Benchmark Experiments

We run PDCA on the bullet safety gym (Gronauer 2022)
with o!ine datasets provided by Liu et al. (2023a) and
compare the performance of PDCA to CDT (Liu et al.
2023b), CPQ (Xu et al. 2022) and COptiDICE (Lee
et al. 2022). See Appendix G.3 for the details of the
o!ine datasets and hyperparameter tuning procedure.

Environments The Bullet Safety Gym (Gronauer
2022) provides environments based on physics simu-
lator where the agent can move around the physical
environment scattered with obstacles. The layout of
the obstacles is not fixed and randomly generated in
each episode. For our benchmark experiments, we use
the three di#erent agents: ball that can move freely on
a plane and is controlled by a two-dimensional force
vector; car that can control wheel velocities and steer-
ing angle; ant that is quadrupedal composed of nine
rigid bodies with each leg controlled by two actuators.
We use two di#erent tasks. The circle task encourages
the agent to move on a circle. The reward signal de-
pends on the speed of the agent and the proximity of
the agent to the boundary. Costs are incurred when

Table 2: Safety Gym Results (Cost Threshold = 1.00)

Task CDT CPQ C’DICE PDCA
R | C R | C R | C R | C

AntCircle 0.54|1.78 0.00|0.00 0.17|5.04 0.22|3.53
AntRun 0.72|0.91 0.03|0.02 0.61|0.94 0.28|0.93

BallCircle 0.77|1.07 0.64|0.76 0.70|2.61 0.63|2.29
BallRun 0.39|1.16 0.22|1.27 0.59|3.52 0.55|3.38
CarCircle 0.75|0.95 0.71|0.33 0.49|3.14 0.22|2.42

the agent leaves the circle. The run task rewards the
agent for running through an avenue between two safety
boundaries. The agent incurs costs when exceeding
speed limit.

Evaluation Following Liu et al. (2023a), we run with
cost thresholds set to 10, 20, 40, each with 3 random
seeds and report the average performance of the 9 runs.
To approximate the uniform mixture of historical poli-
cies produced by PDCA, we average the performance of
policies taken every 2500 iterations. The performance
of each policy is measured by running the policy for 20
episodes and taking the average of the discounted cu-
mulative reward/cost. When reporting, the cost value
is normalized so that the cost threshold is scaled to
1. See Table 2 for the results. The column R is the
reward and C the cost averaged over three random
seeds and three cost thresholds. Boldfaced numbers
indicate cost values that exceed the threshold. The
performance of PDCA is generally not dominated by
others in the sense that it is not outperformed in terms
of both reward and cost violation simultaneously. The
transformer based algorithm CDT generally outper-
forms other algorithms. We believe that this is because
CDT learns non-Markovian policies, which may be
better suited for the benchmark environments.

6 CONCLUSION

We propose a primal-dual algorithm PDCA for o!ine
constrained RL with function approximation. PDCA
is sample-e"cient under concentrability, value function
realizability and MIW realizability assumptions, which
relaxes Bellman completeness assumption required by
previous work. PDCA requires all-policy concentra-
bility only to guarantee the concentration bound on
the estimates returned by OPE. Relaxing this to the
single-policy concentrability assumption is an interest-
ing future work that will likely require using pessimistic
estimates for the costs and modifying the strategy of
the ↽-player to work with pessimistic estimates.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes. Section 2 describes problem setting and
assumptions. Section 3 describes algorithm.

(b) An analysis of the properties and complexity
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Supplementary Materials

A PERFORMANCE DIFFERENCE LEMMAS

In this section, we provide two generalizations of the classical performance di#erence lemma (Kakade et al. 2002).
For completeness, we first state the classical performance di#erence lemma below.
Lemma 1 (Performance Di#erence Lemma. Kakade et al. (2002)).

(1⇐ ϑ)(JU (ε̂)⇐ JU (ε)) = Aω(ε̂, Q
ω̂
U ) (4)

The following is the first generalization of the performance di#erence lemma. It decomposes the di#erence in
performance of two policies, where the performance of one of the policies is measured with respect to an arbitrary
Q-value function f . The same result is proved as an intermediate step in the proof of Lemma 12 in Cheng et al.
(2022). We state it as a separate lemma and provide a simplified proof below.
Lemma 2. For any functions U, f : S ↘A ≃ R and any policies ε, ε̂ : S ≃ !(A), we have

(1⇐ ϑ)(f(s0, ε̂)⇐ JU (ε)) = Aω(ε̂, f) + Eω[(f ⇐ T
ω̂
U f)(s, a)].

Proof. Note that

E(s,a)↓dε [f(s, ε̂)] = (1⇐ ϑ)Eω

[ →∑

t=0

ϑtf(st, ε̂)

]

= (1⇐ ϑ)Eω

[
f(s0, ε̂) +

→∑

t=0

ϑtEω [ϑf(st+1, ε̂) | st, at]

]

= (1⇐ ϑ)f(s0, ε̂) + (1⇐ ϑ)Eω

[ →∑

t=0

ϑt
T

ω̂
0 f(st, at)

]

= (1⇐ ϑ)f(s0, ε̂) + E(s,a)↓dε [T ω̂
0 f(s, a)].

Rearranging, we get

(1⇐ ϑ)f(s0, ε̂) = E(s,a)↓dε [(f ⇐ T
ω̂
0 f)(s, a)]⇐ E(s,a)↓dε [f(s, a)⇐ f(s, ε̂)]

= E(s,a)↓dε [(f ⇐ T
ω̂
0 f)(s, a)] +Aω(ε̂, f).

Using (1⇐ ϑ)JU (ε) = E(s,a)↓dε [U(s, a)], we get

(1⇐ ϑ)(f(s0, ε̂)⇐ JU (ε)) = Eω[(f ⇐ T
ω̂
0 f)(s, a)] +Aω(ε̂, f)⇐ Eω[U(s, a)]

= Aω(ε̂, f) + Eω[(f ⇐ T
ω̂
U f)(s, a)].

Note that when we set f = Qω̂
U in the lemma above, we recover the classical performance di#erence lemma. Now,

we state the second generalization of the performance di#erence lemma. The same lemma is stated and proved in
Cheng et al. (2022) and also used in Zhu et al. (2023). We state the lemma and provide a simpler proof below.13
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Lemma 3 (Performance di#erence decomposition. Lemma 12 in Cheng et al. (2022)). For any policies ε, ε̂, µ :
S ≃ !(A) and any functions U : S ↘A ≃ R and f : S ↘A ≃ R, we have

(1⇐ ϑ)(JU (ε)⇐ JU (ε̂)) = Eµ[(f ⇐ T
ω̂
U f)(s, a)] + Eω[(T

ω̂
U f ⇐ f)(s, a)]

+ Eω[f(s,ε)⇐ f(s, ε̂)] +Aµ(ε̂, f)⇐Aµ(ε̂, Q
ω̂
U ).

Proof. We have

(1⇐ ϑ)(JU (ε)⇐ JU (ε̂))

= (1⇐ ϑ)(JU (ε)⇐ f(s0, ε̂)) + (1⇐ ϑ)(f(s0, ε̂)⇐ JU (µ)) + (1⇐ ϑ)(JU (µ)⇐ JU (ε̂))

= ⇐(Aω(ε̂, f) + Eω[(f ⇐ T
ω̂
U f)(s, a)]) + (Aµ(ε̂, f) + Eµ[(f ⇐ T

ω̂
U f)(s, a)])⇐Aµ(ε̂, Q

ω
U )

where the second inequality uses the generalized performance di#erence lemma (Lemma 2) for the first two terms
and the classical performance di#erence lemma (Lemma 1) for the third term. Rearranging and observing that
Aω(ε̂, f) = Eω[f(s, ε̂)⇐ f(s,ε)] complete the proof.

Indeed, the lemma above is a generalization because setting µ = ε reduces to the classical performance di#erence
lemma (Lemma 1).

B CONCENTRATION INEQUALITIES

In this section, we provide concentration inequalities for relating Eµ and Aµ to the empirical versions ED and AD
respectively. First, we show a concentration bound on ED[w(s, a)(f(s, a)⇐ U(s, a)⇐ ϑf(s↔,ε))], which will be
used to show a concentration bound on ED(ε, f, U).
Lemma 4 (Concentration of Bellman error). Let w : S ↘ A ≃ R+ with ↔w↔ ↗ C→ and ↔w↔2,µ ↗ Cϑ2 . Let
f : S ↘A ≃ [0, 1

1↑ϖ ] and U : S ↘A ≃ [0, 1] be any functions. Let ε : S ≃ !(A) be any policy. With probability
at least 1⇐ ⇁, we have

|Eµ[w(s, a)(f ⇐ T
ω
U )(s, a)]⇐ ED[w(s, a)(f(s, a)⇐ U(s, a)⇐ ϑf(s↔,ε))]|

↗ O

(
Cϑ2

1⇐ ϑ

√
log(1/⇁)

n
+

C→
1⇐ ϑ

log(1/⇁)

n

)
.

Proof. Define
Xj = w(sj , aj)(f(sj , aj)⇐ U(sj , aj)⇐ ϑf(s↔j ,ε)).

Note that ED[w(s, a)(f(s, a) ⇐ U(s, a) ⇐ ϑf(s↔,ε))] = 1
n

∑n
j=1 Xj . By assumption of the data distribution,

X1, . . . , Xn are i.i.d. By the boundedness assumption on w and f , we have |Xj | ↗ O(C→/(1⇐ ϑ)). Also, we have

E[Xj ] = E(s,a)↓dµ,s→↓P (·|s,a)[w(s, a)(f(s, a)⇐ U(s, a)⇐ ϑf(s↔,ε))]

= E(s,a)↓dµ [Es→↓P (·|s,a)[w(s, a)(f(s, a)⇐ U(s, a)⇐ ϑf(s↔,ε))|s, a]]

= Eµ[w(s, a)(f ⇐ T
ω
U f)(s, a)].

By Bernstein’s inequality, we have with probability at least 1⇐ ⇁ that
∣∣∣∣∣Eµ[w(s, a)(f ⇐ T

ω
U f)(s, a)]⇐

1

n

n∑

j=1

Xj

∣∣∣∣∣

↗ O

(√
Varµ[w(s, a)(f ⇐ T ω

U f)(s, a)] log(1/⇁)

n
+

C→ log(1/⇁)

(1⇐ ϑ)n

)

The variance term Varµ[w(s, a)(f ⇐ T
ω
U f)(s, a)] can be bounded as follows.

Varµ[w(s, a)(f ⇐ T
ω
U f)(s, a)] ↗ Eµ[w(s, a)

2(f ⇐ T
ω
U f)2(s, a)]

↗ O(↔w↔22,µ/(1⇐ ϑ)2)

↗ O((Cϑ2)
2/(1⇐ ϑ)2)
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where the second inequality uses the boundedness assumption on f and the last inequality uses the boundedness
assumption on w. Hence, we have

∣∣∣∣∣Eµ[w(s, a)(f ⇐ T
ω
U f)(s, a)]⇐

1

n

n∑

j=1

Xj

∣∣∣∣∣ ↗ O

(
Cϑ2

1⇐ ϑ

√
log(1/⇁)

n
+

C→ log(1/⇁)

(1⇐ ϑ)n

)
.

This completes the proof.

The following lemma relates Eµ to ED. The proof closely follows that of Lemma 4 in Zhu et al. (2023), which
shows the same result for a single reward function.
Lemma 5 (Concentration of Bellman error term). Under Assumption D, with probability at least 1⇐ ⇁, we have

|Eµ(ε, f ;R)⇐ ED(ε, f ;R)| ↗ O(ωstat)

|Eµ(ε, gi;Ci)⇐ ED(ε, gi;Ci)| ↗ O(ωstat) for all i = 1, . . . , I,

for any ε ↓ ”, f ↓ F and gi ↓ F , i = 1, . . . , I, where

ωstat :=
Cϑ2

1⇐ ϑ

√
log(I|F||”||W|/⇁)

n
+

C→ log(I|F||”||W|/⇁)

(1⇐ ϑ)n
.

Proof. It is enough to show that, with probability 1⇐⇁, we have |Eµ(ε, h;U)⇐ED(ε, h;U)| ↗ O(ωstat) for any policy
ε ↓ ”, any function h ↓ F and any function U ↓ {R,C1, . . . , CI}. Fix ε ↓ ”, h ↓ F and U ↓ {R,C1, . . . , CI},
and define

Xj(w) = w(sj , aj)(h(sj , aj)⇐ U(sj , aj)⇐ ϑh(s↔j ,ε))

where w ↓ W. By Lemma 4, we have
∣∣∣∣∣Eµ[w(s, a)(h⇐ T

ω
U h)(s, a)]⇐

1

n

n∑

j=1

Xj(w)

∣∣∣∣∣ ↗ O

(
Cϑ2

1⇐ ϑ

√
log(1/⇁)

n
+

C→ log(1/⇁)

(1⇐ ϑ)n

)
.

Since the inequality above holds for all w ↓ W, it follows by a union bound over w ↓ W that

Eµ(ε, h;U)⇐ ED(ε, h;U) = max
w↗W

|Eµ [w(s, a)(h⇐ T
ω
U h)(s, a)]|

⇐ max
w↗W

|ED [w(s, a)(h(s, a)⇐ U(s, a)⇐ ϑh(s↔,ε))]|

↗ |Eµ [w
ε(s, a)(h⇐ T

ω
U h)(s, a)]|⇐ |ED [wε(s, a)(h(s, a)⇐ U(s, a)⇐ ϑh(s↔,ε))]|

↗ |Eµ [w
ε(s, a)(h⇐ T

ω
U h)(s, a)]⇐ ED [wε(s, a)(h(s, a)⇐ U(s, a)⇐ ϑh(s↔,ε))]|

=

∣∣∣∣∣Eµ[w
ε(s, a)(h⇐ T

ω
U h)(s, a)]⇐

1

n

n∑

j=1

Xj(w
ε)

∣∣∣∣∣

↗ O

(
Cϑ2

1⇐ ϑ

√
log(|W|/⇁)

n
+

C→ log(|W|/⇁)

(1⇐ ϑ)n

)

where in the first inequality, we use the notation wε = argmaxw↗W |Eµ[w(s, a)(f ⇐ T
ω
U f)(s, a)]|; the second

inequality follows by the identity |a|⇐ |b| ↗ |a⇐ b|; and the last inequality uses the previous result. The bound of
ED(ε, h;U)⇐ Eµ(ε, h;U) follows similarly, and the union bound of the two bounds gives

|Eµ(ε, h;U)⇐ ED(ε, h;U)| ↗ O

(
Cϑ2

1⇐ ϑ

√
log(|W|/⇁)

n
+

C→ log(|W|/⇁)

(1⇐ ϑ)n

)
.

A union bound on all (h,ε, U) ↓ F ↘”↘ {R,C1, . . . , CI} completes the proof.

The following lemma relates Aµ to AD. The proof closely follows that of Lemma 5 in Zhu et al. (2023), which
shows the same result for a single reward function.
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Lemma 6 (Concentration of the advantage function). With probability at least 1⇐ ⇁, for any ε ↓ ”, f ↓ F , we
have

|Aµ(ε, f)⇐AD(ε, f)| ↗ O

(√
log(|F||”|/⇁)

n(1⇐ ϑ)2

)
↗ O(ωstat)

where ωstat is defined in Lemma 5.

Proof. Note that E[AD(ε, f)] = Aµ(ε, f) and |f(si,ε) ⇐ f(si, ai)| ↗ O( 1
1↑ϖ ). Fixing ε ↓ F and f ↓ F and

applying Hoe#ding’s inequality, we have with probability at least 1⇐ ⇁ that

|Aµ(ε, f)⇐AD(ε, f)| ↗ O

(√
log(1/⇁)

n(1⇐ ϑ)2

)
.

Applying union bound on (ε, f) ↓ ”↘ F completes the proof.

C PDCA PRODUCES A NEAR SADDLE POINT

In this section, we show that our algorithm PDCA (Algorithm 1) produces a near saddle point.
Lemma 7. Consider the policy ε̄ produced by the algorithm PDCA (Algorithm 1) with threshold ω and bound B.
Let ε̄ := 1

K

∑K
k=1 εk where ε1, . . . ,εK ↓ B!I is the sequence of Lagrange multipliers produced by the ↽-player in

the algorithm. Then, under Assumption A,C and D, with probability at least 1⇐ ⇁, we have for any ε ↓ Conv(”)
satisfying wω

↓ W and any ε ↓ B!I that

L(ε, ε̄) ↗ L(ε̄,ε) +
1 + 2B

(1⇐ ϑ)2
ωopt(K) +O

(
Bωstat
1⇐ ϑ

)
.

We prove Lemma 7 by bounding the regrets of the ε-player and ↽-player against their best actions in hindsight.

C.1 Bounding the Regret of the ε-Player

Lemma 8. Under Assumption A and D, with probability at least 1 ⇐ ⇁, the sequences ε1, . . . ,εK ↓ ” and
ε1, . . . ,εK ↓ B!I produced by the algorithm PDCA using the cost threshold ω and the bound B satisfy

L(ε, ε̄)⇐
1

K

K∑

k=1

L(εk,εk) ↗
1 + 2B

(1⇐ ϑ)2
ωopt(K) +O

(
Bωstat
1⇐ ϑ

)

for all ε ↓ Conv(”) with wω
↓ W where L(ε,ε) = JR(ε) + ε · (ω ⇐ JC(ε)).

Proof. Fix a policy ε ↓ Conv(”) satisfying wω
↓ W. By the definition of L(·, ·), we get

L(ε, ε̄)⇐
1

K

K∑

k=1

L(εk,εk) =
1

K

K∑

k=1

(JR(ε)⇐ JR(εk)  
(a)

) +
1

K

K∑

k=1

I∑

i=1

↽i
k(JCi(εk)⇐ JCi(ε)  

(b)

).

By a union bound with ⇁ scaled appropriately, the concentration bounds for ED and AD in Lemma 5 and Lemma 6,
and the regret bound of the oracle used by the ε-player (Definition 3) hold with probability at least 1⇐ ⇁. For
the rest of the proof, we assume these events hold.

Bounding (a) We use the performance di#erence lemma (Lemma 3) to bound (a) as follows.

(1⇐ ϑ)(JR(ε)⇐ JR(εk))

= Eµ[(fk ⇐ T
ωk
R fk)(s, a)] + Eω[(T

ωk
R fk ⇐ fk)(s, a)]

+ Eω[fk(s,ε)⇐ fk(s,εk)] +Aµ(εk, fk)⇐Aµ(εk, Q
ωk
R )

↗ 2Eµ(εk, fk;R) + Eω[fk(s,ε)⇐ fk(s,εk)] +Aµ(εk, fk)⇐Aµ(εk, Q
ωk
R )

↗ Eω[fk(s,ε)⇐ fk(s,εk)] + 2ED(εk, fk;R) +AD(εk, fk)  
(ε)

⇐AD(εk, Q
ωk
R ) +O(ωstat)
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where the first inequality follows by wω
↓ W which implies |Eω[(f ⇐ T

ω
U f)(s, a)]| ↗ Eµ(ε, f ;U); and the second

inequality follows by the concentration results in Lemma 5 and Lemma 6. Recall that the reward critic chooses
fk ↓ F that minimizes 2ED(εk, ·;R)+AD(εk, ·). We have Qωk

R ↓ F by the realizability assumption (Assumption A).
Hence,

2ED(εk, fk;R) +AD(εk, fk) ↗ 2ED(εk, Q
ωk
R ;R) +AD(εk, Q

ωk
R ).

Using this inequality for bounding (2) and continuing the bound of JR(ε)⇐ JR(εk), we get

(1⇐ ϑ)(JR(ε)⇐ JR(εk)) ↗ Eω[fk(s,ε)⇐ fk(s,εk)] + 2ED(εk, Q
ωk
R ;R) +O(ωstat)

↗ Eω[fk(s,ε)⇐ fk(s,εk)] + 2Eµ(εk, Q
ωk
R ;R) +O(ωstat)

= Eω[fk(s,ε)⇐ fk(s,εk)] +O(ωstat)

where the last equality uses the fact that Qω
R solves f ⇐ T

ω
R f = 0, which gives Eµ(εk, Q

ωk
R ;R) =

maxw↗W |Eµ[w(s, a)(Q
ωk
R ⇐ T

ωk
R Qωk

R )]| = 0.

Bounding (b) Similarly, we can bound (b) as follows.

(1⇐ ϑ)(JCi(εk)⇐ JCi(ε))

= Eµ[(T
ωk
Ci

gik ⇐ gik)(s, a)] + Eω[(g
i
k ⇐ T

ωk
Ci

gik)(s, a)]

+ Eω[g
i
k(s,εk)⇐ gik(s,ε)]⇐Aµ(εk, g

i
k) +Aµ(εk, Q

ωk
Ci
)

↗ 2Eµ(εk, g
i
k;Ci) + Eω[g

i
k(s,εk)⇐ gik(s,ε)]⇐Aµ(εk, g

i
k) +Aµ(εk, Q

ωk
Ci
)

↗ Eω[g
i
k(s,εk)⇐ gik(s,ε)] + 2ED(εk, g

i
k;Ci)⇐AD(εk, g

i
k) +AD(εk, Q

ωk
Ci
) +O(ωstat)

↗ Eω[g
i
k(s,εk)⇐ gik(s,ε)] + 2ED(εk, Q

ωk
Ci
;Ci) +O(ωstat)

↗ Eω[g
i
k(s,εk)⇐ gik(s,ε)] + 2Eµ(εk, Q

ωk
Ci
;Ci) +O(ωstat)

= Eω[g
i
k(s,εk)⇐ gik(s,ε)] +O(ωstat)

where the third inequality uses the realizability assumption (Assumption A) for Qωk
Ci

↓ F and the fact that the
cost critic chooses gik ↓ F that minimizes 2ED(εk, ·;Ci)⇐AD(εk, ·).

Using the Property of ε-Player Using the bounds for (a) and (b) and continuing, we get

1⇐ ϑ

K

K∑

k=1

(L(ε,εk)⇐ L(εk,εk))

=
1⇐ ϑ

K

K∑

k=1

(JR(ε)⇐ JR(εk)) +
1⇐ ϑ

K

K∑

k=1

I∑

i=1

↽i
k(JCi(εk)⇐ JCi(ε))

↗
1

K

K∑

k=1

(
Eω[fk(s,ε)⇐ fk(s,εk)] +

I∑

i=1

↽i
kEω[g

i
k(s,εk)⇐ gik(s,ε)]

)
+O (Bωstat)

=
1

K

K∑

k=1

Eω[zk(s,ε)⇐ zk(s,εk)] +O (Bωstat)

↗
1 + 2B

1⇐ ϑ
ωopt(K) +O (Bωstat)

where zk = fk +
∑I

i=1 ↽
i
k(ϖi ⇐ gik) and the last inequality follows by the property of the policy optimization oracle

(Definition 3) employed by the ε-player and the fact that |zk(s, a)| ↗
1+2B
1↑ϖ for all s ↓ S and a ↓ A. Rearranging

completes the proof.

C.2 Bound the Regret of the ↽-Player

Lemma 9. Under Assumption A,C and D, with probability at least 1 ⇐ ⇁, the sequences ε1, . . . ,εK ↓ ” and
ε1, . . . ,εK ↓ B!I produced by the algorithm PDCA using the cost threshold ω and the bound B satisfy

1

K

K∑

k=1

L(εk,εk) ↗
1

K

K∑

k=1

L(εk,ε) +O

(
Bωstat
1⇐ ϑ

)
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for all ε ↓ B!I where L(ε,ε) = JR(ε) + ε · (ω ⇐ JC(ε)).

Proof. Recall that the OPE oracle produces an estimate h for the value of ε with respect to a utility function U

that satisfies |JU (ε)⇐ h| ↗ O

(
Cϖ2
1↑ϖ


log(|F|/φ)

n

)
↗ O(ωstat) with probability at least 1⇐ ⇁. By applying a union

bound on (ε, U) ↓ ”↘ {C1, . . . , CI}, we have with probability at least 1⇐ ⇁ that

(1⇐ ϑ)|JCi(εk)⇐ hi
k| ↗ O(ωstat)

for all k = 1, . . . ,K and all i = 1, . . . , I. Hence,

1

K

K∑

k=1

L(εk,εk)⇐
1

K

K∑

k=1

L(εk,ε) =
1

K

K∑

k=1

I∑

i=1

(↽i
k ⇐ ↽i)(ϖi ⇐ JCi(εk))

↗
1

K

K∑

k=1

I∑

i=1

(↽i
k ⇐ ↽i)(ϖi ⇐ hi

k) +O

(
Bωstat
1⇐ ϑ

)
.

The first term in the last expression is 1
K

∑K
k=1 εk · (ω ⇐hk)⇐

1
K

∑K
k=1 ε · (ω ⇐hk) ↗ 0 since the ↽-player chooses

εk greedily that minimizes ε ∋≃ ε · (ω ⇐ hk), and we are done.

C.3 Proof of Lemma 7

Combining the results of Lemma 8 and Lemma 9, we can show that the pair (ε̄, ε̄) is approximately a saddle
point where ε̄ is the policy returned by PDCA and ε̄ is the average of the sequence of Lagrange multipliers
ε1, . . . ,εK produced by PDCA.
Proof of Lemma 7. Fix a policy ε ↓ Conv(”) and a Lagrange multiplier ε ↓ B!I . Then,

L(ε, ε̄) ↗
1

K

K∑

k=1

L(εk,εk) +
1 + 2B

(1⇐ ϑ)2
ωopt(K) +O

(
Bωstat
1⇐ ϑ

)

↗
1

K

K∑

k=1

L(εk,ε) +
1 + 2B

(1⇐ ϑ)2
ωopt(K) +O

(
Bωstat
1⇐ ϑ

)

where the first inequality uses Lemma 8 and the second inequality uses Lemma 9. Observing that
1
K

∑K
k=1 L(εk,ε) = L(ε̄,ε) by the linearity of L(·,ε) completes the proof.

D PROPERTIES OF A NEAR SADDLE POINT

In this section, we study the properties of a near saddle point formally defined below.

Definition 5. We say (x̄, ȳ) is a ▷-near saddle point for a function L(·, ·) with respect to the input space X ↘ Y

if L(x, ȳ) ↗ L(x̄, y) + ▷ for all x ↓ X and y ↓ Y.

Lemma 10. Suppose (ε̄, ε̄) is a ▷-near saddle point for L(·, ·) with respect to ”↘B!I where ” ⇒ Conv(”) is a
class of mixtures of policies and at least one mixture policy in ” is feasible for P(ω ). Then, we have

JR(ε̄) ⇑ JR(εc)⇐ ▷ (Optimality)

JCi(ε̄) ↗ ϖi +
▷

B
+

1

B(1⇐ ϑ)
, for all i = 1, . . . I (Feasibility)

where εc is any feasible policy in ”.

Proof. We first prove JR(ε̄) ⇑ JR(εc)⇐ ▷, near optimality of ε̄.
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Optimality Since (ε̄, ε̄) is a ▷-near saddle point for L(·, ·) with respect to ” ↘ B!I and εc ↓ ”, we have
L(εc, ε̄) ↗ L(ε̄,ε) + ▷ for all ε ↓ B!I . Choosing ε = 0, we get

L(εc, ε̄) ↗ L(ε̄, 0) + ▷ = JR(ε̄) + ▷.

Rearranging, we get

JR(ε̄) ⇑ JR(εc) + ε̄ · (ω ⇐ JC(εc))⇐ ▷

⇑ JR(εc)⇐ ▷

where the second inequality uses the feasibility of εc for P(ω ). This proves the near optimality of ε̄ with respect
to εc.

Feasibility Now, to prove near feasibility of ε̄, recall from the proof of the near optimality that L(εc, ε̄) ↗
L(ε̄,ε) + ▷ for all ε ↓ B!I holds since (ε̄, ε̄) is a ▷-near saddle point. Choosing ε such that ↽j = B for
j = argmini↗[I](ϖi ⇐ JCi(ε̄)) and ↽j = 0 for other j’s, and defining m = mini↗[I](ϖi ⇐ JCi(ε̄)), we get

L(εc, ε̄) ↗ L(ε̄,ε) + ▷ = JR(ε̄) +Bm+ ▷.

On the other hand, the feasibility of εc for P(ω ) gives

L(εc, ε̄) = JR(εc) + ε̄ · (ω ⇐ JC(εc)) ⇑ JR(εc).

Combining the previous two inequalities, we get

Bm+ ▷ ⇑ JR(εc)⇐ JR(ε̄) ⇑ ⇐
1

1⇐ ϑ

where the last inequality uses 0 ↗ JR(·) ↗
1

1↑ϖ . Rearranging, and using the fact that m ↗ ϖi ⇐ JCi(ε̄) for all
i = 1, . . . , I, we get

ϖi ⇐ JCi(ε̄) ⇑ m ⇑ ⇐
1

B(1⇐ ϑ)
⇐

▷

B

for all i = 1, . . . , I. and it follows that

JCi(ε̄) ↗ ϖi +
▷

B
+

1

B(1⇐ ϑ)
.

Now, we study the case where PDCA is run with a tightened cost threshold ω ⇐ ⇀1 where ⇀ ⇑ 0. We denote by
L▷(ε,ε) = JR(ε) + ε · (ω ⇐ ⇀1⇐ JC(ε)) the Lagrangian for the tightened problem P(ω ⇐ ⇀1). The following
lemma shows the property of a ▷-near saddle point for L▷(·, ·).
Lemma 11. Assume that Slater’s condition (Assumption B) holds and that ⇀ < ◁

1↑ϖ so that P(ω ⇐ ⇀1) also
satisfies Slater’s condition. Suppose (ε̄, ε̄) is a ▷-near saddle point for L▷(·, ·) with respect to ” ↘ B!I . Let
(εε

▷ ,ε
ε
▷) be a primal-dual solution to P(ω ⇐ ⇀1) and εε

▷ ↓ ”. Assume B > ↔εε
▷↔1. Then, we have

JR(ε̄) ⇑ JR(ε
ε
▷)⇐ ▷ (Optimality)

JCi(ε̄) ↗ ϖi ⇐ ⇀ +
▷

B ⇐ ↔εε
▷↔1

, for all i = 1, . . . , I (Feasibility)

Proof. We first prove near optimality of ε̄.

Optimality Since (ε̄, ε̄) is a ▷-near saddle point for L▷(·, ·) with respect to ” ↘ B!I and εε
▷ ↓ ”, we have

L▷(εε
▷ , ε̄) ↗ L▷(ε̄,ε) + ▷ for all ε ↓ B!I . Choosing ε = 0, we get

L▷(ε
ε
▷ , ε̄) ↗ L▷(ε̄, 0) + ▷ = JR(ε̄) + ▷.

Rearranging, we get
JR(ε̄) ⇑ JR(ε

ε
▷) + ε̄ · (ω ⇐ ⇀1⇐ JC(εε

▷))⇐ ▷ ⇑ JR(ε
ε
▷)⇐ ▷

where the second inequality uses the feasibility of εε
▷ for P(ω ⇐ ⇀1). Now, we prove feasibility of ε̄.
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Feasibility Recall that (εε
▷ ,ε

ε
▷) is a primal-dual solution to the optimization problem P(ω ⇐ ⇀1) and L▷(·, ·) is

the Lagrangian function corresponding to the problem P(ω ⇐ ⇀1). By strong duality, (εε
▷ ,ε

ε
▷) is a saddle point

for L▷(·, ·) with respect to Conv(”)↘ RI
+. Hence, we have

L▷(ε̄,ε
ε
▷) ↗ L▷(ε

ε
▷ ,ε

ε
▷) = JR(ε

ε
▷) + εε

▷ · (ω ⇐ ⇀1⇐ JC(εε
▷)) = JR(ε

ε
▷)

where the first inequality follows from the fact that (εε
▷ ,ε

ε
▷) is a saddle point of L▷(·, ·) and the last equality

follows from the complementary slackness property of the solution (εε
▷ ,ε

ε
▷). Rearranging, we get

JR(ε
ε
▷)⇐ JR(ε̄) ⇑ εε

▷ · (ω ⇐ ⇀1⇐ JC(ε̄)) ⇑ (m⇐ ⇀)↔εε
▷↔1 (5)

where we define m = mini↗[I](ϖi ⇐ JCi(ε̄)). Now, to upper bound JR(εε
▷)⇐ JR(ε̄), we first use the feasibility of

εε
▷ for P(ω ⇐ ⇀1) as follows.

L▷(ε
ε
▷ , ε̄) = JR(ε

ε
▷) + ε̄ · (ω ⇐ ⇀1⇐ JC(εε

▷)) ⇑ JR(ε
ε
▷).

On the other hand, since (ε̄, ε̄) is a ▷-near saddle point for L▷(·, ·) with respect to ”↘B!I and εε
▷ ↓ ”, we have

L▷(εε
▷ , ε̄) ↗ L▷(ε̄,ε) + ▷ for any ε ↓ B!I . By choosing ε such that ↽j = B for j = argmini↗[I](ϖi ⇐ JCi(ε̄))

and recalling m = mini↗[I](ϖi ⇐ JCi(ε̄)), we get

L▷(ε
ε
▷ , ε̄) ↗ L▷(ε̄,ε) + ▷ = JR(ε̄) +B(m⇐ ⇀) + ▷.

Combining the previous two results (upper bound and lower bound of L▷(εε
▷ , ε̄)), we get

JR(ε
ε
▷)⇐ JR(ε̄) ↗ B(m⇐ ⇀) + ▷. (6)

Combining the lower bound (5) and the upper bound (6) of JR(εε
▷)⇐ JR(ε̄) and rearranging, we get

m⇐ ⇀ ⇑
⇐▷

B ⇐ ↔εε
▷↔1

.

Since ϖi ⇐ ⇀ ⇐ JCi(ε̄) ⇑ m⇐ ⇀ for all i ↓ [I], rearranging the above gives

JCi(ε̄) ↗ ϖi ⇐ ⇀ +
▷

B ⇐ ↔εε
▷↔1

for all i = 1, . . . , I.

Note that the lemma above requires B > ↔εε
▷↔1. We will show in Theorem 3 that with Slater’s condition, we can

upper bound ↔εε
▷↔1 so that we can choose B that indeed satisfies B > ↔εε

▷↔1.

E PROOF OF MAIN RESULTS

E.1 Proof of Theorem 1

We restate the theorem for convenience:
Theorem 1. Under assumptions A,B,C,D and E, the policy ε̄ returned by the PDCA algorithm (Algorithm 1)
with the cost threshold ω , bound B = 1 + 1

ς and K large enough, satisfies JCi(ε̄) ↗ ϖi +O(ω) for all i = 1, . . . , I,
and JR(ε̄) ⇑ JR(εε)⇐O(ω) with probability at least 1⇐ ⇁ where εε is optimal for P(ω ) as long as

n ⇑ #

(
(Cϑ2)

2 log(I|F||”||W|/⇁)

(1⇐ ϑ)4φ2ω2

)
.

Proof. Recall from Lemma 5 that ωstat :=
Cϖ2
1↑ϖ


log(I|F||!||W|/φ)

n + C↑ log(I|F||!||W|/φ)
(1↑ϖ)n . The bound on n guarantees

ωstat ↗ O((1⇐ ϑ)φ ω).
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Invoking Lemma 7 with cost threshold ω and bound B = 1 + 1
ς , we get with probability at least 1⇐ ⇁ that

L(ε, ε̄) ↗ L(ε̄,ε) + ωsaddle

for all ε ↓ Conv(”) with wω
↓ W and ε ↓ B!I where ωsaddle :=

1+2B
(1↑ϖ)2 ωopt(K)+O


B↼stat
1↑ϖ


. Since PDCA chooses

K such that 1+2B
(1↑ϖ)2 ωopt(K) ↗ ω and the bound on n guarantees ωstat ↗ O((1 ⇐ ϑ)φ ω), we have ωsaddle ↗ O(ω).

Hence, invoking Lemma 11 with ▷ = ωsaddle, B = 1 + 1
ς and ⇀ = 0, we get

JR(ε̄) ⇑ JR(εc)⇐ ωsaddle ⇑ JR(εc)⇐O(ω)

JCi(ε̄) ↗ ϖi +
ωsaddle

1 + 1
ς ⇐ ↔εε↔1

↗ ϖi +O(ω), i = 1, . . . , I

where εε is the optimal dual variable for the problem P(ω ) and the last inequality uses ↔εε
↔1 ↗

1
ς , which follows

by the Slater’s condition (Assumption B) and Lemma 13.

E.2 Result for arbitrary competing policy

Theorem 2. Under assumptions A,C and D, the policy ε̄ returned by PDCA (Algorithm 1) with the cost threshold
ω and bound B = 1

(1↑ϖ)↼ satisfies JCi(ε̄) ↗ ϖi + O(ω) for all i = 1, . . . , I, and JR(ε) ⇑ JR(εc) ⇐ O(ω) with
probability at least 1⇐ ⇁ where εc ↓ Conv(”) is any policy of which MIW is realizable by W as long as

n ⇑ #

(
(Cϑ2)

2 log(I|F||”||W|/⇁)

(1⇐ ϑ)6ω4

)
.

Proof. Recall from Lemma 5 that ωstat :=
Cϖ2
1↑ϖ


log(I|F||!||W|/φ)

n + C↑ log(I|F||!||W|/φ)
(1↑ϖ)n . The choice n ⇑

#


(Cϖ2 )
2 log(I|F||!||W|/φ)

(1↑ϖ)6↼4


guarantees

ωstat ↗ O((1⇐ ϑ)2ω2).

Invoking Lemma 7 with cost threshold ω and bound B = 1
(1↑ϖ)↼ , we get with probability at least 1⇐ ⇁ that

L(ε, ε̄) ↗ L(ε̄,ε) + ωsaddle

for all ε ↓ Conv(”) and ε ↓
1

(1↑ϖ)↼!
I where ωsaddle :=

1+2B
(1↑ϖ)2 ω

ω
opt(K) + 2B

1↑ϖ ω
0
opt(K) +O


B↼stat
1↑ϖ


. Since PDCA

chooses K such that 1+2B
(1↑ϖ)2 ω

ω
opt(K) ↗ ω and 2B

1↑ϖ ω
0
opt(K) ↗ ω, and n is chosen to guarantee ωstat ↗ O((1⇐ ϑ)2ω2),

we have ωsaddle ↗ O(ω). Hence, invoking Lemma 10 with ▷ = ωsaddle and B = 1
(1↑ϖ)↼ , we get

JR(ε̄) ⇑ JR(εc)⇐ ωsaddle ⇑ JR(εc)⇐O(ω)

JCi(ε̄) ↗ ϖi +
ωsaddle

B
+

1

B(1⇐ ϑ)
↗ ϖi +O(ω), i = 1, . . . , I.

E.3 Learning policy satisfying constraints exactly

Note that results in previous sections provide a bound on sample complexity for finding a nearly optimal policy
that approximately satisfies the constraints. In this section, we provide a bound for finding a nearly optimal
policy that satisfies the constraints exactly by running PDCA with tightened constraints. We need the following
additional technical assumption on MIW realizability.
Theorem 3. Let ω ↓ (0, 1

2 ] be given. Under assumptions A,B,C,D,E and F, the policy ε̄ returned by the PDCA
algorithm (Algorithm 1) with the cost threshold ω ⇐ ⇀1, where ⇀ = φω, and bound B = 5

ς satisfies JCi(ε̄) ↗ ϖi for
all i = 1, . . . , I, and JR(ε) ⇑ JR(εε)⇐O(ω) with probability at least 1⇐ ⇁, where εε is an optimal policy for P(ω )
as long as

n ⇑ #

(
(Cϑ2)

2 log(I|F||”||W|/⇁)

(1⇐ ϑ)4φ2ω2

)
.
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Proof. Recall from Lemma 5 that ωstat :=
Cϖ2
1↑ϖ


log(I|F||!||W|/φ)

n + C↑ log(I|F||!||W|/φ)
(1↑ϖ)n . The bound on n in the

theorem guarantees ωstat ↗ O((1⇐ ϑ)φ ω). Invoking Lemma 7 with cost threshold ω ⇐ ⇀1 and bound B = 5
ς , we

get with probability at least 1⇐ ⇁ that

L▷(ε, ε̄) ↗ L▷(ε̄,ε) + ωsaddle (7)

for all ε ↓ Conv(”) satisfying wω
↓ W and ε ↓

5
ς!

I where L▷(·, ·) is the Lagrangian for P(ω ⇐ ⇀1) and

ωsaddle :=
1+2B
(1↑ϖ)2 ωopt(K) +O


↼stat

(1↑ϖ)ς


. Since PDCA chooses K such that 1+2B

(1↑ϖ)2 ωopt(K) ↗ ω and n is chosen to
guarantee ωstat ↗ O((1⇐ ϑ)φ ω), we have ωsaddle ↗ 2ω (with appropriate scaling of n by a universal constant).

Let εε be an optimal policy for P(ω ) and εε
↽ for P(ω ⇐ α1). By the MIW realizability assumptions E and F, we

have wωω

, wωω
ϑ ↓ W and it follows from (7) that

L▷(ε
ε, ε̄) ↗ L▷(ε̄,ε) + 2ω (8)

L▷(ε
ε
↽, ε̄) ↗ L▷(ε̄,ε) + 2ω (9)

for all ε ↓
5
ς!

I . Now, we show near optimality and exact feasibility from these inequalities.

Near Optimality Setting ε = 0 in (8) and rearranging, we get

JR(ε̄) ⇑ JR(ε
ε) + ε̄ · (ω ⇐ ⇀1⇐ JC(εε))⇐ 2ω

⇑ JR(ε
ε)⇐ ⇀↔ε̄↔1 ⇐O(ω)

⇑ JR(ε
ε)⇐O(ω)

where the second inequality follows by the feasibility of εε for P(ω ) and ωsaddle ↗ O(ω); the last inequality follows
by ⇀↔ε̄↔1 ↗ ⇀B = O(ω). This proves near optimality of ε̄ Now we prove that ε̄ is (exactly) feasible for P(ω ).

Exact Feasibility Define m = mini↗[I](ϖi⇐JCi(ε̄)). If m ⇑ 0 then ϖi⇐JCi(ε̄) ⇑ 0 for all i = 1, . . . , I and exact
feasibility trivially holds. We only consider the case where m < 0. Define a mixture policy ε = (1⇐ ζ)εε + ζεε

↽

where ζ ↓ (0, 1) is to be determined later. Since L▷(·, ε̄) is linear, a linear combination of (8) and (9) with
coe"cients 1⇐ ζ and ζ respectively, we get

L▷(ε, ε̄) ↗ L▷(ε̄,ε) + 2ω.

Choosing ε such that ↽j = B for j = argmini↗[I](ϖi ⇐ JCi(ε̄)) and ↽j = 0 for all other indices, we get

L▷(ε, ε̄) ↗ JR(ε̄) + ε · (ω ⇐ ⇀1⇐ JC(ε̄)) + 2ω

= JR(ε̄) +B(m⇐ ⇀) + 2ω.

On the other hand, using the fact that ε is feasible for P(ω ⇐ ζα1), we get

L▷(ε, ε̄) = JR(ε) + ε̄(ω ⇐ ⇀1⇐ JC(ε))
⇑ JR(ε) + (ζα⇐ ⇀)↔ε̄↔1.

Combining the previous two results (upper bound and lower bound of L▷(ε, ε̄)) and rearranging, we get

JR(ε)⇐ JR(ε̄) ↗ B(m⇐ ⇀)⇐ (ζα⇐ ⇀)↔ε̄↔1 + 2ω. (10)

Now, to get a lower bound of JR(ε)⇐ JR(ε̄), let (εε, εε) be a primal-dual solution of P(ω ⇐ ζα1). Note that
P(ω ⇐ ζα1) is feasible by the Slater’s condition assumption B and the fact that ζα ↓ (0, ς

1↑ϖ ). Since (εε, εε) is a
saddle point of L1↽(ε,ε) = JR(ε) + ε · (ω ⇐ ζα1⇐ JC(ε)) with respect to Conv(”)↘ RI

+, we get

L1↽(ε̄, εε) ↗ L1↽(εε, εε) = JR(εε) ↗ JR(ε
ε) ↗

1

1⇐ ζ
JR(ε)
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where the equality follows by the complementary slackness property; the second inequality follows since the
feasibility set of P(ω ) contains that of P(ω ⇐ ζα1); and the last inequality follows by JR(ε) = (1⇐ ζ)JR(εε) +
ζJR(εε

↽) ⇑ (1⇐ ζ)JR(εε). Rearranging, we get

JR(ε)⇐ JR(ε̄) ⇑ ⇐ζJR(ε̄) + (1⇐ ζ)εε
· (ω ⇐ ζα1⇐ JC(ε̄))

⇑
⇐ζ

1⇐ ϑ
+ (1⇐ ζ)(m⇐ ζα)↔εε

↔1

where the second inequality follows by JR(·) ↗
1

1↑ϖ and the definition of m. Combining with the upper bound of
JR(ε)⇐ JR(ε̄) shown in (10) and rearranging, we get

(B ⇐ (1⇐ ζ)↔εε
↔1)m ⇑ B⇀ + (ζα⇐ ⇀)↔ε̄↔1 ⇐

ζ

1⇐ ϑ
⇐ (1⇐ ζ)ζα↔εε

↔1 ⇐ 2ω. (11)

Now, we choose our parameters as follows.

ζ = (1⇐ ϑ)ω, B =
5c

φ
, ⇀ =

φω

c
.

Note that B⇀ = 5ω and ζα ⇑ ⇀. Also, since εε is a dual solution of P(ω ⇐ ζα1), which has a margin of ς
1↑ϖ ⇐ ζα,

Lemma 13 gives ↔εε
↔1 ↗

1
ς↑(1↑ϖ)1↽ . Hence,

ζα↔εε
↔1 ↗

ζα

φ⇐ (1⇐ ϑ)ζα
↗

1

1⇐ ϑ

ζφ

φ⇐ φζ
↗

2ζ

1⇐ ϑ
↗ 2ω

where the second inequality uses α ↗
ς

1↑ϖ and the fact that h(x) = x
ς↑x is increasing for x ↓ (0,φ); and the third

inequality uses the fact that ζ ↗
1
2 . Note that ↔εε

↔1 ↗
↼
1↽ = 1

(1↑ϖ)↽ < B so that B ⇐ (1⇐ ζ)↔εε
↔1 > 0. Hence,

the previous result (11) gives

(B ⇐ (1⇐ ζ)↔εε
↔1)m ⇑ B⇀ + (ζα⇐ ⇀)↔ε̄↔1 ⇐

ζ

1⇐ ϑ
⇐ (1⇐ ζ)ζα↔εε

↔1 ⇐ 2ω

⇑ 5ω+ 0⇐ ω⇐ 2ω⇐ 2ω

= 0.

Since B ⇐ (1⇐ ζ)↔εε
↔1 > 0, we have m ⇑ 0 which implies ϖi ⇐ JCi(ε̄) ⇑ 0 for all i = 1, . . . , I. This completes the

proof.

F CONVEX OPTIMIZATION

Lemma 12. Let (εε,↽ε) be optimal primal dual solutions to the constrained optimization problem P(ϖ). Let
(εε, ↽ε) be optimal primal dual solutions to the perturbed problem P(ω ) where ω = ω ⇐ ⇀1. Then, we have

JR(εε) ⇑ JR(ε
ε)⇐ ⇀↔εε

↔1.

Proof. The proof follows Chapter 5.6 in Boyd et al. (2004). By strong duality of the optimization problem P(ω ),
we have JR(εε) = d(εε) where d(ε) = maxω↗Conv(!) L(ε,ε; ω ) is the dual function of P(ω ). Hence,

JR(εε) = d(εε)

⇑ JR(ε
ε) + εε

· (ω ⇐ JC(εε))

= JR(ε
ε) + εε

· (ω ⇐ JC(εε))⇐ εε
· ⇀1

⇑ JR(ε
ε)⇐ εε

· ⇀1

where the first inequality follows from the definition of the dual function d(·) and the second follows by the
feasibility of εε for P(ω ).
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Lemma 13. Consider a constrained optimization problem P(ω ) with threshold ω = (ϖ1, . . . , ϖI) with ϖi > 0 for
all i = 1, . . . , I. Suppose the problem satisfies Slater’s condition with margin ς

1↑ϖ > 0, in other words, there exists
ε ↓ ” that satisfies the constraint JCi(ε) ↗ ϖi ⇐

ς
1↑ϖ for all i = 1, . . . , I. Then, the optimal dual variable εε of

the problem satisfies ↔εε
↔1 ↗

1
ς .

Proof. Let εε be an optimal policy of the optimization problem P(ω ). Define the dual function f(ε) =
maxω↗! JR(ε) + ε · (ω ⇐ JC(ε)). Let εε = argminω↗RI

+
f(ε). Trivially, ↽ε

i ⇑ 0 for all i = 1, . . . , I. Also, by
strong duality, we have f(εε) = JR(εε). Let ε̂ be a feasible policy with JC(ε̂) ↗ ω ⇐

ς
1↑ϖ1 where the inequality

is component-wise and 1 = (1, . . . , 1). Such a policy exists by the assumption of this lemma. Then,

JR(ε
ε) = f(εε) ⇑ JR(ε̂) + εε

· (ω ⇐ JC(ε̂)) ⇑ JR(ε̂) + εε
·

φ

1⇐ ϑ
1 = JR(ε̂) +

φ

1⇐ ϑ
↔εε

↔1.

Rearranging and using 1/(1⇐ ϑ) ⇑ JR(εε) ⇑ JR(ε̂) ⇑ 0 completes the proof:

↔εε
↔1 ↗

JR(εε)⇐ JR(ε̂)

φ/(1⇐ ϑ)
↗

1

φ
.

G EXPERIMENTS

In this section, we empirically demonstrate the performance of our algorithm PDCA by running it in various
environments and comparing the performance to COptiDICE. For the parameter tuning and the experiments, we
used an internal cluster of nodes with 20-core 2.40 GHz CPU and Nvidia Tesla V100 GPU. The total amount of
computing time was around 600 hours.

G.1 Tabular CMDP Experiments

In this section, we provide details of the experiment run on a randomly generated CMDP discussed in Section 5.
We follow a similar experimental protocol as Lee et al. (2022).

CMDP Generation We set the number of states to 10 and the number of actions to 5. The transition
probability is randomly generated by drawing from a Dirichlet distribution with all parameters (1, . . . , 1) for
generating each P (·|s, a). We set the number of cost functions I to 1. The reward function R is randomly drawn
from [0, 1] uniformly for each R(s, a). The cost function C1 is randomly drawn from a beta distribution with
parameters 0.2, 0.2 for each C1(s, a). We choose the discount factor ϑ = 0.8 and the cost threshold ϖ = 0.5. We
repeat the random generation policy until the cost threshold is not slack for the optimal policy.

ε-Player We use the natural policy gradient algorithm with exponential weight updating scheme for the ε
player (Algorithm 3).

Algorithm 3: Natural policy gradient
Input: Learning rate ⇀, sequence of functions h1, . . . , hK ↓ (S ↘A ≃ [⇐1, 1])
Init: ε1 a uniform policy.

1 for k = 1, . . . ,K ⇐ 1 do
2 for s ↓ S do
3 εk+1(a|s) ↙ εk(a|s) exp(⇀hk(s, a)) normalized to sum to 1 across a ↓ A.

Return: Sequence ε1, . . . ,εK

O!ine Dataset We set behavior policy µ to be a mixture of εuniform and εε where εuniform is the uniform
policy that takes actions uniformly at random from the action space A at every state, and εε is the optimal
solution to the generated CMDP. We exactly solve for the occupancy measure dµ of the behavior policy µ. We
repeatedly sample the (s, a) pair from dµ and then sample s↔ according to P (·|s, a).
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Hyperparameters The learning rate for the ε-player is chosen using grid search in {1, 2, 5, 10}. The bound
B for the ↽-player is chosen by grid search in {2, 5, 10}. The bound C→ for W is chosen by a grid search in
{2, 5, 10}.

G.2 RWRL Benchmark Experiments

Hyperparameters We do a grid search on {0.00005, 0.0001, 0.0003, 0.0005, 0.001} for determining the learning
rate ⇀fast for the critics and a grid search on {0.00005, 0.0001, 0.0002} for determining the learning rate ⇀slow
for the ε-player. The chosen learning rates are ⇀fast = 0.0003 and ⇀slow = 0.0001. We use the batch size 1024.
We run K = 30000 iterations for Cartpole, Walker, Quadruped environments and K = 50000 iterations for the
Humanoid environment. For the policy network and the networks for the critics, we use fully-connected neural
networks with two hidden layers of width 256.

G.3 Bullet Safety Gym Benchmark Experiments

In this section, we provide details of the experiments run on Bullet Safety Gym benchmark environments.

O!ine Datasets We use the o!ine datasets provided by Liu et al. (2023a). They collect dataset for
each environment by merging trajectories generated by algorithms trained with various cost thresholds and
hyperparameters. After merging, they run a post-processing of filtering redundant trajectories to ensure a diverse
set of trajectories. For details, refer to their paper.

Hyperparameters Following the setup used by Liu et al. (2023a), we set the learning rate ⇀fast for the critics
to 0.001 and the learning rate ⇀slow for the ε-player to 0.0001. We use the batch size 512. We run K = 100, 000
iterations. For the policy network and the networks for the critics, we use fully-connected neural networks with
two hidden layers of width 256. We do a grid search on {2, 5, 10} for the bound B for the ↽-player. We do a grid
search on {2, 5, 10} for the bound C→ for W.
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