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Abstract
We study offline reinforcement learning (RL) with
linear MDPs under the infinite-horizon discounted
setting which aims to learn a policy that maxi-
mizes the expected discounted cumulative reward
using a pre-collected dataset. Existing algorithms
for this setting either require a uniform data cov-
erage assumptions or are computationally ineffi-
cient for finding an ω-optimal policy with O(ω→2)
sample complexity. In this paper, we propose
a primal dual algorithm for offline RL with lin-
ear MDPs in the infinite-horizon discounted set-
ting. Our algorithm is the first computationally
efficient algorithm in this setting that achieves
sample complexity of O(ω→2) with partial data
coverage assumption. Our work is an improve-
ment upon a recent work that requires O(ω→4)
samples. Moreover, we extend our algorithm to
work in the offline constrained RL setting that
enforces constraints on additional reward signals.

1. Introduction
We study the offline constrained reinforcement learning (RL)
setting where a dataset of trajectories collected previously is
given and the goal is to learn a decision making policy that
performs well with respect to a reward signal while satisfy-
ing constraints on additional reward signals. The setting is
applicable to real-world problems that have safety concerns.
Learning from a previously collected dataset without inter-
acting with the environment, a key property of offline RL
(Levine et al., 2020), is useful in real-world problems where
interacting with the environment is expensive or dangerous
(Kumar et al., 2021; Tang & Wiens, 2021; Levine et al.,
2018). Enforcing constraints on additional reward signals,
a key property of constrained RL (Altman, 2021), is useful
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for applications with safety concerns (Wang et al., 2019;
Brunke et al., 2022).

A challenge in offline RL is distribution shift (Levine et al.,
2020), a mismatch of the state-action distribution in the
offline dataset to the state-action distributions induced by
candidate policies. For sample-efficient learning, offline
RL requires the data distribution of the target policy to be
covered by the offline dataset (Chen & Jiang, 2019). A
uniform data coverage assumption (Antos et al., 2007) is a
convenient, but a strong assumption that requires the offline
dataset to cover state-action distributions induced by all
policies. Recent works study offline RL with partial data
coverage assumption that only requires the offline dataset
to cover state-action distribution induced by a single target
policy (Jin et al., 2021).

Another challenge in offline RL, which is also a challenge
in online RL, is that many practical problems have large
state spaces, making sample efficient learning difficult. For
sample efficient learning in large state space, we need to
assume a structure in the problem. In this paper, we study
the linear MDP setting (Jin et al., 2020) that assumes the
transition probability matrix and the reward function have
linear structures. This setting ensures the value function is
linear in a low-dimensional representation of state-action
pairs, allowing sample-efficient learning. To the best of our
knowledge, none of the previous works on offline RL for
linear MDPs provides with partial data coverage provide
a computationally efficient algorithm with O(ω→2) sample
complexity. In this paper, we introduce a novel algorithm
that achieves this. Furthermore, we extend to the offline
constrained RL setting that allows specifying constraints on
additional reward signals.

1.1. Related Work

In Table 1, we compare our work to previous works. The
column N shows how the sample complexity bound scales
with the error tolerance ω. The first five algorithms are for
offline RL with general function approximation. The algo-
rithms can be reduced to the linear function approximation
setting by taking a value function class consisting of lin-
ear functions. The sixth algorithm is for offline RL with
linear function approximation. The last two algorithms are
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Table 1. Comparison of algorithms for offline (constrained) RL

Setting Algorithm Partial
coverage

Computationally
efficient

Support
constraints N

General FQI (Munos & Szepesvári, 2008) No Yes No ω→2

General CBPL (Le et al., 2019) No Yes Yes ω→2

General Minimax (Xie et al., 2021) Yes No No ω→2

General CPPO (Uehara & Sun, 2022) Yes No No ω→2

General Minimax (Zanette, 2023) No No No ω→2

Linear PSPI (Xie et al., 2021) Yes Yes No ω→5

Linear MDPs Primal-Dual (Gabbianelli et al., 2024) Yes Yes No ω→4

Linear MDPs Primal-Dual (Ours) Yes Yes Yes ω→2

results on offline RL with linear MDPs, which is a spe-
cial case of the linear function approximation setting. The
computational efficiency of algorithms for the general func-
tion approximation setting is judged based on the efficiency
when applied to linear function class. As the table shows,
our algorithm is the first computationally efficient algorithm
with sample complexity O(ω→2) for finding ω-optimal pol-
icy under partial data coverage assumption. Moreover, our
algorithm supports constraints on additional reward signals.

Offline RL with General Function Approximation Of-
fline RL with general function approximation is widely stud-
ied in the discounted infinite-horizon setting. When cast-
ing the linear function approximation setting to the general
function approximation setting, we get the realizability and
Bellman completeness for free when using linear function
class since the value function under linear function approx-
imation is linear. In Table 1, we only compared works on
general function approximation that assumes realizability,
Bellman completeness and data coverage. There are other
works that relax Bellman completeness assumption at the
cost of introducing another assumption. For example, Xie
& Jiang (2020); Zhan et al. (2022); Zhu et al. (2023); Hong
et al. (2023) relax Bellman completeness assumption and
introduce marginalized importance weight assumption.

Offline RL with Episodic Setting Offline RL with lin-
ear function approximation has been studied in the finite-
horizon episodic setting. Zanette et al. (2021) propose a
computationally efficient actor-critic algorithm with pes-
simism to achieve O(ω→2) sample complexity under partial
data coverage. Jin et al. (2021) propose a computationally
efficient value iteration based algorithm with pessimism
to achieve O(ω→2) sample complexity under partial data
coverage. However, they require the knowledge of the co-
variance matrix induced by the state-action data distribu-
tion. Although their results are computationally efficient
and work under partial data coverage, they do not apply
to the infinite-horizon discounted setting. Wu et al. (2021)

study offline constrained RL with a more general way of
specifying constraints. Their focus is on episodic setting
with linear mixture MDP.

2. Preliminaries
Notations We denote by !(X ) the probability simplex
over a finite set X . We write !I = {x → RI

+ :
∑I

i=1 xi ↑
1}. We write Bd(B) = {x → Rd : ↓x↓2 ↑ B}. Given a
matrix A, denote by A† its pseudoinverse.

We consider a Markov decision process (MDP) M =
(S,A, P, r, ε, ϑ0) where S is the state space, A is the action
space, P : S ↔ A ↗ !(S) is the probability transition
kernel, r : S ↔A ↗ [0, 1], is the reward function, ε is the
discount factor and ϑ0 is the initial state distribution. We
assume that initial state is fixed to s0 for simplicity. We
assume S and A are finite, but potentially very large. We
assume the reward function r is deterministic and known to
the learner. The probability transition kernel P is unknown
to the learner.

The interaction protocol between the learner and the MDP
is as follows. The learner interacts with the MDP starting
from the initial state s0 → S . At each step t = 0, 1, . . . , the
learner chooses an action at → A and observes the reward
r(st, at) and the next state st+1. The next state st+1 is
drawn by the environment from P (·|st, at).

We define the normalized expected cumulative rewards

J(ϖ) := (1↘ ε)Eω

[ ↑∑

t=0

εtr(st, at)

]

where Eω is the expectation with respect to the distribu-
tion of the trajectory (s0, a0, s1, a1, . . . ) induced by the
interaction of the probability transition P and the policy ϖ.
The normalizing factor 1 ↘ ε makes J(ϖ) → [0, 1] for all
i = 0, . . . , I .

The goal of RL is to find a policy ϖ : S ↗ !(A) that
maximizes the reward.
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2.1. Linear MDP

For sample-efficient learning for arbitrarily large state space,
we assume access to a feature mapping ω : S ↔A ↗ Rd

that reduces the dimension of the problem as follows.
Assumption A (Linear MDP). We assume that the transi-
tion and the reward functions can be expressed as a linear
function of a known feature map ω : S↔A ↗ Rd such that

r(s, a) = ≃ω(s, a),ε⇐, P (s↓|s, a) = ≃ω(s, a),ϑ(s↓)⇐

for all (s, a, s↓) → S ↔ A ↔ S where ε → Rd is a known
parameter for the reward function and ϑ = (ϱ1, . . . ,ϱd) is
a vector of d unknown (signed) measures on S .

The linear MDP assumption is widely studied in the RL
literature for studying theoretical properties of RL with
function approximation (Jin et al., 2020). As is commonly
done in works on linear MDPs, we further make the follow-
ing boundedness assumptions. Without loss of generality
(see Appendix A in Wei et al. (2021) for justification), we
assume

↓ω(s, a)↓2 ↑ 1, ↓ε↓2 ↑
⇒
d

for all (s, a) → S ↔A. We further make a technical assump-
tion, also made by Wagenmaker et al. (2022), that for some
constant Dε ,

↓|ϑ|(S)↓2 ↑ Dε

⇒
d

where |ϑ|(S) =
∑

s↔S(|ϱ1(s)|, . . . , |ϱd(s)|). This as-
sumption holds, for example, when ϱi are probability
measures on S, in which case the assumption holds with
Dε = 1.

The linear structure implies a low-dimensional factorization
of key quantities as we discuss below. Let P → R|S↗A|↗|S|

be the matrix representation of the probability transition
kernel P with (P )(s,a),s→ = P (s↓|s, a) for (s, a, s↓) → S ↔
A↔ S . Then, the linear structure gives

P = ”#

where # → Rd↗|S| is the unknown matrix of all measures
with rows (ϱi(s↓))s→↔S and ” → R|S↗A|↗d is the known
matrix of all feature vectors with rows (ω(s, a))(s,a)↔S↗A.

Let Qω be the action value function of a policy ϖ with
respect to a reward function r : S ↔A ↗ R is defined as
follows.

Qω(s, a) = Eω

[ ↑∑

t=0

εtr(st, at)|s0 = s, a0 = a

]
.

It is the expected discounted cumulative reward starting
from the state-action pair (s, a) and then executing the pol-
icy ϖ every time step. Similarly, the state value function of
a policy ϖ with respect to a reward function r is defined as

V ω(s) = Eω

[ ↑∑

t=0

εtr(st, at)|s0 = s

]
.

It is the expected discounted cumulative reward starting
from the state s and then executing the policy ϖ every time
step.

We use Qω → R|S↗A| to denote the matrix representa-
tion of the function Qω such that (Qω)s,a = Qω(s, a) and
V ω → R|S| the vector representation of the function V ω

such that V ω
s = V ω(s). With these notations, the well

known Bellman equation Qω(s, a) = r(s, a)+εPV ω(s, a)
(see e.g. Puterman (2014)) can be written as

Qω = r + εPV ω = ”(ε + ε#V ω) = ”ϖω (1)

where r → R|S↗A| is the matrix representation of the reward
function r and we define ϖω := ε + ε#V ω → Rd. This
shows that the action value function is linear in the feature
vector:

Qω(s, a) = ≃ω(s, a), ϖω⇐.

Due to the boundedness assumptions ↓ε↓2 ↑
⇒
d and

↓|ϑ|(S)↓2 ↑ Dε

⇒
d, and the fact that V ω(s) → [0, 1

1→ϑ ],
the norm of the parameter ϖω is bounded by

↓ϖω↓2 ↑
⇒
d+

εDε

⇒
d

1↘ ε
= O

(
Dε

⇒
d

1↘ ε

)
.

We define Dϖ :=
⇒
d+ ϑDω

↘
d

1→ϑ .

2.2. Offline Learning and Data Coverage

We consider the offline learning setting where the agent
has access to a dataset D = (sj , aj , s↓j)

n
j=1. The pairs

(sj , aj), j = 1, . . . , n are assumed to be i.i.d. samples from
a distribution µB → !(S ↔A) and each s↓j is sampled from
P (· | sj , aj). Such an i.i.d. assumption on the offline dataset
is commonly made in the offline RL literature (Xie et al.,
2021; Zhan et al., 2022; Chen & Jiang, 2022; Zhu et al.,
2023) to facilitate the analysis of concentration bounds.

A major challenge in sample efficient offline RL is distri-
bution shift, which refers to the mismatch of state-action
distribution of the offline dataset and the target (optimal)
policy. For sample efficient learning, we require an assump-
tion on data coverage that guarantees the distribution of
target policy is covered by the offline dataset. A common
data coverage assumption in offline RL is concentrability
assumption that limits the ratio of occupancy measure of
target policy to that of behavior policy. The normalized
occupancy measure of a policy ϖ is defined as

µω(s, a) = (1↘ ε)Eω

[ ↑∑

t=0

εtI{st = s, at = a}
]
.

Roughly, it is the normalized count of the visitation of state-
action pair (s, a) when executing the policy ϖ. It is normal-
ized to ensure µω(s, a) is a probability measure on S↔A so
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that
∑

s,a µ(s, a) = 1. We use the notation µω → R|S↗A|

to denote the matrix representation of the function µω(s, a).
A commonly used concentrability assumption is as follows.

Assumption B (Concentrability). For an optimal policy ϖ≃,
we have

µ≃(s, a)

µB(s, a)
↑ C≃

for all s → S and a → A with µB(s, a) > 0 where we write
µ≃ = µω↑

. The bound C≃ is known to the learner.

Concentrability assumption is widely used in offline RL
with general function approximation (Munos, 2003; 2005).
The assumption requires the ratio µ≃(s, a)/µB(s, a) to be
bounded for all (s, a) → S ↔A for which µB(s, a) is posi-
tive. As discussed by Gabbianelli et al. (2024), in the linear
function approximation setting with access to a feature map,
we can define data coverage in the feature space rather than
in the state-action space. We defer discussion on our re-
sult that uses data coverage assumption in feature space to
Section 4.1.

3. Algorithm Design
Our algorithm is motivated by the linear programming for-
mulation of the reinforcement learning problem.

max
µ⇐0

≃r,µ⇐

subject to ETµ = (1↘ ε)ϱ0 + εP Tµ.

Here, E → R|S↗A|↗|S| denotes the matrix with E(s,a),s→ =
I{s = s↓} and ϱ0 denotes the initial state distribution, which
is assumed to be es0 . Note that the sth entry of ETµ is∑

a µ(s, a), which is the sum of µ(s, ·) over all possible
values of a. The optimization variable µ → R|S↗A| has the
interpretation of the normalized occupancy measure. The
objective function has the interpretation of the value of a
policy, which can be seen by

J(ϖ) = (1↘ ε)Eω

[ ↑∑

t=0

εtr(st, at)

]
= ≃r,µω⇐.

The constraint ETµ = (1↘ε)ϱ0+εP Tµ, called Bellman
flow constraint, makes sure that µ is a permissible occu-
pancy measure in the sense that there exists a policy ϖ that
induces the measure, i.e., µ = µω for some policy ϖ.

We use r = ”ε and P = ”#, which hold by the lin-
ear MDP assumption (Assumption A), to rewrite the linear
program as

max
µ⇐0

≃ε,”Tµ⇐

subject to ETµ = (1↘ ε)ϱ0 + ε#T”Tµ

Note that the optimization variable µ → R|S↗A| is high-
dimensional that depends on the size of S . Following Gab-
bianelli et al. (2024), with the goal of computational and
statistical efficiency, we introduce a low-dimensional opti-
mization variable ς = ”Tµ → Rd, which has the interpre-
tation of the average occupancy in the feature space. With
the reparametrization, the optimization problem becomes

max
µ⇐0,ω

≃ε,ς⇐

subject to ETµ = (1↘ ε)ϱ0 + ε#Tς

ς = ”Tµ.

The dual of the linear program above is

min
v,ε

(1↘ ε)≃ϱ0,v⇐

subject to ϖ = ε + ε#v

Ev ⇑ ”ϖ.

The dual variable v → R|S| has the interpretation of the
vector representation of the state value function and ϖ → Rd

the parameter such that ”ϖ → R|S↗A| is the vector repre-
sentation of the state-action value function. The Lagrangian
associated to this pair of linear programs is

L(ς,µ;v, ϖ)

= (1↘ ε)≃ϱ0,v⇐+ ≃ς,ε + ε#v ↘ ϖ⇐+ ≃µ,”ϖ ↘Ev⇐
= ≃ς,ε⇐+ ≃v, (1↘ ε)ϱ0 + ε#Tς↘ETµ⇐

+ ≃ϖ,”Tµ↘ ς⇐.

Note that the optimization variables ς, ϖ → Rd are low-
dimensional, but µ → R|S↗A| and v → R|S| are not. With
the goal of running a primal-dual algorithm on the La-
grangian using only low-dimensional variables, we intro-
duce policy variable ϖ and parameterize µ and v, following
Gabbianelli et al. (2024), by

µω,ω(s, a) = ϖ(a|s) [(1↘ ε)ϑ0(s) + ε≃ϱ(s),ς⇐] (2)

vε,ω(s) =
∑

a

ϖ(a|s)≃ϖ,ω(s, a)⇐. (3)

The choice of µω,ω makes the Bellman flow constraint
ETµω,ω = (1↘ε)ϱ0+ε#Tς of the primal problem satis-
fied. Also, the choice of vε,ω makes ≃µ,”ϖ ↘Evε,ω⇐ = 0.
Using the above parameterization, the Lagrangian can be
rewritten in terms of ϖ,ς,ϖ as follows:

f(ς, ϖ,ϖ)

= ≃ς,ε0⇐+ ≃ϖ,”Tµω,ω ↘ ς⇐ (4)
= (1↘ ε)≃ϱ0,vε,ω⇐+ ≃ς,ε0 + ε#vε,ω ↘ ϖ⇐. (5)

At the cost of having to keep track of ϖ, we can now run a
primal-dual algorithm on the low-dimensional variables ϖ,
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ς. The introduction of ϖ in the equation does not make the
algorithm inefficient because we can only keep track of the
distribution ϖ(s|a) for state-action pairs that appear in the
dataset. See Appendix C for detail.

Previous work on offline linear MDP (Gabbianelli et al.,
2024) runs primal-dual algorithm on the variables ϖ and
φ = $†ς by estimating the gradient of the Lagrangian
with respect to the variables. Their algorithm requires run-
ning gradient descent algorithm on ϖ for every gradient
ascent step of φ, leading to a double-loop algorithm struc-
ture. Since each gradient descent/ascent step requires fresh
copy of independent data, the double-loop algorithm leads
to sample complexity of O(ω→4). We sidestep the need of
the double-loop structure and obtain O(ω→2) sample com-
plexity by restricting the values of ς to a carefully designed
confidence set that allows estimating the gradient uniformly
over the choices of ς, ϖ and ϖ. We outline the argument in
the following section.

3.1. Analysis

For a given policy ϖ, recall that ϖω → Rd is the parameter
satisfying Qω = ”ϖω . It can be shown that for any ς → Rd,

f(ϖω,ς,ϖ) = J(ϖ).

Also, defining ςω = ”Tµω , which has the interpretation of
the average occupancy in the feature space when executing
the policy ϖ, it can be shown that for any ϖ → Rd,

f(ϖ,ςω,ϖ) = J(ϖ).

See Appendix E.2 for proofs. Hence, for any sequences
{ϖt}, {εt} ⇓ Rd and {ςt} ⇓ Rd, we have

J(ϖ≃)↘ J(ϖt) = f(ϖt,ς
≃,ϖ≃)↘ f(ϖωt ,ςt,ϖt)

= (f(ϖt,ς
≃,ϖ≃)↘ f(ϖt,ς

≃,ϖt)︸ ︷︷ ︸
REGε

t

)

+ (f(ϖt,ς
≃,ϖt)↘ f(ϖt,ςt,ϖt)︸ ︷︷ ︸

REGϑ
t

)

+ (f(ϖt,ςt,ϖt)↘ f(ϖωt ,ςt,ϖt)︸ ︷︷ ︸
REGϖ

t

)

where we use the notation ς≃ = ςω↑
.

Note that the suboptimality J(ϖ≃)↘ J(ϖt) is decomposed
into regrets of the three players. As long as we show that the
sums of the three regrets over t = 1, . . . , T are sublinear in
T , we obtain 1

T

∑T
t=1 J(ϖ

≃) ↘ J(ϖt) = J(ϖ≃) ↘ J(ϖ̄) =
o(1) where ϖ̄ = Unif(ϖ1, . . . ,ϖT ) is the mixture policy that
chooses a policy among ϖ1, . . . ,ϖT uniformly at random
and runs the chosen policy for the entire trajectory.

In the rest of the section, we sketch analyses of bounding
the regrets of the three players. These analyses will motivate
our algorithm presented in Section 4.

3.2. Bounding Regret of ϖ-player

Using Equation (5), the regret of ϖ-player simplifies to

Regωt = f(ϖt,ς
≃,ϖ≃)↘ f(ϖt,ς

≃,ϖt)

= ≃ϱ≃,vεt,ω↑ ↘ vεt,ωt⇐
= ≃ϱ≃,

∑
a(ϖ

≃(a|·)↘ ϖt(a|·))≃ϖt,ω(·, a)⇐⇐.

where we define ϱω = (1 ↘ ε)ϱ0 + ε#Tςω as the state
occupancy measure induced by ϖ and write ϱ≃ = ϱω↑

. The
regret can be bounded if ϖ-player updates its policy using
an exponentiation algorithm (Zanette et al., 2021)

ϖt+1 = ς

(
φ

t∑

i=1

”ϖi

)

where ς(q) for q → R|S↗A| is a softmax policy with

ς(q)(a|s) := exp(q(s, a))∑
a→ exp(q(s, a↓))

.

Based on the standard mirror descent analysis by Gab-
bianelli et al. (2024) (Appendix D.1) we can show that,
choosing φ = O((1↘ ε)

√
log |A|/(dT )) gives

1

T

T∑

t=1

REGω
t ↑ O

(
1

1↘ ε

√
(d log |A|)/T

)

which vanishes as T increases. Consequently, choosing T
to be at least ”( d log |A|

(1→ϑ)2ϱ2 ) gives 1
T

∑T
t=1 Regω

t ↑ ω. Note
that when the exponentiation algorithm is employed, the
ϖ-player does not need to know the value of ϖt when choos-
ing ϖt, allowing the ϖ-player to play before the ↼-player.
Another benefit of the exponentiation algorithm is that the
policy chosen by the ϖ-player is restricted to the softmax
function class #(Dω) where #(·) is defined as

#(B) := {ς(”z) : z → Bd(B)}. (6)

and Dω := φTDϖ . The restriction allows statistically ef-
ficient estimation of quantities that depend on policies in
#(B) via covering argument on #(B), as we will see in
later sections.

3.3. Bounding Regret of ↼-player

Using Equation (4), the regret of ↼-player simplifies to

REGϖ
t = f(ϖt,ςt,ϖt)↘ f(ϖωt ,ςt,ϖt)

= ≃ϖt ↘ ϖωt ,”Tµωt,ωt ↘ ςt⇐.

Recall that µω,ω = ϖ ⇔E[(1 ↘ ε)ϱ0 + ε#Tς]. The only
unknown quantity in the regret is #Tς → R|S|. Note that
#Tω(s, a) = (P (s↓|s, a))s→↔S is a next-state distribution
given current state-action pair (s, a), and es→k is an unbiased
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estimator for #Tω(sk, ak). Hence, if ς is a linear com-
bination

∑n
k=1 ckω(sk, ak), we can construct an unbiased

estimator
∑n

k=1 ckes→k for #Tς. Motivated by this obser-
vation, to facilitate the algorithm design for the ↼-player, we
will restrict the ↽-player to choose a linear combination of
feature vectors that appear in the dataset to allow estimating
#Tς. Specifically, we strict the ↽-player to choose ςt from
the following set where the bound B will be chosen later.

Cn(B) :=

{
1

n

n∑

k=1

ckω(sk, ak) : c1, . . . , cn → [↘B,B]

}
.

(7)
Given the restriction, we can parameterize the value of ςt

by the coefficients ct → [↘B,B]n for some bound B, and
write ςt = ς(ct) where we define

ς(c) :=
1

n

n∑

k=1

ckω(sk, ak)

Following the previous discussion, we define the estimates
for #Tς(c) and µω(c),ω parameterized by c → [↘B,B]n:

⊋#Tς(c) :=
1

n

n∑

k=1

ckes→k

µω(c),ω := ϖ ⇔E[(1↘ ε)ϱ0 + ε⊋#Tς(c)].

These estimates enjoy the following concentration bound,
which can be shown using matrix Bernstein inequality. See
Appendix D.2 for a proof.

Lemma 3.1. For a fixed ς(c) = 1
n

∑n
k=1 ckω(sk, ak) with

|ck| ↑ B for k = 1, . . . , n, and a policy ϖ, we have

↓”Tµω(c),ω ↘”T µω(c),ω↓2 ↑ O
(
B


log(d/⇀)

n

)

with probability at least 1 ↘ ⇀ conditional on the data of
state-action pairs {(sk, ak)}nk=1.

For estimating the regret ≃ϖt ↘ ϖωt ,”Tµω(ct),ωt
↘ ς(ct)⇐,

we need a uniform concentration bound on the estimates
”T µω(ct),ω over ς(c) and ϖ. The restriction on the ϖ-
player to choose a policy in the softmax function class
defined in (6) allows converting the concentration bound
for a fixed policy ϖ in Lemma 3.1 to a uniform concentra-
tion bound over all policies in the softmax function class
via a covering argument. The conversion is possible due
to the fact that the log covering number for the softmax
function class is bounded by O(d) (see Lemma A.3 in Ap-
pendix A). However, such a conversion to a uniform con-
centration bound over all ς(c) for c → [↘B,B]n is elusive
since a naive covering argument on the space of parameters
[↘B,B]n will give a log covering number bound of O(n).
To sidestep this issue, we exploit the fact that Cn(B) can

be spanned by a set of spanners {ω(sj , aj)}j↔I for some
index set I ↖ {1, . . . , n} of size at most d. This can be seen
by the following lemma by Awerbuch & Kleinberg (2008).
Lemma 3.2 (Barycentric spanner). Let K ↖ Rd be compact
set. Then, there exists a spanner {↼1, . . .↼d} ⇓ K such that
any vector x → K can be represented as x =

∑d
i=1 ci↼i

where ci → [↘C,C] for all i = 1, . . . , d. Such a spanner is
called a C-approximate barycentric spanner for K. If K is
finite, we can find a C-approximate barycentric spanner in
time complexity O(nd2 logC d).

Applying this lemma, we can compute a 2-approximate
barycentric spanner {ω(sj , aj)}j↔I for {ω(sk, ak)}nk=1
where I ↖ {1, . . . , n} is an index set of size d. Given
any c → [↘B,B]n, we can convert it to c↓ → [↘2B, 2B]n

with c↓k nonzero only if k → I such that ς(c) = ς(c↓). This
can be seen by

ς(c) =
1

n

n∑

k=1

ckω(sk, ak)

=
∑

j↔I

(
1

n

n∑

k=1

bkjck

)
ω(sj , aj) = ς(c↓)

where the coefficients bkj → [↘2, 2] are such that
ω(sk, ak) =

∑
j↔I bkjω(sj , aj), which exist by the fact

that {ω(sj , aj)}j↔I is a 2-approximate barycentric span-
ner of {ω(sk, ak)}nk=1. We summarize the definition of the
conversion from c to c↓ that satisfies ς(c) = ς(c↓).
Definition 3.3. Given a dataset {(sk, ak, s↓k)}nk=1, let
{ω(sj , aj)}j↔I be a 2-approximate barycentric spanner for
{ω(sk, ak)}nk=1 with |I| ↑ d. We define the conversion of
c → Rn to c↓ → Rn as

c↓j =

{
1
n

∑n
k=1 bkjck if j → I

0 otherwise.
(8)

where bkj are the coefficients such that ω(sk, ak) =∑
j↔I bkjω(sj , aj) with bkj = 0 for j /→ I.

Given ct → [↘B,B]n such that ς(ct) → Cn(B), let c↓t →
[↘2B, 2B]n be the conversion such that ς(c↓t) = ς(ct)
with only the coefficients with indices in I nonzero. The
converted coefficients c↓t → Rn live in a low dimensional
space {c↓ → [↘2B, 2B]n : c↓j = 0 if j /→ I} with the log
covering number of O(d). To use a covering argument,
let c↓↓t be the covering center closest to c↓t. Then we can
decompose the regret of the ↼-player as

REGϖ
t = ≃ϖt ↘ ϖωt ,”Tµω(ct),ωt

↘ ς(ct)⇐
= ≃ϖt ↘ ϖωt ,”Tµω(c→

t),ωt
↘”Tµωt(c→→

t ),ωt
⇐

+ ≃ϖt ↘ ϖωt ,”Tµω(c→→
t ),ωt

↘”T µω(c→→
t ),ωt

⇐
+ ≃ϖt ↘ ϖωt ,”T µω(c→→

t ),ωt
↘”T µω(c→

t),ωt
⇐

+ ≃ϖt ↘ ϖωt ,”T µω(c→
t),ωt

↘ ς(c↓t)⇐.
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The first term can be bounded since ς(c↓t) ↙ ςt(c↓↓t ). The
second term can be bounded using a union bound of the
concentration inequalities on ”T µω(c→→),ω over c↓↓ in the
cover of [↘2B, 2B]d. The third term can be bounded since
c↓t ↙ c↓↓t . The last term, interpreted as a regret of the ↼-
player against a dynamic action ϖωt , can be bounded by a
greedy ↼-player that minimizes ≃·,”T µω(c→

t),ωt
↘ ς(c↓t)⇐.

The greedy strategy requires ↼-player to play after ↽-player
and ϖ-player. The bounds lead to

1

T

T∑

t=1

REGϖ
t ↑ O

(
Bd

1↘ ε


log(Bdn/⇀)

n

)
.

In summary, we can bound the regret of ↼-player if ↼-player
plays ϖt → Bd(Dϖ) that minimizes ≃·,”T µω(c→

t),ωt
↘ς(c↓t)⇐.

The greedy strategy requires ↼-player to play after ↽-player
and ϖ-player. See Appendix D.2 for detailed analysis.

3.4. Bounding Regret of ↽-player

Using Equation (5), the regret of ↽-player simplifies to

REGς
t = f(ϖt,ς

≃,ϖt)↘ f(ϖt,ςt,ϖt)

= ≃ς≃ ↘ ςt,ε + ε#vεt,ωt ↘ ϖt︸ ︷︷ ︸
=ϑt

⇐

The sum of REGς
t over t = 1, . . . , T is the regret of the

↽-player against a fixed action ↽≃ where the reward function
at time t is ≃·, ↽t⇐. From the previous section, we require ↽
player to play before ↼-player, whose play affects ↽t. Hence,
the decision of ↽-player at time t must be made before the
knowledge of ↽t. Assuming for now that ↽t is known (↽t
is in fact unknown and needs to be estimated since # is
unknown), the regret of ↽-player can be made sublinear
in T by employing a no-regret online convex optimization
oracle (defined below) on Cn(B) as long as ς≃ → Cn(B).
Definition 3.4. An algorithm is called a no-regret online
convex optimization oracle with respect to a convex set
C if, for any sequence of convex functions h1, . . . , hT :
Rd ↗ [↘1, 1] and for any ς → C, the sequence of vectors
ς1, . . . ,ςT → C produced by the algorithm satisfies

1

T

T∑

t=1

ht(ςt)↘ ht(ς) ↑ ωςopt(T )

for some ωςopt(T ) > 0 that converges to 0 as T ↗ ∝.

The online gradient descent algorithm (Hazan et al., 2016)
is an example of a computationally efficient online convex
optimization oracle. Employing a no-regret online convex
optimization oracle with convex set Cn(B) on the sequence
of functions ≃·, ↽t⇐, the ↽-player can enjoy a sublinear regret
against any fixed ς → Cn(B). However, ς≃ may not lie
in Cn(B) for any B. In fact, we can construct an example

where ς≃ is not in the span of {ω(sk, ak)}nk=1 with proba-
bility at least 1/2 (Lemma B.2). To sidestep this problem,
we show ς≃ can be approximated by a vector ς≃ in Cn(C≃):
Lemma 3.5. Under the concentrability assumption B, there
exists ς≃ → Rd of the form ς≃ = 1

n

∑n
k=1 ckω(sk, ak) with

ck → [0, C≃], k = 1, . . . , n such that

↓ς≃ ↘ ς≃↓2 ↑ O
(
C≃


log(d/φ)

n

)

with probability at least 1↘ ⇀.

Note that this lemma is the only place the data coverage
assumption is needed for our analysis and this is where
we require choosing B = C≃. Also, in our algorithm,
computing ς≃ is not needed. Only the existence of such a
vector ς≃ is needed in the analysis. With the lemma above,
we can approximate the regret as

REGς
t = ≃ς≃ ↘ ςt,ε + ε#vεt,ωt ↘ ϖt⇐

↙ ≃ς≃ ↘ ςt,ε + ε#vεt,ωt ↘ ϖt⇐

and argue that the sum of the above quantity over t =
1, . . . , T is sublinear since the regret against ς≃ → Cn(C≃)
is sublinear when employing a no-regret online convex op-
timization oracle. Now, we deal with the fact that the term
#vεt,ωt is unknown and needs to be estimated. Observing
that ≃ω(s, a),#v⇐ = Es→⇒P (·|s,a)[v(s

↓)], we can estimate
#v → Rd for any v → R|S| by regressing v(s↓) on ω(s, a)
using the triplets (s, a, s↓) in the dataset D. Following the
literature on linear bandits (Abbasi-Yadkori et al., 2011), we
use the regularized least squares estimate

#v := (n$n + I)→1 ∑n
k=1 v(s

↓
k)ω(sk, ak) (9)

where $n := 1
n

∑n
k=1 ω(sk, ak)ω(sk, ak)

T is the empiri-
cal Gram matrix. By the well-known result for linear ban-
dits (e.g. Theorem 2 in Abbasi-Yadkori et al. (2011)), we
have the following high-probability concentration bound
(Lemma B.4) for the estimate #v where v : S ↗ [0, Dv]:

↓#v ↘#v↓n!̂n+I ↑ O

Dv

√
d log(n/⇀)


.

Since we need concentration bound of #vεt,ωt where vεt,ωt

are random, we need a uniform bound over all possible
functions vεt,ωt . Since the domain of v has cardinality |S|,
a naive covering argument on the function space of v will
make the bound scale with poly(|S|). To avoid this, we use
a careful covering argument exploiting the fact that ϖt is a
softmax function parameterized by a d-dimensional vector
and ϖt are d-dimensional vectors. With covering, we can
show the following uniform concentration bound.
Lemma 3.6. Consider a function class

V = {vε,ω → (S ↗ [0, Dv]) : ϖ → B(Dϖ),ϖ → #(Dω)} .

7
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With probability at least 1↘ ⇀, we have

↓#v ↘#v↓n!̂n+I ↑ O
(
Dv


d log(DϖDωn/⇀)

)

uniformly over v → V where #v is the least squares esti-
mate defined in (9).

See Lemma 3.6 in the Appendix for detail. With the uniform
concentration bound, we can continue bounding the regret
of ↽-player as follows.

≃ς≃ ↘ ςt,ε + ε#vεt,ωt ↘ ϖt⇐

= ≃ς≃ ↘ ςt,ε + ε#vεt,ωt ↘ ϖt⇐

+ ε≃ς≃ ↘ ςt,#vεt,ωt ↘#vεt,ωt⇐.

The sum of the first term across t = 1, . . . , T can be
bounded by employing online convex optimization algo-
rithm. We can bound the second term as follows.

≃ς≃ ↘ ςt,#vεt,ωt ↘#vεt,ωt⇐

↑ ↓ς≃ ↘ ςt↓(!̂n+I/n)↓1↓#vεt,ωt ↘#vεt,ωt↓!̂n+I/n

↑ ↓ς≃ ↘ ςt↓!̂†
n︸ ︷︷ ︸

(i)

↓#vεt,ωt ↘#vεt,ωt↓!̂n+I/n︸ ︷︷ ︸
(ii)

where the second inequality follows since ς≃ ↘ ςt is in the
column space of $n. (ii) can be bounded using Lemma 3.6.
(i) can be bounded by the following technical lemma. See
Appendix B.1 for a proof.
Lemma 3.7. For any ς(c) = 1

n

∑n
k=1 ckω(sk, ak) with

ck → [↘B,B], k = 1, . . . , n, we have

↓ς(c)↓2
!̂†

n
↑ dB2.

Combining all the bounds, we get the following.

1

T

T∑

t=1

REGς
t ↑ O

(
C≃d3/2

1↘ ε


log(dnT/⇀)

n

)
+ ωςopt(T )

where O hides log log |A|. See Appendix D.3 for details.

4. Algorithm and Main Results
Motivated by the analysis in the previous section for bound-
ing regrets of the four players, we present a primal-dual
algorithm that proceeds in T steps. At each step, the four
players ↽-player, ↼-player, w-player, ϖ-player choose ac-
tions ςt, ϖt, wt, ϖt, respectively. Since the analysis in
the previous section requires ↼-player and w-player to act
greedily, we choose ↽-player and ϖ-player to play ςt, ϖt,
respectively, before ↼-player and w-player play. The regret
analysis of the three players in the previous section leads to
our main result in the following theorem.

Algorithm 1: Primal-Dual Algorithm for Offline Linear
MDPs
Input: Dataset D = {(sj , aj , rj , s↓j)}nj=1.
Initialize: ϖ1 uniform, c↓1 ′ 0, φ ′

√
log |A|/T .

1 for t = 1, . . . , T do
2 ϖt ′ argminε↔Bd(Dϖ)≃ϖ,”

T µω(c→
t),ωt

↘ ς(c↓t)⇐.
3 ς(ct+1) ′ OCO(ε ↘ ϖt + ε#vεt,ωt ; Cn(C≃)).
4 Convert ct+1 to c↓t+1 using Definition 3.3.
5 ϖt+1 ′ ς(φ

∑t
i=1 ”ϖi).

Return: ϖ̄ = Unif(ϖ1, . . . ,ϖT )

Theorem 4.1. Under Assumptions A and B, as long as T is
at least ”( d log |A|

(1→ϑ)2ϱ2 ), the policy ϖ̄ produced by Algorithm 1
satisfies J(ϖ̄) ⇑ J(ϖ≃)↘ ω with probability at least 1↘ ⇀
for sample size

n = O
(
(C≃)2d3 log(dn(log |A|)/(⇀ω(1↘ ε)))

(1↘ ε)2ω2

)
.

Our work is an improvement over the work by Gabbianelli
et al. (2024) who give O( (C

↑)2d2 log |A|
(1→ϑ)4ϱ2 ) sample complexity.

4.1. Result on Feature Coverage Assumptions

The discussion so far uses the concentrability assumption
(Assumption B) that requires µ≃(s, a)/µ(s, a) ↑ C≃ for
all s → S and a → A. We present a result that requires a
feature coverage assumption instead. We use the definition
of feature coverage used in Gabbianelli et al. (2024):
Assumption C (Feature coverage). For an optimal policy
ϖ≃, we have

(ς≃)T ($†)2ς≃ ↑ C≃ and ς≃ → Col($)

where ς≃ := Eµ↑ [ω(s, a)] and Col(·) is the column space.

The feature coverage assumption requires ς≃, the expected
occupancy of the target policy in the feature space, to be
covered by covariance matrix induced by the data distri-
bution µB . Under the feature coverage assumption, ς≃

can be approximated by a linear combination of ω(sk, ak),
k = 1, . . . , n (Lemma B.3). This result is analogous to
Lemma 3.5 that uses concentrability assumption instead. It
follows that the result in Theorem 4.1 with the concentra-
bility assumption (Assumption B) replaced by the feature
coverage assumption (Assumption C). A limitation of our
work is that we use a stronger notion of feature coverage
compared to the one used by Gabbianelli et al. (2024), who
assume (ς≃)T ($†)ς≃ is bounded. However, they require
the knowledge of $ and their sample complexity is O(ω→4).
We leave design and analysis of algorithm using the weaker
notion of feature coverage to future work.

8



Offline Constrained Reinforcement Learning with Linear MDPs

5. Extension to Offline Constrained RL
We now consider a constrained Markov decision process
(CMDP) M = (S,A, P, {ri}Ii=0, ε, ϑ0). It is the same
setting as the MDP setting except that now we have multiple
reward functions ri, i = 0, . . . , I . We define the normalized
expected cumulative rewards for r0, . . . , rI :

Ji(ϖ) := (1↘ ε)Eω

[ ↑∑

t=0

εtri(st, at)

]
.

Constrained RL aims to find a policy ϖ : S ↗ !(A) that
maximizes the reward signal r0 subject to the constraints
on other reward signals ri, i = 1, . . . , I . Specifically, given
thresholds ⇀ = (⇁1, . . . , ⇁I), the goal is to find ϖ that solves
the following optimization problem denoted by P(⇀ ).

max
ω

J0(ϖ)

subject to Ji(ϖ) ⇑ ⇁i, i = 1, . . . , I.
(OPT)

We assume the following Slater’s condition, a commonly
made assumption in constrained RL (Le et al., 2019; Chen
et al., 2021; Bai et al., 2023; Ding et al., 2020) for ensuring
strong duality of the optimization problem.
Assumption D (Slater’s condition). There exist a constant
φ > 0 and a policy ϖ such that Ji(ϖ) ⇑ ⇁i + φ for all
i = 1, . . . , I . Assume φ is known.

As discussed in Hong et al. (2023), Slater’s condition is a
mild assumption since given the knowledge of the feasibility
of the problem, we can guarantee that Slater’s condition is
met by slightly loosening the cost threshold. For sample
efficient learning for arbitrarily large state space, we assume
the following linear structure on the CMDP.
Assumption E (Linear CMDP). We assume that the transi-
tion and the reward functions can be expressed as a linear
function of a known feature map ω : S↔A ↗ Rd such that

ri(s, a) = ≃ω(s, a),εi⇐, P (s↓|s, a) = ≃ω(s, a),ϑ(s↓)⇐

for all (s, a, s↓) → S ↔ A ↔ S and i = 1, . . . , I , where
εi → Rd are known parameters and ϑ = (ϱ1, . . . ,ϱd) is a
vector of d unknown (signed) measures on S .

Similarly to the linear MDP setting, we require the data
coverage assumption (Assumption B) where the optimal
policy ϖ≃ is optimal for the optimization problem P(⇀ ).

Our algorithm for the linear CMDP setting is motivated
by the linear programming formulation of the constrained
reinforcement learning problem (OPT):

max
µ⇐0

≃r0,µ⇐

subject to ≃ri,µ⇐ ⇑ ⇁i, i = 1, . . . , I,

ETµ = (1↘ ε)ϱ0 + εP Tµ.

and its dual
min

w⇐0,v,ε
(1↘ ε)≃ϱ0,v⇐ ↘ ≃w, ⇀ ⇐

subject to ϖ = ε0 +%w + ε#v

Ev ⇑ ”ϖ.

where we write % =

ε1 · · · εI


→ Rd↗I .

Algorithm 2: Primal-Dual Algorithm for Offline Linear
CMDPs
Input: Dataset D = {(sj , aj , rj , s↓j)}nj=1, Dw, ⇀
Initialize: ϖ1 uniform, c↓1 ′ 0, φ ′

√
log |A|/T .

1 for t = 1, . . . , T do
2 ϖt ′ argminε↔Bd(Dϖ)≃ϖ,”

T µω(c→
t),ωt

↘ ς(c↓t)⇐.
3 wt ′ argminw↔Dw”I ≃w, ⇀ ↘%Tςt⇐.
4 ς(ct+1) ′

OCO(ε0 ↘ ϖt +%wt + ε#vεt,ωt ; Cn(C≃)).
5 Convert ct+1 to c↓t+1 using Definition 3.3.
6 ϖt+1 ′ ς(φ

∑t
i=1 ”ϖi).

Return: ϖ̄ = Unif(ϖ1, . . . ,ϖT )

The structure of our algorithm for the constrained RL setting
is similar to that for the unconstrained RL setting. The dif-
ference is that we add the w-player that adjusts the weights
on the rewards r1, . . . , rI . Closely following the analysis
for the unconstrained setting, we can show the following
sample complexity for the constrained setting.
Theorem 5.1. Under Assumptions B,D and E, the policy ϖ̄
produced by Algorithm 1 with threshold ⇀ and Dw = 1+ 1

↼

and T at least ”( d log |A|
(1→ϑ)2ϱ2 ) and large enough such that

ωςopt(T ) ↑ ω satisfies J0(ϖ̄) ⇑ J0(ϖ≃)↘ω and Ji(ϖ̄) ⇑ ⇁i↘ω
with probability at least 1↘ ⇀ with sample size

n = O
(
(C≃)2d3 log(dn(log |A|)/(⇀φω(1↘ ε)))

(1↘ ε)2φ2ω2

)
.

See Appendix E for details. By tightening the input thresh-
olds for Algorithm 1 to ⇀ + φω1 and assuming a two-policy
feature coverage assumption, we can show that the output
policy ϖ̄ is ω-optimal and satisfies the constraints exactly,
i.e., Ji(ϖ̄) ⇑ ⇁i, i = 1, . . . , I . See Appendix E.4 for details.

6. Conclusion
In this paper, we propose a computationally efficient pri-
mal dual algorithm for offline constrained RL with linear
function approximation under partial data coverage. Our
algorithm is the first computationally efficient algorithm
to achieve O(ω→2) sample complexity under partial data
coverage. For the partial data coverage assumption, we use
the notion of feature coverage. An interesting future work
would be to design an algorithm that allows using a weaker
notion of feature coverage in the sample complexity bound.
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Munos, R. and Szepesvári, C. Finite-time bounds for fitted
value iteration. Journal of Machine Learning Research, 9
(5), 2008.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

10



Offline Constrained Reinforcement Learning with Linear MDPs

Tang, S. and Wiens, J. Model selection for offline reinforce-
ment learning: Practical considerations for healthcare
settings. In Machine Learning for Healthcare Confer-
ence, pp. 2–35. PMLR, 2021.

Uehara, M. and Sun, W. Pessimistic model-based offline
reinforcement learning under partial coverage. In Inter-
national Conference on Learning Representations, 2022.

Wagenmaker, A. J., Chen, Y., Simchowitz, M., Du, S., and
Jamieson, K. First-order regret in reinforcement learning
with linear function approximation: A robust estimation
approach. In International Conference on Machine Learn-
ing, pp. 22384–22429. PMLR, 2022.

Wainwright, M. J. High-dimensional statistics: A non-
asymptotic viewpoint, volume 48. Cambridge university
press, 2019.

Wang, W., Yu, N., Gao, Y., and Shi, J. Safe off-policy deep
reinforcement learning algorithm for volt-var control in
power distribution systems. IEEE Transactions on Smart
Grid, 11(4):3008–3018, 2019.

Wei, C.-Y., Jahromi, M. J., Luo, H., and Jain, R. Learning
infinite-horizon average-reward mdps with linear function
approximation. In International Conference on Artificial
Intelligence and Statistics, pp. 3007–3015. PMLR, 2021.

Wu, R., Zhang, Y., Yang, Z., and Wang, Z. Offline con-
strained multi-objective reinforcement learning via pes-
simistic dual value iteration. Advances in Neural Infor-
mation Processing Systems, 34:25439–25451, 2021.

Xie, T. and Jiang, N. Q* approximation schemes for batch
reinforcement learning: A theoretical comparison. In
Conference on Uncertainty in Artificial Intelligence, pp.
550–559. PMLR, 2020.

Xie, T., Cheng, C.-A., Jiang, N., Mineiro, P., and Agarwal,
A. Bellman-consistent pessimism for offline reinforce-
ment learning. Advances in neural information process-
ing systems, 34:6683–6694, 2021.

Zanette, A. When is realizability sufficient for off-policy
reinforcement learning? In International Conference on
Machine Learning, pp. 40637–40668. PMLR, 2023.

Zanette, A., Wainwright, M. J., and Brunskill, E. Provable
benefits of actor-critic methods for offline reinforcement
learning. Advances in neural information processing
systems, 34:13626–13640, 2021.

Zhan, W., Huang, B., Huang, A., Jiang, N., and Lee, J. Of-
fline reinforcement learning with realizability and single-
policy concentrability. In Conference on Learning Theory,
pp. 2730–2775. PMLR, 2022.

Zhu, H., Rashidinejad, P., and Jiao, J. Importance weighted
actor-critic for optimal conservative offline reinforcement
learning. arXiv preprint arXiv:2301.12714, 2023.

11



Offline Constrained Reinforcement Learning with Linear MDPs

A. Covering
Lemma A.1 (Covering balls. e.g. Wainwright (2019)). For any ω → (0, 1), we have

logN (Bd(r), ↓ · ↓↑, ω) ↑ d log

(
1 +

2r

ω

)
.

Lemma A.2 (Lemma 7 in Zanette et al. (2021)). Consider a feature mapping ω : S ↔A ↗ Rd such that ↓ω(s, a)↓2 ↑ 1
for all (s, a) → S ↔A. Then for all s → S , we have

∑

a↔A
|ϖϖ→(a|s)↘ ϖϖ(a|s)| ↑ 8↓ε ↘ ε↓↓2

for any pair ε,ε↓ → Rd such that ↓ε ↘ ε↓↓2 ↑ 1
2 .

Lemma A.3 (Covering softmax function class. Lemma 6 in Zanette et al. (2021)). For any ω → (0, 1), we have

logN (#(B), ↓ · ↓↑,1, ω) ↑ d log

(
1 +

16B

ω

)

where the norm ↓ · ↓↑,1 is defined by

↓ϖ ↘ ϖ↓↓↑,1 := sup
s↔S

∑

a↔A
|ϖ(a|s)↘ ϖ↓(a|s)|.

Lemma A.4 (Covering number bound for the space of v). Consider the function class

V = {vε,ω : ϖ → B(Dϖ),ϖ → #(Dω)}

where vε,ω : S ↗ R is defined by vε,ω(s) =
∑

a ϖ(a|s)≃ϖ,ϕ(s, a)⇐. Then,

N (V, ↓ · ↓↑, ω) ↑ N (B(Dϖ), ↓ · ↓2, ω/2)↔N (#(Dω), ↓ · ↓↑,1, ω/(2Dϖ)).

and it follows that
logN (V, ↓ · ↓↑, ω) ↑ O(d log(DϖDω/ω)).

Proof. Consider Cv = {vε,ω → (S ↗ [0, 1
1→ϑ ]) : ϖ → Cϖ ,ϖ → Cω} where Cϖ is an ω/2-cover of B(Dϖ) with respect

to ↓ · ↓2 and Cω is an ω/(2Dϖ)-cover of #(Dω) with respect to ↓ · ↓↑,1. Such covers with |Cϖ | ↑ (1 + 4Dϖ/ω)d and
|Cω| ↑ (1 + 32DϖDω/ω)d exist by previous lemmas. Consider any vε,ω → V . Then, there exists ϖ↓ → Cϖ and ϖ↓ → Cω
with ↓ϖ ↘ ϖ↓↓2 ↑ ω/2 and ↓ϖ ↘ ϖ↓↓↑,1 = sups↔S

∑
a↔A |ϖ(a|s)↘ ϖ↓(a|s)| ↑ ω/(2Dϖ). Then for any s → S , vε→,ω→ → Cv

satisfies

|vε,ω(s)↘ vε→,ω→(s)| = |
∑

a

ϖ(a|s)≃ϖ,ϕ(s, a)⇐ ↘
∑

a

ϖ↓(a|s)≃ϖ↓,ϕ(s, a)⇐|

= |
∑

a

(ϖ(a|s)↘ ϖ↓(a|s))≃ϖ,ϕ(s, a)⇐+ ϖ↓(a|s)≃ϖ ↘ ϖ↓,ϕ(s, a)⇐|

↑ Dϖ

∑

a

|ϖ(a|s)↘ ϖ↓(a|s)|+
∑

a

ϖ↓(a|s)ω/2

↑ ω.

It follows that Cv is an ω-cover of V with respect to ↓ · ↓↑ with |Cv| = |Cϖ ||Cω| and we are done.

B. Concentration Inequalities
Lemma B.1 (Matrix Bernstein). Consider a finite sequence {Sk} of independent, random matrices with common
dimension d1 ↔ d2. Assume that ESk = 0 and ↓Sk↓ ↑ L for each index k. Let Z =

∑
k Sk and define

v(Z) := max{↓E[ZZT ]↓, ↓E[ZTZ]↓} = max{↓
∑

k E[SkST
k ]↓, ↓

∑
k E[ST

k Sk]↓}. Then,

P (↓Z↓ ⇑ t) ↑ (d1 + d2) exp

(
↘t2/2

v(Z) + Lt/3

)
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and it follows that with probability at least 1↘ ⇀, we have

↓Z↓ ↑ 2L log((d1 + d2)/⇀)

3
+

√
2v(Z) log((d1 + d2)/⇀).

Lemma B.2. There exists an example where ς≃ = Eµ↑ [ω(s, a)] is not in the span of ω(s1, a1), . . . ,ω(sn, an) with
probability at least 1/2.

Proof. Consider the case where S = {s}, A = {a1, a2}, d = 2, and ω(s, a1) = e1 and ω(s, a2) = e2. Let µ = µ≃ and
µ(s, a1) = p and µ(s, a2) = 1↘ p. Let F be the event where ς≃ is not in the span of ω(s1, a1), . . . ,ω(sn, an). Then,

P (F ) = (1↘ p)n ⇑ 1

2

as long as we choose p ↑ 1↘ 2→1/n.

Proof of Lemma 3.5. Let ck = w≃(sk, ak) = µ≃(sk, ak)/µ(sk, ak), k = 1, . . . , n. Note that µ(sk, ak) > 0, k = 1, . . . , n
must hold, otherwise such sk, ak cannot be sampled. By the concentrability assumption, we have ck → [0, C≃], k = 1, . . . , n.
Let zk = ckω(sk, ak) for k = 1, . . . , n. Then, ↓zk↓ ↑ C≃ and

E[zk] = E(s,a)⇒µ[w
≃(s, a)ω(s, a)] = E(s,a)⇒µ


µ≃(s, a)

µ(s, a)
ω(s, a)


= E(s,a)⇒µ↑ [ω(s, a)] = ς≃.

Define Sk = zk ↘ ς≃, k = 1, . . . , n Then, E[Sk] = 0 and ↓Sk↓2 ↑ ↓zk↓2 + E[↓zk↓2] ↑ 2C≃ and ↓E[ST
k Sk]↓2 ↑

E[zT
k zk] ↑ (C≃)2 and ↓E[SkST

k ]↓2 ↑ (C≃)2. Applying matrix Bernstein inequality (Lemma B.1) on {Sk}nk=1, we have

↓ 1
n

n∑

k=1

Sk↓2 = ↓ 1
n
w≃(sk, ak)ω(sk, ak)↘ ς≃↓2 ↑ 4C≃ log((d+ 1)/⇀)

3n
+


8(C≃)2 log((d+ 1)/⇀)

n

with probability at least 1↘ ⇀ and the result follows.

Lemma B.3. Under the feature coverage assumption C, there exists ς≃ → Rd of the form ς≃ = 1
n

∑n
k=1 ckω(sk, ak) with

ck → [0, C≃], k = 1, . . . , n such that

↓ς≃ ↘ ς≃↓2 ↑ O
(
C≃


log(d/⇀)

n

)

with probability at least 1↘ ⇀.

Proof. Since ς≃ → Col($), we have ς≃ = $$†ς≃ and it follows that

ς≃ = $$†ς≃

= E[ω(s, a)ω(s, a)T$†ς≃]

= E[≃ω(s, a),$†ς≃⇐ω(s, a)].

Let ck = ≃ω(sk, ak),$†ς≃⇐. Then, by Cauchy-Schwartz, we have

|ck| ↑ ↓ω(sk, ak)↓2↓$†ς≃↓2 ↑ C≃

where the last inequality follows by the feature coverage assumption. Using matrix Bernstein inequality as is done in the
proof of Lemma 3.5, the result follows.
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B.1. Proof of Lemma 3.7

Proof of Lemma 3.7. Consider ς = 1
n

∑n
k=1 ckω(sk, ak) with |ck| ↑ B, k = 1, . . . , n. Let $n = UDUT be the

eigendecomposition of $n = 1
n

∑n
k=1 ω(sk, ak)ω(sk, ak)

T where D = diag(d1, . . . , dd) with d1 ⇑ · · · ⇑ dd ⇑ 0. Then,
we have D = UT $nU = 1

n

∑n
k=1 U

Tω(sk, ak)ω(sk, ak)TU and it follows that di = 1
n

∑n
k=1≃ui,ω(sk, ak)⇐2 where

di is the ith diagonal entry of D. Also,

ς =
1

n

n∑

k=1

ckω(sk, ak)

=
1

n

n∑

k=1

ck

d∑

i=1

≃ω(sk, ak),ui⇐ui

=
d∑

i=1

(
1

n

n∑

k=1

ck≃ω(sk, ak),ui⇐
)
ui.

where the second equality follows by x = UUTx =
∑d

i=1≃x,ui⇐ui for any vector x → Rd. So,

ςT $†
nς =

d→∑

i=1

(
1

n

n∑

k=1

ck≃ω(sk, ak),ui⇐
)2

/di

=
1

n

d→∑

i=1

(
n∑

k=1

ck≃ω(sk, ak),ui⇐
)2 (

n∑

k=1

≃ω(sk, ak),ui⇐2
)

↑ 1

n

d→∑

i=1

(
n∑

k=1

c2k

)

↑ dB2

where d↓ is the number of strictly positive diagonal entries in D and the first inequality follows by Cauchy-Schwartz.

B.2. Proof of Lemma 3.6

Lemma B.4. Let v : S ↗ [0, Dv]. With probability at least 1↘ ⇀, we have

↓#v ↘#v↓n!̂n+I ↑ O

Dv

√
d log(n/⇀)



where #v is the least squares estimate defined in (9).

Proof. Note that ↓#v↓2 ↑ Dv

⇒
d by the boundedness assumption on #. The result follows directly from Theorem 2 in

Abbasi-Yadkori et al. (2011).

Proof of Lemma 3.6. Let C be an (1/n)-cover on V . By Lemma A.4, such a cover with log |C| ↑ O(d log(DϖDωn)) exists.
Applying a union bound over C and using the concentration bound in Lemma B.4, we get

#v ↘#v

n!̂n+I

↑ O
(
Dv


d log(DϖDωn/⇀)

)
(10)

for all v → C with probability at least 1↘ ⇀. For any v → V , we can find v↓ in the cover that satisfies ↓v ↘ v↓↓↑ ↑ 1/n.
Hence,

#v ↘#v

n!̂n+I

↑ ↓#(v ↘ v↓) +#v↓ ↘ #v↓ + #v↓ ↘#v↓n!̂n+I

↑ ↓#(v ↘ v↓)↓n!̂n+I +

(n
$n + I)→1

n∑

k=1

(v↓(s↓k)↘ v(s↓k))ω(sk, ak)


n!̂n+I

+O
(
Dv


d log(DϖDωn/⇀)

)
.
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The first term can be bounded using the boundedness assumption on # by

↓#(v ↘ v↓)↓2
n!̂n+I

↑ ↓#(v ↘ v↓)↓22↓n$n + I↓2 ↑ d/n2 · (1 + n) ↑ O(1)

as long as n ⇑ d. The second term can be bounded by
(n

$+ I)→1
n∑

k=1

(v↓(s↓k)↘ v(s↓k))ω(sk, ak)



2

n!̂+I

=
n∑

k=1

(v↓(s↓k)↘ v(s↓k))ω(sk, ak)
T (n$+ I)→1

n∑

k=1

(v↓(s↓k)↘ v(s↓k))ω(sk, ak)

↑
n∑

k=1

↓(v↓(s↓k)↘ v(s↓k))ω(sk, ak)↓22

↑
n∑

k=1

(v↓(s↓k)↘ v(s↓k))
2

↑ 1

where the first inequality uses n$+ I ↭ I . The result follows.

C. Computational Efficiency
In this section, we explain why our algorithms are computationally efficient by showing that the algorithms only require
computing quantities for states that appear in the offline dataset to compute the policy ϖt at each step. This is how we avoid
computation complexity that scales with the size of the state space.

Recall that ϖt = ς(φ
∑t→1

i=1 ”ϖi) and by definition of ς(·),

ϖt(a|s) =
exp(φ

∑t→1
i=1 ω(s, a)

T ϖi)∑
a→ exp(φ

∑t→1
i=1 ω(s, a

↓)T ϖi)
.

We argue that the algorithm only needs to compute ϖt(a|s) for the states s that appear as the next state in the dataset D.
There are two parts where the object ϖt is used in the algorithm:

Line 3 in Algorithm 1 and Line 4 in Algorithm 2 In these lines, the object ϖt is used to compute

#vεt,ωt = (n$+ I)→1
n∑

k=1

vεt,ωt(s
↓
k)ω(sk, ak)

where vεt,ωt(s
↓
k) = (n$+ I)→1

∑
a ϖt(a|s↓k)≃ϖt,ω(s↓k, a)⇐. As we claimed, we only need to compute ϖt(·|s↓k) for s↓k that

appear in the dataset D.

Line 2 in Algorithm 1 and Line 2 in Algorithm 2 In this lines, the object ϖt is used to compute ”T µωt,ωt for ςt of the
form ςt =

1
n

∑n
k=1 ckω(sk, ak). By definition,

µς,ω = ϖ ⇔ E[(1↘ ε)ϑ0 + ε%↽ = ϖ ⇔ E[(1↘ ε)es0 + ε
1

n

n∑

k=1

ckes→k ]

and it follows that

”T µωt,ωt = (1↘ ε)”T (ϖt ⇔Ees0) + ε
1

n

n∑

k=1

ck”
T (ϖt ⇔Ees→k)

= (1↘ ε)
∑

a

ϖt(s0, a)ω(s0, a) + ε
1

n

n∑

k=1

ck
∑

a

ϖt(a|s↓k)ω(s↓k, a).

Again, we only need to compute ϖt(·|s↓k) for s↓k that appears in D.
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D. Details in Offline Unconstrained RL Setting
D.1. Bounding the Regret of ϖ-Player

Lemma D.1 (Mirror Descent, Lemma D.2 in Gabbianelli et al. (2024)). Let q1, . . . , qT be a sequence of functions from
S ↔A to R with ↓qt↓↑ ↑ Dq for t = 1, . . . , T . Given an initial policy ϖ1 : S ↗ !(A) and a learning rate φ > 0, define
the sequence of policies ϖ2, . . . ,ϖT+1 such that

ϖt+1(a|s) ∞ ϖt(a|s) exp(φqt(s, a)).

Then, for any comparator policy ϖ≃, we have

T∑

t=1

∑

s↔S
ϑω

↑
(s)≃ϖ≃(·|s)↘ ϖt(·|s), qt(s, ·)⇐ ↑

H(ϖ≃↓ϖ1)

φ
+

φTD2
q

2

where H(ϖ↓ϖ↓) :=
∑

s↔S ϑω(s)D(ϖ(·|s)↓ϖ↓(·|s)) is the conditional entropy.

Lemma D.2 (Lemma B.3 in Gabbianelli et al. (2024)). The sequence of policies ϖ1, . . . ,ϖT produced by an exponentiation
algorithm ϖt+1 = ς(φ

∑t
i=1 ”ϖi) satisfies

T∑

t=1

∑

s↔S
ϑω

↑
(s)

∑

a↔A
(ϖ≃(a|s)↘ ϖt(a|s))≃ϖt,ω(s, a)⇐ ↑

log |A|
φ

+
φTD2

↽D
2
ϖ

2

where ↓ϖt↓2 ↑ Dϖ , t = 1, . . . , T and ↓ω(·, ·)↓2 ↑ D↽.

D.2. Bounding the regret of ↼-player

Proof of Lemma 3.1. Recall µω(c),ω(s, a) = ϖ(a|s)

(1↘ ε)ϑ0(s) + ε(#Tς(c))s


where we use the notation (x)s to

denote the sth entry of vector x. We can write

”Tµω(c),ω =
∑

s,a

µω(c),ω(s, a)ω(s, a)

=
∑

s,a

ϖ(a|s)[(1↘ ε)ϑ0(s) + ε(#Tς(c))s]ω(s, a)

= (1↘ ε)
∑

a

ϖ(a|s0)ω(s0, a) + ε
∑

s

(#Tς(c))s
∑

a

ϖ(a|s)ω(s, a)

= (1↘ ε)ω(s0,ϖ) + ε
∑

s

(#Tς(c))sω(s,ϖ)

where we use the notation ω(s,ϖ) =
∑

a ϖ(a|s)ω(s, a). Recall that ς(c) = 1
n

∑n
k=1 ckω(sk, ak) where ck → [↘B,B],

k = 1, . . . , n. Following the same argument for expanding ”Tµω(c),ω , we get

”T µω(c),ω = (1↘ ε)ω(s0,ϖ) + ε
∑

s

(⊋#Tς(c))sω(s,ϖ)

= (1↘ ε)ω(s0,ϖ) +
ε

n

n∑

k=1

ckω(s
↓
k,ϖ).

Also, using #Tς(c) = 1
n

∑n
k=1 ck#

Tω(sk, ak) =
1
n

∑n
k=1 ckP (·|sk, ak) = 1

n

∑n
k=1 ckE[es→k |sk, ak], we get

”Tµω(c),ω = (1↘ ε)ω(s0,ϖ) + ε
∑

s

(#Tς(c))sω(s,ϖ)

= (1↘ ε)ω(s0,ϖ) +
ε

n

n∑

k=1

ckE[ω(s↓k,ϖ)|sk, ak].
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Hence,

↓”T (µω(c),ω ↘ µω(c),ω)↓2 = ε


1

n

n∑

k=1

ck(ω(s
↓
k,ϖ)↘ E[ω(s↓k,ϖ)|sk, ak])


2

↑ O
(
B


log(d/⇀)

n

)

where the last inequality uses Matrix Bernstein inequality (Lemma B.1) with Sk = ckω(s↓k,ϖ)↘ ckE[ω(s↓k,ϖ)|sk, ak].

Lemma D.3. Given a fixed ς → Cn(B), we have for all ϖ → #(Dω) that

↓”Tµω,ω ↘”T µω,ω↓2 ↑ O
(
B


log(d/⇀) + d log(Dωdn)

n

)

with probability at least 1↘ ⇀.

Proof. Consider an ▷-cover of #(Dω) with covering balls when measuring distances with the norm ↓ϖ ↘ ϖ↓↓↑,1 =
sups↔S

∑
a↔A |ϖ(a|s)↘ ϖ↓(a|s)|. By Lemma A.3, there exists such a cover with log covering number

logN (#(Dω), ↓ · ↓↑,1, ▷) ↑ d log

(
1 +

16Dω

▷

)
.

Fix any ϖ → #(Dω) and consider its nearest cover center ϖ↓ measuring distances by ↓ · ↓↑,1. Then,

↓”Tµω,ω ↘”T µω,ω↓2 ↑ ↓”Tµω,ω ↘”Tµω,ω→
︸ ︷︷ ︸

(i)

↓2 + ↓”Tµω,ω→ ↘”T µω,ω→
︸ ︷︷ ︸

(ii)

↓2 + ↓”T µω,ω→ ↘”T µω,ω︸ ︷︷ ︸
(iii)

↓2.

Note that

”Tµω,ω =
∑

s,a

µω,ω(s, a)ω(s, a)

=
∑

s,a

ϖ(a|s)[(1↘ ε)ϑ0(s) + ε(#Tς)s]ω(s, a)

= (1↘ ε)
∑

a

ϖ(a|s0)ω(s0, a) + ε
∑

s

(#Tς)s
∑

a

ϖ(a|s)ω(s, a)

= (1↘ ε)ω(s0,ϖ) + ε
∑

s

(#Tς)sω(s,ϖ), (11)

where we use the notation ω(s,ϖ) =
∑

a ϖ(a|s)ω(s, a). The first term (i) can be bounded by

↓”Tµω,ω ↘”Tµω,ω→↓2 ↑ (1↘ ε) ↓ω(s0,ϖ ↘ ϖ↓)↓2 + ε


∑

s

(#Tς)sω(s,ϖ ↘ ϖ↓)


2

= (1↘ ε)


∑

a

(ϖ(a|s0)↘ ϖ↓(a|s0))ω(s0, a)


2

+ ε


∑

s

(”Tς)s
∑

a

(ϖ(a|s)↘ ϖ↓(a|s))ω(s, a)


2

↑ (1↘ ε)
∑

a

|ϖ(a|s0)↘ ϖ↓(a|s0)|↓ω(s0, a)↓2 + ε
∑

s

(|#|T |ς|)s
∑

a

|ϖ(a|s)↘ ϖ↓(a|s)|↓ω(s, a)↓2

↑ (1↘ ε)▷+ ε▷1T
S |#|T |ς|

↑ (1↘ ε)▷+ ε▷Dε

⇒
d↓ς↓2

↑ (1↘ ε)▷+ ε▷
⇒
dDεB

where the second to last inequality uses the boundedness assumption on # and the last inequality follows by ↓ς↓2 ↑ B.
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The second term (ii) can be bounded by a union bound of the concentration inequality in Lemma 3.1 across all ϖ↓ in the
cover, resulting in the following bound

↓”Tµω,ω→ ↘”T µω,ω→↓2 ↑ O
(
B


log(d/⇀) + d log(Dω/▷)

n

)
.

To bound the third term (iii), note that

”T µω,ω = (1↘ ε)ω(s0,ϖ) + ε
∑

s

(⊋#Tς)sω(s,ϖ)

= (1↘ ε)ω(s0,ϖ) +
ε

n

n∑

k=1

ckω(s
↓
k,ϖ). (12)

where ς = 1
n

∑n
k=1 ckω(sk, ak). Therefore,

↓”T µω,ω→ ↘”T µω,ω↓2 ↑ (1↘ ε)↓ω(s0,ϖ ↘ ϖ↓)↓2 +
ε

n

n∑

k=1

ck↓ω(s↓k,ϖ ↘ ϖ↓)↓2

↑ (1↘ ε)▷+ εB▷

where the last inequality uses ↓ω(s,ϖ↘ϖ↓)↓2 = ↓
∑

a(ϖ(a|s)↘ϖ↓(a|s))ω(s, a)↓2 ↑
∑

a |ϖ(a|s)↘ϖ↓(a|s)|↓ω(s, a)↓2 ↑ ▷.
Combining the bounds of the three terms, we get

↓”Tµω,ω ↘”T µω,ω↓2 ↑ O
(
B


log(d/⇀) + d log(Dω/▷)

n
+
⇒
dB▷

)
.

Choosing ▷ = 1/
⇒
dn, we get the desired result.

Lemma D.4. The sequences {ϖt}, {ς(c↓t)}, {ϖt} produced by Algorithm 1 satisfies

REGϖ
t = ≃ϖt ↘ ϖωt ,”Tµω(c→

t),ωt
↘ ς(c↓t)⇐ ↑ O

(
C≃d

1↘ ε


log(dnT (log |A|)/⇀)

n

)

for t = 1, . . . , T with probability at least 1↘ ⇀.

Proof. Recall that I ↖ {1, . . . , n} is an index set of size d such that {ω(sj , aj)}j↔I is a 2-approximate barycentric spanner
for {ω(sk, ak)}nk=1. Let C↓

n(C
≃) = {c↓ → [↘2C≃, 2C≃]n : c↓j = 0 if j → I}. Consider a ▷-cover of C↓

n(C
≃) with respect to

distance induced by ↓ · ↓↑ where ▷ is to be chosen later, and let c↓↓t be the closest covering center to c↓t. There exists a cover
with covering number (1 + 4C≃/▷)d. We can decompose the regret of ↼-player at step t into

REGϖ
t = ≃ϖt ↘ ϖωt ,”Tµω(c→

t),ωt
↘ ς(c↓t)⇐

= ≃ϖt ↘ ϖωt ,”Tµω(c→
t),ωt

↘”Tµωt(c→→
t ),ωt

⇐
︸ ︷︷ ︸

(a)

+ ≃ϖt ↘ ϖωt ,”Tµω(c→→
t ),ωt

↘”T µω(c→→
t ),ωt

⇐
︸ ︷︷ ︸

(b)

+ ≃ϖt ↘ ϖωt ,”T µω(c→→
t ),ωt

↘”T µω(c→
t),ωt

⇐
︸ ︷︷ ︸

(c)

+ ≃ϖt ↘ ϖωt ,”T µω(c→
t),ωt

↘ ς(c↓t)⇐︸ ︷︷ ︸
(d)

.

Bounding (a) Recall from equation (11) that

”Tµω,ω = (1↘ ε)ω(s0,ϖ) + ε
∑

s

(#Tς)sω(s,ϖ)

where we use the notation ω(s,ϖ) =
∑

a ϖ(a|s)ω(s, a). Also, since ↓c↓t ↘ c↓↓t ↓↑ ↑ ▷, we have

↓ς(c↓t)↘ ς(c↓↓t )↓2 =
1

n



n∑

k=1

(c↓tk ↘ c↓↓tk)ω(sk, ak)


2

↑ 1

n

n∑

k=1

|c↓tk ↘ c↓↓tk|↓ω(sk, ak)↓2 ↑ ▷.
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Hence,

↓”Tµω(c→
t),ωt

↘”Tµω(c→→
t ),ωt

↓2 = ε↓
∑

s↔S
(#T (ς(c↓t)↘ ς(c↓↓t )))sω(s,ϖ)↓

↑ ε
∑

s↔S
|(#T (ς(c↓t)↘ ς(c↓↓t )))s|↓ω(s,ϖ)↓2

↑ ε
∑

s↔S
|(#T (ς(c↓t)↘ ς(c↓↓t )))s|

↑ ε▷1T
S |#|T1d

↑ ε▷Dεd

where we use the notation |#| for the matrix that takes element-wise absolute value of #. The second inequality follows
since ↓ϑ(s,ϖ)↓2 = ↓

∑
a ϖ(a|s)ω(s, a)↓2 ↑

∑
a ϖ(a|s)↓ω(s, a)↓2 ↑

∑
a ϖ(a|s) = 1. The last inequality follows by the

boundedness assumption on ”. Hence, choosing ▷ = 1/
⇒
dn, Term (a) can be bounded by

≃ϖt ↘ ϖωt
wt

,”Tµωt,ωt ↘”Tµω→
t,ωt

⇐ ↑ ↓ϖt ↘ ϖωt
wt

↓2↓”Tµωt,ωt ↘”Tµω→
t,ωt

↓2

↑ 2εDϖDε

⇒
d⇒

n
.

Bounding (b) The second term can be bounded by a union bound of the concentration inequality in Lemma D.3 over a
(1/

⇒
dn)-cover of C↓

n(C
≃) = {c↓ → [↘2C≃, 2C≃]n : c↓j = 0 if j → I}, which gives

≃ϖt ↘ ϖωt ,”Tµω→
t,ωt

↘”T µω→
t,ωt

⇐ ↑ ↓ϖt ↘ ϖωt↓2↓”Tµω→
t,ωt

↘”T µω→
t,ωt

↓2

↑ O
(
DϖC

≃


d log(Dωdn/⇀)

n

)

Bounding (c) Recall from (12) that ”T µω,ω = (1↘ ε)ω(s0,ϖ) +
ϑ
n

∑n
k=1 ckω(s

↓
k,ϖ). Since ↓c↓t ↘ c↓↓t ↓↑ ↑ 1/

⇒
dn,

we have

↓”T µω(c→→
t ),ωt

↘”T µω(c→
t),ωt

↓2 =
ε

n



n∑

k=1

(c↓↓tk ↘ c↓tk)ω(s
↓
k,ϖt)


2

↑ ε/
⇒
dn.

It follows by Cauchy-Schwartz that

≃ϖt ↘ ϖωt ,”T µω(c→→
t ),ωt

↘”T µω(c→
t),ωt

⇐ ↑ O(Dϖ/
⇒
dn).

Bounding (d) Recall that ↼-player chooses ϖt → Bd(Dϖ) greedily that minimizes ≃·,”T µω(c→
t),ωt

↘ ς(c↓t)⇐ and that
ϖωt
wt

→ Bd(Dϖ). Hence, the term (d) can be bounded by

≃ϖt ↘ ϖωt ,”T µω(c→
t),ωt

↘ ς(c↓t)⇐ ↑ 0.

Combining all the bounds, and using Dϖ :=
⇒
d+ ϑDω

↘
d

1→ϑ ↑ O(
↘
d

1→ϑ ) and Dω = φTDϖ ↑ O(
√
log |A|T ), we get

REGϖ
t ↑ O

(
C≃d

1↘ ε


log(dnT (log |A|)/⇀)

n

)
.

D.3. Bounding the Regret of ↽-Player

Lemma D.5. The sequences {ϖt}, {ς(ct)}, {ϖt} produced by Algorithm 1 satisfies

1

T

T∑

t=1

REGς
t ↑ O

(
C≃d3/2

1↘ ε


log(dnT (log |A|)/⇀)

n

)
+ ωςopt(T )

with probability at least 1↘ ⇀.
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Proof. The regret of ↽-player at step t can be bounded by

REGς
t = f(ϖt,ς

≃,ϖt)↘ f(ϖt,ς(ct),ϖt)

= ≃ς≃ ↘ ς(ct),ε + ε#vεt,ωt ↘ ϖt⇐

= ≃ς≃ ↘ ς(ct),ε + ε#vεt,ωt ↘ ϖt⇐+ ε≃ς≃ ↘ ς(ct),#vεt,ωt ↘#vεt,ωt⇐+ ≃ς≃ ↘ ς≃,ε + ε#vεt,ωt ↘ ϖt⇐.

The average of the first term over t = 1, . . . , T is ωςopt(T ) which vanishes as T increases since the ↽-player employs a
no-regret online convex optimization oracle (Definition 3.4) on the sequence of functions ≃·,ε + ε#vεt,ωt ↘ ϖt⇐. The
second term can be bounded as follows.

≃ς≃ ↘ ς(ct),#vεt,ωt ↘#vεt,ωt⇐ ↑ ↓ς≃ ↘ ς(ct)↓(n!̂n+I)↓1↓#vεt,ωt ↘#vεt,ωt↓n!̂n+I

↑ 1⇒
n
↓ς≃ ↘ ς(ct)↓!̂†

n
↓#vεt,ωt ↘#vεt,ωt↓n!̂n+I

↑ 2⇒
n
C≃

⇒
d · O(Dv


d log(DϖDωn/⇀))

↑ O
(
C≃d3/2

1↘ ε


log(dnT (log |A|)/⇀)

n

)

where the second inequality follows since n$n + I ↭ n$n and the fact that both ς≃ and ς(ct) are in the column space of
$; the third inequality follows by Lemma 3.7 and Lemma 3.6 and the fact that the range of vεt,ωt is [0, Dϖ ] so that we can
set Dv = Dϖ ; the last inequality follows by Dϖ ↑ O(

↘
d

1→ϑ ) and Dω = φTDϖ = O(
√
T log |A|). The third term can be

bounded by

≃ς≃ ↘ ς≃,ε + ε#vεt,ωt ↘ ϖt⇐ ↑ ↓ς≃ ↘ ς≃↓2↓ε + ε#vεt,ωt ↘ ϖt↓2

↑ O
(
C≃


log(d/⇀)

n

)
· O(Dϖ

⇒
d)

↑ O
(

C≃d

1↘ ε


log(d/⇀)

n

)

where the second inequality follows by Lemma 3.5 and the last inequality follows by the bound Dϖ ↑ O(
↘
d

1→ϑ ) and the
boundedness assumption on #. Combining the three bounds completes the proof.

E. Details in Offline Constrained RL Setting
E.1. Lagrangian Formulation

Recall that in the linear CMDP setting, the optimization problem of interest is

max
ω

J0(ϖ)

subject to Ji(ϖ) ⇑ ⇁i, i = 1, . . . , I.

which we denote by P(⇀ ) parameterized by the thresholds ⇀ → RI . We write the Lagrangian function corresponding to the
optimization problem P(⇀ ) as

L(ϖ,w) := J(ϖ) +w · (J(ϖ)↘ ⇀ )

where J(·) = (J1(·), . . . , JI(·)), ⇀ = (⇁1, . . . , ⇁I) and w → RI is the Lagrangian multipliers corresponding to the
constraints. The linear programming formulation of the constrained reinforcement learning problem is:

max
µ⇐0

≃r0,µ⇐

subject to ≃ri,µ⇐ ⇑ ⇁i, i = 1, . . . , I,

ETµ = (1↘ ε)ϱ0 + εP Tµ.

20



Offline Constrained Reinforcement Learning with Linear MDPs

Using ri = ”εi, i = 0, . . . , I , and P = ”#, which holds by the linear CMDP assumption (Assumption E), the linear
program can be written as

max
µ⇐0

≃ε0,”Tµ⇐

subject to ≃εi,”Tµ⇐ ⇑ ⇁i, i = 1, . . . , I,

ETµ = (1↘ ε)ϱ0 + ε#T”Tµ

Note that the optimization variable µ → R|S↗A| is high-dimensional that depends on the size of S. With the goal of
computational and statistical efficiency, we introduce a low-dimensional optimization variable ς = ”Tµ → Rd, which
has the interpretation of the average occupancy in the feature space. With the reparametrization, the optimization problem
becomes

max
µ⇐0,ω

≃ε0,ς⇐

subject to ≃εi,ς⇐ ⇑ ⇁i, i = 1, . . . , I,

ETµ = (1↘ ε)ϱ0 + ε#Tς

ς = ”Tµ.

The dual of the linear program above is

min
w⇐0,v,ε

(1↘ ε)≃ϱ0,v⇐ ↘ ≃w, ⇀ ⇐

subject to ϖ = ε0 +%w + ε#v

Ev ⇑ ”ϖ.

where we write % =

ε1 · · · εI


→ Rd↗I . The Lagrangian associated to this pair of linear programs is

L(ς,µ;v,w, ϖ) = (1↘ ε)≃ϱ0,v⇐+ ≃ς,ε0 + ε#v ↘ ϖ⇐+ ≃µ,”ϖ ↘Ev⇐ ↘ ≃w, ⇀ ↘%Tς⇐
= ≃ς,ε0⇐+ ≃v, (1↘ ε)ϱ0 + ε#Tς↘ETµ⇐+ ≃ϖ,”Tµ↘ ς⇐ ↘ ≃w, ⇀ ↘%Tς⇐.

Note that the optimization variables ς, ϖ → Rd and w → RI are low-dimensional, but µ → R|S↗A| and v → R|S| are not.
With the goal of running a primal-dual algorithm on the Lagrangian using only low-dimensional variables, we introduce
policy variable ϖ and parameterize µ and v, as was done for the unconstrained RL setting, by

µω,ω(s, a) = ϖ(a|s) [(1↘ ε)ϑ0(s) + ε≃ϱ(s),ς⇐]

vε,ω(s) =
∑

a

ϖ(a|s)≃ϖ,ω(s, a)⇐.

Note that the choice of µω,ω makes the Bellman flow constraint ETµ = (1↘ ε)ϱ0+ ε#Tς of the primal problem satisfied.
Also, the choice of vε,ω makes ≃µω,ω,”ϖ↘Evε,ω⇐ = 0. Using the above parameterization, the Lagrangian can be rewritten
in terms of ϖ,ς,w,ϖ as follows:

g(ς, ϖ,w,ϖ) = ≃ς,ε0⇐+ ≃ϖ,”Tµω,ω ↘ ς⇐ ↘ ≃w, ⇀ ↘%Tς⇐ (13)

= (1↘ ε)≃ϱ0,vε,ω⇐+ ≃ς,ε0 + ε#vε,ω ↘ ϖ⇐ ↘ ≃w, ⇀ ↘%Tς⇐. (14)

At the cost of having to keep track of ϖ, we can now run a primal-dual algorithm on the low-dimensional variables ϖ, ς
and w. As is the case for the unconstrained RL setting, the introduction of ϖ in the equation does not make the algorithm
inefficient because we can only keep track of the distribution ϖ(s|a) for state-action pairs that appear in the dataset.

E.2. Technical Lemmas on Lagrangian

For a linearized reward function u = r0 + w · r where we use the notation r to denote the vector of reward functions
r1, . . . , rI such that u(s, a) = r0(s, a) +

∑I
i=1 wiri(s, a), the Bellman equation becomes

Qω
w = ”(ε0 +%w + ε#V ω

w ) = ”ϖω
w (15)
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where we write Qω
w and V ω

w as the value functions of the policy ϖ with respect to the linearized reward function r0 +w · r
and define

ϖω
w := ε0 +%w + ε#V ω

w .

Note that if w → Dw!I , we have ↓ϖω
w↓2 ↑ 1+Dw + ϑ

↘
d(1+Dw)
1→ϑ = O


Dw

↘
d

1→ϑ


. We define Dϖ := 1+Dw + ϑ

↘
d(1+Dw)
1→ϑ .

Lemma E.1. Let ϖω
w be the parameter that satisfies Qω

w = ”ϖω
w for a given w → RI and a policy ϖ. Then,

L(ϖ,w) = g(ϖω
w,ς,ϖ,w)

for all ς → Rd in the span of {ω(s, a)}(s,a)↔S↗A.

Proof. For convenience, define the reward function u(s, a) = r0(s, a)+
∑I

i=1 wiri(s, a). By the linear CMDP assumption,
we have u = ”(ε0 +%w) where u → R|S↗A| is the vector representation of the reward function u. Also, by the definition
of vε,ω in (3), we have

vεε
w,ω(s) =

∑

a

ϖ(a|s)≃ϖω
w,ω(s, a)⇐ =

∑

a

ϖ(a|s)Qω
w(s, a) = V ω

w(s).

Since we assume ς → Rd is in the span of {ω(s, a)}(s,a)↔S↗A, there exists ⇁ → R|S↗A| such that ς = ”T⇁. Hence, using
the form (14) of the Lagrangian function, we have

g(ϖω
w,ς,ϖ,w) = (1↘ ε)≃ϱ0,vεε

w
⇐+ ≃ς,ε0 + ε#vεε

w
↘ ϖω

w⇐ ↘ ≃w, ⇀ ↘%Tς⇐
= (1↘ ε)≃ϱ0,V

ω
w ⇐+ ≃ς,ε0 +%w + ε#V ω

w ↘ ϖω
w⇐ ↘ ≃w, ⇀ ⇐

= (1↘ ε)≃ϱ0,V
ω
w ⇐+ ≃⇁,”(ε0 +%w + ε#V ω

w ↘ ϖω
w)⇐ ↘ ≃w, ⇀ ⇐

= (1↘ ε)≃ϱ0,V
ω
w ⇐+ ≃⇁,u+ εPV ω

w ↘Qω
w⇐ ↘ ≃w, ⇀ ⇐

= (1↘ ε)≃ϱ0,V
ω
w ⇐ ↘ ≃w, ⇀ ⇐

= L(ϖ,w)

where the second to last equality uses the Bellman equation (1) and the last equality is by L(ϖ,w) = J0(ϖ)+w · (J(ϖ)↘⇀ )
and the fact that J0(ϖ) +w · J(ϖ) is the value of ϖ with respect to the linearized value function r0 +w · r.

Lemma E.2. Under the linear MDP setting, let ϖω be the parameter that satisfies Qω = ”ϖω for a policy ϖ. Then,

J(ϖ) = f(ϖω,ς,ϖ)

for all ς → Rd in the span of {ω(s, a)}(s,a)↔S↗A.

Proof. This is a direct corollary of Lemma E.1, which can be seen by setting w = 0.

Lemma E.3. Given a policy ϖ, let µω be the occupancy measure induced by ϖ and let ςω = ”Tµω . Then, for any ϖ → Rd

and any w → RI , we have
L(ϖ,w) = g(ϖ,ςω,w,ϖ).

Proof. By the definition of µω,ω in (2), we have

µωε,ω(s, a) = ϖ(a|s) [(1↘ ε)ϑ0(s) + ε≃ϑ(s),ςω⇐]
= ϖ(a|s)


(1↘ ε)ϑ0(s) + ε≃ϑ(s),”Tµω⇐



= µω(s, a).

Using the form (13) of the Lagrangian function, we have

g(ϖ,ςω,w,ϖ) = ≃ςω,ε0⇐+ ≃ϖ,”Tµωε,ω ↘ ςω⇐ ↘ ≃w, ⇀ ↘%Tςω⇐
= ≃”Tµω,ε0⇐ ↘ ≃w, ⇀ ↘%T”Tµω⇐
= ≃µω, r0⇐ ↘ ≃w, ⇀ ↘RTµω⇐
= L(ϖ,w)

where the second equality uses µωε,ω = µω and ςω = ”Tµω; and the third equality uses the matrix notation for the reward
functions R = {ri(s, a)}(s,a)↔R|S↔A|,i↔[I]; the last equality uses Ji(ϖ) = ≃µω, ri⇐, i = 1, . . . , I .
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Lemma E.4. Under the linear MDP setting, let µω be the occupancy measure induced by a policy ϖ and let ςω = ”Tµω .
Then, for any ϖ → Rd, we have

J(ϖ) = f(ϖ,ςω,ϖ).

Proof. This is a direct corollary of Lemma E.3, which can be seen by setting w = 0.

Define L⇀(ϖ,w) = J0(ϖ) +w · (J(ϖ)↘ ⇀ ↘ ◁1) to be the Lagrangian function associated with P(⇀ + ◁1). The following
lemma shows that the near saddle point of L⇀(·, ·) is a nearly optimal solution of the optimization problem P(⇀ + ◁1).

Lemma E.5. Assume that Slater’s condition (Assumption D) holds and that ◁ < φ so that P(⇀ + ◁1) also satisfies
Slater’s condition. Suppose (ϖ̄, w̄) satisfies L⇀(ϖ, w̄) ↑ L⇀(ϖ̄,w) + 0 for all policies ϖ and w → B!I . Let (ϖ≃

⇀ ,w
≃
⇀) be a

primal-dual solution to P(⇀ + ◁1). Assume B > ↓w≃
⇀↓1. Then, we have

J0(ϖ̄) ⇑ J0(ϖ
≃
⇀)↘ 0 (Optimality)

Ji(ϖ̄) ⇑ ⇁i + ◁ ↘ 0

B ↘ ↓w≃
⇀↓1

, for all i = 1, . . . , I (Feasibility)

Proof. We first prove near optimality of ϖ̄.

Optimality Since (ϖ̄, w̄) satisfies L⇀(ϖ, w̄) ↑ L⇀(ϖ̄,w) + 0 for all policies ϖ and w → B!I , we have L⇀(ϖ≃
⇀ , w̄) ↑

L⇀(ϖ̄,w) + 0 for all w → B!I . Choosing w = 0, we get

L⇀(ϖ
≃
⇀ , w̄) ↑ L⇀(ϖ̄,0) + 0 = J0(ϖ̄) + 0.

Rearranging, we get
J0(ϖ̄) ⇑ J0(ϖ

≃
⇀) + w̄ · (J(ϖ≃

⇀)↘ ⇀ ↘ ◁1)↘ 0 ⇑ J0(ϖ
≃
⇀)↘ 0

where the second inequality uses the feasibility of ϖ≃
⇀ for P(⇀ + ◁1). Now, we prove feasibility of ϖ̄.

Feasibility Recall that (ϖ≃
⇀ ,w

≃
⇀) is a primal-dual solution to the optimization problem P(⇀ + ◁1) and L⇀(·, ·) is the

Lagrangian function corresponding to the problem P(⇀ + ◁1). By strong duality, (ϖ≃
⇀ ,w

≃
⇀) is a saddle point for L⇀(·, ·).

Hence, we have
L⇀(ϖ̄,w

≃
⇀) ↑ L⇀(ϖ

≃
⇀ ,w

≃
⇀) = J0(ϖ

≃
⇀) +w≃

⇀ · (J(ϖ≃
⇀)↘ ⇀ ↘ ◁1) = J0(ϖ

≃
⇀)

where the first inequality follows from the fact that (ϖ≃
⇀ ,w

≃
⇀) is a saddle point of L⇀(·, ·) and the last equality follows from

the complementary slackness property of the solution (ϖ≃
⇀ ,w

≃
⇀). Rearranging, we get

J0(ϖ
≃
⇀)↘ J0(ϖ̄) ⇑ w≃

⇀ · (J(ϖ̄)↘ ⇀ ↘ ◁1) ⇑ (m↘ ◁)↓w≃
⇀↓1 (16)

where we define m = mini↔[I](Ji(ϖ̄) ↘ ⇁i). Now, to upper bound J0(ϖ≃
⇀) ↘ J0(ϖ̄), we first use the feasibility of ϖ≃

⇀ for
P(⇀ + ◁1) as follows.

L⇀(ϖ
≃
⇀ , w̄) = J0(ϖ

≃
⇀) + w̄ · (J(ϖ≃

⇀)↘ ⇀ ↘ ◁1) ⇑ J0(ϖ
≃
⇀).

On the other hand, since (ϖ̄, w̄) satisfies L(ϖ, w̄) ↑ L(ϖ̄,w) + 0 for all policies ϖ and w → B!I , we have L⇀(ϖ≃
⇀ , w̄) ↑

L⇀(ϖ̄,w) + 0 for any w → B!I . By choosing w such that wj = B for j = argmini↔[I](Ji(ϖ̄) ↘ ⇁i) and recalling
m = mini↔[I](Ji(ϖ̄)↘ ⇁i), we get

L⇀(ϖ
≃
⇀ , w̄) ↑ L⇀(ϖ̄,w) + 0 = J0(ϖ̄) +B(m↘ ◁) + 0.

Combining the previous two results (upper bound and lower bound of L⇀(ϖ≃
⇀ , w̄)), we get

J0(ϖ
≃
⇀)↘ J0(ϖ̄) ↑ B(m↘ ◁) + 0. (17)

Combining the lower bound (16) and the upper bound (17) of J0(ϖ≃
⇀)↘ J0(ϖ̄) and rearranging, we get

m↘ ◁ ⇑ ↘0

B ↘ ↓w≃
⇀↓1

.
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Since Ji(ϖ̄)↘ ⇁i ↘ ◁ ⇑ m↘ ◁ for all i → [I], rearranging the above gives

Ji(ϖ̄) ⇑ ⇁i + ◁ ↘ 0

B ↘ ↓w≃
⇀↓1

for all i = 1, . . . , I .

Lemma E.6 (Lemma 13 in Hong et al. (2023)). Consider a constrained optimization problem P(⇀ ) with threshold
⇀ = (⇁1, . . . , ⇁I) with ⇁i > 0 for all i = 1, . . . , I . Suppose the problem satisfies Slater’s condition with margin ϕ > 0, in
other words, there exists ϖ → # that satisfies the constraint Ji(ϖ) ⇑ ⇁i + φ for all i = 1, . . . , I . Then, the optimal dual
variable ς≃ of the problem satisfies ↓ς≃↓1 ↑ 1

↽ .

Proof. Let ϖ≃ be an optimal policy of the optimization problem P(⇀ ). Define the dual function f(ς) = maxω J0(ϖ) +
ς · (J(ϖ) ↘ ⇀ ). Let ς≃ = argminω↔RI

+
f(ς). Trivially, ↽≃

i ⇑ 0 for all i = 1, . . . , I . Also, by strong duality, we have
f(ς≃) = J0(ϖ≃). Let ϖ be a feasible policy with J(ϖ) ⇑ ⇀+φ1 where the inequality is component-wise and 1 = (1, . . . , 1).
Such a policy exists by the assumption of this lemma. Then,

J0(ϖ
≃) = f(ς≃) ⇑ J0(ϖ) + ς≃ · (J(ϖ)↘ ⇀ ) ⇑ J0(ϖ) + ς≃ · φ1 = J0(ϖ) + φ↓ς≃↓1.

Rearranging and using 1 ⇑ J0(ϖ≃) ⇑ J0(ϖ) ⇑ 0 completes the proof:

↓ς≃↓1 ↑ J0(ϖ≃)↘ J0(ϖ)
φ

↑ 1

ϕ
.

E.3. Proof of Theorem 5.1

For a given w → RI and a policy ϖ, define ϖω
w → Rd to be the parameter that satisfies Qω

w = ”ϖω
w where Qω

w is the
state-action value function of the policy ϖ with respect to the reward function r0 +w · r. Using g(ϖω

w,ς,w,ϖ) = L(ϖ,w)
for any ς that is a linear combination of {ω(s, a)}(s,a)↔S↗A (Lemma 13) and g(ϖ,ςω,w,ϖ) = L(ϖ,w) for any ϖ → Rd

where ςω = ”Tµω (Lemma 14), we have

L(ϖ≃,wt)↘ L(ϖt,w) = g(ϖt,ς
≃,wt,ϖ)↘ g(ϖωt

wt
,ς(c↓t),w,ϖt))

= (g(ϖt,ς
≃,wt,ϖ

≃)↘ g(ϖt,ς
≃,wt,ϖt)︸ ︷︷ ︸

REGε
t

)

+ (g(ϖt,ς
≃,wt,ϖt)↘ g(ϖt,ς(c

↓
t),wt,ϖt)︸ ︷︷ ︸

REGϑ
t

)

+ (g(ϖt,ς(c
↓
t),wt,ϖt)↘ g(ϖt,ς(c

↓
t),w,ϖt)︸ ︷︷ ︸

REGw
t

)

+ (g(ϖt,ς(c
↓
t),w,ϖt)↘ g(ϖωt

wt
,ς(c↓t),w,ϖt)︸ ︷︷ ︸

REGϖ
t

)

where ϖ≃ is an optimal policy for the optimization problem P(⇀ ) and we use the notation ς≃ = ςω↑
. Note that the

suboptimality L(ϖ≃,wt)↘ L(ϖt,w) is decomposed into regret terms of the four players. As long as we show that the sum
of the four regrets over t = 1, . . . , T are sublinear in T and the dataset size n, we obtain 1

T

∑T
t=1 L(ϖ

≃,wt)↘ L(ϖt,w) =

L(ϖ≃, w̄)↘L(ϖ̄,w) = o(1) where w̄ = 1
T

∑T
t=1 wt and ϖ̄ = Unif(ϖ1, . . . ,ϖT ) is the mixture policy that chooses a policy

among ϖ1, . . . ,ϖT uniformly at random and runs the chosen policy for the entire trajectory. Then, for large enough T and n,
we get L(ϖ≃, w̄) ↑ L(ϖ̄,w) + ω where ω vanishes as T and n increase. Such a pair is a near saddle point of the Lagrangian
function L(·, ·) and it can be shown that the mixture policy ϖ̄ is a near-optimal solution of the optimization problem (OPT).
Specifically, adapting the proof of Hong et al. (2023), we can show that if the Slater’s condition (Assumption D) holds, then
a near saddle point (ϖ̄, w̄) of L(·, ·) with L(ϖ, w̄) ↑ L(ϖ̄,w) +O(ω) for all policies ϖ and w → (1 + 1

↼ )!
I satisfies

J0(ϖ̄) ⇑ J0(ϖ
≃)↘ ω

Ji(ϖ̄) ⇑ ⇁i ↘ ω, i = 1, . . . , I
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where ϖ≃ is the optimal policy for P(⇀ ), implying that ϖ̄ is a nearly optimal solution for the optimization problem.

In the rest of the section, we sketch the analysis that shows that L(ϖ, w̄)↘L(ϖ̄,w) ↑ ω for large enough T and n = O(ω→2).
With the decomposition of L(ϖ,wt)↘L(ϖt,w) into regrets of the four players discussed previously, we study how the four
regrets can be bounded in the next four subsections.

E.3.1. BOUNDING REGRET OF ϖ-PLAYER

Using the expression (14), the regret of ϖ-player simplifies to

Regωt = g(ϖt,ς
≃,wt,ϖ

≃)↘ g(ϖt,ς
≃,wt,ϖt)

= ≃ϱ≃,vεt,ω ↘ vεt,ωt⇐
= ≃ϱ≃,

∑
a(ϖ(a|·)↘ ϖt(a|·))≃ϖt,ω(·, a)⇐⇐.

where ϱ≃ = (1↘ε)ϱ0+ε#Tς≃ is the state occupancy measure induced by ϖ≃. This is identical to the regret term for the ϖ-
player in the unconstrained RL setting. As is done in the unconstrained RL setting, choosing φ = O((1↘ε)

√
log |A|/(dT )),

we get
1

T

T∑

t=1

REGω
t ↑ O

(
1

1↘ ε

√
(d log |A|)/T

)

which is sublinear in T . Consequently, choosing T to be at least ”( d log |A|
(1→ϑ)2ϱ2 ) gives 1

T

∑T
t=1 Regω

t ↑ ω.

E.3.2. BOUNDING REGRET OF ↼-PLAYER

Note that the regret for the ↼-player simplifies to

REGϖ
t = g(ϖt,ς(c

↓
t),w,ϖt)↘ g(ϖωt

wt
,ς(c↓t),w,ϖt)

= ≃ϖt ↘ ϖωt
wt

,”Tµωt,ωt ↘ ςt⇐

which has the same form as in the unconstrained case. The proof is essentially the same as the proof in Section D.2 for the
unconstrained setting. The only difference is that Dϖ ↑ O(Dw

↘
d

1→ϑ ) where Dw = 1 + 1
↼ . Following the proof, we get

REGϖ
t ↑ O

(
C≃d

(1↘ ε)φ


log(dnT (log |A|)/(⇀φ))

n

)
.

E.3.3. BOUNDING REGRET OF ↽-PLAYER

Using the expression (14), the regret of ↽-player simplifies to

REGς
t = f(ϖt,ς

≃,wt,ϖt)↘ f(ϖt,ςt,wt,ϖt)

= ≃ς≃ ↘ ςt,ε0 + ε#vεt,ωt ↘ ϖt +%wt︸ ︷︷ ︸
=ϑt

⇐

Following the analysis for the unconstrained setting in Section D.3, we get

1

T

T∑

t=1

REGς
t ↑ O

(
C≃d3/2

(1↘ ε)φ


log(dnT (log |A|)/(⇀φ))

n

)
+ ωςopt(T )

E.3.4. BOUNDING REGRET OF w-PLAYER

Using expression (13), the regret of w-player simplifies to

g(ϖt,ς(c
↓
t),wt,ϖt)↘ g(ϖt,ς(c

↓
t),w,ϖt) = ≃wt ↘w, ⇀ ↘%Tςt⇐

which is bounded by 0 since the w-player choose wt → Dw!I that minimizes ≃·, ⇀ ↘%Tςt⇐.
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E.4. Exact Feasibility

For producing an ω-optimal policy that satisfies the constraints exactly, we make the following two-policy feature coverage
assumptions.
Assumption F (Two-policy feature coverage). Assume the Slater’s condition (Assumption D) holds. Denote by ϖ≃

↼ an
optimal policy for the optimization problem P(⇀ + φ1). Denote by ϖ≃ an optimal policy for P(⇀ ). Assume that

(ς≃)T ($†)2ς≃ ↑ C≃, (ς≃
↼)

T ($†)2ς≃
↼ ↑ C≃.

With the assumption above and the linear CMDP assumption (Assumption E), consider running Algorithm 1 with stricter
thresholds ⇀ + ◁1 where ◁ = φω and Dw = 4

↼ . Since the Slater’s constant for P(⇀ + ◁1) is φ(1↘ ω), following the main
analysis gives

L⇀(ϖ
≃, w̄) ↑ L⇀(ϖ̄,w) + ω (18)

L⇀(ϖ
≃
↼, w̄) ↑ L⇀(ϖ̄,w) + ω (19)

for any w → Dw!I with probability at least 1↘ ⇀ for sample size n = O


(C↑)2d3 log(d/φ)
(1→ϑ)2↼2ϱ2


since changing φ to φ(1↘ ω)

does not affect the order of sample size bound where L⇀(ϖ,w) = J0(ϖ) +w · (J(ϖ)↘ ⇀ ↘ ◁1) is the Lagrangian function
for P(⇀ + ◁1). Then following the proof of Theorem 3 in Hong et al. (2023), we can argue as follows.

Near Optimality Setting w = 0 in (18) and rearranging, we get

J0(ϖ̄) ⇑ J0(ϖ
≃) + w̄ · (J(ϖ≃)↘ ⇀ ↘ ◁1)↘ ω

⇑ J0(ϖ
≃)↘ ◁↓w̄↓1 ↘O(ω)

⇑ J0(ϖ
≃)↘O(ω)

where the second inequality follows by the feasibility of ϖ≃ for P(⇀ ); the last inequality follows by ◁↓w̄↓1 ↑ ◁Dw = O(ω).
This proves near optimality of ϖ̄. Now we prove that ϖ̄ is (exactly) feasible for P(⇀ ).

Exact Feasibility Define m = mini↔[I](Ji(ϖ̄) ↘ ⇁i). If m ⇑ 0 then Ji(ϖ̄) ↘ ⇁i ⇑ 0 for all i = 1, . . . , I and exact
feasibility trivially holds. We only consider the case where m < 0. Define a mixture policy ϖ = (1↘ ↼)ϖ≃ + ↼ϖ≃

↼ where
↼ → (0, 1) is to be determined later. The mixture policy has the interpretation of first drawing a policy from {ϖ≃,ϖ≃

↼}
with probabilities (1↘ ↼) and ↼, then running the drawn policy for the entire trajectory. Since L⇀(·, w̄) is linear, a linear
combination of (18) and (19) with coefficients 1↘ ↼ and ↼ respectively, we get

L⇀(ϖ, w̄) ↑ L⇀(ϖ̄,w) + ω.

Choosing w such that wj = Dw for j = argmini↔[I](Ji(ϖ̄)↘ ⇁i) and wj = 0 for all other indices, we get

L⇀(ϖ, w̄) ↑ J0(ϖ̄) +w · (J(ϖ̄)↘ ⇀ ↘ ◁1) + ω

= J0(ϖ̄) +Dw(m↘ ◁) + ω.

On the other hand, using the fact that ϖ is feasible for P(⇀ + ↼φ1), we get

L⇀(ϖ, w̄) = J0(ϖ) + w̄ · (J(ϖ)↘ ⇀ ↘ ◁1)

⇑ J0(ϖ) + (↼φ↘ ◁)↓w̄↓1.

Combining the previous two results (upper bound and lower bound of L⇀(ϖ, w̄)) and rearranging, we get

J0(ϖ)↘ J0(ϖ̄) ↑ Dw(m↘ ◁)↘ (↼φ↘ ◁)↓w̄↓1 + ω. (20)

Now, to get a lower bound of J0(ϖ)↘ J0(ϖ̄), let (ϖ≃, w≃) be a primal-dual solution of P(⇀ + ↼φ1). Note that P(⇀ + ↼φ1)
is feasible by the Slater’s condition assumption D and the fact that ↼φ → (0,φ). Since (ϖ≃, w≃) is a saddle point of
Lϖ↼(ϖ,w) = J0(ϖ) +w · (JC(ϖ)↘ ⇀ ↘ ↼φ1), we get

Lϖ↼(ϖ̄, w≃) ↑ Lϖ↼(ϖ≃, w≃) = J0(ϖ≃) ↑ J0(ϖ
≃) ↑ 1

1↘ ↼
J0(ϖ)
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where the equality follows by the complementary slackness property; the second inequality follows since the feasibility set of
P(⇀ ) contains that of P(⇀ + ↼φ1); and the last inequality follows by J0(ϖ) = (1↘ ↼)J0(ϖ≃) + ↼J0(ϖ≃

↼) ⇑ (1↘ ↼)J0(ϖ≃).
Rearranging, we get

J0(ϖ)↘ J0(ϖ̄) ⇑ ↘↼J0(ϖ̄) + (1↘ ↼) w≃ · (J(ϖ̄)↘ ⇀ ↘ ↼φ1)

⇑ ↘↼ + (1↘ ↼)(m↘ ↼φ)↓ w≃↓1

where the second inequality follows by J0(·) ↑ 1 and the definition of m. Combining with the upper bound of J0(ϖ)↘J0(ϖ̄)
shown in (20) and rearranging, we get

(Dw ↘ (1↘ ↼)↓ w≃↓1)m ⇑ Dw◁ + (↼φ↘ ◁)↓w̄↓1 ↘ ↼ ↘ (1↘ ↼)↼φ↓ w≃↓1 ↘ ω. (21)

Now, we choose our parameters as follows.

↼ = ω, Dw =
4

φ
, ◁ = φω.

Since w≃ is a dual solution of P(⇀ + ↼φ1), which has a margin of φ↘ ↼φ, Lemma E.6 gives ↓ w≃↓1 ↑ 1
↼→ϖ↼ . Hence,

↼φ↓ w≃↓1 ↑ ↼φ

φ↘ ↼φ
↑ 2↼ = 2ω

where the second inequality uses ↼ = ω ↑ 1
2 . Hence, ↓ w≃↓1 ↑ 2ϱ

ϖ↼ = 2
↼ < Dw so that Dw ↘ (1↘ ↼)↓ w≃↓1 > 0. Hence,

the previous result (21) gives

(Dw ↘ (1↘ ↼)↓ w≃↓1)m ⇑ Dw◁ + (↼φ↘ ◁)↓ς̄↓1 ↘ ↼ ↘ (1↘ ↼)↼φ↓ w≃↓1 ↘ ω

⇑ 4ω+ 0↘ ω↘ 2ω↘ ω

= 0.

Since Dw ↘ (1 ↘ ↼)↓ς≃↓1 > 0, we have m ⇑ 0 which implies ⇁i ↘ Ji(ϖ̄) ⇑ 0 for all i = 1, . . . , I . This leads to the
following theorem.

Theorem E.7. Under assumptions E and F, as long as T is at least ”( d log |A|
(1→ϑ)2ϱ2 ), the policy ϖ̄ produced by Algorithm 1

with thresholds ⇀ + φω1 and Dw = 4
↼ satisfies J0(ϖ̄) ⇑ J0(ϖ≃)↘ ω and Ji(ϖ̄) ⇑ ⇁i, i = 1, . . . , I with probability at least

1↘ ⇀ for sample size

n = O
(
(C≃)2d3 log(dn(log |A|)/(⇀φω(1↘ ε))

(1↘ ε)2φ2ω2

)
.
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